
 

bse.eu/research 
 
 

Updating Under Imprecise Information 
BSE Working Paper 1424| January 2024 

Yi-Hsuan Lin, Fernando Payró 



Updating Under Imprecise Information

Yi-Hsuan Lin and Fernando Payró∗
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Abstract

This paper models an agent that ranks actions with uncertain payoffs after
observing a signal that could have been generated by multiple objective informa-
tion structures. Under the assumption that the agent’s preferences conform to
the multiple priors model (Gilboa and Schmeidler (1989)), we show that a simple
behavioral axiom characterizes a generalization of Bayesian Updating. Our axiom
requires that whenever all possible sources of information agree that it is more
’likely’ for an action with uncertain payoffs to be better than one with certain
payoffs, the agent prefers the former. We also provide axiomatizations for several
special cases. Finally, we consider the situation where the informational content
of a signal is purely subjective. We characterize the existence of a subjective set
of information structures under full Bayesian updating for two extreme cases: (i)
No ex-ante state ambiguity, and (ii) No signal ambiguity.
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1 Introduction

Individuals often acquire information before making a choice. However, in many
situations, they are not able to completely pin down the source of the acquired
information. Since the same information can have different meanings depending
on its source, they may have a hard time processing it if they are not sure which
one is the true source. The goal of this paper is to provide a theory of how agents
process such information.

To illustrate, we provide an example inspired by the early research conducted
during the COVID-19 pandemic.1 Consider a policy-maker that must choose to
adopt a costly novel security measure. The policy-maker is aware that a study
has shown the security measure reduces the risk of an accident. However, she
is unsure about the quality of the data employed in the study. If the study was
done properly, then the results suggest she should in fact adopt the measure.
However, if the quality is poor, then the results are meaningless. Indeed, if the
sample employed in a study is too small, then it is equally likely to get results
that suggest the measure is effective than results that say it has no effect. How
should the policy-maker process such information?

We take as primitives and outcome space X, an objective state space Ω, an
objective signal space S, and a set of information structures L ⊆ {ℓ : Ω →
∆(S)}, where ∆(S) is the set of probability measures over S. We refer to L as an
imprecise information structure. The idea behind our definition is that L is the
set of identifiable sources of information. The agent is assumed to have ex-ante
preference ⪰0 and signal-conditional preferences (⪰s)s∈S over actions that have
uncertain payoffs. We interpret ⪰s to be the agent’s preferences conditional on
observing signal s generated by some ℓ ∈ L. We assume that ex-ante ⪰0 and
ex-post ⪰s conforms to Gilboa and Schmeidler (1989) maxmin model (MEU).

Our theory is built on the premise that if all identifiable information structures
recommend choosing an action with uncertain payoffs over one with deterministic
payoffs, then the agent should select the action. Imposing this condition as an
axiom yields a representation (Theorem 3.1) and consequently, an updating rule.
For any action f : Ω → X, the utility of f after observing s is given by:

Us(f) = min
q∈ρ(M0,L,s)

∫
u(f), dq

Here, M0 represents the set of priors, and ρ(M0,L, s) is a subset of the convex
hull of all posteriors generated by ’point-wise’ Bayesian updating. We term this

1During the early days of the pandemic, over 66 clinical prediction models were proposed in peer-
reviewed settings to study the effect of a mask mandate. However, it was later established that all
suffered a high risk of bias due to concerns surrounding the data quality, statistical analysis, and
reporting. See Collins et al. (2020) for a discussion.
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updating rule the Generalized Bayesian Updating (GBU) rule.
In our context, signals are not considered payoff-relevant, meaning that the

payoff of actions does not depend on them. This departure from the typical
axiomatic literature on updating, where signals are often modeled as subsets of Ω,
is a distinctive feature of our framework. Unlike the conventional approach, our
setting does not assume signals to be subsets of Ω. This departure is crucial for
our purposes as it allows us to disentangle the agent’s attitude towards imprecise
information from her attitude towards uncertainty. If signals were modeled as
subsets of Ω, this separation would not be feasible. Additionally, our approach
facilitates the testing of our axioms in a laboratory setting, as our framework
serves as a theoretical representation of experiments conducted in Epstein and
Halevy (2022) and Shishkin et al. (2021)

Our updating rule generalizes both Full Bayesian updating (FBU) and Max-
imum Likelihood updating (MLU), both of which are widely popular. However,
the conceptual rationale behind why an agent might adopt either of these rules
is not entirely clear. FBU allows the agent to have a subjective view of the un-
certainty about the state space but not about the source of information. On the
other hand, MLU utilizes the realized signal to jointly discriminate among priors
and information structures, evaluating each information structure using the prior
that maximizes the likelihood of the observed signal.

A more conservative or intermediate approach would involve evaluating each
information structure using all priors. In other words, an agent may prefer con-
sidering an information structure that has a reasonable likelihood according to all
priors rather than one that has maximal likelihood according to a single prior and
minimal likelihood according to another. We establish axiomatic foundations for
such a rule in Theorem 7.

The psychology literature has consistently demonstrated that individuals, when
updating information, can exhibit susceptibility to certain biases. A prevalent
finding is the tendency to selectively consider information structures that align
with their pre-existing beliefs, a phenomenon commonly referred to as confir-
mation bias.2 In our framework, given a signal, the probability that the signal
originated in each state induces a likelihood ranking over states. If the agent is
able to articulate a likelihood ranking over states and is prone to confirmation
bias, she may limit her consideration to information structures that align with her
pre-existing likelihood ranking. GBU allows for such updating, and is axiomatized
in this paper (Theorem 4.2).

Our analysis hinges on the assumption that imprecise information is objective.
However, in numerous situations, information may be private or lack a reliable
description of its informational content. In such cases, assuming observability

2See Rabin and Schrag (1999) for a comprehensive review of evidence in psychology.
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of L is not appropriate, and its nature should be inferred from behavior. We
demonstrate that under FBU, L can be recovered in scenarios where there is a
single prior belief or when L is a singleton.

The paper proceeds as follows: The introduction concludes with a literature
review. Axioms and the implied updating rule are described in Sections 2 and
3 respectively. Sections 3.2-3.4 contain a detailed discussion of the properties of
the model. Special cases of the Generalized Bayesian Updating (GBU) rule are
investigated in Section 4. Section 5 delves into the consideration of subjective
information structures. Concluding remarks and discussions on future research
questions are presented in Section 6. All proofs are provided in Appendix A.

1.1 Related Literature

In recent years, there has been a growing interest in decision-making under un-
certainty, particularly in the context of incorporating objective but imprecise in-
formation. Our work aligns closely with several recent papers, including Gul and
Pesendorfer (2021), Cheng (2022), Tang (2022), and Kovach (2023).

Gul and Pesendorfer (2021) presents a theory of updating for the Choquet
Expected Utility model (Schmeidler (1989)). On the other hand, Cheng (2022),
Tang (2022), and Kovach (2023) offer distinct axiomatic updating rules for the
Maxmin Expected Utility (MEU) model. Notably, the primary distinctions be-
tween our work and theirs lie in the framework and the nature of the information
considered.

In the frameworks of Cheng (2022), Tang (2022), and Kovach (2023), informa-
tion is considered payoff-relevant, and the information itself is precise in the sense
that it is an event. In contrast, our work focuses on imprecise information that
is not necessarily payoff-relevant. The motivation for their work stems from the
descriptive shortcomings of the Maximum Likelihood Updating (MLU) and Full
Bayesian Updating (FBU) rules, axiomatized by Gilboa and Schmeidler (1993)
and Pacheco Pires (2002), respectively

Dominiak et al. (2021) model imprecise information as sets of probability mea-
sures that contain the “true” distribution. They provide an updating rule for the
Subjective Expected Utility model that selects the posterior that minimizes the
distance between her prior and the set she is provided with. Their updating rule
has a somewhat similar flavor to ours due to the fact that they allow the distance
to be subjective.

Jaffray (1989), Ahn (2008), Dumav and Stinchcombe (2013), Olszewski (2007),
Gajdos et al. (2008), and Riedel et al. (2018) consider settings in which the objects
of choice are “merged” with imprecise information. More specifically, Jaffray
considers a preference over belief functions. Gajdos et al. (2008) and Riedel et al.
(2018) assume the agent can choose the set of data-generating processes that
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contains the true law. The rest of the authors study preferences over sets of
lotteries. All of these assumptions imply that imprecise information is payoff-
relevant.

Epstein and Schneider (2007,8,10) provide a non-axiomatic updating rule for
imprecise information (therein referred to as ambiguous signals). They introduce
a thought experiment that highlights its importance. In a dynamic setting, they
provide conditions under which their updating rule delivers convergence in beliefs
after repeated sampling. Reshidi et al. (2022) further investigate when beliefs con-
verge under a more general data-generating process. Like Epstein and Schneider
(2007), Lanzani (2023) also studies a learning problem. However, unlike Epstein
and Schneider, he assumes robust-control preferences. He shows how a misspeci-
fication concern can lead to different preferences under uncertainty arising in the
limit.

Building on Epstein and Schneider’s thought experiment, Epstein and Halevy
(2022) provides a definition of aversion towards signal ambiguity and test it in
an experimental setting. The key difference between our work and theirs is that
they study the attitude towards the information as opposed to how to processes
it, which is our focus.

Finally, outside the updating literature but within the imprecise information
literature, Wang et al. (2023) axiomatize a selection criteria for imprecise infor-
mation. They provide conditions under which a choice function over “theories”
always selects the ones that pass a likelihood ratio test.

2 General Model

2.1 Preliminary Definitions

We consider a set Ω of states of the world, a set S of signals, and a set X of
consequences. We assume Ω and S are finite andX is a compact and convex subset
of a linear space. This is the case of Anscombe and Aumann (1963) where X is
the set of all lotteries over some finite set of prizes. Let n denote the cardinality
of Ω.

An act is a function f : Ω → X. The set of all acts is denoted by F . We write
x for the constant act f such that f(ω) = x for all ω ∈ Ω. Given f, g ∈ F and α ∈
[0, 1], we denote by αf+(1−α)g the act in F that takes value αf(ω)+(1−α)g(ω)
in state ω.

An information structure is a function ℓ : Ω → ∆(S) where ∆(S) is the set
of all probability measures over S. We only consider information structures that
satisfy the following property:

∀ s ∈ S, there exists ω ∈ Ω such that ℓ(s|ω) > 0. (1)
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As it will become clear later, this assumption is made purely for exposition pur-
poses. An imprecise information structure is a finite set of such information struc-
tures. If the set only contains a single information structure, then we refer to it
as a precise information structure. Generic imprecise information structures are
denoted by L.

∆(Ω) denotes the set of all probability measure on Ω. Given a probability mea-
sure q ∈ ∆(Ω), a information structure ℓ and a signal s, we denote by BU(q, ℓ, s)
the probability measure given by Bayesian Updating:

BU(q, ℓ, s)(ω) =
ℓ(s|ω)q(ω)∑
ω ℓ(s|ω)q(ω)

whenever it exists. Further, for any set of measures M ⊆ ∆(Ω), imprecise infor-
mation structure L and signal s ∈ S, BU(M,L, s) denotes the set of all posteriors
generated by point-wise Bayesian Updating :

BU(M,L, s) = {BU(q, ℓ, s)|q ∈ M, ℓ ∈ L}.

Finally, for any set C ⊆ ∆(Ω), ch(C) denotes its convex hull.

2.2 Axioms

Our primitive is a family of preferences over acts (⪰0, (⪰s∈S)) and an imprecise
information structure L. We impose two axioms on (⪰0, (⪰s∈S)) of which the
first is that the preferences admit a MEU representation (Gilboa and Schmeidler
(1989)).

A utility function U : F → R is MEU if there exists an affine function u :
X → R and a closed and convex set of probability measures M over Ω such that

U(f) = min
q∈M

∫
Ω
u(f(ω))dq. (2)

Say that (M, u) represents ⪰ if the utility function given by (2) represents ⪰.

MEU Utility ⪰s admits representation by (Ms, u) for all s ∈ S∪{0}. Moreover,
each q0 ∈ M0 has full support.

This axiom is not stated in terms of behavior which is presumably the only ob-
servable. However, its behavioral foundations are widely known. It also imposes
that all priors have full support; our model has nothing to say about updating
zero-probability events.

Our main axiom is based on the idea that if for a given signal all the identifiable
information structures agree that it is more likely that an act is better than a
constant act, then then the agent should choose the act. We start by showing that
our primitives are rich enough to identify this if the agent satisfies Reduction:
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She is indifferent between a two-stage lottery and its equivalent one-stage
counterpart.

Fix an act f , a constant act x, and an information structure ℓ ∈ L. Consider
an extension of the ex-ante preference to acts in which signals are payoff relevant:
{F : Ω × S → X}. Suppose we told the agent that ℓ is the true information
structure and asked her to choose between a constant act x and a “signal act”

F (ω, s) =

{
f(ω) s = s∗

x s ̸= s∗
.

Figure 1 (a) illustrates this signal act. Note that conditional on a state of the
world, there is no ambiguity about the probability of observing s∗. Indeed, the
agent knows it is given by ℓ(·|ω) ∈ ∆(S). Because both acts give the same payoff if
ℓ generates s′ ̸= s∗, the agent only needs to compare them assuming s∗ happened.
Therefore, she would prefer F to x if she thinks that conditional on observing s∗

she would prefer f to x.
Notice that for a given state ω, F gives the same expected payoffs as a lot-

tery that pays f(ω) with probability ℓ(s∗|ω) and x with probability 1 − ℓ(s∗|ω).
Therefore, under Reduction, she would be indifferent between F and an act that
for each state ω pays ℓ(s∗|ω)f(ω) + (1 − ℓ(s∗|ω))x. Figure 1 (b) illustrates such
act.

x

f(ωn)

x

s∗

s′

f(ω1)

s∗

s′

ωn

ω1 .

.

.

.

.

(a) Signal Act

l (s∗|ωn) f(ω1) + (1− l (s∗|ωn))x

l (s∗|ω1) f(ω1) + (1− l (s∗|ω1))x

ωn

ω1 .
.
.
.
.

(b) AA Act

Figure 1

Hence, under Reduction,

F ⪰0 x ⇐⇒

ℓ(s∗|ω1)f(ω1) + (1− ℓ(s∗|ω1))x
...

ℓ(s∗|ωn)f(ωn) + (1− ℓ(s∗|ωn))x

 ⪰0 x
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which means we can identify when the agent expects to prefer f over x after
observing s if she knew ℓ is the true source of information.

To state our main axiom we need some notation. For each f, x ∈ F , ℓ ∈ L and
s ∈ S, let f ℓ,s

x be the act that takes value ℓ(s|ω)f(ω) + (1− ℓ(s|ω))x in state ω.

Total Information Agreement For any f, x ∈ F and s ∈ S,

f ℓ,s
x ⪰0 x for all ℓ ∈ L =⇒ f ⪰s x.

Given our discussion, Total Information Agreement states that if all information
structures agree f is better than x after observing s, the agent should choose f
after observing s.

3 Representation

3.1 Generalized Bayesian Updating

Our first result is an axiomatization of the Generalized Bayesian Updating de-
scribed in the introduction.

Theorem 3.1. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satisfies
MEU Utility and L an imprecise information structure. Then, (⪰0, (⪰s)s∈S) sat-
isfies Total Information Agreement if and only if Ms ⊆ ch(BU(M0,L, s)) for all
s ∈ S.

Theorem 3.1 only provides conditions for the set of posteriors to be a subset
of the set ch(BU(M0,L, s)). We now provide the necessary axiom required to
replace “⊆” with “=”.

Default to Certainty For all f, x ∈ F and s ∈ S,

x ⪰0 f
ℓ,s
x for some ℓ ∈ L =⇒ x ⪰s f.

To interpret Default to Certainty note that Total Information Agreement only
restricts the agent’s behavior in a very limited sense. Indeed, it only has bite
whenever all possible sources of information agree that an act with uncertain
payoffs is better than one with certain payoffs. However, it may be the case
that the agent may behave differently depending on which source is the one that
generated the signal. For instance, it may be the case that for a given signal the
agent would prefer an act f over a constant act x if she knew ℓ was the source.
However, she may have the opposite preference if she knew ℓ′ was the source.
Default to Certainty states that whenever such an issue arises, she always chooses
the constant act.3

3Faro and Lefort (2019) uses a similar axiom to characterize FBU in a precise information context.
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Proposition 3.1. Suppose (⪰0, (⪰s)s∈S) and L satisfy the axioms of Theorem
3.1. Then, (⪰0, (⪰s)s∈S) satisfies Default to Certainty if and only if Ms =
ch(BU(M0,L, s)) for all s ∈ S.

3.2 Discussion

The relation between Theorem 3.1 and the standard Bayesian model merits em-
phasis. The latter is obtained if one strengthens MEU Utility, by requiring that
the sets of beliefs be singletons, and assume L is a singleton. This has an important
implication for the interpretation of Total Information Agreement. Specifically, it
is well known that under the SEU axioms, Bayesian updating is characterized by
Consequentialism and Dynamic Consistency (see Ghirardato (2002)). Because sig-
nals are not payoff-relevant, Consequentialism is implicitly assumed in our setting.
Hence, Total Information Agreement reduces to Dynamic Consistency whenever
ex-ante and ex-post preferences are SEU. Moreover, it can be interpreted as a
weakening of Dynamic Consistency for the case in which ex-ante and ex-post
preferences are MEU.

Theorem 3.1 delivers a representation, and thus an updating rule, for imprecise
information. Formally, A Generalized Bayesian Updating (GBU) rule is a function
ρ : (M,L, s) 7→ M′ such that M′ ⊆ ch(BU(M,L, s)).

Because the GBU rule imposes little structure on the set of posteriors for the
conditional preferences, the model can accommodate a wide range of behavior.
On the other hand, some may view the model as “too general” in that it permits
the posteriors not to be generated by Bayesian Updating of any of the feasible
information sources. Indeed, it may be the case that

ρ(M0,L, s) ⊆ ch(BU(M0,L, s))\BU(M0,L, s). (3)

One reason to allow (3) is to nest the case in which the agent has, possibly
non-singleton, beliefs over L. To illustrate, consider a probability measure λ over
L. We interpret λ as the agent’s beliefs about which is the true information
source. When updating her set of prior M0, such an agent may use her beliefs to
determine her set of posteriors:

ρ(M0,L, s) = {p ∈ ∆(Ω)|p =
∑
ℓ∈L

λ(ℓ)BU(q, ℓ, s), q ∈ M0}.

Another potential concern is that the GBU allows the agent to use different
ℓ’s depending on the signal. If one follows a “maximum likelihood” type of rule,
then the ℓ’s that have the maximal likelihood of generating s may be different
than the ones generating s′. Similarly, an agent who only considers information
structures that “confirm” her beliefs may consider different information structures
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depending on the realization of the signal. We further investigate these types of
rules in Section 4. In the next section, we discuss the necessary conditions needed
to rule out this feature of the model.

Next, we discuss the uniqueness properties of the model. Because we assumed
the preferences conform to the MEU model, (M0, (Ms)s∈S) are unique.4 This
does not mean that the information structures that were used to construct the
posterior set are unique. This is the focus of Section 3.4.

We conclude the discussion with a few words on the impossibility of providing
a measure of aversion to updating imprecise information in the current frame-
work. The main reason is that the current framework does not allow the agent
to choose between facing imprecise information and precise information. Indeed,
any measure of aversion towards a phenomenon requires a comparison between the
phenomenon and an object that does not suffer from the phenomenon.5 There-
fore, in order to provide such a measure, we would need to consider a different
setting. One possibility would be pairs of menus of acts and imprecise informa-
tion structures. Although it is possible to adapt our analysis to such a setting,
because most of the experimental literature does not consider menus, we feel it
would obscure the message of the paper.

3.3 Consistent Updating

As discussed in the previous section, our model allows the agent to use different
information structures for different signals. The following axiom makes sure that
it can never be the case that ℓ plays a role after observing s′ if it is ignored after
observing s.

Consistency Across Signals For any f, g, x, x′ ∈ F and s, s′ ∈ S,

if x ⪰0 f
ℓ,s
x and f ⪰s x, then

gℓ,s
′

x′ ⪰0 x
′ and g ⪰s′ x

′ =⇒ gℓ
′,s′

x′ ⪰0 x
′ for some ℓ′ ∈ L,

where gℓ
′,s′

x′ ⪰0 x
′ holds with indifference if g ⪰s′ x

′ holds with indifference.

From the discussion in the interpretation of Total Information Agreement,
x ⪰0 f

ℓ,s
x and f ⪰s x reveal the agent is ignoring the possibility that ℓ generated s.

Therefore, any behavior that considering ℓ would lead to after observing another

signal s′, such as x ⪰0 gℓ,s
′

x′ and g ⪰s x′, has to to be explainable by another
information structure ℓ′.

4See the uniqueness result in Gilboa and Schmeidler (1989).
5For example, in order to check if an agent is averse to ambiguity one needs to observe a choice

between acts and lotteries.
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To state the result we need some notation. For any set of priors M, E(M)
denotes all of its extreme points.

Proposition 3.2. Suppose (⪰0, (⪰s)s∈S) and L satisfy the axioms of Theorem
3.1. Then, (⪰0, (⪰s)s∈S) satisfies Consistency Across Signals if and only if for all
s, s′ ∈ S and ℓ ∈ L

BU(q0, ℓ, s) ̸∈ Ms for all q0 ∈ M0 =⇒ BU(q′0, ℓ, s
′) ̸∈ E(Ms′)

for all q ∈ M0

Proposition 3.2 states that if ℓ is ignored after observing s, then it cannot be
an extreme point of Ms′ . It is well known that only the extreme points of Ms′

are important in the MEU model. Specifically,

min
q∈Ms

∫
Ω
u(f)dq = min

q∈E(Ms)

∫
Ω
u(f)dq

for all f . Therefore, our axiom ensures that if the agent does not consider ℓ after
s, she never considers it whenever it could affect her preferences.

3.4 Identification

Say that (u,M0, (Ms∈S),L) represents (⪰0, (⪰s)s∈S) if it satisfies the conditions
of Theorem 3.1. Next, we describe up to what degree we can identify which priors
and information structures were used to update by the agent.

In general, there is no hope for an identification result. As the following
example shows, Bayesian Updating of a set of priors M0 and two different subsets
of a given L may lead to the same set of posteriors.

Example 3.1. Consider a binary state space Ω = {ω1, ω2} and a binary signal
space S = {s1, s2}. The prior belief q̄ is uniform, q̄ = (1/2, 1/2). Let Mi be the
set of posteriors given signal si. Since there are only two states, we can identify a
belief by its assessment on ω1. Suppose that M1 = [5/8, 7/8] and M2 = [1/8, 3/8].

Consider the following two distinct sets of information structures:

L1 = {ℓ : ℓ(s1|ω1) ∈ [5/8, 7/8]; ℓ(s1|ω2) = ℓ(s2|ω1)}, and

L2 = {ℓ : k ∈ [5/8, 7/8]; ℓ(s1|ω1) = 4k(1− k); ℓ(s1|ω2) = 4(1− k)2}.

Then under FBU, these two sets of information structures both induce M1 and
M2. That is, given the unconditional and conditional preferences, from which
we can identify q̄, M1 and M2, we cannot distinguish if the set of information
structures adopted by the agent is L1 or L2. Hence, if L = L1 ∪ L2 there is no
hope for identifying the set of information structures used.
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4 Specializations

In this section, we discuss several special cases of the GBU. We separate the
discussion into two classes, the ones motivated by statistics and the ones motivated
by behavioral biases.

4.1 Statistical GBU

Taking a statistics point of view, it is natural to only consider pairs (q, ℓ) that pass
some statistical test. We model a test as a function ϕ : (M,L, s) 7→ (M′,L′) ⊆
M×L. We refer to such rules as Statistical Generalized Bayesian Updating rules
(SGBU):

ρ(M0,L, s) = ch(BU(ϕ(M0,L, s), s)).

It is easy to see that FBU (4) and MLU (5) are special cases of SGBU:

ϕ(M0,L, s) = (M0,L) (4)

ϕ(M0,L, s) = {(q0, ℓ)|(q0, ℓ) ∈ arg max
q0∈M0,ℓ∈L

∫
Ω
ℓ(s|ω)dq0}. (5)

In the introduction, we discussed how MLU uses the signals to jointly dis-
criminate among priors and information structures. Each information structure
is evaluated according to the prior that maximizes the likelihood of the observed
signal. We propose the following conservative approach: evaluate each informa-
tion structure using all priors. The following special case of SGBU, referred to as
Maximum Robust Likelihood Updating (MRLU), formalizes this idea:

ϕMRLU (M0,L, s) = {(q0, ℓ)|q0 ∈ M0, ℓ ∈ argmax
ℓ∈L

min
q∈M

∫
Ω
ℓ(s|ω)dq}). (6)

The axioms that characterize (6) are strengthenings of Total Information
Agreement and Default to Certainty. They basically require the agent to only
consider information structures she believes are the most likely to generate the
observed signal. We now show how this can be identified in our framework if the
agent satisfies Reduction.

Fix a signal s∗ ∈ S, two constant acts x, y such that x ≻ y. Consider again an
extension of ⪰0 to pairs of signal acts and information structures (F, ℓ). The idea
is that conditional on each state ω, ℓ(·|ω) describes the probability law on S.

Suppose we ask the agent to choose between (F, ℓ1) and (F, ℓ2) where

F (ω, s) =

{
x s = s∗

y s ̸= s∗.
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Figure 2 (a) and Figure 2 (b) illustrate (F, ℓ1) and (F, ℓ2) respectively. Then, the
agent will choose (F, ℓ2) over (F, ℓ1) if and only if she thinks ℓ2 is more likely to
generate s∗ than ℓ1. Further, by an identical argument to the one in the motivation
of Total Information Agreement, (F, ℓi) ∼0 xℓi,s

∗
y for i = 1, 2. Hence, for a given

x, y, we can identify which information structures the agent believes are more
likely to generate a given signal.

y

ℓ1 (s∗|ωn)

1− ℓ1 (s∗|ωn)

x
y

ℓ1 (s∗|ω1)

1− ℓ1 (s∗|ω1)

x

ωn

ω1

.

.

.

(a) Signal Act 1

y

ℓ2 (s∗|ωn)

1− ℓ2 (s∗|ωn)

x
y

ℓ2 (s∗|ω1)

1− ℓ2 (s∗|ω1)

x

ωn

ω1

.

.

.

(b) Signal Act 2

Figure 2

To state the next axiom we need some notation. Let ≥s
x,y be the binary relation

over L such that l ≥s
x,y l′ if xℓ,sy ⪰0 x

l′,s
y and let

argmax(L,≥s
x,y) = {ℓ ∈ L|l ≥s

x,y l′ for all ℓ′ ∈ L}.

Likelihood Information Agreement For any x, y, z, f ∈ F such that x ≻0 y
and s ∈ S,

f ℓ,s
z ⪰0 z for all ℓ ∈ argmax(L,≥s

x,y) =⇒ f ⪰s z.

Likelihood Information Agreement (LIA) guarantees that the set of posteriors
is a subset of the set of the convex hull of the set of posteriors generated by point-
wise Bayesian Updating of (6). The following axiom strengthens set contention to
equality.

Likelihood Default to Certainty For any x, y, z, f ∈ F such that x ≻0 y and
s ∈ S,

z ⪰0 f
ℓ,s
z for some ℓ ∈ argmax(L,≥s

x,y) =⇒ x ⪰s f.

Its interpretation is analogous to the one of Default to Certainty.
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Theorem 4.1. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satis-
fies MEU Utility and L an imprecise information structure. Then, (⪰0, (⪰s)s∈S)
satisfies Likelihood Information Agreement if and only if

Ms ⊆ ch(BU(ϕMRLU (M0,L, s), s)) (7)

for all s ∈ S. Moreover, the set contention in (7) is replaced with equality if and
only if (⪰0, (⪰s)s∈S) also satisfies Likelihood Default to Certainty.

We conclude this section by noting that for the case in which the agent holds
a single prior q0, Theorem 4.1 delivers a characterization of a version of the maxi-
mum likelihood updating rule. Specifically, the agent will only consider the infor-
mation structures ℓ ∈ L such that

ℓ ∈ argmax
ℓ′∈L

∫
Ω
ℓ(s|ω)dq0.

Hence, our result can be viewed as a counterpart of Gilboa and Schmeidler (1993)
result for precise information under ambiguity.

4.2 Behavioral GBU

One of the more robust findings in the empirical literature on updating is that
people tend to only update information that is consistent with their prior beliefs.
This phenomenon is called confirmatory bias (Rabin and Schrag (1999)). In this
section, we argue our model is well-suited to accommodate it. Because confirma-
tory bias and state space uncertainty seem like separate phenomena, we focus on
the case in which M0 = {q0}.

When the agent’s ex-ante prior beliefs can be described by a single probability
distribution we can recover the agent’s probabilistic ranking among the states of
the world. Indeed, for any x, y ∈ F such that x ≻0 y, one can recover the ranking
by observing the agent’s preferences over the following acts:

fωi(ω) =

{
x ω = ωi

y ω ̸= ωi

.

Let ⪰∗ be the binary relation over Ω induced by the ranking.
Intuitively, we can use ⪰∗ to define whether an information structure ℓ provides

information consistent with the agents prior: For a given signal s, ℓ(s|ω) is the
likelihood it was generated by state ω. Hence, the information will confirm the
agent’s ex-ante beliefs if the order among the ℓ(s|ω)’s is the same as her ranking
among states. Formally, we say that ℓ(·|s) s-confirms ⪰∗ if

ω ⪰∗ ω′ ⇐⇒ ℓ(s|ω) ≥ ℓ(s|ω′).

13



An agent who suffers from confirmatory bias would only consider information
that confirms her beliefs. The following axiom captures this.

Confirmatory Information Agreement For any f, x ∈ F ,

f ℓ,s
x ⪰0 x for all ℓ ∈ L that s-confirms ⪰∗ =⇒ f ⪰s x.

Confirmatory Information Agreement (CIA) guarantees that the set of poste-
riors is a subset of the set of the convex hull of the set of posteriors generated by
point-wise Bayesian Updating of the set of information structures that confirm
the agent’s beliefs (whenever it is non-empty). The following axiom strengthens
set contention to equality.

Confirmatory Default to Certainty For any f, x ∈ F such that x ≻0 y and
s ∈ S,

x ⪰0 f
ℓ,s
x ℓ ∈ L that s-confirms ⪰∗ =⇒ x ⪰s f.

Theorem 4.2. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satisfies
MEU Utility and L an imprecise information structure. Assume M0 is a singleton
and for each s ∈ S there exists some ℓ ∈ L that confirms ⪰∗. Then, (⪰0, (⪰s)s∈S)
satisfies Confirmatory Information Agreement if and only if

Ms ⊆ ch(BU(M0, {ℓ ∈ L|ℓ s-confirms ⪰∗}, s)) (8)

for all s ∈ S. Moreover, the set contention in (8) is replaced with equality if and
only if (⪰0, (⪰s)s∈S) also satisfies Confirmatory Default to Certainty.

5 Subjective Information Structures

In some situations, a signal may not come with a reliable description of its infor-
mational content. Therefore its interpretation is purely subjective, and can only
be inferred from observable behaviors. In this section, we ask when the ex-ante
and ex-post preferences are consistent with the existence of a subjective set of in-
formation structures. Unlike the previous analyses, here we assume no exogenous
imprecise information structure.

Specifically, we are interested in the behavioral implications of a subjective
imprecise information structure. Given a family of MEU preferences over acts
(⪰0, (⪰s)s∈S), when does there exist a set of information structures L such that
Ms is exactly the set of posterior beliefs given M0 and L under some prespecified
updating rule? We provide answers to this question for two special cases under
the Full Bayesian updating rule. As the answer for either case already appears
complicated, the general case is challenging and left for future research.

14



In the analyses later, we will also use “Max-Max” preferences. For any MEU
preference ⪰ represented by (M, u), let ⪰̄ denote the preference over acts satis-
fying

f⪰̄g ⇔ max
q∈M

∑
ω∈Ω

q(ω)u(f(ω)) ≥ max
q∈M

∑
ω∈Ω

q(ω)u(g(ω)).

These two preferences are behaviorally related as follows. For any acts f, g, and
constant act x satisfying x = αf + (1− α)g for some α ∈ (0, 1), we have

f⪰̄x if and only if x ⪰ g.

Thus ⪰̄ can be understood as a conjugate of ⪰. Note that f ⪰ x implies f⪰̄x,
but the converse does not hold in general.

5.1 No ex-ante state ambiguity

First, we consider the situation where the state space is ex-ante unambiguous,
meaning that the agent possesses a single prior belief, and thus the ex-ante pref-
erence ⪰0 follows the subjective-expected-utility (SEU) theory.

If the signal is also unambiguous, meaning that the agent perceives a single
information structure ℓ as the signal distribution, the ex-post preference ⪰s is
also a SEU. Then the prior belief q must lie in the convex hull of the posterior
beliefs {ps : s ∈ S}. This implies a classic dominance property: For any act f and
constant act x, if f ⪰s x for all s ∈ S, then f ⪰0 x. In words, if f is preferred to
x under any signal realization, then f is also preferred to x ex ante. Conversely, if
the ex-ante and ex-post preferences are all SEUs, this dominance property is also
sufficient for the existence of an information structure that relates the ex-ante and
ex-post beliefs by Bayes’ rule.

However, if the ex-post preferences are MEUs, the aforementioned dominance
property is too weak to establish a set L of likelihood functions such that the ex-
post set of beliefs Ms is the full-Bayesian updating of the single prior belief and L.
The main result in this subsection shows that the following stronger dominance
property will work.

P1. Take any act f and any constant act x. If f⪰̄sx for some s ∈ S and f ⪰s′ x
for all s′ ̸= s, then f ⪰0 x. If, in addition, f≻̄sx or f ≻s′ x for some s′ ̸= s, then
f ≻0 x.

To see P1 is a stronger property, note that f ⪰ x implies f⪰̄x, but the converse
fails. The following proposition shows that P1 characterizes the existence of a
subjective imprecise information structure L under full-Bayesian updating. It is
crucial that the ex-ante preference follows SEU.
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Proposition 5.1. Suppose that the ex-ante preference ⪰0 is a SEU represented by
(q̄, u), and the ex-post preferences ⪰1, · · · ,⪰S are MEUs represented by (M1, u),
..., (MS , u) respectively. The following two statements are equivalent:

1. There exists a set L of information structures such that Ms = BU(q̄,L, s)
for all s.

2. (⪰0, {⪰s}s∈S) satisfies P1.

Below we explain the necessity of P1. Under MEU, f⪰̄sx requires the existence
of a belief ps in Ms under which the expected utility of f is no less than the utility
of x. Under full Bayesian updating, ps comes from Bayesian updating of prior q̄
and some information structure ℓ ∈ L. Moreover, for any other signal s′, the
Bayesian updating of q̄ and ℓ, say ps

′
, also lies in Ms′ . Thus, f ⪰s′ x implies that

the expected utility of f under ps
′
is no less than the utility of x. Since the prior

q̄ must lie in the convex hull of the posteriors {ps : s ∈ S}, we obtain f ⪰0 x.

5.2 No signal ambiguity

Now we allow the ex-ante preference to be MEU, but focus on the characterization
of the existence of a single subjective information structure, meaning that the
signal is perceived unambiguous.

For any outcomes x, y, z ∈ X and any states ω, ω′, let [x, ω|y, ω′|z] denote the
act that yields x in state ω, y in state ω′, and z in any other state. Consider the
following two properties on the preferences.

P2. Take any act f and fix any state ωi. Take y0j , y
s
j ∈ X for each s ∈ S and

j ∈ {1, · · · , |Ω|} \ {i} such that f(ωi) =
∑

j ̸=i

ysj
|Ω|−1 =

∑
j ̸=i

y0j
|Ω|−1 for all s ∈ S.

Suppose that for all s ∈ S and all j ̸= i,{
x ⪰s [f(ωj), ωj |ysj , ωi|x];
x⪰̄s[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰s x.

Then there exists j ̸= i such that{
x ⪰0 [f(ωj), ωj |ysj , ωi|x];
x⪰̄0[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰0 x.

P3. Take any acts f, g and fix any state ωi. Suppose that f(ωi) = g(ωi). Take
any yj ∈ X for each j ∈ {1, · · · , |Ω|} \ {i}. Then the following two statements are
true:
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(i) For any x ∈ X, if for all j ̸= i,{
[yj , ωj |g(ωj), ωi|x]⪰̄sx;

[yj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yj
and

{
x ⪰0 [yj , ωj |f(ωj), ωi|x];
x⪰̄0[yj , ωj |f(ωj), ωi|x] if yj ⪰0 x

then x ⪰0 g implies x ⪰s f .

(ii) For any x ∈ X, if for all j ̸= i,{
x ⪰s [yj , ωj |g(ωj), ωi|x];
x⪰̄s[yj , ωj |g(ωj), ωi|x] if yj ⪰s x

and

{
[yj , ωj |f(ωj), ωi|x]⪰̄0x;

[yj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yj

then g ⪰0 x implies f ⪰s x.

The existence of a single information structure under MEU preferences and
full-Bayesian updating is characterized by P2 and P3, as shown in the following
proposition.

Proposition 5.2. Suppose that the ex-ante preference ⪰0 is a MEU represented
by (M0, u), and the ex-post preferences ⪰1, · · · ,⪰S are MEUs represented by
(M1, u), ..., (MS , u) respectively. Suppose that every belief in M0 or in Ms

has full support. The following statements are equivalent:

1. There exists an information structure ℓ : S × Ω → (0, 1) such that for all
s ∈ S, Ms = BU(M0, ℓ, s).

2. (⪰0, {⪰s}s∈S) satisfies P2 and P3.

To understand P2, consider utility acts (i.e. X ⊂ R and u(x) = x) for simplic-
ity. Suppose that |Ω| = 3. Thus an act is an element of R3. Suppose that, for
instance, we have for all s ∈ S,

x ⪰s (x− a1, x, x+ bs1) and x ⪰s (x, x− a2, x+ bs2),

where a1, a2 > 0 and bs1 + bs2 = k for all s. We can interpret these rankings as
follows. Given a constant act x, we lower its payoff in ω1 by a1, and we increase
its payoff in ω3 by bs1 as compensation. However, the compensation is not large
enough to fully compensate for the loss in ω1. Thus the first ranking follows.
Similarly, if we lower the payoff in ω2 by a2, then we increase the payoff in ω3 by
bs2 as compensation. The second-ranking suggests that this compensation is not
large enough. As bs1 + bs2 = k for all s, we can say that k is too small as a total
stake for compensation for any signal realization. Then P2 says that k is also too
small from the ex-ante perspective. We can never split k into b01 and b02 such that

(x− a1, x, x+ b01) ⪰0 x and (x, x− a2, x+ b02) ⪰0 x.
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P2 captures the following “convex hull” implication of a single subjective infor-
mation structure. Pick a state ωi. As we show in the proof, if Ms = BU(M0, ℓ, s)
for all s ∈ S, then for all j ̸= i,∑

s

ℓ(s|ωi) max
p∈Ms

p(ωj)

p(ωi)
=

∑
s

ℓ(s|ωi)×
ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)
= max

q∈M0

q(ωj)

q(ωi)
.

This means that the vector (maxq∈M0

q(ωj)
q(ωi)

)j ̸=i lies in the convex hull of the set

{(maxp∈Ms

p(ωj)
p(ωi)

)j ̸=i}s∈S . An implication is that for all reals k and (rj)j ̸=i,∑
j ̸=i

rj max
p∈Ms

p(ωj)

p(ωi)
≥ k ∀ s ∈ S

 ⇒
∑
j ̸=i

rj × max
q∈M0

q(ωj)

q(ωi)
≥ k.

P2 follows from this dominance property. Specifically, the necessity of P2 follows
from that for any MEU preference ⪰ represented by (M, u),{

x ⪰ [f(ωj), ωj |yj , ωi|x];
x⪰̄[f(ωj), ωj |yj , ωi|x] if f(ωj) ⪰ x

if and only if

[u(x)− u(f(ωj))]max
p∈M

p(ωj)

p(ωi)
≥ u(yj)− u(x).

So P2 allows as to find an information structure l such that

max
p∈Ms

p(ωj)

p(ωi)
=

ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)

for all i, j and all s ∈ S. Yet, this is not enough to establish Ms = BU(M0, ℓ, s).

By Proposition 3.1, we need that f ℓ,s
x ⪰0 x ⇔ f ⪰s x. This implication is captured

by P3.
To illustrate P3, again we consider utility acts for simplicity and assume |Ω| =

3. Consider acts f = (f1, f2, f3) and g = (g1, g2, g3) where f3 = g3. Suppose that

(a1, x, g1) ⪰s x and (x, a2, g2) ⪰s x

where x > a1 and x > a2. The former suggests that g1, under signal s, is good
enough in the following sense: if we lower the payoff of a constant act x in ω2 to
a2 and replace its payoff in ω3 by g1 as a compensation, we improve it. The latter
ranking also suggests that g2 is good enough under signal realization s. Suppose
also that

x ⪰0 (a1, x, f1) and x ⪰0 (x, a2, f2).

Again, they suggest that f1 and f2 are not good enough from ex-ante perspective.
Now P3 requires that we cannot have g worse than x ex ante but f better than x
ex post.
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6 Concluding Remarks

In this paper, we have provided a theory of updating under objective imprecise
information that generalizes FBU and MLU. Although both of these rules are
widely popular, we argue that there is no conceptual reason to adopt either. To
do so we draw a parallel with the 3 color Ellsberg paradox.

In the 3 colors-Ellsberg paradox provides an example of intuitive behavior that
cannot be rationalized if one assumes the agent has a single probabilistic belief.
However, these choices can be rationalized if one assumes the agent holds multiple
probabilistic beliefs. Gajdos et al. (2008) formalizes the intuition that there is no
reason for the agent to consider all the objectively possible probabilistic beliefs
(priors). They argue that the beliefs that the agent actually considers are part
of her subjective view of the situation and represent the agent’s attitude towards
the information provided. The same intuition applies to our setting, there is no
reason for the agent to consider all objectively possible information structures.

Allowing for different attitudes towards updating may be especially important
in applications. For instance Beauchêne et al. (2019) shows that under FBU a
sender can extract full surplus from a receiver in a Bayesian Persuasion style
game.6 This result relies heavily on the FBU assumption. Indeed, once we allow
for a more general updating rule as in our paper, such a result would not hold.
This opens the door for a richer theory of persuasion under ambiguity.

The framework we employed was inspired by the experimental literature. In-
deed, in the lab, one at most can observe ex-ante and conditional on signal prefer-
ences. Further, it is standard for signals to be payoff irrelevant. It is our hope that
the “construction” of our axioms provides some guidance in how to test behavior
when information is imprecise.

We have shown that one can recover the set of information structures an agent
uses to update from observed behavior when one knows all the possible sources
of information. A natural question to ask is if this is feasible when the analyst
does not know the imprecise information structure. To be precise, Suppose (⪰0

, (⪰s)s∈S) admit a MEU representation and assume Ms = ch(BU(M0,L∗, s)). Is
it the case that we can recover L∗ from (⪰0, (⪰s)s∈S)? If so, to what degree is L∗

unique? We leave such questions for future research.
Finally, the analysis in this paper has been mostly normative. Indeed, Total

Information Agreement has been presented as an appealing property that delivers
a generalization of Bayesian Updating. Therefore, it can be viewed as a test for
any theory of updating that challenges Bayesianism in the context of the MEU
model. Specifically, any updating rule that violates it must then be motivated by
an example in which such an axiom is not reasonable. We view this as a separate

6An equally striking result holds in a cheap talk game with FBU. See Kellner and Le Quement
(2018).
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contribution of the paper as it can help guide future research.

Appendix A Proofs

The necessity of the axioms is obvious in each of our representation theorems.
Therefore, we only prove sufficiency.

Throughout, it is assumed that ⪰s is represented by (u,Ms) for all s ∈ S∪{0}.
Finally, each proof of sufficiency makes use of the following lemma.

Lemma A.1. Assume ⪰ and ⪰′ admit MEU representations (u,M), (u,M′)
respectively such that M ̸⊆ M′. Then there exists an act f and a constant act x
such that f ∼ x and f ≻′ x.

The proof follows from the uniqueness result in Gilboa and Schmeidler (1989).

A.1 Proof of Theorem 3.1

Let (Ms)s∈S∪{0} be the sets of probability measures described by MEU Utility.
Suppose (⪰s)s∈S∪{0} satisfies Total Information Agreement (TIA) and assume by
way of contradiction that Ms ̸⊆ ch(BU(M0,L, s)) for some s ∈ S.

By Lemma A.1, there exists an act f and a constant act x such that

u(x) <

∫
Ω
u(f)dBU(q′, ℓ, s) for all (q′, ℓ) ∈ M0 × L.

Fix (q, ℓ) ∈ M0 × L, then

u(x) <

∫
Ω
u(f)dBU(q, ℓ, s)(∫

Ω
ℓ(s|ω)dq

)
u(x) <

∫
Ω
u(f)ℓ(s|ω)dq(∫

Ω
ℓ(s|ω)dq

)
u(x) +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x) <

∫
Ω
u(f)ℓ(s|ω)dq +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x)

u(x) <

∫
Ω
u(ℓ(s|ω)f(ω) + (1− ℓ(s|ω))x)dq.

Thus, u(x) <
∫
Ω u(ℓ(s|ω)f(ω) + (1 − ℓ(s|ω)x))dq for all q ∈ M0 and ℓ ∈ L.

Therefore, u(x) < min
q∈M0

∫
Ω u(ℓ(s|ω)f(ω) + (1 − ℓ(s|ω)x))dq for all ℓ ∈ L. Hence,

f ℓ,s
x ≻0 x for all ℓ ∈ L and x ⪰s f , a contradiction of TIA.
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A.2 Proof of Proposition 3.1

Given Theorem 3.1, we only need to show that if (⪰, (⪰s)s∈S) also satisfies Default
to Certainty (DTC), then ch(BU(M0,L, s)) ⊆ Ms.

Fix s ∈ S and assume by way of contradiction there exists p∗ ∈ ch(BU(M0,L, s))
such that p∗ ̸∈ Ms. By Lemma A.1, there exists f and x such that

∫
Ω u(f)p∗ <

min
q′∈Ms

∫
Ω u(f)dq′ = u(x).

Since p∗ ∈ ch(BU(M0,L, s)), then there exist (q1, ℓ1), ..., (qn, ℓn) ∈ M0 × L
such that p∗ =

∑
i αiBU(qi, ℓi, s) and∫

Ω
u(f)p∗ =

∑
i

αi

∫
Ω
u(f)dBU(qi, ℓi, s).

Hence, there exists i such that
∫
Ω u(f)dBU(qi, ℓi, s) ≤

∫
Ω u(f)dp∗. Let q = qi and

ℓ = ℓi. Then, ∫
Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
u(f)ℓ(s|ω)dq +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x) < u(x)

(∫
Ω
ℓ(s|ω)dq

)
+

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x)∫

Ω
u(f(ω)ℓ(s|ω) + (1− ℓ(s|ω))x)dq < u(x).

Hence, min
q∈M0

∫
Ω u(f(ω)ℓ(s|ω) + (1 − ℓ(s|ω))x)dq < u(x). This implies that there

exists ℓ ∈ L such that x ≻0 f
ℓ,s
x . Thus, by DTC, x ≻s f , a contradiction.

A.3 Proof of Proposition 3.2

Assume by way of contradiction there there exists ℓ ∈ L, s, s′ ∈ S and q′0 ∈ M0

such that BU(q0, ℓ, s) ̸∈ Ms for all q0 and BU(q′0, ℓ, s
′) ∈ E(Ms′). The fact that

BU(q′0, ℓ, s
′) ∈ E(Ms′) implies there exists an act g such that

min
q∈Ms′

∫
Ω
u(g)dq =

∫
Ω
u(g)dBU(q′0, ℓ, s

′) <

∫
Ω
u(g)dq for all q ∈ Ms′\{BU(q′0, ℓ, s

′)}.

Let y be the constant act such that u(y) =
∫
Ω u(g)dBU(q′0, ℓ, s

′). Define Uℓ,s(f) =
minq∈BU(M0,ℓ,s)

∫
Ω f(f)dq. Then, by Lemma A.1 there exists f, x such that u(x) =

Uℓ,s(f) > minq∈Ms

∫
Ω u(f)dq. By an identical argument to the one in Theorem

3.1, we can show that x ∼0 f ℓ,s
x , x ≻s f , y ∼0 gℓ,s

′
y and y ∼s′ g. Hence, by

Consistency Across Signals, there exists ℓ′ such that y ∼0 g
ℓ′,s′
y , an imposibility.
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A.4 Proof of Theorem 4.1

Suppose (⪰0, (⪰s)s∈S) satisfies Likelihood Information Agreement (LIA) and as-
sume by way of contradiction that

Ms ̸⊆ ch({BU(q, ℓ, s)|q ∈ M0, ℓ ∈ argmax
ℓ∈L

max
q∈M0

∫
Ω
ℓ(s|ω)dq})

for some s ∈ S.
Let L∗∗

s = argmax
ℓ∈L

min
q∈M0

∫
Ω ℓ(s|ω)dq. By Lemma A.1, there exists f and x such

that

u(x) = min
q∈ch(BU(M0,L∗∗

s ,s))

∫
Ω
u(f)dq ≤ min

(q,ℓ)∈M0×L∗∗
s

∫
Ω
u(f)dBU(q, ℓ, s)

Hence, for all q ∈ M0 and ℓ ∈ L∗∗
s

u(x) <

∫
Ω
u(f)dBU(q, ℓ, s)

u(x) <

∫
Ω
u(f)ℓ(s|ω)dq + u(p)(1−

∫
Ω
ℓ(s|ω)dq).

Thus,

u(x) < min
q∈M0

∫
Ω
u(f)ℓ(s|ω)dq + u(x)(1−

∫
Ω
ℓ(s|ω)dq).

If we can show that ℓ ∈ argmax(L,≥s
x,y) implies ℓ ∈ L∗∗

s for any x, y such that
u(x) > u(y), we will have a contradiction of LIA. To see that ℓ ∈ max(L,≥s

x,y)
implies ℓ ∈ L∗∗

s note that ℓ ≥s
x,y ℓ′ if and only if

min
q∈M0

[u(x)

∫
Ω
ℓ(s|ω)dq + u(y)(1−

∫
Ω
ℓ(s|ω)dq)] ≥ min

q∈M0

[u(x)

∫
Ω
ℓ′(s|ω)dq + u(y)(1−

∫
Ω
ℓ′(s|ω)dq)]

which holds if and only if

min
q∈M0

∫
Ω
ℓ(s|ω)dq ≥ min

q∈M0

∫
Ω
ℓ′(s|ω)dq.

Hence, ℓ ∈ max(L,≥s
x,y) implies ℓ ∈ argmax

ℓ∈L
min
q∈M0

∫
Ω ℓ(s|ω)dq = L∗∗

s .

Next, we prove that Likelihood Default to Certainty (LDC) implies equality
of the sets described in the Theorem.

Let ch({BU(q, ℓ, s)|ℓ ∈ argmax
ℓ∈L

min
q∈M0

∫
Ω ℓ(s|ω)dq and q ∈ M0}) ≡ MMM

s . We

only need to show that MMM
s ⊆ Ms.
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Assume by way of contradiction that MMM
s ̸⊆ Ms. Then, by Lemma A.1,

there exists f and x such that

min
q∈MMM

s

∫
Ω
u(f)dq < min

q∈Ms

∫
Ω
u(f)dq = u(x).

Fix q′ ∈ arg min
q∈MMM

s

∫
Ω u(f)dq. Then, by an analogous argument as in the proof

of Proposition 3.1, there exists (q, ℓ) ∈ M× L∗∗ such that
∫
Ω u(f)dBU(q, ℓ, s) ≤∫

Ω u(f)dq′. Hence, ∫
Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x)

min
q∈M

∫
Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x).

Thus, x ≻0 f ℓi,s
x . Moreover, ℓ ∈ argmax

ℓ∈L
min
q∈M0

∫
Ω ℓ(s|ω)dq, thus, ℓ ≥s

x,y l′ for all

ℓ′ ∈ L and x, y sych that u(x) > u(y). By LDC, x ≻s f , a contradiction.

A.5 Proof of Theorem 4.2

Suppose (⪰s)s∈S∪{0} the satisfies Confirmatory Information agreement (CIA) and
assume by way of contradiction Ms ̸⊆ ch(BU(M0, {ℓ ∈ L|ℓ confirms ⪰∗}, s))).
Then, by Lemma A.1, there exists f and x such that

u(x) = min
q∈Ms

∫
Ω
u(f)dq <

∫
Ω
u(f)dBU(q, ℓ, s) for all (q, ℓ) ∈ M0 × {ℓ ∈ L|ℓ confirms ⪰∗}.

An identical argument as in Theorem 3.1 shows that f ℓ,s
x ≻0 x for all ℓ ∈ {ℓ ∈

L|ℓ confirms ⪰∗}. This contradicts CIA as x ∼s f .
Next, we show that MCM

s ≡ ch(BU(M0, {ℓ ∈ L|ℓ confirms ⪰∗}, s))) ⊆ Ms

under Confirmatory Default to Certainty (CDC). Assume by way of contradiction
that this is not the case. Then, by Lemma A.1, there exists f, x such that

min
p∈MCM

s

∫
Ω
u(f)dp < min

q∈Ms

∫
Ω
u(f)dp = u(x).

Fix p ∈ argminp∈MCM
s

. Then an analogous argument as in the proof of Proposi-
tion 3.1, establishes that there exists (q, ℓ) ∈ M0 × {ℓ ∈ L|ℓ confirms ⪰∗} such
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that
∫
Ω u(f)dBU(q, ℓ, s) ≤

∫
Ω u(f)dp. Hence,∫

Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x)

min
q∈M0

∫
Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x).

Thus, x ≻0 f ℓ,s
x . Moreover, ℓ ∈ {ℓ ∈ L|ℓ confirms ⪰∗}. Therefore, CDC, x ≻s f ,

a contradiction.

A.6 Proof of Proposition 5.1

We first prove the necessity of statement 1. Take any s ∈ S. Suppose that f⪰̄sx
and f ⪰s′ x for all s′ ̸= s. Since f⪰̄sx, there exists p

s ∈ Ms such that ps ·(u◦f) ≥
u(x). Since Ms = BU(q̄,L, s), there exists ℓ ∈ L such that ps = BU(q̄, ℓ, s). Let
ps

′
= BU(q̄, ℓ, s′) for all s′ ̸= s. Since Ms′ = BU(q̄,L, s′), ps′ ∈ Ms′ . Now for all

s′ ̸= s, because f ⪰s′ x, we have p
s′ · (u ◦ f) ≥ u(x). Since q̄ lies in the convex hull

of ps, ps
′
, ..., we have q̄ · (u ◦ f) ≥ u(x). In addition, if f≻̄sx or f ≻s′ x for some

s′ ̸= s, we obtain q̄ · (u ◦ f) > u(x). This proves the necessity of statement 1.
Next, we prove the sufficiency of statement 1. The following claim will be

useful.

Claim 1. Suppose that A1, · · · , AI are closed and convex sets in RN . Then

ri(ch(∪iAi)) ⊂

{
v ∈ RN : ∃wi ∈ Ai, λi > 0 ∀ i s.t.

∑
i

λiwi = v,
∑
i

λi = 1

}
.

Proof. Suppose v ∈ ri(ch(∪iAi)). Take any v′ =
∑

i λiwi with wi ∈ Ai, λi > 0,
and

∑
i λi = 1. Since v ∈ ri(ch(∪iAi)), there exists v′′ ∈ ch(∪iAi) and k ∈ (0, 1)

such that v = kv′ + (1− k)v′′. Since Ai is convex for all i, v′′ can be expressed as
v′′ =

∑
i λ

′
iw

′
i with w′

i ∈ Ai, λ
′
i ≥ 0, and

∑
i λ

′
i = 1. Thus,

v = kv′ + (1− k)v′′ =
∑
i

(kλi + (1− k)λ′
i)
kλiwi + (1− k)λ′

iw
′
i

kλi + (1− k)λ′
i

.

Since λi > 0, kλi + (1 − k)λ′
i > 0. Since Ai is convex,

kλiwi+(1−k)λ′
iw

′
i

kλi+(1−k)λ′
i

∈ Ai.

Therefore v belongs to the set on the right-hand side.

We will also use the following separating hyperplane theorem: Two non-empty
convex sets A and B can be separated properly if and only if their relative interiors
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do not intersect. Here, proper separation means that there is a hyperplane H such
that A and B lie in opposite closed half-spaces with respect to H, and at least
one of the sets A,B is not contained in H.

Suppose that statement 2 fails. There exists a signal realization s and qs ∈
Ms such that there exist no qs

′ ∈ Ms′ for each s′ ̸= s such that q̄ equals a
convex combination of qs, qs

′
, · · · . We want to establish a violation of statement

1. Consider two cases: qs = q̄ and qs ̸= q̄.
Assume qs = q̄. By the claim, q̄ /∈ ri(ch(∪s′ ̸=sMs′)). By the aforementioned

separating hyperplane theorem, there exist a vector (vω)ω∈Ω ≡ v and a real r
such that q̄ · v = r ≤ q · v for all q ∈ ch(∪s′ ̸=sMs′) where the inequality holds
strictly for some q. Note that we are free to take a positive linear transformation
on v and r, which means that we can choose v and r such that r and vω all lie
in the range of u. Therefore, there exist an act f and a constant act x such that
q̄ · (u ◦ f) = u(x) ≤ q · (u ◦ f) for all q ∈ ch(∪s′ ̸=sMs′) where the inequality holds
strictly for some q. Now we have f ⪰s′ x for all s′ ̸= s and f ≻s′ x for some s′ ̸= s.
Since q̄ · (u ◦ f) = u(x), f ∼0 x. Since qs = q̄ ∈ Ms by assumption, f⪰̄x. Hence
statement 1 fails.

Assume instead qs ̸= q̄. Consider the convex set

{q ∈ ∆(S) : ∃λ > 1 s.t. q − qs = λ(q̄ − qs)} ≡ C.

By the claim, C is disjoint with ri(ch(∪s′ ̸=sMs′)). By a separating hyperplane
theorem, there exist an act f and an constant act x such that q̄ · (u ◦ f) = u(x) >
q · (u ◦ f) for all q ∈ C, and q̄ · (u ◦ f) = u(x) ≤ q · (u ◦ f) for all q ∈ ch(∪s′ ̸=sMs′).
It follows that f ∼0 x and f ⪰s′ x for all s′ ̸= s. Notice that C and {qs} are also
separated by f and x. So qs · (u ◦ f) > u(x), implying f≻̄sx. Hence statement 1
fails.

A.7 Proof of Proposition 5.2

Take any MEU preference ⪰ represented by (M, u). Take any x, y, z ∈ X and
any distinct states ωi, ωj ∈ Ω. We have

x ⪰ [y, ωj |z, ωi|x]
⇔ ∃p ∈ M, u(x) ≥ p(ωj)u(y) + p(ωi)u(z) + [1− p(ωi)− p(ωj)]u(x)

⇔ ∃p ∈ M, [u(x)− u(y)]
p(ωj)

p(ωi)
≥ [u(z)− u(x)]

⇐ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

When u(x)− u(y) ≥ 0,

x ⪰ [y, ωj |z, ωi|x] ⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

25



Similarly, we have

x⪰̄[y, ωj |z, ωi|x]
⇔ ∀p ∈ M, u(x) ≥ p(ωj)u(y) + p(ωi)u(z) + [1− p(ωi)− p(ωj)]u(x)

⇔ ∀p ∈ M, [u(x)− u(y)]
p(ωj)

p(ωi)
≥ [u(z)− u(x)]

⇒ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

When u(x)− u(y) ≤ 0,

x⪰̄[y, ωj |z, ωi|x] ⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

Consequently,{
x ⪰ [y, ωj |z, ωi|x];
x⪰̄[y, ωj |z, ωi|x] if y ⪰ x

⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ u(z)− u(x),

and {
[y, ωj |z, ωi|x]⪰̄x;

[y, ωj |z, ωi|x] ⪰ x if x ⪰ y
⇔ [u(x)− u(y)]max

p∈M

p(ωj)

p(ωi)
≤ u(z)− u(x).

Now we prove the necessity of P2 and P3. Consider P2 first. For any belief
q ∈ ∆(Ω), if p ∈ ∆(Ω) is the Bayesian updating of q given signal s and likelihood
function ℓ, then for any states ωi, ωj ,

p(ωj)

p(ωi)
=

ℓ(s|ωj)

ℓ(s|ωi)
× q(ωj)

q(ωi)
.

Hence Ms = BU(M0, ℓ, s) implies

max
p∈Ms

p(ωj)

p(ωi)
=

ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)
.

Fixing any i, we have∑
s∈S

ℓ(s|ωi) max
p∈Ms

p(ωj)

p(ωi)
=

∑
s∈S

ℓ(s|ωi)×
ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)
= max

q∈M0

q(ωj)

q(ωi)

for any j ̸= i. Hence the vector
(
maxq∈M0

q(ωj)
q(ωi)

)
j ̸=i

∈ R|Ω|−1 is in the convex hull

of

{(
maxp∈Ms

p(ωj)
p(ωi)

)
j ̸=i

: s ∈ S
}
.
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For all s ∈ S and all j ̸= i, because{
x ⪰s [f(ωj), ωj |ysj , ωi|x];
x⪰̄s[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰s x

,

we have

[u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωi)
≥ u(ysj )− u(x).

Thus, for all s ∈ S,∑
j ̸=i

[u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωi)
≥

∑
j ̸=i

[u(ysj )− u(x)].

Because
∑

j ̸=i

ysj
|Ω|−1 =

∑
j ̸=i

y0j
|Ω|−1 , we have

∑
j ̸=i u(y

s
j ) =

∑
j ̸=i u(y

0
j ). Conse-

quently, ∑
j ̸=i

[u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωi)
≥

∑
j ̸=i

[u(y0j )− u(x)].

This implies that

∃j ̸= i, [u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωi)
≥ u(y0j )− u(x).

Therefore,

∃j ̸= i,

{
x ⪰0 [f(ωj), ωj |ysj , ωi|x];
x⪰̄0[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰0 x.

We have established P2.
Now we check P3. By Proposition 3.1, Ms = BU(M0, ℓ, s) implies that f ℓ,s

x ⪰0

x ⇔ f ⪰s x. Fix any i. Suppose that{
[yj , ωj |g(ωj), ωi|x]⪰̄sx;

[yj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yj
and

{
x ⪰0 [yj , ωj |f(ωj), ωi|x];
x⪰̄0[yj , ωj |f(ωj), ωi|x] if yj ⪰0 x

for all j ̸= i. Then

u(g(ωj))− u(x) ≥ [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωi)
= [u(x)− u(yj)]

ℓ(s|ωj)

ℓ(s|ωi)
max
q∈M0

q(ωj)

q(ωi)

≥ ℓ(s|ωj)

ℓ(s|ωi)
[u(f(ωj))− u(x)].

Hence

u(g(ωj)) ≥
ℓ(s|ωj)

ℓ(s|ωi)
u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
u(x) ∀ j ̸= i.
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Moreover, f(ωi) = g(ωi) by assumption. Thus, g state-by-state dominates the act(
ℓ(s|ωj)
ℓ(s|ωi)

f(ωj) +
[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x
)|Ω|

j=1
. Note that

ℓ(s|ωi)

(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

+ (1− ℓ(s|ωi))x = f ℓ,s
x .

Hence

x ⪰0 g ⇒ x ⪰0

(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

⇒ x ⪰0 f
ℓ,s
x ⇒ x ⪰s f.

Suppose instead{
x ⪰s [yj , ωj |g(ωj), ωi|x];
x⪰̄s[yj , ωj |g(ωj), ωi|x] if yj ⪰s x

and

{
[yj , ωj |f(ωj), ωi|x]⪰̄0x;

[yj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yj

for all j ̸= i. Then

u(g(ωj))− u(x) ≤ [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωi)
= [u(x)− u(yj)]

ℓ(s|ωj)

ℓ(s|ωi)
max
q∈M0

q(ωj)

q(ωi)

≤ ℓ(s|ωj)

ℓ(s|ωi)
[u(f(ωj))− u(x)].

Hence

u(g(ωj)) ≤
ℓ(s|ωj)

ℓ(s|ωi)
u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
u(x) ∀ j ̸= i.

Thus, the act
(
ℓ(s|ωj)
ℓ(s|ωi)

f(ωj) +
[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x
)|Ω|

j=1
state-by-state dominates g. We

have

g ⪰0 x ⇒
(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

⪰0 x ⇒ f ⪰s x.

We have established P3.
Now we prove the sufficiency of P2 and P3. Let |Ω| = N . For each j =

1, · · · , N − 1, let

ϕ0
j = max

q∈M0

q(ωj)

q(ωN )
and ϕs

j = max
p∈Ms

p(ωj)

p(ωN )
∀ s ∈ S.

Let ϕ0 = (ϕ0
j )

N−1
j=1 ∈ RN−1 and ϕs = (ϕs

j)
N−1
j=1 ∈ RN−1.

Claim that P2 implies that ϕ0 lies in the relative interior of the convex hull
of {ϕs : s ∈ S}. If not, then by a separating hyperplane theorem, there exists
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r ∈ RN−1 and k ∈ R such that (i) ϕs · r ≥ k for all s ∈ S, (ii) ϕs · r > k for some
s ∈ S, and (iii) ϕ0 · r ≤ k.

For any s ∈ S, take (ksj )
N−1
j=1 ∈ RN−1 such that (i) ϕs

jrj ≥ ksj for all j =

1, · · · , N − 1, and (ii)
∑N−1

j=1 ksj = k.

Take (k0j )
N−1
j=1 ∈ RN−1 such that (i) ϕ0

jrj ≤ k0j for all j = 1, · · · , N − 1, and (ii)∑N−1
j=1 k0j = k.
Fix x ∈ X. Consider any s ∈ S. Let f be an act such that u(x)− u(f(ωj)) =

rj for all j = 1, · · · , N − 1. Let ysj ∈ X satisfying u(ysj ) − u(x) = ksj for all
j = 1, · · · , N − 1. We have

∀ j ∈ {1, · · · , N − 1}, ϕs
jrj ≥ ksj

⇔∀ j ∈ {1, · · · , N − 1}, [u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωN )
≥ u(ysj )− u(x)

⇒∀ j ∈ {1, · · · , N − 1},

{
x ⪰s [f(ωj), ωj |ysj , ωN |x];
x⪰̄s[f(ωj), ωj |ysj , ωN |x] if f(ωj) ⪰s x.

Let y0j ∈ X satisfying u(y0j )− u(x) = k0j for all j = 1, · · · , N − 1. We have

∀ j ∈ {1, · · · , N − 1}, ϕ0
jrj ≤ k0j

⇔∀ j ∈ {1, · · · , N − 1}, [u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωN )
≤ u(y0j )− u(x)

⇒∀ j ∈ {1, · · · , N − 1},

{
[f(ωj), ωj |y0j , ωN |x]⪰̄0x;

[f(ωj), ωj |y0j , ωN |x] ⪰0 x if x ⪰0 f(ωj).

We have found a violation of P2. Therefore, we must have ϕ0 in the relative
interior of the convex hull of {ϕs : s ∈ S}.

Let (λs)s∈S be such that (i) λs ∈ (0, 1) for all s ∈ S, (ii)
∑

s∈S λs = 1, and
(iii) ϕ0 =

∑
s∈S λsϕ

s. Let ℓ(s|ωN ) = λs and ℓ(s|ωj) = λsϕ
s
j/ϕ

0
j for each s ∈ S and

each j ∈ {1, · · · , N − 1}. Observe that ℓ(s|ω) > 0 and
∑

s∈S ℓ(s|ω) = 1 for all
s ∈ S and ω ∈ Ω.

Now we verify that Ms = BU(M0, ℓ, s). By Proposition 3.1, it is equivalent

to show f ℓ,s
x ⪰0 x ⇔ f ⪰s x. Take any act f and constant act x. Let g be such

that

g(ω) :=
ℓ(s|ω)
ℓ(s|ωN )

f(ω) +

[
1− ℓ(s|ω)

ℓ(s|ωN )

]
x ∀ ω ∈ Ω.

For every j < N , pick yj such that

u(x) =
u(yj) +

1
ϕ0
j
u(f(ωj))

1 + 1
ϕ0
j

.
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Then we have
u(f(ωj))− u(x)

u(x)− u(yj)
= ϕj

0

and

ℓ(s|ωj)
ℓ(s|ωN )u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωN )

]
u(x)− u(x)

u(x)− u(yj)
=

ℓ(s|ωj)

ℓ(s|ωN )
× ϕ0

j = ϕs
j .

Thus,

u(f(ωj))− u(x) = [u(x)− u(yj)] max
q∈M0

q(ωj)

q(ωN )

and

u(g(ωj))− u(x) = [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωN )
.

Therefore, we have{
[yj , ωj |g(ωj), ωi|x]⪰̄sx;

[yj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yj
and

{
x ⪰0 [yj , ωj |f(ωj), ωi|x];
x⪰̄0[yj , ωj |f(ωj), ωi|x] if yj ⪰0 x

.

We also have{
x ⪰s [yj , ωj |g(ωj), ωi|x];
x⪰̄s[yj , ωj |g(ωj), ωi|x] if yj ⪰s x

and

{
[yj , ωj |f(ωj), ωi|x]⪰̄0x;

[yj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yj
.

By P3, we have g ⪰0 x if and only if f ⪰s x. Since ℓ(s|ωN )g+(1−ℓ(s|ωN ))x = f ℓ,s
x ,

we obtain f ℓ,s
x ⪰0 x ⇔ f ⪰s x. This completes the proof.
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