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Abstract. We propose and study the concept of survey rationalizability. In the

simplest scenario of dichotomous attitudinal surveys, survey rationalizability means

that both questions and individuals’ views can be positioned on the real line in such

a way that individuals endorse only the questions that closely align with their views.

We demonstrate how the relative positioning of questions can be learned through a

revelation mechanism involving pairs of individuals and triplets of questions. We also

establish that the acyclicity of these revelations is necessary and sufficient for ratio-

nalizability. Additionally, we show that our analysis readily extends to polytomous

surveys and probabilistic data. Furthermore, we investigate the identification of the

parameters in these models and prove that even the cardinal locations can be fully

determined in an exponential version of the probabilistic model. Finally, we conclude

by examining an alternative model of survey responses for aptitudes.

Keywords: Surveys; Rationalizability; Attitudes; Aptitudes.

JEL classification numbers: C02; C83; D01.

1. Introduction

Surveys are becoming increasingly popular in economics as tools for gathering data

on various economic variables, such as subjective expectations, happiness, contingent

valuations, beliefs, and political attitudes. Understanding the rationality foundations

of survey responses is crucial for designing more accurate and informative surveys,
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ultimately leading to better decision-making and policies. This paper takes a first step

in this direction by showing that the empirical content of classical survey response

theories in the psychology literature can be studied using concepts and techniques

inspired by traditional revealed preference analysis.

There are two main types of surveys: those that measure attitudes and those that

measure aptitudes. We begin with attitudinal surveys, which present more challenges

from a rationality perspective. The underlying assumption in much of the literature

is that responses reveal the attitudes of individuals on a common spectrum. In psy-

chology, a classical treatment of this concept is the item response theory with ideal

points.1 According to this approach, both survey questions and respondents’ ideal

points are positioned on a common scale, and individuals express greater support for

questions closer to their ideal points. We commence our analysis by studying dichoto-

mous surveys, which consist of yes/no questions. In this case, the above concept of

endorsement-by-proximity can be modeled using the upper contour set of a strictly

quasi-concave utility, which takes the form of an interval centered around the indi-

vidual’s ideal point. We say that survey responses are rationalizable if every question

can be placed on the real line and each individual can be represented by a strictly

quasi-concave utility and a threshold level such that questions with utility above the

threshold level, and only those questions, are endorsed.

We show that the rationalizability of a dichotomous survey can be built on the basis

of an intuitive revelation principle involving triplets of questions and pairs of individ-

uals. We start by expanding the informational content of the survey by incorporating

the hypothetical responses of fictitious individuals, in the following way. Consider two

individuals with overlapping sets of responses. Given the model, their responses must

correspond to two overlapping intervals in the real line. Since the union and differ-

ence of overlapping intervals of the real line are also intervals, we can understand the

corresponding union and differences of their responses as the responses of some ficti-

tious individuals. We then derive our revelation principle from the expanded survey.

Suppose that we observe two individuals {na, nb} and three questions {qa, qI , qb} such

that individual na endorses {qa, qI} while individual nb endorses {qI , qb}. For these

responses to be consistent with the notion of endorsement-by-proximity, it must be

that the question endorsed by both individuals, qI , occupies the intermediate position

1See Thurstone (1928) and especially the unfolding theory of Coombs (1964) for early develop-

ments, and see Tay and Ng (2018) and Van der Linden (2018) for more recent accounts.
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within the triplet. It is in this sense that we say that qI is revealed to be intermediate

in {qa, qI , qb}. Theorem 1 shows that the acyclicity of the intermediateness revelations

contained in the expanded survey is a necessary and sufficient condition for rationaliz-

ability.

We then show that our techniques in the analysis of dichotomous surveys prove

useful in the study of more general settings. We consider two such settings; polyto-

mous surveys, in which questions can be answered using one out of multiple levels of

endorsement, and probabilistic survey data, where we allow for noisy responses. Af-

ter adjusting our notion of survey rationalizability to consider monotone collections

of thresholds, one for each endorsement level, and random thresholds, respectively,

Theorems 2 and 3 establish the corresponding characterizations. Both results follow

by simply transforming the richer survey datasets involved in these two settings into

analytically equivalent dichotomous datasets, allowing us to recur to Theorem 1.

We then shift our focus to studying the identification of the models. Since they are

ordinal, the key step in the analysis is to determine the order of questions and ideal

points. When the survey data is rationalizable, the intermediateness revelations can

be used to learn the order of questions, and in Proposition 1 we show that a richness

condition guarantees that this order is unique. Regarding individuals’ ideal points,

Proposition 2 demonstrates that it is possible to establish bounds for them, with pre-

cise information being conveyed by probabilistic surveys, whereas polytomous surveys

provide more information than dichotomous surveys. Furthermore, we demonstrate

that specific probabilistic models can yield cardinal information. We postulate a sim-

ple parametric version of the model in which the probability of endorsing a question

is an exponential function of its distance from the individual’s ideal point and show,

in Proposition 3, that the location of all questions and individuals’ ideal points can be

cardinally and uniquely identified.

Finally, we briefly analyze surveys oriented to the study of cumulative aptitudes,

such as ability or health status, rather than attitudes. A common approach in the

psychology literature is to apply dominance item response theory.2 The dichotomous

version of this approach is commonly known as Guttman scale. According to this,

the difficulty of questions and the aptitude levels of individuals can be represented on

the real line, with individuals responding positively to questions that are below their

2Classical treatments are Guttman (1944) and Rasch (1961); see Van der Linden (2018) for a more

recent discussion.
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aptitude levels. The study of the rationalizability in a Guttman scale is facilitated

by its cumulative nature. Rather than working with the ternary intermediateness

relation, we can simply work with the binary relation more complex than over the set

of questions, allowing us to obtain a characterization result based upon the acyclicity

of this binary revelation.

2. Related Literature

The empirical literature using surveys in economics is large and growing. Here,

our focus is on theoretical and methodological treatments of survey responses in eco-

nomics. Stantcheva (2022) gives a complete guide on the issues encountered when

actually running a survey study, including the design of questions and the analysis of

responses. Bertrand and Mullainathan (2001) proposes an econometric-based frame-

work that accounts for errors in responses, enabling a meaningful interpretation of

responses that are subject to cognitive biases. Falk, Neuber and Strack (2021) devel-

ops an individual-response model based on imperfect self-knowledge, where individuals’

responses depend on a combination of private signals and the population mean. Ben-

jamin, Guzman, Fleurbaey, Heffetz and Kimball (2023) proposes a methodology to

uncover the informational content of self-reported well-being surveys, considering vari-

ous potential response biases. Our contribution to this literature is to offer a theoretical

framework that studies the rationality of survey responses founded in classical accounts

in the psychology of survey responses. In addition, our probabilistic models of survey

responses enable systematic consideration of various types of errors.

The endorsement of questions is related to various notions of approval. In a recent

paper, Manzini, Mariotti and Ülkü (2022) consider the idea of “wishlisting,” where an

individual expresses interest or positive attitudes toward a subset of available items.

They study the psychological foundations of an individual model of sequential ap-

proval. Another instance is approval voting. Interestingly, Laslier (2009) and Alós-

Ferrer and Buckenmaier (2019) have shown that the equilibrium behavior in approval

voting games may have the upper-contour-set structure analyzed in this paper.3 Thus,

3Núñez and Xefteris (2017) study approval voting under single-peaked preferences, which is re-

lated to our notion of endorsement-by-proximity. They show that every Nash-implementable welfare

optimum can indeed be implemented by means of approval voting mechanisms.
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our main axiom, SARI, may be useful in providing a necessary condition for the study

of equilibrium behavior under approval voting.

There is a long tradition in the political sciences of elucidating the ideological spec-

trum of politicians, voters, and policies (see, e.g., the textbook treatment of Poole and

Rosenthal, 2007). In a recent paper, Barberá (2014) estimates the ideology of Twitter

profiles by using a parametric model of item response theory with ideal points and

connectivity data. Linking with another Twitter profile can be considered analogous

to endorsing a survey question. We contribute to this literature by primarily studying

nonparametric response models and offering testability conditions.

In many economic studies, online reviews are modeled as ordered choices in which a

higher utility leads to a higher rating (see Greene and Hensher (2010) for a textbook

discussion). Recently, Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2022) pro-

posed a social learning model that uses a response model based on thresholds to study

the conditions under which the product quality can be learned. Our paper contributes

to this literature by determining the conditions under which survey responses can be

rationalized using a response model based on thresholds. We differ in our focus, as

we investigate a unified scale where all attitudes can be positioned, rather than the

transmission of information through responses.

Our techniques in the study of the rationalizability of dichotomous surveys are re-

lated to various literatures across scientific disciplines, such as the use of sortability and

seriation in archaeology, anthropology, biology, computer science or psychology. The

connection with all these fields is the so-called consecutive-ones-property, or simply

c1p, of a 0− 1 matrix. C1p requires the existence of a permutation of the columns of

the matrix such that the ones of every row become consecutive.4 Our Theorem 1 con-

tributes to this literature by providing a characterization of c1p based on the acyclicity

of a ternary relation derived from matrix information. We achieve this objective by first

expanding the information contained in the matrix and then constructing the ternary

relation based on this expanded information.

4As an illustration of an application of c1p in a different field, consider the following statistical

archaeology problem (Kendall (1969)). Data is given by a set of graves and a set of objects that are

or are not in these graves. C1p is used to determine whether graves and objects can be located in the

time-scale such that each grave contains only objects that were created, but were not obsolete, in the

relevant period. See Hubert (1974) for a connection between these techniques and survey responses,

and Liiv (2010) for an overview of their use across different disciplines.
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Finally, we build our revealed analysis on the basis of an intermediateness ternary

relation constructed from the responses of the individuals. Huntington and Kline (1917)

and Fishburn (1971) represent early treatments of abstract ternary relations, with the

purpose of representing the intermediateness of the real line. Our results contribute to

this literature in a conceptual and technical way. As for the former, we apply the notion

of intermediateness to a concrete economic problem deriving the ternary relation from

data, and as for the latter, we show that one can extend certain incomplete ternary

relations to linear ternary relations by way of using an acyclity condition.5

3. Rationalizability of attitudinal surveys: the dichotomous case

Let Q = {1, . . . , q, . . . , Q} be a set of questions on which a set of individuals N =

{1, . . . , n, . . . , N} is surveyed. We start analyzing the case in which questions are

dichotomous. Accordingly, a dichotomous survey (D-survey) is a collection of the form

{Qn}n∈N , with Qn ⊆ Q, describing the set of questions that are endorsed by individual

n.6 We study whether the survey data can be rationalized.

D-survey rationalizability. We say that {Qn}n∈N is rationalizable whenever there

exist [{Un, τn}n∈N , {µq}q∈Q], with Un : R→ R being strictly quasi-concave and τn, µq ∈
R, such that for every n ∈ N and q ∈ Q, it is q ∈ Qn if and only if Un(µq) ≥ τn.

In this notion of rationalization, the real line describes all possible views on a topic.

Each individual has a strictly quasi-concave utility function, Un, and a threshold pa-

rameter, τn. Then, each question occupies a specific position in the real line, µq, and is

endorsed by individual n whenever the utility of the view represented by this question

is above her threshold, Un(µq) ≥ τn. Notice that strict quasi-concavity guarantees that

each individual has an ideal point, that we denote by µn, and that the upper contour

set determined by τn corresponds to an interval around µn.

3.1. Expanding the information: overlapping intervals. We start by arguing

that we can expand the informational content of a D-survey. We do so by includ-

ing the responses of fictitious individuals that, under rationalizability, are implied by

5Note that one cannot use the standard results of completion of binary relations. We need to

show that our ternary relation can be completed by using techniques from the c1p literature.
6We are assuming that all individuals respond to all questions. However, the same analysis goes

through when there is missing data, perhaps due to attrition or to loss of data or by design, and the

information of each individual corresponds to a subset of questions.
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the responses in the D-survey. The trick exploits the basic properties of overlapping

intervals of the real line.

Suppose that we observe two response sets Qn1 and Qn2 that are overlapping, i.e.,

Qn1 ∩ Qn2 , Qn1 \ Qn2 and Qn2 \ Qn1 are non-empty. For rationalizability to hold, we

know that Qn1 corresponds to the questions in the upper-contour set of Un1 determined

by τn1 , which is an interval of the real line. The same logic applies to Qn2 and, since the

response sets of individuals n1 and n2 overlap, it follows that their underlying intervals

must also overlap. Now, since the intersection and differences of any two overlapping

intervals are also intervals, we can understand them as the upper contour sets of some

fictitious individuals.7 Hence, we can expand the informational content in the D-survey

by including responses Qn1 ∪Qn2 , Qn1 \Qn2 and Qn2 \Qn1 . This method can be used

recursively to end up with what we call the expanded D-survey, denoted by {Q̄m}Mm=1,

which is the unique collection of responses satisfying: (i) it contains {Qn}n∈N , (ii) it

is closed under union and differences of overlapping sets, and (iii) it is the minimal

collection satisfying (i) and (ii).

Example 1. Six individuals are inquired about five questions. As it will be discussed

in the proof of Theorem 1, for the purposes of rationalizability it suffices to entertain

response sets that are all different, contain at least two endorsed questions, and differ

from Q. Suppose that we observe the following responses: Q1 = {1, 3}, Q2 = {2, 4, 5},
Q3 = {3, 5}, Q4 = {1, 2, 3, 5}, Q5 = {2, 4} and Q6 = {1, 3, 5}. Individual 1 overlaps

with individual 3 but no new information can be obtained from combining their re-

sponses because Q1 ∪ Q3 = Q5 and the differences of their responses are singletons.

Individual 2 overlaps with individual 3 and this pair provides a novel response set

through the union of individual responses. No other novel pattern can be obtained

through union or difference of overlapping sets and hence M = 7 with Q̄m = Qm,

m < 7, and Q̄7 = Q2 ∪Q3 = {2, 3, 4, 5}. �

3.2. Exploiting the information: intermediate questions. We are ready to ex-

ploit the information contained in the expanded D-survey. The key insight of our

analysis is that all relevant information is ordinal and it can be represented by a linear

order over Q describing the relative position of questions in the real line. We obtain

7Notice that this statement does not necessarily apply if the responses are not overlapping: if

two intervals are disjoint, the union may fail to be an interval; if one interval contains the other, the

difference may fail to be an interval. Also, notice that the intersection of overlapping intervals must

also be an interval, but our revelation techniques do not require the addition of this information.
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this information by combining the responses of overlapping individuals and using the

fact that a linear order can be constructed from its intermediateness relation.

Consider two individuals {ma,mb} whose response sets overlap. Then, the interval

nature of their response sets reveals that for any three questions {qa, qI , qb} such that

qa ∈ Q̄ma \ Q̄mb , qI ∈ Q̄ma ∩ Q̄mb and qb ∈ Q̄mb \ Q̄ma , qI must be the one that

occupies an intermediate position in the real line. When this pattern is observed, we

say that qI has been revealed intermediate in the triplet {qa, qI , qb} and simply write

qI ∈ I({qa, qI , qb}).

Example 1 (continued). As an illustration of how intermediate revelations are

produced, notice that the response set Q̄1 = {1, 3} overlaps with the response set

Q̄3 = {3, 5}, and hence it must be that question 3 is intermediate in the triplet {1, 3, 5}.
The consideration of all pairs of overlapping individuals brings the following revealed in-

termediate relations: 3 ∈ I({1, 2, 3}), 2 ∈ I({1, 2, 4}), 5 ∈ I({1, 2, 5}), 3 ∈ I({1, 3, 4}),
3 ∈ I({1, 3, 5}), 5 ∈ I({1, 4, 5}), 2 ∈ I({2, 3, 4}), 5 ∈ I({2, 3, 5}), 2 ∈ I({2, 4, 5}),
5 ∈ I({3, 4, 5})}. �

3.3. Characterization. Rationalizability merely requires the revealed intermediate

relation to satisfy the following acyclicity type of condition.

Strong Axiom of Revealed Intermediateness (SARI). If qt ∈ I({qt−1, qt, qt+1})
for every t = 1, . . . T , then q0, qT 6∈ I({q0, qT−1, qT}).

Theorem 1. {Qn}n∈N is rationalizable if and only if {Q̄m}Mm=1 satisfies SARI.

Proof of Theorem 1: We start by noticing that we can assume without loss of

generality that q 6= q′ implies Nq 6= Nq′ , where Nq ⊆ N denotes the set of individuals

that endorse question q ∈ Q. From the if point of view, this assumption is innocuous

because the same location can be assigned to all questions such that Nq = Nq′ . From

the only if point of view, this assumption is innocuous because the revelations produced

by two questions satisfying Nq = Nq′ are fully symmetric, and the acyclicity described

by SARI is not affected by the elimination of one of these questions.

Also, notice that we can assume without loss of generality that all response sets

in {Q̄m}Mm=1 are different, i.e., m 6= m′ implies Q̄m 6= Q̄m′ . From the if point of

view, this assumption is innocuous because all individuals such that Q̄m = Q̄m′ can

be represented by the same utility and threshold. From the only if point of view, this



9

assumption is innocuous because two individuals such that Q̄m = Q̄m′ produce the

same expansions and revelations.

Finally, we can also assume without loss of generality that all response sets in

{Q̄m}Mm=1 contain at least two questions, but are not equal to Q. From the if point

of view, this assumption is innocuous because: (i) any individual that endorses all

questions can be added by selecting any Um and setting a sufficiently low τm, (ii) any

individual that endorses a unique question q can be added by selecting any Um and τm

such that µm = µq and Um(µq) = τm, and (iii) any individual that endorses no question

can be added by selecting any Um and setting a sufficiently high τm. From the only

if point of view, this assumption is innocuous because any such response set does not

produce any revelation, either directly or via expansion.

We now proceed to prove the result by means of a series of claims.

Claim 1. {Qn}n∈N is rationalizable if and only if {Qn}n∈N satisfies the consecutive

ones property (or c1p), i.e., there exists a linear order � over Q such that, for every

individual n ∈ N , Qn is formed by consecutive questions in �.

Proof of Claim 1: First, suppose that the D-survey is rationalizable. Then, it

must be so for a set of parameters [{Un, τn}n∈N , {µq}q∈Q]. For every pair of questions

q, q′ ∈ Q, since they are not endorsed by the same subset of individuals, it must be

µq 6= µq′ . Hence, we can define a linear order � by setting q � q′ ⇔ µq > µq′ . Now, for

every n ∈ N , rationalizability guarantees that Qn = {q ∈ Q : Un(µq) ≥ τn} and given

that Un is strictly quasi-concave, the questions in Qn must be consecutive in �.

Suppose now that the survey is c1p. Then, it must be so for some linear order �.

Given the finiteness of Q, we know that this linear order is representable and, hence,

there exists a collection of real values {µq}q∈Q such that for every pair of questions

q, q′ ∈ Q, it is µq > µq′ ⇔ q � q′. For every n ∈ N , define µn =
minq∈Qn µq+maxq∈Qn µq

2

and set Un(µn) = 1. Since |Qn| ≥ 2, it must be minq∈Qn µq < µn < maxq∈Qn µq. We

can set Un(minq∈Qn µq) = Un(maxq∈Qn µq) = 0 and complete Un to be the piecewise

linear function fully determined by these three points.

Finally, define τn = 0. The function Un is strictly quasiconcave. Since Qn is formed

by consecutive questions in �, any question q′ in Qn, and only these, must satisfy

maxq∈Qn µq ≥ µq′ ≥ minq∈Qn µq, or equivalently Un(µq′) ≥ τn. Rationalization has

been proved. �

Claim 2. {Qn}n∈N satisfies c1p if and only if {Q̄m}Mm=1 satisfies c1p.
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Proof of Claim 2: First suppose that {Qn}n∈N satisfies c1p. Then, there exists a

linear order� such that, for every n ∈ N , Qn is formed by a set of consecutive questions

in �. Any union and difference of two overlapping sets of consecutive questions in � is

also a consecutive set in �. Since every response set in {Q̄m}Mm=1 can be obtained by a

finite recursion of this principle, the linear order � also guarantees that the expanded

D-survey satisfies c1p.

Suppose now that {Q̄m}Mm=1 satisfies c1p. Since the D-survey is contained in the

expanded D-survey, any linear order for which the expanded D-survey satisfies c1p

also guarantees that the D-survey does so. This concludes the proof of the claim. �

Claim 3. {Q̄m}Mm=1 satisfies c1p if and only if {Q̄m}Mm=1 satisfies SARI.

Proof of Claim 3: Suppose first that {Q̄m}Mm=1 satisfies c1p. Then, there exists

a linear order � such that, for every 1 ≤ m ≤ M , Q̄m is formed by a set of con-

secutive questions in �. Consider a sequence of questions (q0, q1, . . . , qT ) such that

qt ∈ I({qt−1, qt, qt+1}) for every t = 1, . . . , T . Since q1 ∈ I({q0, q1, q2}), there must exist

a pair of individuals endorsing question q1, with one of them endorsing q0 but not q2

and the other endorsing q2 but not q0. Given that the response sets of these two indi-

viduals are consecutive in �, it must be either q0 � q1 � q2 or q2 � q1 � q0. Similarly,

since q2 ∈ I({q1, q2, q3}), it must be either q1 � q2 � q3 or q3 � q2 � q1. Moreover,

these two facts can be combined to learn that the quadruple must be ordered as either

q0 � q1 � q2 � q3 or q3 � q2 � q1 � q0. The iterative application of this principle shows

that it is either q0 � · · · � qT or qT � · · · � q0. In any case, since all response sets in

{Q̄m}Mm=1 are formed by consecutive questions in �, {q0, qT} ⊆ Q̄m implies qT−1 ∈ Q̄m

and hence neither q0 nor qT can be revealed intermediate in the triplet {q0, qT−1, qT},
as desired.

Suppose now that {Q̄m}Mm=1 satisfies SARI. We proceed by contradiction and assume

that {Q̄m}Mm=1 fails to satisfy c1p. Then, its incidence matrix must fail the matrix

version of c1p, and it must contain one sub-matrix adopting one out of the five forbidden

configurations found by Tucker (1972; Theorem 9).8 We analyze each one separately

8By incidence matrix we refer to the matrix assigning a value of one to the cell defined by row m

and column q whenever q ∈ Qm, and a zero otherwise. The definition of c1p for matrices is given in

Section 2.
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using our set notation. In each case, the subsets of individuals and questions involved

in the sub-matrix are denoted by M∗ and Q∗, with cardinalities M∗ and Q∗.9

Case I. M∗ = Q∗ ≥ 3 where, for every m < M∗, Q̄m ∩ Q∗ = {m,m + 1} and

Q̄M∗ ∩ Q∗ = {1,M∗}. When this is the case, it is immediate to see that for every

m < M∗ − 1, the pair of overlapping individuals {m,m + 1} reveals that m + 1 ∈
I({m,m + 1,m + 2}). Moreover, the pair of overlapping individuals {1,M∗} reveals

that 1 ∈ I({1, 2,M∗}). The conjunction of all these revelations is a direct violation of

SARI, and a contradiction has been reached.

Case II. M∗ = Q∗ ≥ 4 where, for every m < M∗ − 1, Q̄m ∩ Q∗ = {m,m + 1},
Q̄M∗−1 ∩ Q∗ = {1, 2, . . . ,M∗ − 2,M∗} and Q̄M∗ ∩ Q∗ = {2, 3, . . . ,M∗}. When this

is the case, sets Q̄1 and Q̄2 overlap, and hence, there must exist an individual with

response set equal to Q̄1 ∪ Q̄2. When constrained to Q∗, this response set is equal to

{1, 2, 3}. We can use the same logic over the latter individual and Q̄3, and continue

doing so recursively. Ultimately, we can find an individual i such that Q̄i ∩ Q∗ =

{1, 2, . . . ,M∗−2}. Now, notice that Q̄i and Q̄M∗ are overlapping sets and hence, there

must exist an individual, that we denote by mM∗−1, such that Q̄mM∗−1
= Q̄M∗ \ Q̄i and

hence, it must be Q̄mM∗−1
∩Q∗ = {2, 3, . . . ,M∗} \ {1, 2, . . . ,M∗− 2} = {M∗− 1,M∗}.

Using the same recursive logic than above, we can consider all individuals from 2 to

M∗ − 2 and identify an individual j such that Q̄j ∩ Q∗ = {2, . . . ,M∗ − 1}. Since this

response set overlaps with Q̄M∗−1, the difference of Q̄M∗−1 and Q̄j must also correspond

to an individual, that we denote by mM∗ . It is Q̄mM∗ ∩ Q∗ = {1,M∗}. It suffices to

notice that the pattern of responses of individuals {1, 2, . . . ,M∗−2,mM∗−1,mM∗} over

Q∗ has exactly the structure described in Case I, reaching a contradiction.

Case III. M∗ = Q∗ − 1 ≥ 3 where, for every m < M∗, Q̄m ∩ Q∗ = {m,m + 1},
Q̄M∗ ∩ Q∗ = {2, 3, . . . ,M∗ − 1,M∗ + 1}. Using the same logic as in Case II, we can

recursively consider the first M∗ − 2 individuals and find a response set such that,

when constrained to Q∗, is equal to {1, 2, . . . ,M∗ − 1}. Individuals M∗ − 1 and M∗

are overlapping, and hence we can consider their union to obtain a response set that,

when constrained to Q∗, is equal to {2, 3, . . . ,M∗+1}. These two constructed response

sets are overlapping and hence, there must be an individual, that we denote by mM∗ ,

such that Q̄mM∗ ∩ Q∗ = {2, 3, . . . ,M∗ + 1} \ {1, 2, . . . ,M∗ − 1} = {M∗,M∗ + 1}.
In a similar fashion, we can consider the union of the response sets of individuals

9Since in the arguments that follow the order and labeling of such individuals and questions are

irrelevant, we adopt the most convenient notation.
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M∗ and 1 on one hand, and the union of the response sets of individuals from 2

up to M∗ − 1 on the other. The difference between these two overlapping response

sets must correspond to an individual, which we denote by mM∗+1, with a response

set such that Q̄mM∗+1
∩ Q∗ = {1,M∗ + 1}. Then, the response sets of individuals

{1, 2, . . . ,M∗− 1,mM∗ ,mM∗+1} over Q∗ have again the structure of Case I, reaching a

contradiction.

Case IV. M∗ = 4 and Q∗ = 6, with Q̄1 ∩Q∗ = {1, 2}, Q̄2 ∩Q∗ = {3, 4}, Q̄3 ∩Q∗ =

{5, 6} and Q̄4∩Q∗ = {2, 4, 6}. Individual 4 overlaps with all the other three individuals,

and we can then consider individuals mj, j ∈ {1, 2, 3} such that Q̄mj = Q̄4 \ Q̄j. The

response sets of individuals m1,m2 and m3 over the questions 2, 4 and 6 again have

the cyclical structure of Case I, reaching a contradiction.

Case V. M∗ = 4 and Q∗ = 5, with Q̄1 ∩ Q∗ = {1, 2}, Q̄2 ∩ Q∗ = {1, 2, 3, 4},
Q̄3 ∩ Q∗ = {3, 4} and Q̄4 ∩ Q∗ = {1, 4, 5}. Individual 4 overlaps with the other three,

and hence we can identify individuals mj, j ∈ {1, 2, 3} such that Q̄m1 = Q̄4 \ Q̄1,

Q̄m2 = Q̄2 \ Q̄4 and Q̄m3 = Q̄4 \ Q̄3. The response sets of individuals 1,m2, 3,m1 and

m3 over Q∗ have again the structure of Case I, which is a contradiction and concludes

the proof of the claim. �

Hence, {Qn}n∈N is rationalizable if and only if {Qn}n∈N satisfies c1p, if and only if

{Q̄m}Mm=1 satisfies c1p, if and only if {Q̄m}Mm=1 satisfies SARI, and the result has been

proved. �

The strategy of the proof is as follows. First, we argue that the model is ordinal and

show that rationalizability is equivalent to the construction of an order of questions

� such that the endorsements of each individual form an interval, i.e., we need to

show that the survey responses satisfy c1p. Second, we use the fact that the union

and differences of overlapping intervals of the real line are also intervals and show that

the original survey satisfies c1p if and only if the expanded survey does so. Finally,

we show that the expanded survey satisfies c1p if and only if it satisfies SARI. We

do so using a classical result by Tucker (1972) in which all possible violation patterns

of c1p are obtained. When working with the expanded survey, we show that each of

these patterns can be mapped into a cyclical violation of SARI. Importantly, the use

of expanded surveys is key here; the acyclicity of revelations in the original survey is

not sufficient for rationalizability. We illustrate this by means of the following simple

example.
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Example 2. Three individuals are inquired about four questions, producing response

sets Q1 = {1, 2}, Q2 = {1, 3} and Q3 = {1, 4}. Every pair of individuals is overlapping,

and the revealed relation is 1 ∈ I({1, 2, 3}), 1 ∈ I({1, 2, 4}), 1 ∈ I({1, 3, 4}). SARI is

vacuously satisfied. However, the expanded D-survey fails SARI because it contains

all possible subsets of two or three questions. Hence, no rationalization is possible. �

Theorem 1 shows that the model is ordinal. In the proof, we set the parameters as

follows. We argue that we can locate the questions using any real values {µq}q∈Q that

represent �. Then, for every individual n, Un(µq) is set to be the negative absolute

value distance between the middle point of the interval of the locations of the endorsed

questions and that of question q. The threshold τn is defined by the utility of the first

and last questions in the interval of questions endorsed by n.

4. Rationalizability of attitudinal surveys: extensions

In this section, we show how to exploit the structure of Theorem 1 when dealing

with two related, informationally richer, problems. The first one covers the case in

which individuals are allowed to use more than two labels in declaring their endorse-

ment. The second analyzes the case of dichotomous surveys in which responses may

be probabilistic.

4.1. Polytomous surveys. Given question q ∈ Q, individual n ∈ N is now allowed to

express strength of endorsement by using a label from the collection L = {0, 1, . . . , L},
where L > 0. We will write L∗ = L\{0}. Higher labels in the collection express stronger

endorsement.10 A polytomous survey or, simply, a P-survey is a map P : N ×Q → L,

where P (n, q) = l refers to the case where individual n assigns label l to question q.

We consider the following notion of rationalizability, which reduces to the notion used

for D-surveys when L = 1.

P-survey rationalizability. We say that P is rationalizable whenever there exist

[{Un, {τ ln}l∈L∗}n∈N , {µq}q∈Q], with Un : R→ R being strictly quasi-concave, τ 1n < · · · <
τLn , and µq ∈ R such that, for every n ∈ N , q ∈ Q and l ∈ L∗, P (n, q) = L if

Un(µq) ≥ τLn , P (n, q) = l, 0 < l < L, if τ l+1
n > Un(µq) ≥ τ ln and P (n, q) = 0 otherwise.

In words, the individual now uses different thresholds to determine the degree of

endorsement. These thresholds naturally impose stronger requirements on stronger

expressions of endorsement.

10For instance, extremely disagree, disagree, neutral, agree, extremely agree.
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We now show that the rationalizability of a P-survey can be obtained building upon

Theorem 1, by studying the rationalizability of an associated D-survey. Formally, given

the response map P , define the D-survey {QP
(n,l)}(n,l)∈N×L∗ where QP

(n,l) = {q ∈ Q :

P (n, q) ≥ l}. That is, the vector of responses of individual n ∈ N is used to construct

L− 1 response sets. Each of these response sets contains cumulative information, e.g.,

response set QP
(n,l) contains all the questions endorsed by individual n with intensity l

or above. Note that, formally, {QP
(n,l)}(n,l)∈N×L∗ is a D-survey where every (n, l) can be

understood as an individual. Now, it is immediate that {QP
(n,l)}(n,l)∈N×L∗ provides the

same information as P does. We need to define the corresponding expanded D-survey,

that follows the same logic than above, and that we denote by {Q̄P
(m)}Mm=1. Theorem 2

shows that the acyclicity of the intermediateness revelation of {Q̄P
(m)}Mm=1 is equivalent

to the rationalizability of P .

Theorem 2. P is rationalizable if and only if {Q̄P
(m)}Mm=1 satisfies SARI.

Proof of Theorem 2: We start by assuming that no questions are symmetric and

not two individuals assign the same labels to all questions. Analogous arguments to

those in Theorem 1 shows that this is without loss of generality.

First suppose that P is rationalizable. Then, it must be so for some collection of

parameters [{Un, {τ ln}l∈L∗}n∈N , {µq}q∈Q]. Define q � q′ if and only if µq > µq′ . It is

immediate that any response set QP
(n,l) must be formed by consecutive questions in

�. Hence, the D-survey {QP
(n,l)}(n,l)∈N×L∗ satisfies c1p and using the only if parts of

Claims 2 and 3 in the proof of Theorem 1, {Q̄P
(m)}Mm=1 must satisfy SARI.

Suppose now that {Q̄P
(m)}Mm=1 satisfies SARI. Using the if part of Claim 3 in Theorem

1, {Q̄P
(m)}Mm=1 must satisfy c1p. Let � be a linear order that guarantees so and consider

any set of values {µq}q∈Q such that µq > µq′ ⇔ q � q′. Given individual n ∈ N , let

ln > 0 be the highest label used by this individual. If this label is used to describe

endorsement for at least two questions, define µn =
minq∈Q(n,ln)

µq+maxq∈Q(n,ln)
µq

2
and set

Un(µn) = ln and Un(minq∈Q(n,ln)
µq) = Un(maxq∈Q(n,ln)

µq) = ln − 1. All values in the

interval [minq∈Q(n,ln)
,maxq∈Q(n,ln)

] are set by considering the piecewise linear function

determined by these three values. If the label was used for only one question, set

µn equal to the µ-value of that question, and Un(µn) = ln − 1. After this, consider

recursively the rest of the labels, starting with ln − 1 down to label 1. For any label l,

determine the questions minq∈Q(n,l)
µq and maxq∈Q(n,l)

µq. If any of them is different to

those previously considered (i.e., whenever these questions have label l exactly), extend

the piecewise linear function Un by forcing it to adopt value l − 1 in the location of
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these new questions. After label 1, extend the function beyond its extremes with any

strictly decreasing linear function. Set thresholds τ ln = l − 1. The function Un is

strictly quasi-concave, and since Q(n,l) is formed by a set of consecutive questions in

�, it is immediate that questions in Q(n,l), and only these questions, have utility above

threshold τ ln. Rationalization then follows. �

4.2. Stochastic responses. We now study the case where survey responses may be

stochastic. This can be understood in terms of the variation of responses of the individ-

uals of a given subgroup, like those given by different ages or genders, or questionnaires

asking for the expression of probabilistic beliefs, as it is often the case in experiments,

or the variation of responses of an individual across repetitions of a questionnaire. Sto-

chastic models of responses are instrumental in estimation exercises and in accounting

for errors and other behavioral considerations such as fatigue or inattention.

Formally, a dichotomous survey with stochastic responses, or S-survey, is a map

S : N × Q → [0, 1] where S(n, q) describes the probability with which individual

n ∈ N endorses question q ∈ Q. Consider the following definition of rationalizability.

S-survey rationalizability. We say that S is rationalizable whenever there exist

[{Un, Fn}n∈N , {µq}q∈Q], with Un : R → R being strictly quasi-concave, Fn : R → [0, 1]

being a cumulative distribution function (CDF) governing the realization of thresholds

τn, and µq ∈ R such that, for every n ∈ N and q ∈ Q, S(n, q) = Fn(Un(µq)).

Notice that any question is endorsed whenever the utility of the view represented by

this question is above a threshold but now, these thresholds are realized according to a

distribution Fn. Hence, endorsement happens probabilistically, and the probability of

individual n endorsing question q corresponds to the mass of thresholds below Un(µq),

i.e., Fn(Un(µq)). This is a convenient account of stochastic responses, that sits well

with the models studied in this paper.

We now argue that we can rely again on the techniques developed for the analysis

of D-surveys. For every n ∈ N , consider the |Q| response sets defined by Qq
n =

{q′ ∈ Q : S(n, q′) ≥ S(n, q)} and the corresponding D-survey {QS
(n,q)}(n,q)∈N×Q. That

is, the information of individual n ∈ N appears |Q| times, describing response sets

that contain the collection of questions chosen with at least as much probability as a

given question. Denote the corresponding expanded D-survey by {Q̄S
(m)}Mm=1. Theorem

3 shows that the rationalizability of S follows from the acyclicity of this expanded

survey.
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Theorem 3. S is rationalizable if and only if {Q̄S
(m)}Mm=1 satisfies SARI.

Proof of Theorem 3: Since the proof is very similar to that of Theorem 2, we

only mention the most significant details. Notice that we can construct a hypothetical

set of Q × N labels, and define the P-survey with the response map P having the

property that, for every n, n′ ∈ N and q, q′ ∈ Q, P (n, q) ≥ P (n′, q′) if and only if

S(n, q) ≥ S(n′, q′). This allows us to construct the values µq and the functions Un

exactly as in Theorem 2. For every τn such that there exists q ∈ Q with Un(µq) = τn,

set Fn(τn) = S(n, q). Now, for every individual n ∈ N , a larger threshold corresponds

to a question with a larger utility and given the construction and the assumption that

P (n, q) ≥ P (n, q′) if and only if S(n, q) ≥ S(n, q′), a larger utility corresponds to a

larger probability of endorsement. We can then extend these values to a CDF Fn over

the reals, and rationalization follows. �

5. Identification

In this section, we discuss the identification of the models studied. As discussed

above, these models are essentially ordinal, so we start asking ourselves under what

conditions the linear order � on the set of questions is fully identified. Later, we

analyze what we can learn about the ideal point of any individual. Finally, to allow

for cardinal identification results, a parametric version of the model is introduced and

analyzed.

To present results across different types of surveys, we make the following assump-

tions. We assume that for every individual n ∈ N : (i) ∅ 6= Qn 6= Q, (ii) S(n, q) =

S(n, q′) ⇒ P (n, q) = P (n, q′) ⇒ [q ∈ Qn if and only q′ ∈ Qn]. That is, (i) implies

that we eliminate from the analysis the trivial individuals that endorse everything or

nothing, and (ii) connects the response behavior in S-surveys with that of P-surveys

and of D-surveys.

We impose the following richness condition. To present it, consider for concreteness

the dichotomous case. In essence, for a triplet of questions being relatively close to

each other, one can expect that there are two individuals revealing its intermediateness

information. However, when questions are further apart, this assumption may be too

strong to impose, and accordingly we postulate a milder, indirect, version. Formally, for

every triplet of distinct questions T , there exists a sequence of questions (q1, q2, . . . , qK)

such that: (i) T is contained in the sequence, and (ii) for every k ∈ {1, 2, . . . , K − 2},
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there exists two individuals nk1, nk2 ∈ N such that Qnk1 ∩ {qk, qk+1, qk+2} = {qk, qk+1}
and Qnk2 ∩ {qk, qk+1, qk+2} = {qk+1, qk+2}.

5.1. Identification of questions. We start by showing that � is fully identified. The

reason for this is that, under the richness assumption, the map I can be shown to be

complete. As a result, it identifies the question with an intermediate µ-value for every

triplet, and the linear order is fully identified (up to inversion).11

Proposition 1. If a survey is rationalizable, it is for a unique linear order � (up to

inversion). This linear order is fully revealed by the intermediateness relation I.

Proof of Proposition 1: Let the survey be rationalizable. Hence, the intermedi-

ateness relation I of the expanded survey satisfies the acyclicity type of condition

postulated by SARI. We now show that I is also complete, in the sense that it re-

veals at least one intermediate question in every triplet. Consider any triplet of dis-

tinct questions T . By our richness condition, there exists a sequence of questions

(q1, q2, . . . , qK) such that: (i) T is contained in the sequence, and (ii) for every k ∈
{1, 2, . . . , K−2}, there exist nk1, nk2 ∈ N such that Qnk1 ∩{qk, qk+1, qk+2} = {qk, qk+1}
and Qnk2 ∩ {qk, qk+1, qk+2} = {qk+1, qk+2}. That is, two real individuals have revealed

that qk+1 ∈ I({qk, qk+1, qk+2}). We now claim that for every triplet of different ques-

tions in this sequence satisfying k′ < k′′ < k′′′, it must be qk′′ ∈ I({qk′ , qk′′ , qk′′′}).12 We

prove this claim recursively, over the difference k′′′ − k′. The result is trivially true for

k′′′ − k′ = 2 because in this case, the triplet must be formed by three questions that

appear consecutively in the sequence. Suppose now that the result is true up to some

value k′′′− k′ = t ≥ 2 and consider a triplet of questions such that k′′′− k′ = t+ 1. Let

q∗ be any question in the sequence occupying a position between qk′ and qk′′′ and such

that q∗ 6= qk′′ .
13 Assume that qk′′ comes before q∗ in the sequence (the other case is

dual and thus omitted). Given the recursive step, we know that qk′′ ∈ I({qk′ , qk′′ , q∗})
and q∗ ∈ I({qk′′ , q∗, qk′′′}). Therefore, there exist four individuals m1,m2,m3,m4 ∈
{1, . . . ,M} such that Q̄m1 ∩ {qk′ , qk′′ , q∗} = {qk′ , qk′′}, Q̄m2 ∩ {qk′ , qk′′ , q∗} = {qk′′ , q∗},

11Since this result holds for all types of surveys, we do not specify the type in the formulation

of the result. Also, we simplify the exposition of the proof by showing the key steps using only the

D-survey notation.
12Notice that these will be revelations that can be the result of real or hypothetical individuals in

the expanded survey.
13One such question must exist because t+ 1 ≥ 3.
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Q̄m3 ∩ {qk′′ , q∗, qk′′′} = {qk′′ , q∗}, Q̄m4 ∩ {qk′′ , q∗, qk′′′} = {q∗, qk′′′}. Given rationaliz-

ability and the fact that q∗ ∈ I({qk′ , q∗, qk′′′}), it must obviously be the case that

qk′′′ 6∈ Q̄m1 . If qk′′′ ∈ Q̄m2 , individuals m1 and m2 reveal that qk′′ ∈ I({qk′ , qk′′ , qk′′′}),
as desired. Otherwise, individuals m2 and m4 overlap, and since the expanded survey

is closed by unions, there exists an individual m5 such that Q̄m5 = Q̄m2 ∪ Q̄m4 . It is

Q̄m5 ∩ {qk′ , qk′′ , qk′′′} = {qk′′ , qk′′′}. This individual overlaps with m1 and reveals that

qk′′ ∈ I({qk′ , qk′′ , qk′′′}), as desired. Since the triplet is contained in the sequence and

the argument applies to any triplet, this shows that I is complete. As a result, there

must be a unique order (up to inversion), captured by this intermediateness relation.14

Moreover, given the revelation analysis, this order must correspond to the one induced

by {µq} (or its inverse), concluding the proof. �

Example 1 (continued). There are no cycles in the intermediateness relation I.

For instance, notice that 3 ∈ I({1, 2, 3}) and 2 ∈ I({2, 3, 4}) require that neither 4

nor 1 can be revealed intermediate in {1, 2, 4}, as it is the case. Hence, the expanded

D-survey satisfies SARI and the D-survey is rationalizable. Moreover, I is complete

and hence there is a unique (up to inversion) linear order of the questions compatible

with the intermediate relation, 1 � 3 � 5 � 2 � 4.

Notice that no pair of real individuals reveals information on the triplet {q1, q2, q3}.
The intermediateness information for this triplet can be obtained throughout the se-

quence (q1, q3, q5, q2). Two real individuals (1 and 3) reveal that q3 is the intermediate

question in the triplet {q1, q3, q5}. Two real individuals (2 and 3) reveal that q5 is the

intermediate question in the triplet {q3, q5, q2}. The information of these individuals

can be linked to produce the hypothetical individual 7 (union of 2 and 3), allowing to

conclude that q3 ∈ I({q1, q2, q3}). �

5.2. Identification of individuals. We now discuss what can be potentially learned

about a specific individual n ∈ N , concentrating our efforts in the ordinal identification

of her ideal point. We show that S-surveys are more informative in this respect than

P-surveys, which in turn are more informative than D-surveys. For any individual

n ∈ N , denote by qα
n

and qαn, with α ∈ {D,P,S}, the minimum and maximum questions

(according to µq or �) among: (i) the endorsed ones when α = D, (ii) those with a

higher label than any other when α = P, and (iii) those with higher probability than

14It can also be constructed simply Take any three questions and determine the intermediate one,

locating the other two as desired. Proceed including questions one by one, in the unique position

allowed by I.
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the rest when α = S. Then, denote by α(n) the open interval of � defined by the

question immediately below qα
n

and the one immediately above qαn in �.15 Importantly,

in S-surveys whenever the CDF over the threshold is atomless, these two questions must

either coincide or be consecutive, implying that the identification is almost complete.16

Proposition 2. The ideal view of individual n ∈ N belongs to S(n) ⊆ P (n) ⊆ D(n),

and no further identification is possible.

Proof of Proposition 2: Let the survey be rationalizable and � be the unique linear

order guaranteeing so. Consider n ∈ N and an α-survey. First, we claim that the ideal

view must belong to the interval α(n). Suppose by way of contradiction that this is

not the case. We analyze the case in which the ideal view occupies a position equal or

above the question immediately above qαn, and omit the other, dual case. In this case,

notice that the question qαn achieves a higher endorsement than the question above,

contradicting the quasi-concavity of Un. Second, we claim that S(n) ⊆ P (n) ⊆ D(n).

To see this, consider first q ∈ S(n). By construction, q achieves the highest endorsement

probability in Q and, given our basic assumptions, there exists at least one question q′

with strictly less endorsement probability. Question q must belong to the equivalence

class of questions with the highest label in the P-survey, and this level must be different

than zero. It then follows that S(n) ⊆ P (n). Consider now a question q ∈ P (n). By

construction, q achieves the highest label in Q and, given our basic assumptions, this

label is strictly above zero. Question q must belong to the response set in the D-

survey and P (n) ⊆ D(n). Third, we claim that no further identification is possible.

We analyze the case of D-surveys, with the other two being analogous. Consider the

set Qn. Modify the selection of the ideal point in the proof of Theorem 1 to occupy

any position in D(n). If this position is between qαn and qα
n
, set the utility function

to be piecewise linear, with value 1 for the ideal view and 0 for these two questions.

Otherwise, it must be either above qαn or below qα
n
. Consider the first case (the second

being omitted as it is analogous). Then, set the utility function to be piecewise linear,

with value 1 for the ideal view, 0 for qα
n
, and −1 for the question immediately above qα

n

15If one of these two questions does not exist, the position of the ideal view can be seen as unbounded

in that specific direction.
16This follows immediately from the fact that, given strict quasi-concavity and the atomless of the

CDF, only the closest question at each side of the ideal point may come with the largest endorsement

probability (up to copies of these questions).
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(if no question exists there, any strictly decreasing function works). This alternative

representation also provides rationalizability and completes the proof. �

5.3. Exponential responses. In the models discussed so far, the identification of

questions and ideal points is ordinal. We now introduce a stochastic parametric model

that provides cardinal identification of the location of questions and ideal points,

{µq}q∈Q and {µn}n∈N . The model postulates that the individual endorsement proba-

bility is of the exponential form on the distance between the locations of the question

and the ideal point of the individual, S(n, q) = e−
|µn−µq |
σn .17 Intuitively, the probability

of endorsing a question is 1 when its location coincides with that of the ideal point,

decays with the distance between them, and is zero in the limit. It is modulated by

a single parameter σn > 0 with a natural interpretation. Smaller values of σn accel-

erate the decay, representing individuals with a less tendency to endorse views away

from their ideal point. Notice that the exponential endorsement probability could be

alternatively presented via our stochastic framework by way of a strictly quasi-concave

utility and a random threshold.18

We start by normalizing the location of any two questions, that we denote by 0q and

1q, to µ0q = 0 and µ1q = 1, respectively.19 We further assume that there exist at least

two individuals that place the largest probability of endorsement in different questions

and that there are at least four questions.

Proposition 3. In an S-survey with exponential responses, {µq}q∈Q\{0q ,1q} and {µn}n∈N
are cardinally identified.

Proof of Proposition 3: Consider an S-survey with exponential responses. By

Proposition 1, we know that � is fully identified, and we have set it to be 1q � 0q.

Given the atomless nature of the exponential model, for every n ∈ N , the interval

S(n) contains either one or two questions. As in the proof of Proposition 2, denote

these two questions by qSn and qS
n
, and it must be either qSn � qS

n
or qSn = qS

n
≡ qSn .

We now construct a map hn : Q → {0, 1} for each individual such that hn(q) = 1

if and only if µq ≥ µn and hn(q) = 0 otherwise. To do so, we consider two cases.

17The literature in psychology offers various probabilistic models of responses based on the notion

of endorsement-by-proximity. See, e.g., Davison (1977). The present model is a convenient version of

Andrich (1988) and Hoijtink (1990).

18It suffices to set Un(x) = e−
|µn−x|
σn and Fn the CDF of the uniform distribution in [0, 1].

19Recall that the inverse of a linear order is equivalent to the linear order for our purposes, so the

order of these two alternatives is without loss of generality.
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If |S(n)| = 2, the exponential model of responses guarantees that µn must occupy a

position strictly between these two questions, and we can assign hn(q) = 1 to qSn and to

any other question above this one, according to �, and zero otherwise. If |S(n)| = 1,

the map can be defined by hn(q) = 1 whenever q � qSn and hn(q) = 0 whenever qSn � q.

However, the relative location of qSn is yet undetermined. To do so, we can simply

consider another individual n′ for which hn′(q
S
n ) is known, and two questions q′, q′′

for which hn(q′), hn(q′′), hn′(q
′), hn′(q

′′) are all known. It is immediate to see that the

exponential model requires that

(−1)hn(q
S
n ) logS(n, qSn )− (−1)hn(q

′′) logS(n, q′′)

(−1)hn(q′) logS(n, q′)− (−1)hn(q′′) logS(n, q′′)
=
µqSn − µq′′
µq′ − µq′′

=

=
(−1)hn′ (q

S
n ) logS(n′, qSn )− (−1)hn′ (q

′′) logS(n′, q′′)

(−1)hn′ (q′) logS(n′, q′)− (−1)hn′ (q′′) logS(n′, q′′)
.

Hence, hn(qSn ) can be determined.20 Given the complete map hn, notice now that

for every q other than 0q and 1q it is

(−1)hn(q) logS(n, q)− (−1)hn(0q) logS(n, 0q)

(−1)hn(1q) logS(n, 1q)− (−1)hn(0q) logS(n, 0q)
= µq,

−(−1)hn(0q) logS(n, 0q)

(−1)hn(1q) logS(n, 1q)− (−1)hn(0q) logS(n, 0q)
= µn.

All locations are fully determined, concluding the proof. �

6. Rationalizability of aptitude surveys

We now briefly study the rationalizability of surveys measuring aptitudes, rather

than attitudes. These are surveys with the aim of studying absolute, cumulative,

aptitudes, as it is often the case in the study of ability (say, the mathematical skills

of pupils), health status (say, the extent of mobility for the aged), social functionality

(say, the social skills of psychiatric patients), or the extent of a practice (say, the level of

20Notice that in the extreme case in which S(n, qSn ) = 1, it must be µn = µqSn
and hn(qSn ) can be

freely assigned.
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religiosity of citizens). Here we focus on the dichotomous case, which is usually known

as Guttman-scale.21 For obvious reasons, we refer to it as Guttman-rationalizability.

Guttman-rationalizability. We say that {Qn}n∈N is Guttman-rationalizable when-

ever there exist [{µn}n∈N , {µq}q∈Q] with µn, µq ∈ R, such that for every n ∈ N and

q ∈ Q, it is q ∈ Qn if and only if µn ≥ µq.

In a Guttman-rationalizability, a question (or problem, or task) q is passed when-

ever its location falls below the location of the individual, µq ≤ µn. Notice that

Guttman-rationalizability is a particular case of D-survey rationalizability since we

could alternatively rationalize responses by constructing a strictly quasi-concave util-

ity function Un and a threshold τn such that the individual endorses every question

located below the ideal point, and only these.22 Hence, SARI is a necessary condi-

tion for Guttman-rationalizability, but not sufficient. We now provide a necessary and

sufficient condition. Importantly, the cumulative nature of Guttman-rationalizability

facilitates the survey revelation exercise. It allows us: (i) to analyze the responses by

way of a binary relation approach, instead of the ternary approach we adopted above,

and (ii) to use only the information directly contained in the survey, without requiring

the expansion of the survey data.

Consider a pair of questions q1, q2 ∈ Q and an individual n ∈ N such that Qn ∩
{q1, q2} = q2. It is then evident that the aptitude of individual n separates the com-

plexity of both questions, and the complexity of question q1 must be above that of

question q2. We then say that q1 has been revealed to be more complex than question

q2, and simply write q1 �mc q2. A standard acyclicity condition on the binary relation

�mc is enough for Guttman-rationalizability.

Strong Axiom of Revealed Complexity (SARC). If qt �mc qt−1 for every t =

1, . . . , T , then q0 6�mc qT .

Theorem 4. {Qn}n∈N is Guttman-rationalizable if and only if {Qn}n∈N satisfies

SARC.

21The extensions to non-dichotomous and probabilistic responses follow analogously to the cases

studied above.
22For instance, consider any utility function such that limx→−∞ Un(x) = 1, increasing up to

Un(µn) > 1, and decreasing afterwards with Un(µn + ε) < 1 for any sufficiently small ε > 0 such

that there is no question in the interval (µn, µn + ε), and τn = 1. This configuration gives positive

answers until the ideal point of the individual, and negative ones afterwards.
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Proof of Theorem 4: Suppose first that {Qn}n∈N is Guttman-rationalizable. If

qt �mc qt−1 for every t = 1, . . . , T , we know that there exist individuals nt, t = 1, . . . , T

such that µqT > µnT ≥ µqT−1
> µnT−1

≥ µqT−2
> · · · ≥ µq1 > µn1 ≥ µq0 and hence,

µqT > µq0 . Then, it is evident that q0 6�mc qT .

Suppose now that {Qn}n∈N satisfies SARC. Given the finiteness of Q, we can find

values {µq}q∈Q such that q �mc q′ implies µq > µq′ . Now, if an individual responds

negatively to all questions set µn < minq∈Q µq. Otherwise, set µn = maxq∈Qn µq.

We claim that this constitutes a valid Guttman-rationalization. Suppose, by way

of contradiction, that this is not the case. Notice that the construction guarantees

that every question such that µq > µn is negatively responded. The contradiction

must involve an individual n ∈ N and a question q ∈ Q such that µn ≥ µq but

q 6∈ Qn. However, our construction guarantees that n responds positively to at least

one question, and the definition of µn guarantees that there is a question q′ with

µq′ > µq and q′ ∈ Qn. However, this would make n to reveal q �mc q′, which leads to

µq > µq′ , a contradiction. This concludes the proof. �

7. Discussion

This paper represents a first attempt in the study of the rationality foundations of

survey responses, setting the basis for the theoretical treatment of other important

issues.23 For example, our treatment uses the classical unidimensional approach, in

which questions and ideal points can be located in a common scale. One may naturally

wonder about the multidimensional case. Whenever each question belongs to one

known dimension, our results follow immediately. This may be the case, for instance,

in surveys on political attitudes and national identity. In this case, it is sufficient to

analyze the survey data separately for each dimension, using exactly the techniques

we have developed in this paper. In general, the treatment of cases where questions

belong to more than one dimension may be challenging, requiring techniques other

than the ones we have developed in this paper. We leave this for further research,

but note here that if one allows for any number of dimensions, the survey data can

always be rationalizable. The intuition would be as follows. Locate every question in a

different dimension, and set the ideal point of an individual as a convex combination of

23Another direction of interest involves the combination of surveys with more standard economic

data to enhance the information revelation process, in line with the recent suggestions of Caplin (2021)

and Alm̊as, Attanasio, and Jervis (2023).
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the questions she endorses. The Euclidean distance of any endorsed question is always

smaller than that of any other question.
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