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Abstract. A seminal result in the ICA literature states that for AY =
ε, if the components of ε are independent and at most one is Gaussian,
then A is identified up to sign and permutation of its rows [Comon,
1994]. In this paper we study to which extent the independence as-
sumption can be relaxed by replacing it with restrictions on higher order
moment or cumulant tensors of ε. We document new conditions that
establish identification for several non-independent component models,
e.g. common variance models, and propose efficient estimation methods
based on the identification results. We show that in situations where
independence cannot be assumed the efficiency gains can be significant
relative to methods that rely on independence.

1. Introduction

Consider the linear system

(1) AY = ε ,

where Y ∈ Rd is observed, A ∈ Rd×d is invertible, and ε is a mean-zero hid-
den random vector with uncorrelated components. If ε is standard Gaussian,
or more generally spherical, then the distribution of Y can identify A only
up to orthogonal transformations. In contrast, if the components of ε are
mutually independent and at least d − 1 are non-Gaussian, then A can be
identified up to permutation and sign transformations of its rows [Comon,
1994]. This result follows from the Darmois-Skitovich theorem [Darmois,
1953, Skitovic, 1953] and forms the building block of the vast literature
on independent components analysis (ICA) [e.g. Hyvärinen et al., 2001b,
Comon and Jutten, 2010, Hyvärinen, 2013].

As implied by its name, the working assumption in the ICA literature
is that the components of ε are independent. For some applications this is
an important starting principle as the interest is explicitly in recovering the
independent components, see for instance the cocktail party problem de-
scribed in Hyvärinen et al. [2001b, p. 148]. However, in other applications,
where the interest is solely in recovering A, the independence assumption
is not a crucial starting point and can in fact be restrictive as the distribu-
tion of Y may not admit a linear transformation that leads to independent
components [e.g. Hyvärinen et al., 2001a, Matteson and Tsay, 2017].
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To this extent, in this paper we study assumptions that (i) relax the
independence assumption yet (ii) assure the identifiability of the matrix A
from observations of Y . We generally normalize var(ε) = Id which implies
that var(Y ) = (A′A)−1 and narrows down the identification problem to the
compact set Ω = {QA : Q ∈ O(d)}, where O(d) is the set of d-dimensional
orthogonal matrices. This refinement allows to formally state our research
question: Which higher order restrictions on ε allow to identify a finite,
possibly structured, subset of Ω?

We systematically study our question by considering different restrictions
on the higher order moments or cumulants of ε. We focus on cases where a
subset of entries of a given rth order moment/cumulant tensor are set to zero,
for some r > 2. Although there are alternative types of restrictions that can
be considered, zero restrictions are attractive as they can often be justified
by generative models for ε such as the common variance, scale-elliptical and
mean-independent component models introduced in Section 2. Additionally,
zero restrictions often arise naturally from subject specific knowledge, see
Bekaert et al. [2021] for examples from economics.

We provide two classes of higher order restrictions that (a) identify the
set of signed permutation matrices and (b) strictly relax the identification
assumptions of Comon [1994].

First, we consider the class where the off-diagonal elements of a given
moment or cumulant tensor are all zero. Such off-diagonal restrictions are
often adopted for estimation in the ICA literature under the independence
assumption.1 We show that, without imposing the independence assump-
tion, if we set the off-diagonal elements of any rth order moment or cumulant
tensor to zero we obtain sufficient identifying restrictions to pin down Q up
to sign and permutation. We point out that for r = 3, 4 similar results are
shown for moment restrictions in Guay [2021] and Velasco [2022] using a
different proof strategy, which does not generalize to higher r.

Second, while off-diagonal zero restrictions are commonly adopted, they
cannot always be used when the components of ε are not independent. For
instance, if ε follows a symmetric distribution the odd order tensors are
all zero and provide no restrictions, but the even order tensors may not
be diagonal as is the case, for instance, when the errors have common sto-
chastic variance [e.g. Hyvärinen et al., 2001a, Montiel Olea et al., 2022].
This motivates our second class of tensor restrictions, which we refer to as
reflectionally invariant restrictions, where the only non-zero tensor entries
are those where each index appears even number of times. This provides a
strict relaxation of the diagonal tensor assumption and we show that this
assumption remains sufficient to identify Q up to sign and permutation.

1For instance the JADE algorithm of Cardoso and Souloumiac [1993] is based on diag-
onalizing the fourth order cumulant tensor.
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Overall, diagonal and reflectionally invariant restrictions are most relevant
for practical purposes, as efficient estimation methods can be easily imple-
mented based on such identifying assumptions. Moreover, these restrictions
allow to identify several specific non-independent components models, such
as those with common variance components, scale-elliptical errors, and mean
independent errors, for which previously no identification results existed.

With identification established we turn to estimation. For moment re-
strictions we note that generalized moment estimators [Hansen, 1982] are
attractive as they are (i) easy to implement and (ii) semi-parametrically
efficient in settings where the only known features of the model are the mo-
ment restrictions [e.g. Chamberlain, 1987]. We extend this class by also
allowing for cumulant restrictions. The resulting class of higher order based
minimum distance estimators is large and includes existing tensor based es-
timators for model (1), such as JADE [Cardoso and Souloumiac, 1993], as
special cases, but also introduces new estimators. We show that estima-
tors in this class are consistent and asymptotically normal under standard
regularity conditions.

Our starting observation — independent components may not exists —
is not new. In fact, such concerns were common in the early literature
on Blind Source Separation, see Comon and Jutten [2010, Chapter 1] for
an illuminating discussion, and they motivated explicit tests for the exis-
tence of independent components [e.g. Matteson and Tsay, 2017, Davis and
Ng, 2022]. In addition, the possible absence of independent components
motivated the usage of alternative identifying restrictions. For instance, a
large literature has explored the usage of time/frequency characteristics of
non-stationary components for identification [e.g. Comon and Jutten, 2010,
Chapter 11]. In the current paper we do not exploit non-stationarity for
identification.

There exists numerous methods for estimation and inference in indepen-
dent components models: e.g. cumulant and moment based methods [Car-
doso, 1989, Cardoso and Souloumiac, 1993, Cardoso, 1999, Hyvärinen, 1999,
Lanne and Luoto, 2021, Drautzburg and Wright, 2021], kernel methods Bach
and Jordan [2002], maximum likelihood methods Chen and Bickel [2006],
Samworth and Yuan [2012], Lee and Mesters [2021] and rank based meth-
ods Ilmonen and Paindaveine [2011], Hallin and Mehta [2015]. Based on
our new identification results these methods could be modified to relax the
independence assumption. We perform this task for moment and cumulant
based estimation methods, but clearly other methods could be modified as
well. For moment estimators a well developed general inference theory ex-
ists, see Hall [2005] for a textbook treatment. For cumulant based estimators
less work has been done. A notable exception is found for measurement er-
ror models where cumulant based estimators have been developed in Geary
[1941] and Erickson et al. [2014]. The difference in their setting is that the
parameters of interest can be written as a linear function of the higher order
cumulants of the observables. For model (1) this is not possible.
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The remainder of this paper is organized as follows. Section 2 provides
motivating examples where independent components do not exist. Section 3
defines some tensor notation and reviews relevant existing results. The
general problem that we study is introduced in Section 4. The new identifi-
cation results are discussed in Section 5. Inference is discussed in Section 6
followed by some numerical results in Section 7. Any references to sections,
equations, lemmas etc. which start with “S” refer to the supplementary
material.

2. Examples of non-independent component models

Independent component analysis assumes that the components of the la-
tent vector ε are completely independent. In this section we introduce a
few examples of popular generative models for which the independence as-
sumption is violated. Below we revisit these examples to show that these
models do satisfy weaker higher order tensor restrictions based on which we
can establish the identification of A up to permutation and sign.

2.1. Common variance components models. Consider

(2) AY = ε , with ε = τη ,

where τ is some positive random variable wth finite second moment and η
is a random vector that is independent of τ and such that E(η) = 0 and
var(η) = Id. In this situation

var(ε) = var(E(ε|τ)) + E(var(ε|τ)) = E(τ2)Id

and so the entries of ε remain uncorrelated. However, even if the compo-
nents of η are independent, the components of ε are generally not. Indeed,
assuming η has independent components, we have

E(ε2
i ε

2
j ) = E(τ4)E(η2

i )E(η2
j ) = E(τ4)

and

E(ε2
i )E(ε2

j ) = E(τ2)2E(η2
i )E(η2

j ).

Thus E(ε2
i ε

2
j ) 6= E(ε2

i )E(ε2
j ), unless var(τ) = 0, and A cannot be identified

using the standard ICA assumptions.
In the ICA literature common variance models are one of the motivating

examples for topographic ICA (TICA) Hyvärinen et al. [2001a], which can
be used in image analysis Meyer-Base et al. [2003], Meyer-Bäse et al. [2004],
among others. Further, in finance the variances of stock returns and other
financial assets often depend on common components, see Asai et al. [2006]
for a review of the literature. And while ICA has been applied in this con-
text [e.g. Back and Weigend, 1997] the presence of common volatility limits
its credibility. Finally, in macroeconomics there is also strong empirical
evidence for common volatility structures [e.g. Ludvigson et al., 2021].

The non-independence for the baseline common variance model (2) car-
ries over to more general models, where τ becomes a random vector. For
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instance, let K ∈ Rd×m be a fixed loading matrix, then a more general
common variance model reads

(3) AY = ε , with ε = τ � η and τ = φ(KZ) ,

where η ∈ Rd and Z ∈ Rm are independent random vectors with independent
components, the function φ : R → R>0 = {x ∈ R : x > 0}, is applied
coordinatewise and � denotes the Hadamard product. In this model τ ∈ Rm

is independent of η, and the components of ε share a common variance if
they load on the same underlying components, or factors, Z. By exactly
the same argument as above ε has uncorrelated components and, generally,
E(ε2

i ε
2
j ) 6= E(ε2

i )E(ε2
j ) and the ICA identification result does not apply.

Formal theoretical identifiability results for A along the lines of Comon
[1994] and Eriksson and Koivunen [2003] have not been developed for com-
mon variance models. Section 5 provides such results.

2.2. Scale elliptical components models. Suppose that in the common
variance model (2) the error ε = τη satisfies η = U ∼ Ud, where Ud is the
uniform distribution on the d-sphere. In this case the components of U are no
longer independent and ε is said to follow an elliptical distribution [Kelker,
1970]. It follows that, generally, ε will not have independent components.
The exception is the case where τ2 follows a χ2

d distribution, such that ε is
standard normal.

In general, for elliptical errors A can never be recovered beyond the set
Ω = {QA : Q ∈ O(d)}. This follows directly because the distribution of a
spherical random vector is invariant under the orthogonal transformations.
This limitation has been pointed out already e.g. in Palmer et al. [2007] who
modify the Gaussian distribution to a distribution that is not rotationally
invariant.

Here we follow the general idea of Forbes and Wraith [2014] and generalize
the elliptical distribution by defining ε = τ�U with τ a d-dimensional vector.
Such multiple scale elliptical distribution continues to have non-independent
components but any variation in the components of τ will allow us to identify
A using the higher order moment/cumulant restrictions introduced below.
Moreover, this distribution has the attractive property that it allows to
model different tail behavior in different dimensions; e.g. Gaussian in one
dimension and Cauchy in another (see the discussion in Azzalini and Genton
[2008]).

Formally, the multiple scale elliptical components model is given

(4) AY = ε , with ε = τ � U and U ∼ Ud ,

with τ ∈ Rd and U independent. The term elliptical components analysis
was coined in Han and Liu [2018], but their interest was in recovering the top
eigenvectors of AA′ with A = (a1, . . . , ad)′. Also, in the same model Vogel
and Fried [2011] and Rossell and Zwiernik [2021] studied recovering AA′.
These works were motivated by the robustness of the elliptical distribution
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and its ability to preserve much of the dependence relationships offered by
the Gaussian distribution.

In contrast, we are interested in recovering the full matrix A while taking
advantage of the robustness of the elliptical distribution and the multiple
scale generalization. However, as mentioned, in this case ε does not have
independent components and we cannot rely on the classical ICA identifi-
cation result. To circumvent this, Section 5 establishes new identification
results for A in the multiple scale elliptical components model (4).

2.3. Mean independent component models. Besides specific genera-
tive models or probabilistic models, we can also define non-independent
components models more directly by relaxing the strict independence re-
quirement. Consider the following definition of a mean independent compo-
nent model

(5) a′iY = εi , with E(εi|ε−i) = 0 , for i = 1, . . . , d ,

where ε−i drops εi from ε. This relaxed notion of independence is attractive
in practice as it avoids restricting terms like E(εki |ε−i) for k = 2, 3, . . ., and
for E(εi|ε−i) = 0 there often exist subject specific knowledge that can be
used to justify the restriction.

To give a concrete example, suppose that Y = (q, p)′ where q is the
quantity demanded of a good and p its price. In a baseline econometric
model ε1 and ε2 are then known as demand and supply shocks [e.g Hayashi,
2000, Chapter 3]. Economic theory generally suggests that demand and
supply shocks should not be able to predict each other, i.e. E(ε1|ε2) = 0
and vice versa. At the same time, restrictions of the form E(εk1|ε2) = 0,
for k = 2, 3, . . . are typically not motivated by economic theory. Additional
economic motivation for specific moment conditions in supply and demand
models is given in Bekaert et al. [2021, 2022].

In Section 5 we provide new identification results for the mean indepen-
dent component model (5). The supplementary material Section S1 provides
additional motivation for non-independent components models.

3. Basic tensor notation

Consider the random vector X = (X1, . . . , Xd)′ and let MX(t) = Eet′X
and KX(t) = logEet′X denote the corresponding moment and cumulant
generating functions, respectively. We write µr(X) to denote the r-order
d× · · · × d moment tensor, that is an r-dimensional table whose (i1, . . . , ir)-
th entry is

µr(X)i1···ir = EXi1 · · ·Xir =
∂r

∂ti1 · · · ∂tir
MX(t)

∣∣∣
t=0

.

Similarly, the cumulant tensor κr(X) is defined as

κr(X)i1···ir = cum(Xi1 , . . . , Xir) =
∂r

∂ti1 · · · ∂tir
KX(t)

∣∣∣
t=0

.
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We have κ1(X) = µ1(X), κ2(X) = µ2(X) − µ1(X)µ′1(X) and κ3(X) is a
d× d× d tensor filled with the third order central moments of X. The rela-
tionship between µr(X) and κr(X) for higher order r is more cumbersome
but very well understood Speed [1983], McCullagh [2018]; see the supple-
mentary material S3.1. Directly by construction, µr(X) and κr(X) are
symmetric tensors, i.e. they are invariant under an arbitrary permutation
of the indices. The space of real symmetric d × · · · × d order r tensors is
denoted by Sr(Rd). Writing [d] = {1, . . . , d}, the set of indices of an order

r tensor is [d]r. However, Sr(Rd) ⊂ Rd×···×d has dimension
(
d+r−1

r

)
and the

unique entries of T ∈ Sr(Rd) are Ti1···ir for 1 ≤ i1 ≤ . . . ≤ ir ≤ d.
The vast majority of results in this paper holds for both moment and

cumulant tensors. To avoid excessive notation we denote a given rth order
moment or cumulant tensor by hr(X). Whenever distinguishing between
moments or cumulants is required we specify towards µr(X) or κr(X).

A critical feature of moment and cumulant tensors that we use to study
identification in model (1) comes from multilinearity, i.e. for every A ∈ Rd×d

we have

(6) hr(AX) = A • hr(X),

where A • T for T ∈ Sr(Rd) denotes the standard multilinear action

(A • T )i1···ir =

d∑
j1=1

· · ·
d∑

jr=1

Ai1j1 · · ·AirjrTj1···jr

for all (i1, . . . , ir) ∈ [d]r, see, for example, Section 2.3 in Zwiernik [2016].
Since A • T ∈ Sr(Rd) for all T ∈ Sr(Rd) we say that A ∈ Rd×d acts

on Sr(Rd). The notation A • T is a special case of a general notation
for multilinear transformations Rn1×···×nr → Rm1×···×mr given by matrices
A(1) ∈ Rm1×n1 , . . . , A(r) ∈ Rmr×nr :

(7) [(A(1), . . . , A(r)) · T ]i1···ir =

n1∑
j1=1

· · ·
nr∑

jr=1

A
(1)
i1j1
· · ·A(r)

irjr
Tj1···jr .

See, for example Lim [2021] for an overview of the computational aspects of
tensors.

Remark 3.1. The multilinearity property (6) is not exclusive to moments
and cumulant tensors, as central moments, free cumulants and boolean cu-
mulants, for instance, also share this property; see Zwiernik [2012, Section
5.2] for a more complete characterization. Our main results rely only on
the property (6) and so the definition of hr(X) can be extended beyond
moments and cumulants if needed.

The following well-known characterization of independence is of impor-
tance in our work.

Proposition 3.2. The components of X are independent if and only if
κr(X) is a diagonal tensor for every r ≥ 2.
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This result highlights that the necessity of the independence assump-
tion in ICA can be investigated by studying the consequences of making
appropriate higher order cumulant tensors elements non-zero. The relation-
ship to the Gaussian distribution can be understood from a version of the
Marcinkiewicz classical result Marcinkiewicz [1939], Lukacs [1958].

Proposition 3.3. If X ∼ Nd(µ,Σ) then κ1(X) = µ, κ2(X) = Σ, and
κr(X) = 0 for r ≥ 3. Moreover, the Gaussian distribution is the only proba-
bility distribution such that there exists r0 with the property that κr(X) = 0
for all r ≥ r0.

As we formalize below, this result implies that we require deviations from
the Gaussian distribution to ensure identification in model (1), similar as
required in the classical ICA result [Comon, 1994].

4. Identification with zero constraints

Since AY = ε with Eε = 0 and var(ε) = Id, the variance of Y satisfies
var(Y ) = (A′A)−1 and so it is enough to narrow down potential candidates
for A to the compact set

Ω := {QA : Q ∈ O(d)} .
Our main insight is as follows: Since ε is unobserved, multiplying (1) by

Q ∈ O(d) gives an alternative representation ÃY = ε̃, where Eε̃ = 0 and
var(ε̃) = Id. The goal is to define suitable additional restrictions on the
distribution of ε so that the distribution of ε̃ = Qε does not satisfy these
restrictions unless Q is very special. The main result of [Comon, 1994]
proposes to use non-Gaussianity and independence. We show how to exploit
additional structure in some hr(X) to obtain similar results.

4.1. Exploiting general constraints. Suppose that we have some addi-
tional information about a fixed higher-order tensor T = hr(ε) ∈ Sr(Rd), for
example we know that T ∈ V for some subset V ⊆ Sr(Rd). By multilinearity
(6) we have

(8) T = hr(AY ) = A • hr(Y ) ,

and for any given Q ∈ O(d), QA ∈ Ω remains a valid candidate if

(9) (QA) • hr(Y ) ∈ V .
However,

(QA) • hr(Y ) = Q • (A • hr(Y )) = Q • T
and so (8) and (9) hold together if and only if Q • T ∈ V. For T ∈ V, we
define

(10) GT (V) := {Q ∈ O(d) : Q • T ∈ V} ,
which is the subset of Ω that can be identified from V. Below we sometimes
drop V, writing GT , if the context is clear. We always have Id ∈ GT (V) but
in general GT (V) will be larger.
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We summarize the general identification problem as follows.

Proposition 4.1. Consider the model (1) with Eε = 0 and var(ε) = Id.
Suppose we know, for a fixed r ≥ 3, that T = hr(ε) ∈ V ⊂ Sr(Rd). Then A
can be identified up to the set

(11) Ω0 = {QA : Q ∈ GT (V)}.

In the ideal situation GT (V) is a singleton, in which case A can be recov-
ered exactly. But we also expect that, in general, exact recovery will not be
possible. We are therefore looking for restrictions V that assure that GT (V)
is a finite set, possibly with some additional structure. The leading structure
of interest is the set of signed permutations for which we recover the original
ICA result under strictly weaker assumptions. We denote the set of d × d
signed permutation matrices by SP(d). These are the 2dd! matrices that are
of the form DP , where D,P ∈ O(d) with D diagonal and P a permutation
matrix.

4.2. Zero restrictions. Clearly, there exists a plethora of restrictions on
the higher order moment or cumulants that can be considered. For instance,
the ICA assumption imposes that κr(ε) = cumr(ε) has zero off-diagonal
elements for all r (i.e. Proposition 3.2). At the same time we know from the
discussion in Section 2 that several generative models do not satisfy these
restrictions and hence we seek relaxations that accommodate such models
yet still yield identification of A.

We formalize zero restrictions by choosing a subset I of r-tuples (i1, . . . , ir)
satisfying 1 ≤ i1 ≤ · · · ≤ ir ≤ d and by defining the vector space V = V(I)
of symmetric tensors T ∈ Sr(Rd) such that Ti = 0 for all i = (i1, . . . , ir) ∈ I.
In symbols:

V = V(I) = {T ∈ Sr(Rd) : Ti = 0 for i ∈ I} .
Note that the codimension of V in Sr(Rd) is precisely codim(V) = |I|.

The following example clarifies our notation and illustrates how higher
order moment or cumulant restrictions can be used for identification.

Example 4.2. Suppose that V ⊂ S3(R2) is given by T112 = T122 = 0. This
is a two-dimensional subspace parametrized by T111 and T222. The condition
Q • T ∈ V is given by the system of two cubic equations in the entries of Q

Q2
11Q21T111 +Q2

12Q22T222 = 0

Q11Q
2
21T111 +Q12Q

2
22T222 = 0.

In a matrix form this can be written as

Q ·
[
Q11 0

0 Q22

]
·
[
Q21 0

0 Q12

]
·
[
T111

T222

]
=

[
0
0

]
.

Since Q is orthogonal, each of the two diagonal matrices above is either
identically zero or it is invertible. If it is identically zero then Q must
be a sign permutation matrix and the equation clearly holds. If they are
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both invertible we immediately see that the equation cannot hold unless
T111 = T222 = 0, in which case T is the zero tensor showing that for every
nonzero T ∈ V we have that GT (V) = SP(2).

Unfortunately, the direct arguments that we used in this example to de-
termine GT (V) do not generalize for higher r and d. Handling such cases
requires a more systematic approach which we develop in Section 5.

Remark 4.3. For exposition purposes we only consider cases where some
entries of T = hr(ε) are set to zero, but we note that our results can
be extended for cases where entries of T are non-zero but known to the
researcher. An example with 4th order moment restrictions arises when
Eε = 0, var(ε) = Id and Tiijj = Eε2

i ε
2
j = 1 for i 6= j.

5. Identification up to Sign and Permutation

In this section we discuss specific sets of zero restrictions that allow to
identify A up to sign and permutation. For each specific set of zero restric-
tions we give concrete examples of models that can be identified using such
restrictions.

5.1. Diagonal tensors. Denote by T = hr(ε) the rth order moment or
cumulant tensor of ε. A simple assumption that facilitates identification is
that T is a diagonal tensor.

Definition 5.1. A tensor T ∈ Sr(Rd) is called diagonal if it has entries
Ti = 0 unless i = (i, . . . , i) for some i = 1, . . . , d.

Of course, if the components of ε are independent then κr(ε) is diagonal
for all r ≥ 2 (see Proposition 3.2). Assuming that T is diagonal is much less
restrictive than full independence as any T can be chosen without imposing
restrictions on other cumulants, or moments. This allows for instance to
assume that only the cross-third moments of ε are zero, without imposing
any restrictions on the higher order moments.

In this section, V denotes the set of diagonal tensors in Sr(Rd). For
verifying whether V provides sufficient identifying restrictions we will study
the tensors T and Q • T via their associated homogeneous polynomials in
variables x = (x1, . . . , xd). We have

(12) fT (x) =

d∑
i1=1

· · ·
d∑

ir=1

Ti1...irxi1 . . . xir =
∑
i

Ti(x
⊗r)i = 〈T, x⊗r〉,

where x⊗r ∈ Sr(Rd) denotes the tensor with coordinates (x⊗r)i1···ir =
xi1 · · ·xir . If r = 2 then T is a symmetric matrix and fT (x) = x′Tx is the
standard quadratic form associated with T .

Lemma 5.2. If T ∈ Sr(Rd) and A ∈ Rd×d then fA•T (x) = fT (A′x). More-
over, ∇fA•T = A∇fT (A′x) and ∇2fA•T = A∇2fT (A′x)A′.
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Proof. The first claim follows because

fA•T (x) = 〈A • T, x⊗r〉 = 〈T, (A′x)⊗r〉 = fT (A′x).

The second claim is then a direct check. �

This will be useful for deriving our first main result.

Theorem 5.3. Let T ∈ Sr(Rd) for r ≥ 3 be a diagonal tensor with at most
one zero entry on the diagonal. Then Q • T ∈ V if and only if Q ∈ SP(d),
i.e. GT (V) = SP (d).

Proof. The left direction is clear. For the right direction, note that the
tensor T is diagonal if and only if ∇2fT (x) is a diagonal polynomial matrix.
By Lemma 5.2, we have fQ•T (x) = fT (Q′x) and

∇2fQ•T (x) = Q∇2fT (Q′x)Q′.

Thus, Q • T is diagonal if and only if Q∇2fT (Q′x)Q′ = D(x) for a diagonal
matrix D(x). Equivalently, for every i, j

Qij
∂2

∂x2
j

fT (Q′x) = Dii(x)Qij ,

where we also used the fact that ∇2fT (x) is a diagonal matrix. If each row
of Q has exactly one non-zero entry then Q ∈ SP(d) and we are done. So
suppose Qij , Qik 6= 0. Then, by the above equation

∂2

∂x2
j

fT (Q′x) = Dii(x) =
∂2

∂x2
k

fT (Q′x).

This is an equality of polynomial functions and thus, equivalently, ∂2

∂x2
j
fT (x) =

∂2

∂x2
k
fT (x), which simply states that

Tj···jx
r−2
j = Tk···kx

r−2
k .

Since r ≥ 3, this equality can hold only if Tj···j = Tk···k = 0, which is
impossible by our genericity assumption. �

Remark 5.4. The genericity condition is a necessary condition. Indeed, if, for

example T1···1 = T2···2 = 0 then ∂
∂x2

1
fT (x) = ∂2

∂x2
2
fT (x) = 0. Thus, ∇2fQ•T (x)

is diagonal for any block matrix of the form

Q =

[
Q0 0
0 Id−2

]
where Q0 ∈ O(2) is an orthogonal matrix. The family of such matrices is
infinite.

Combining Proposition 4.1 and Theorem 5.3 implies the following result.
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Theorem 5.5. Consider the model (1) with Eε = 0, var(ε) = Id and suppose
that for some r ≥ 3 the tensor hr(ε) is diagonal with at most one zero on
the diagonal. Then A in (1) is identifiable up to permuting and swapping
signs of its rows.

Remark 5.6. Note that if ε is standard Gaussian then all higher order cu-
mulants vanish. All odd-order moments vanish too. Even-order moment
tensors are not zero but they are also not diagonal.

Subsequently, based on Theorem 5.5 we can provide an identification
result for the common variance and mean independent component models
that were discussed in Section 2.

Corollary 5.7. Consider the model AY = ε with Eε = 0 and var(ε) = Id.
Suppose that additionally ε satisfies one of the following conditions.

(a) ε = τ � η, τ = φ(KZ), where K ∈ Rd×m is a fixed matrix, η ∈
Rd and Z ∈ Rm are independent random vectors with independent
components and the function φ : R→ R>0, is applied coordinatewise.

(b) E(εi|ε−i) = 0 for i = 1, . . . , d.

Then h3(ε) = µ3(ε) = κ3(ε) is a diagonal tensor. If additionally, hr(ε) has
at most one zero on the diagonal then A is identifiable up to permuting and
swapping signs of its rows.

Proof. The proof is based on Theorem 5.5. For (a) note that h3(ε) is diagonal
as Eεiεjεk = EτiτjτkEηiηjηk = 0 unless i = j = k. For (b), consider the
triple (i, j, k). Unless i = j = k, there will be at least one element that
appears only once. Without loss of generality assume i 6= j and i 6= k. We
have

Eεiεjεk = E(E(εiεjεk|ε−i)) = E(εjεkE(εi|ε−i)) = 0

again confirming that the third order moment/cumulant tensor is diagonal.
�

Our result for diagonal tensors cannot be used for the scaled elliptical
distributions in (4). In this case all odd-order moments/cumulants are zero
(not generic) and the even-order moment/cumulant tensors are not diagonal.
This motivates our next section.

5.2. Reflectionally invariant tensors. In some applications the assump-
tion that T is diagonal may be unattractive. A leading example is the scale
elliptical components models where the third order tensors are zero but
the fourth order tensor is not diagonal as entries of the form Tiijj cannot
be restricted to zero (or some other constant). Note that the latter zero
restriction is also invalid in the common variance model (3).

These observations motivate the following tensor restrictions.

Definition 5.8. A tensor T ∈ Sr(Rd) is called reflectionally invariant if
the only potentially non-zero entries in T are the entries Ti1···ir where each
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index appears in the sequence (i1, . . . , ir) even number of times. If r is odd,
the only reflectionally invariant tensor is the zero tensor.

To prove that reflectionally invariant tensors can be used to identify A in
(1), recall from (12) that any T ∈ Sr(Rd) has an associated homogeneous
polynomial fT (x) of order r in x = (x1, . . . , xd). It is clear from the definition
that a non-zero T ∈ Sr(Rd) is reflectionally invariant if and only if r is even
and there is a homogeneous polynomial gT of order l := r/2 such that
fT (x) = gT (x2

1, . . . , x
2
d). We have the following useful characterization of

reflectionally invariant tensors.

Lemma 5.9. The tensor T ∈ Sr(Rd) is reflectionally invariant if and only
if fT (x) = fT (Dx) for every diagonal matrix with ±1 on the diagonal.

Proof. By Lemma 5.2, fT (x) = fT (Dx) is equivalent to saying that D •T =
T for every diagonal D ∈ Zd

2. If T is reflectionally invariant then

fT (Dx) = gT (D2
11x

2
1, . . . , D

2
ddx

2
d) = fT (x),

which establishes the right implication. For the left implication note that
fT (x) = fT (Dx), for each D, implies that fT does not depend on the signs
of the components of x. Since this is a polynomial, we must be able to
write it in the form gT (x2

1, . . . , x
2
d) (this is obvious in one dimension and,

in general, can be proved in each dimension separately). This is equivalent
with T being reflectionally invariant. �

In the theorem below, for a tensor T ∈ Sr(Rd) we use the notation

T+···+ij :=
d∑

i1=1

· · ·
d∑

ir−2=1

Ti1···ir−2ij .

Theorem 5.10. Suppose that T ∈ Sr(Rd) for an even r is a reflectionally
invariant tensor satisfying

(13) T+···+ii 6= T+···+jj for all i 6= j.

Then Q•T is reflectionally invariant for Q ∈ O(d) if and only if Q ∈ SP(d),
i.e. GT (V) = SP (d).

Remark 5.11. We emphasize that the genericity condition in (13) simply

states that T lies outside of
(
d
2

)
explicit linear hyperplanes in Sr(Rd). It

is interesting to observe how the genericity condition evolves when zero
restrictions are relaxed. First, in the classical ICA result [Comon, 1994] the
condition is that for each i = 1, . . . , d the corresponding diagonal entries
of hr(ε) across r cannot all be zero. The diagonal tensor identification
result (Theorem 5.5) replaces this condition by the requirement that at most
one diagonal entry for a given hr(ε) can be zero. Finally, the reflectional

invariant condition (13) extends the condition to the specific
(
d
2

)
hyperplanes

of Sr(Rd) which include the previous genericity conditions as isolated points.

Theorem 5.10 is proven using the following lemma.
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Lemma 5.12. Let r be even and suppose that T ∈ Sr(Rd) is reflectionally
invariant tensor satisfying (13). Then Q • T = T for Q ∈ O(d) if and only
if Q is a diagonal matrix.

Proof. The left implication is clear because fT (x) = fT (Dx) = fD•T (x) by
Lemma 5.9. We prove the right implication by induction. The base case
is r = 2, where the set of reflectionally invariant tensors corresponds to
diagonal matrices. In this case the equation Q • T = T becomes QTQ′ = T
or, equivalently, QT = TQ. This implies that for each 1 ≤ i ≤ j ≤ d

QijTjj = TiiQij .

By the genericity condition (13), all the diagonal entries of the matrix T
are distinct. In this case, for every i 6= j, we necessarily have Qij = 0.
Proving that Q must be diagonal. Note also that this genericity condition is
necessary: If two diagonal entries of T are equal, then the entries of the 2×2
submatrix Qij,ij are not constrained, so Q does not have to be diagonal.

Suppose now that the claim is true for r ≥ 2 and let T ∈ Sr+2(Rd) with
Q • T = T . Rewrite Q • T = T , using the general multilinear notation (7),
as

(14) (Q, . . . , Q, Id, Id) · T = (Id, . . . , Id, Q
′, Q′) · T.

We want to show that this equality implies that Q is a diagonal matrix. Let
i = (i1, . . . , ir) and consider all (r+2)-tuples (i, u, u) for some u ∈ {1, . . . , d}.
Writing (14) restricted to these indices gives∑

j1,...,jr

Qi1jj · · ·QirjrTj1···jruu =
∑

jr+1,jr+2

Qjr+1uQjr+2uTi1···irjr+1jr+2 .

Now sum both sides over all u = 1, . . . , d. Using the fact that Q is orthogonal
we get that

∑
uQjr+1uQjr+2u is zero if jr+1 6= jr+2 and it is 1 if jr+1 = jr+2.

Denoting Si =
∑

u Tiuu, summation over u yields∑
j1,...,jr

Qi1jj · · ·QirjrSj1···jr =
∑
v

Ti1···irvv = Si1···ir .

Since this equation holds for every i = (i1, . . . , ir), we conclude Q • S = S,
where S = (Si) ∈ Sr(Rd). Note however that S is a reflectionally invariant
tensor. Indeed, if some index appears in i odd number of times then Si =
Tiuu = 0 as the same index appears in (i, u, u) odd number of times. Since
T satisfies (13), S satisfies (13) too. Indeed,∑

k1

· · ·
∑
kl−1

Sk1k1···kl−1kl−1ii =
∑
k1

· · ·
∑
kl−1

∑
kl

Tk1k1···kl−1kl−1klklii

and so these quantities are distinct for all i = 1, . . . , d by assumption on T .
Now, by the induction assumption, we conclude that Q is diagonal. �

Proof of Theorem 5.10. The left implication is clear. For the right implica-
tion, suppose Q ∈ O(d) is such that Q • T is reflectionally invariant. By
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Lemma 5.9, equivalently, fQ•T (x) = fQ•T (Dx) for every diagonal D ∈ O(d),
which gives fT (Q′x) = fT (Q′Dx). This polynomial equation implies that

fT (x) = fT (Q′DQx)

but since Q′DQ ∈ O(d), Lemma 5.12 implies that D̄ = Q′DQ must be
diagonal. Therefore, the equation DQ = QD̄ shows that switching the signs
in the i-th row of Q is equivalent to switching some columns of Q. Suppose
that there are at least two non-zero entries Qik, Qil in the i-th row of Q
and let D be such that Dii = −1 and Djj = 1 for j 6= i. The equality
DQ = QD̄ requires that D̄kk = D̄ll = −1 and that Q has no other non-zero
entries in k-th and l-th columns. Since these columns are orthogonal we
get a contradiction concluding that the i-th row of Q must contain at most
(and so exactly) one non-zero entry. Applying this to each i = 1, . . . , d, we
conclude that Q ∈ SP(d). �

Combining Proposition 4.1 and Theorem 5.10 implies the following result.

Theorem 5.13. Consider the model (1) with Eε = 0, var(ε) = Id and
suppose that for some even r the tensor hr(ε) is reflectionally invariant
and it satisfies the genericity condition (13). Then A is identifiable up to
permuting and swapping signs of its rows.

Using Theorem 5.13 we can provide identification results for all the models
from Section 2. We summarize these all in the following statement.

Corollary 5.14. Consider the model AY = ε with E(ε) = 0 and var(ε) = Id.
If ε follows the general common covariance model (3) then h4(ε) is reflec-
tionally invariant. If ε follows the the multiple scaled elliptical distribution
(4), then hr(ε) is reflectionally invariant for every even r ≥ 4. If ε is mean
independent as in (5) then h4(ε) is reflectionally invariant. If additionally,
the genericity condition (13) holds then A is identifiable up to permuting
and swapping signs of its rows.

Proof. For the first statement consider any element of h4(ε) such that one
index appears odd number of times. Then we can assume it appears exactly
once. So let j, k, l 6= i and then

E(εiεjεkεl) = E(ηi)E(ηjηkτiτjτk) = 0.

Similar calculations hold for cumulants. For the second statement, observe
that if Di is the diagonal matrix with −1 on the (i, i)-th entry and 1 on the
remaining diagonal entries, then

(15) Di(τ � U) = τ � (DiU)
d
= τ � U,

where U, τ is like in (4). This assures invariance of the distribution (and so
also the moments/cumulants) with respect to sign swapping of single coordi-
nates. By Lemma 5.9, all moment/cumulant tensors must be reflectionally
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invariant. For the third statement we start as for the first. So let j, k, l 6= i
and then

E(εiεjεkεl) = E(εjεkεlE(εi|ε−i)) = 0

with similar calculations for cumulants. �

Note that if ε is standard normal (which arises as a degenerate case of both
(3) and (4)) then the even-order moment tensors are non-zero reflectionally
invariant tensors. However, they are not generic in the sense of (13). For
example, if r = 4 then Eε4

i = 3 and Eε2
i ε

2
j = 1 for i 6= j. This gives

T++ii = d+ 2 for all i = 1, . . . , d.

Remark 5.15. The genericity condition (13) can be worked out explicitly for
each model. For instance, for the general common variance model (a) we
have for µ4(ε) that

d∑
l=1

E(τ2
l τ

2
i )E(η2

l η
2
i ) 6=

d∑
l=1

E(τ2
l τ

2
i )E(η2

l η
2
i ) for all i 6= j .

This simplifies in the case for the simple common variance model (2) to
become E(η4

i ) 6= E(η4
j ) for all i 6= j. In the multiple scaled elliptical model

we can exploit the summetry in the moments of η ∼ Ud to show that µ4(ε)
is generic as long as

2Eτ4
i +

∑
k 6=i

E(τ2
i τ

2
k ) 6= 2Eτ4

j +
∑
k 6=j

E(τ2
j τ

2
k ) for all i 6= j.

5.3. Generalizations. Theorems 5.5 and 5.13 highlight key zero moment
and cumulant patterns that can be used to identify A up to sign and per-
mutation for the general model (1). Such restrictions are equally suffi-
cient for identification in the class of linear simultaneous equations models
AY = BX + ε when X is exogenous, and various dynamic extensions of
such models [e.g. Kilian and Lütkepohl, 2017].

That said it is also of interest to explore whether relaxing additional zero
restrictions still leads to identification (up to sign and permutation), and

which genericity conditions are required. Since dim(O(d)) =
(
d
2

)
, we need at

least that many constraints to assure GT is finite. However, as we formally
show in the supplementary material Section S2 the minimal set

I = {(i, j, . . . , j) : 1 ≤ i < j ≤ d} ,
implies that GT is finite, but in general GT 6= SP(d). Example S8 explicitly
computes the difference between GT and SP(d) for the illustrative case with
r = 3 and d = 2. This finding has important implication that it is, in
general, not sufficient to prove that the Jacobian of the moment or cumulant
restrictions is full rank in order to establish that the identified set is equal
to the set of signed permutations.

Motivated by these calculations, consider a special model with

I = {(i, j, . . . , j) : 1 ≤ i < j ≤ d} ∪ {(i, . . . , i, j) : 1 ≤ i < j ≤ d} .
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Conjecture 5.16. If T is a generic tensor in V(I) then Q•T ∈ V(I) if and
only if Q ∈ SP(d).

The case when d = 2 is very special because O(2) has dimension 1. In this
case the analysis of zero patterns can be often done using classical algebraic
geometry tools. In particular, we can show that the conjecture holds for
Sr(R2) tensors for any r ≥ 3.

Proposition 5.17. Suppose that T ∈ Sr(R2) satisfies T12···2 = T1···12 = 0
but is otherwise generic. Then Q • T ∈ V(I) if and only if Q ∈ SP(2).

We prove this result in Appendix S7.1. The genericity conditions are
again linear and can be recovered from the proof.

Remark 5.18. Consider the two-dimensional supply and demand model de-
scribed in Section 2.3. Proposition 5.17 assures that the matrix A can be
identified up to scaling and swapping rows from hr(ε) for any r ≥ 3 as long
as it satisfies the genericity conditions.

5.3.1. Towards point identification. As stated, the results so far provided
identification results for A up to the set of signed-permutation matrices.
In practice, it is often of interest to reduce this set further to, perhaps, a
singleton. Restricting additional higher order tensors to zero cannot help
with this objective, as even the most stringent selection of zero restrictions,
i.e. all higher order tensors are diagonal (the independent components case),
only yields identification up to signed permutations.

Therefore, we briefly mention a few existing routes that different strands
of literature have adopted for further shrinking the identified set. First,
topographical ICA, which was motivated by the common variance model,
suggests to explicitly model the common variance structure, i.e. model K in
(3). It then imposes the additional assumption that only nearby latent com-
ponents have the higher order dependency in order to pin down a unique
permutation [e.g. Hyvärinen et al., 2001a]. Second and related, Shimizu
et al. [2006] impose the additional assumption that there exists a permu-
tation A that is lower triangular. This restriction further pins down the
identified set up to sign changes. Moreover, the implied directed acyclic
graphical model has a causal interpretation. Third, in econometrics sign
restrictions on A are a popular tool to weed out economically uninteresting
permutations of A. A canonical case arises when model (1) represents a
demand and supply equation (cf Section 2.3), in which case it is natural
to impose that the demand equation has a downward slope and the supply
equation an upward slope. Together with the normalization that the scales
on the errors are positive yields a unique permutation. Such schemes can
be generalized for larger values of d.

6. Inference for non-independent components models

Given our new identification results, there exist numerous possible routes
for estimating A in AY = ε given a sample {Ys}ns=1. A natural approach is
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based on the concept of minimum distance estimation, where (i) the identify-
ing zero restrictions from Section 5 are replaced by their sample equivalents
and (ii) the parameter A is chosen such that the sample restrictions are as
close as possible to zero, i.e. the distance is minimized. When the restric-
tions are placed on moment tensors µr(ε) this approach falls in the class of
generalized moment estimation (GMM) [e.g. Hansen, 1982], see Hall [2005]
for a textbook treatment. When the restrictions are placed on cumulant
tensors no general framework exists, but a similar route as for moments can
be followed.

It is interesting to note that minimum distance estimators are commonly
adopted in the ICA literature using diagonal tensor restrictions and Eu-
clidean distance to measure distance [e.g. Hyvärinen et al., 2001b, Chapter
11]. For instance, the JADE algorithm of Cardoso and Souloumiac [1993]
solves a minimum distance problem that considers (after pre-whitening) cu-
mulant restrictions on κ4. In our set-up we follow the GMM literature and
measure distance in a statistically meaningful way in order to get optimal
efficiency of the associated estimator and based on the results of Section 5.2
we also consider non-diagonal tensor restrictions.

To set up our approach let A0 denote the true A. We fix V = V(I),
with I defined by either Definition 5.1 or 5.8, and let πV be defined as the
orthogonal projection from Sr(Rd) to V⊥. Note that πV(T ) simply gives the
coordinates Ti for i ∈ I, i.e. the set of zero restricted higher order tensor
entries.

For hr(ε) ∈ V we define the function

(16) g(A) := vecu(A • h2(Y )− Id, πV(A • hr(Y ))) ∈ R(d+1
2 )+|I| ,

where vecu is the vectorization that takes the unique entries of an element
in S2(Rd)⊕V⊥ and stacks them in a vector that has length dg =

(
d+1

2

)
+ |I|.

The sample equivalent of g(A) is denoted by gn(A) and replaces hj by ĥj ,

for j = 2, r, where ĥj denotes either the sample moments, denoted by µ̂j , or
the jth order k-statistic, denoted by kj , which are computed from a given
sample {Ys}ns=1. The computation of the sample moments µ̂j requires no
explanation and for k-statistics we refer to McCullagh [2018, Chapter 4] as
well as the supplementary material Section S3 where we provide explicit
computational formulas.

The population and sample objective functions that we consider are given
by

(17) LW (A) = ‖g(A)‖2W and L̂W (A) = ‖ĝn(A)‖2W ,

where W is an dg × dg positive definite weighting matrix, ‖v‖2W = v′Wv.
The following result is clear.

Lemma 6.1. Suppose that (1) holds with h2(ε) = Id and hr(ε) is a tensor
that satisfies the conditions in Theorem 5.3 or 5.10, then LW (A) = 0 if and
only if A = QA0 for Q ∈ SP(d).
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Proof. We have LW (A) = 0 if and only if g(A) = 0, which is equivalent
A•h2(Y ) = Id and A•hr(Y ) ∈ V. Since (1) holds, we also have A0•h2(Y ) =
I2 and A0 • hr(Y ) ∈ V. It follows that A−1

0 A ∈ O(d), or in other words,
A = QA0 for some Q ∈ O(d). Further,

A • hr(Y ) = QA0 • hr(Y ) = Q • hr(ε) ∈ V,

which implies that Q ∈ GT (V) and by Theorem 5.3 or 5.10 we have GT (V) =
SP(d). �

Given a sample {Ys}ns=1, and a sequence of positive semidefinite matrices
Wn we define the estimator

(18) ÂWn := arg min
A∈A

L̂Wn(A),

where A ⊆ GL(d) is fixed in advance and Wn is a weighting matrix that may
depend on the sample. Here by arg minA∈A we mean an arbitrarly chosen
element from the set of minimizers of L̂Wn(A).

6.1. Consistency. We can show that this class gives consistent estimates
for the true A0 up to sign and permutation. A possible set of conditions is
as follows.

Proposition 6.2 (Consistency). Suppose that {Ys}ns=1 is i.i.d from model
(1) and (i) hr(ε) satisfies the conditions in Theorem 5.3 or 5.10, (ii) A ⊂
GL(d) is compact and QA0 ∈ A for some Q ∈ SP (d) (iii) Wn

p→ W and

W is positive definite, (iv) E‖Ys‖r <∞. Then ÂWn

p→ QA0 as n→∞ for
some Q ∈ SP(d).

The proof is included in the supplementary material.
Condition (i) corresponds to the identification assumptions that were de-

rived in the previous section. Condition (ii) imposes that the permutations
QA0 lie in some compact subset A ⊂ GL(d). This can be relaxed at the
expense of a more involved derivation for the required uniform law of large
numbers. Condition (iii) imposes that the weighting matrix is positive def-
inite and we will determine an optimal choice for W below. The moment
condition (iv) is necessary for applying the law of large numbers.

6.2. Asymptotic normality. The weighting matrix Wn can take different
forms. In the ICA literature Wn is often taken as the identity matrix [e.g.
Comon and Jutten, 2010, Chapter 5], but we will show that different choices
for Wn yield, at least in theory, more efficient estimates provided that suf-
ficient moments of Y exist. Specifically, when we take Wn such that it is
consistent for the inverse of

(19) Σ = lim
n→∞

var(
√
nĝn(QA0))

we can ensure that the resulting estimate ÂWn achieves minimal variance in
the class of generalized cumulant estimators (18).
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Let G(A) ∈ Rdg×d2 be the Jacobian matrix representing the derivative of
the function g : Rd×d → Rdg defined in (16). Here, defining the Jacobian we

think about g as a map from Rd2 vectorizing A.

Proposition 6.3 (Asymptotic normality). Suppose that the conditions of
Proposition 6.2 hold, (v) QA0 ∈ int(A) for some Q ∈ SP (d), (vi) E‖Yi‖2r <
∞, and denote by G = G(QA0). Then

(20)
√
nvec[ÂWn −QA0]

d→ N(0, (G′WG)−1G′WΣWG(G′WG)−1)

for some Q ∈ SP(d), where Σ is given in (19). Moreover, for any Σ̂n
p→ Σ

we have that
√
nvec[Â

Σ̂−1
n
−QA0]

d→ N(0, S) .

for some Q ∈ SP(d) and S = (G′Σ−1G)−1.

This result allows for an interesting comparison. For ICA models under
full independence an efficient estimation method is developed in Chen and
Bickel [2006]. When we relax the independence assumption, and instead
only restrict higher order cumulant entries, the efficient estimator is given

by Â
Σ̂−1

n
. Here efficiency is understood in the sense that S is smaller (in

the Löwner ordering) when compared to the variance in (20) for any W .

Chamberlain [1987] shows that for moment restrictions the estimator Â
Σ̂−1

n

attains the semi-parametric efficiency bound in the class of non-parametric
models characterized by restrictions Ti = 0 for i ∈ I.

Implementing this estimator can be done in different ways. Proposi-
tion 6.2 shows that QA0 can be consistently estimated regardless of the
choice of weighting matrix. Given such first stage estimate, using say
Wn = Idg , we can estimate Σ consistently (under the assumptions of Propo-

sition 6.3). With this estimate we can compute Â
Σ̂−1

n
from (18). While

this estimate is efficient, the procedure can obviously be iterated until con-
vergence to avoid somewhat arbitrarily stopping at the first iteration, see
Hansen and Lee [2021] for additional motivation for iterative moment esti-

mators. Additionally, we may also consider Wn = Σ̂n(A)−1 as a weighting
matrix, hence parametrizing the asymptotic variance estimate as a function
of A, and minimize the objective function (18) using this weighting matrix
[e.g. Hansen et al., 1996]. The methodology for estimating Σ and S, under
both moment and cumulant restrictions, is discussed in the Appendix S5.
In Section S4 we also discuss several hypothesis tests that allow us to test
the higher order tensor restrictions.

7. Numerical illustration

In this section we evaluate the numerical performance of the minimum
distance estimators introduced above. We simulate data from some of the
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Table 1. Distributions for Errors

Code Name Definition

N Gaussian 1√
2π

exp
(
− 1

2x
2
)

t(ν = 5) Student’s t
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)(− ν+1
2 )

SKU Skewed Unimodal 1
5N
(
0, 1
)

+ 1
5N
(

1
2 , (

2
3 )2
)

+ 3
5N
(

13
12 , (

5
9 )2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)

+ 1
3N
(
0, ( 1

10 )2
)

BM Bimodal 1
2N
(
− 1, ( 2

3 )2
)

+ 1
2N
(
1, ( 2

3 )2
)

SBM Separated Bimodal 1
2N
(
− 3

2 , (
1
2 )2
)

+ 1
2N
(

3
2 , (

1
2 )2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)

+ 1
4N
(

3
2 , (

1
3 )2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5 )2
)

+ 9
20N

(
6
5 , (

3
5 )2
)

+ 1
10N

(
0, ( 1

4 )2
)

CL Claw 1
2N
(
0, 1
)

+
∑4
l=0

1
10N

(
l/2− 1, ( 1

10 )2
)

ACL Asymmetric Claw 1
2N
(
0, 1
)

+
∑2
l=−2

21−l

31 N
(
l + 1/2, (2−l/10)2

)
Notes: The table reports the distributions that are used in the simulation studies
to draw the errors. The mixture distributions are taken from Marron and Wand
[1992], see their table 1.

non-independent components models of Section 2 and compare the estima-
tion accuracy of the minimum distance estimators of Section 6 to several
popular ICA methods.

7.1. Common variance component models. We start by simulating
independent samples {Y 1, . . . , Y n} from the common variance model (3),
where K = (1, . . . , 1)′, τ ∼ gamma(1, 1), φ is the identity function and
η ∈ Rd has independent components that are simulated from different uni-
variate distributions that are summarized in Table 1. The draws for ηi are
standardized such that εi = τηi has mean zero and unit variance.

The matrix A is defined by A = R′L, where L is lower triangular with
ones on the main diagonal and zeros elsewhere, and R is a rotation matrix
that is parametrized by the Cayley transform of a skewed symmetric matrix
who entries are randomly drawn for each sample from aN (0, Il) distribution,
with l = d(d− 1)/2.

We compare the performance of several estimators. The minimum dis-
tance estimators from Section 6 are used with either κ3(ε) = µ3(ε) set to
have zero off-diagonal elements, or µ4(ε) restricted to be reflectionally invari-
ant. We consider the weighting matrices Wn = Idg and the asymptotically

optimal choice Wn = Σ̂−1
n .
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Table 2. Amari Errors: Common Variance Model

Non-Independent Components Analysis

Method N t(5) SKU KU BM SBM SKB TRI CL ACL

µd,I3 0.45 0.35 0.33 0.35 0.53 0.65 0.46 0.56 0.46 0.43

µd,Σ̂
−1
n

3 0.40 0.34 0.31 0.33 0.45 0.54 0.39 0.46 0.40 0.37

µr,I4 0.29 0.28 0.29 0.25 0.26 0.18 0.29 0.26 0.31 0.30

µr,Σ̂
−1
n

4 0.30 0.28 0.30 0.25 0.24 0.12 0.27 0.22 0.28 0.29

TICA 0.37 0.19 0.27 0.05 0.80 0.91 0.70 0.83 0.53 0.46

Independent Components Analysis

Method N t(5) SKU KU BM SBM SKB TRI CL ACL
Fast 0.44 0.37 0.39 0.35 0.57 0.66 0.51 0.58 0.46 0.47
JADE 0.44 0.35 0.37 0.28 0.60 0.67 0.55 0.62 0.49 0.48
Kernel 0.45 0.36 0.39 0.36 0.55 0.64 0.49 0.56 0.46 0.46
ProDen 0.45 0.34 0.39 0.31 0.60 0.66 0.54 0.61 0.50 0.49
Efficient 0.44 0.48 0.46 0.48 0.40 0.44 0.40 0.42 0.41 0.41
NPML 0.44 0.42 0.43 0.43 0.45 0.42 0.44 0.43 0.43 0.42

Notes: The table reports the average Amari errors (across S = 1000 simulations) for data
sampled from the common variance model (3) with d = 2 and n = 200. The columns
correspond to the different errors considered for the components of η, see Table 1. The
top panel reports the errors for the minimum distance methods and Topographical ICA
(TICA). For the minimum distance methods we consider diagonal (d) and reflection-
ally invariant (r) restrictions for different order tensors µ3, µ4, combined with weighting

matrices Wn = Id, Σ̂
−1
n . The bottom panel reports comparison results for different inde-

pendent component analysis methods: FastICA [Hyvärinen, 1999], JADE Cardoso and
Souloumiac [1993], kernel ICA [Bach and Jordan, 2003], ProDenICA [Hastie and Tibshi-
rani, 2002], efficient ICA [Chen and Bickel, 2006] and non-parametric ML ICA [Samworth
and Yuan, 2012].

As an alternative non-independent component method we include topo-
graphical ICA (TICA) of Hyvärinen et al. [2001a]. We note that TICA
assumes that mapping from the independent components that determines
the variance to the errors is known, i.e. K is assumed known and explic-
itly used in the construction of the objective function [see Hyvärinen et al.,
2001a, equation 3.10]. The minimum distance estimators that we propose
do not exploit this knowledge.

For comparison purposes we also include FastICA [Hyvärinen, 1999],
JADE [Cardoso and Souloumiac, 1993], kernel ICA [Bach and Jordan, 2003],
ProDenICA [Hastie and Tibshirani, 2002], efficient ICA [Chen and Bickel,
2006] and non-parametric MLE ICA [Samworth and Yuan, 2012]. We stress
that none of these alternative methods are designed for non-independent
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components models and they are merely included to highlight that incor-
rectly imposing independence leads to distorted estimates.

For each simulation design we sample S = 1000 datasets and measure the
accuracy of the estimates using the Amari et al. [1996] error:

dA(ÂWn , A0) =
1

2d

d∑
j=1

(∑n
j=1 |aij |

maxj |aij |
− 1

)
+

1

2d

d∑
j=1

(∑n
i=1 |aij |

maxi |aij |
− 1

)
,

where aij is the i, j element of A0Â
−1
Wn

. We report the averages of this error
over the S datasets. In the supplementary material we also show results for
the minimum distance index [Ilmonen et al., 2010].

Table 2 shows the baseline estimation results for d = 2 and n = 200.
We find that minimum distance methods based on fourth order reflection-
ally invariant tensors always perform better when compared to the methods
that rely on the independence assumption. The magnitude of the increase
in the Amari errors differs across the different choices for the underlying
densities. Notably with multi-modal densities the gains in estimation ac-
curacy are large, often reducing the Amari error by more than half. Using
the efficient weighting matrix is generally preferable when compared to the
identity weighting, although the differences are not always large.

Minimum distance methods based on third order diagonal moment re-
strictions perform well when the true density has strong skewness (e.g.
SKU). When used with the efficient weighting matrix this minimum dis-
tance method nearly always outperform the ICA methods, but even then
the reflectionally invariant approach appears preferable.

As an alternative non-independent component method, TICA works well
when the true likelihood is close to the imposed objective function of TICA.
Generally, this is the case for all densities that are similar to the Student’s
t density. When the true density is far from the approximating densities
TICA can have very large errors. A similar observation was made in the
context of independent component analysis for pseudo maximum likelihood
methods in Lee and Mesters [2021].

In Figure 1 we show that these findings persist for higher dimensional
models and for large sample sizes. We show the results for ηi ∼ t(5) and
ηi ∼ BM . A larger selection of experiments is shown in the supplementary
material. Two observations are worth pointing out. First, as the sample
size n increases the Amari errors become smaller for the minimum distance
methods, supporting the consistency result from Proposition 6.2. In con-
trast, for the ICA methods (here exemplified by FastICA) there is no change
in accuracy when increasing n. Second, when the dimensions increase the
ordering, in terms of performance, remains similar as above.

7.2. Multiple scaled elliptical component models. Next, we generate
data from the nICA model with multiple scaled elliptical errors as in (4).
Specifically, η is drawn from the uniform distribution on the d-sphere and τ
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Figure 1. Selected Common Variance Experiments
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations)
for data sampled from the common variance model (3). The different settings for the
simulations designs are described in the titles and the x-labels indicate the different
estimation methods used.

is simulated as τ = Ke, where K is a square matrix of ones and e ∈ Rd has
independent components that are drawn from the distributions in Table (1).
This implies that both the components of τ and η are dependent and the
diagonal tensor identification result no longer holds. That said, Corollary
5.14 show that the reflectionally invariant moment tensors can still be used
for identification. Also, in this setting topographical ICA cannot be used
as the components of η are no longer independent. The other parts of the
simulation design are similar as above and we perform the same comparisons.

The results are shown in Table 3. We find that the minimum distance
methods based on the reflectionally invariant tensor restrictions now outper-
form all other methods. Using the efficient weighting matrix is not always
preferable, as for most densities the weighting matrix is not estimated very
accurately leading to more poor performance. The differences across the
different densities for e are often small and the errors made by the ICA
methods are quite similar.
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Table 3. Amari Errors: Scaled Elliptical

Non-Independent Components Analysis

Method N t(5) SKU KU BM SBM SKB TRI CL ACL

µd,I3 0.44 0.44 0.45 0.44 0.45 0.43 0.44 0.45 0.43 0.43

µd,Σ̂
−1
n

3 0.43 0.41 0.42 0.42 0.44 0.43 0.43 0.44 0.41 0.41

µr,I4 0.21 0.25 0.23 0.23 0.21 0.21 0.22 0.25 0.24 0.25

µr,Σ̂
−1
n

4 0.26 0.24 0.25 0.26 0.26 0.21 0.27 0.24 0.23 0.24

TICA 0.34 0.38 0.34 0.36 0.34 0.36 0.36 0.35 0.35 0.36

Independent Components Analysis

Method N t(5) SKU KU BM SBM SKB TRI CL ACL
Fast 0.43 0.43 0.44 0.43 0.42 0.44 0.44 0.44 0.44 0.46
JADE 0.45 0.43 0.44 0.44 0.44 0.43 0.45 0.45 0.45 0.44
Kernel 0.46 0.43 0.44 0.44 0.42 0.45 0.44 0.44 0.44 0.45
ProDen 0.45 0.43 0.44 0.45 0.42 0.45 0.45 0.45 0.44 0.46
Efficient 0.44 0.43 0.45 0.43 0.44 0.42 0.44 0.44 0.44 0.44
NPML 0.42 0.43 0.43 0.43 0.42 0.42 0.43 0.42 0.43 0.42

Notes: The table reports the average Amari errors (across S = 1000 simulations) for
data sampled from the multiple scaled elliptical model (4) with d = 2 and n = 200.
The columns correspond to the different errors considered for the components of η, see
Table 1. The top panel reports the errors for the minimum distance methods and Topo-
graphical ICA (TICA). For the minimum distance methods we consider diagonal (d)
and reflectionally invariant (r) restrictions for different order tensors µ3, µ4, combined

with weighting matrices Wn = Id, Σ̂
−1
n . The bottom panel reports comparison results for

different independent component analysis methods: FastICA [Hyvärinen, 1999], JADE
Cardoso and Souloumiac [1993], kernel ICA [Bach and Jordan, 2003], ProDenICA [Hastie
and Tibshirani, 2002], efficient ICA [Chen and Bickel, 2006] and non-parametric ML ICA
[Samworth and Yuan, 2012].

In the supplementary material Section S6 we provide a number of addi-
tional results. We show different error metrics, sample sizes and dimensions.
The main conclusion — incorrectly imposing independence is costly — is
found to hold across these variations

8. Conclusion

In the ICA literature identifiability of (1) is assured when ε has indepen-
dent components out of which at most one is Gaussian. Although in the
classical ICA literature independence seems a natural assumption, in many
other applications it is considered too strong.

Our paper proposes a general framework to study weak conditions under
which A in AY = ε is identified up to the set of signed permutations. We
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develop a novel approach to study this identifiability problem in the case
of zero restrictions on fixed order moments or cumulants of ε. We obtain
positive results for some useful zero patterns. These results can be used
under strictly weaker conditions than independence and ensure the identifi-
ability of several popular non-independent component models, e.g. common
variance, scaled elliptical and mean independent components models.

While we have focused on relaxing the independence assumption in (1),
it is easy to see that similar techniques can be used to relax independence
assumptions in other linear models; e.g. measurement error models [Schen-
nach, 2021], triangular systems [Lewbel et al., 2021], and structural vector
autoregressive models [Kilian and Lütkepohl, 2017].
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