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Abstract

How coordination can be achieved in isolated, one-shot interactions without com-

munication and in the absence of focal points is a long-standing question in game

theory. We show that a cost-benefit approach to reasoning in strategic settings deliv-

ers sharp theoretical predictions that address this central question. In particular, our

model predicts that, for a large class of individual reasoning processes, coordination

in some canonical games is more likely to arise when players perceive heterogeneity in

their cognitive abilities, rather than homogeneity. In addition, and perhaps contrary

to common perception, it is not necessarily the case that being of higher cognitive

sophistication is beneficial to the agent: in some coordination games, the opposite is

true. We show that subjects’ behavior in a laboratory experiment is consistent with

the predictions of our model, and present evidence against alternative coordination

mechanisms. Overall, the empirical results strongly support our model.

Keywords: coordination – cognitive cost – sophistication – strategic reasoning –

value of reasoning

JEL Codes: C72; C91; C92; D80; D91.

1 Introduction

Individuals are often faced with situations in which they must attempt to coordinate

despite having very little information about their opponents, or on past behavior. In

such settings, whether coordination can be achieved at all has been an important open

question in game theory. One proposed mechanism uses a notion of focal points (Schelling

(1960)), which depends on the existence of a shared culture, since there must be a common
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view concerning which points are focal. In practice, however, and especially when agents

face novel strategic situations, the conditions for shared focality to exist may not be met.

In such cases, players can only resort to their introspective reasoning, and it is again

unclear how, or even whether, coordination can be achieved on a purely eductive basis

(cf. Binmore (1987, 1988)).1 This is the case especially when the coordination problem

is accompanied by an element of conflict, as exemplified by the canonical Battle of the

Sexes (BoS, see Figure 1): in such situations, overcoming the coordination problem also

requires a solution to the bargaining problem that is implicit in the equilibrium selection.

Although introspection might perhaps suggest that coordination should be possible

at least in some such situations, up to date there is no mechanism to explain whether or

under what conditions this might be achieved on purely eductive grounds. In this paper we

show that in fact, even in the absence of focal points, coordination would be the outcome

of a broad class of introspective reasoning processes, provided that two key conditions are

met: first, that players’ reasoning responds to incentives (cf. Alaoui and Penta (2016,

2022)); second, that they view each other as having different cognitive abilities, and that

they agree on their relative position. We also provide an experimental test of the theory

and find that subjects’ behavior is in line with the theoretical predictions.

As an example, consider two investors facing two new investment opportunities, on

start-up A or B. As is often the case in these situations, the two investors share a

coordination motive (their returns are higher if they invest in the same asset, or projects

only succeed if they attract both investors, etc.), but may also differ on which of the two

alternatives they prefer to coordinate on (sources of such disagreement may be asymmetric

information, heterogeneous beliefs, different portfolio holdings, etc.). Hence, the situation

is akin to the BoS in Fig. 1. The two investors may be experienced or not, having played

similar games in the past. This notwithstanding, if no communication is possible, and if

neither investment opportunity is focal at the moment of their decisions, it is not obvious

how they would manage to coordinate, if at all, or on which asset.

Now suppose that the investors have beliefs about each other’s ‘cognitive sophistica-

tion’, in the sense of how costly it is for them to reason about what the other might do.

Consider the following two situations. In case (i), the investors view each other to be of

similar sophistication; in case (ii), they (commonly) believe that one is of higher sophisti-

cation than the other. For instance, investors may have various degrees of experience of

similar strategic situations, and the view of sophistication may be based on that (then,

case (i) materializes if investors face someone they regard as having similar experience,

and case (ii) if they agree that one investor is much more experienced than the other).

In our model, these beliefs have clear implications on the likelihood of coordination,

1The term ‘eductive’ is introduced by Binmore (1987, 1988), to refer to the rationalistic, reasoning-
based approach to the foundations of solution concepts. The ‘eductive approach’ is contrasted with the
‘evolutive approach’, in which solution concepts are interpreted as the steady states of an underlying
learning or evolutionary process. This dichotomy has been extensively studied also from the viewpoint of
general equilibrium theory (see Guesnerie (2001, 2005) and references therein).
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Bach Stravinsky

Bach r, 50 0, 0

Stravinsky 0, 0 50, r

Figure 1: The ‘canonical’ BoS, with r > 50

and on where the agents will coordinate. Specifically, we predict higher rates of coordi-

nation in case (ii) than in case (i). Furthermore, the model predicts that, in this game,

players are more likely to coordinate on the equilibrium that is most favorable to the

player who is believed to be less sophisticated. Hence, being perceived to be more sophis-

ticated here is a disadvantage (as we discuss below, however, the opposite is true in other

games). Moreover, and in contrast with what one might expect, payoff transformations

that exacerbate the disagreement between players (while preserving the symmetry of the

game, e.g. increasing r in Figure 1), do not reduce coordination. In fact, it may favor its

occurrence. These results bring to light a separate dimension of coordination, compared

to the logic of coordination based on a shared culture and focality, which is typically

associated with some form of homogeneity among players (cf. Kets and Sandroni (2019,

2021), Kets, Kager, and Sandroni (2022) and Kets (2022)). In the absence of focal points,

it is agents’ perceived heterogeneity that facilitates coordination.

An important feature of our model is that these results follow from minimal assump-

tions on players’ form of reasoning, on their costs of reasoning, and on their beliefs about

each other. The key assumption concerning beliefs is that players agree on who has

relatively lower costs of reasoning. The results hold even if their beliefs about their oppo-

nents’ costs, or their very form of reasoning, are incorrect. As for the form of reasoning,

our model is essentially unrestricted, and it accommodates an equilibrium selection pro-

cedure, as perhaps someone trained in game theory would follow, or a level-k form of

reasoning (e.g., Nagel (1995), Crawford et al. (2013)), or entirely different ways of reason-

ing altogether. The only requirement is that it has to be responsive, in that thinking more

never loses the potential to change the player’s understanding of the situation. This is a

natural way of formalizing the inherent strategic uncertainty that arises in the absence of

focal points.2 Another important aspect of our model is that it builds on an existing ap-

proach that has both theoretical and extensive empirical support.3 Under this approach,

each player goes through a sequence of actions that they consider playing, until they stop,

2As we explain in footnote 6, in the model of Kets and Sandroni (2019, 2021) and Kets et al. (2022)
behavior is generated by a reasoning process that stabilizes. Hence our focus on responsive paths of
reasoning formally captures the sense in which our model is complementary to theirs.

3See the general axiomatic framework of Alaoui and Penta (2022) and the experimental evidence on
the endogenous level-k model in Alaoui and Penta (2016) and Alaoui, Janezic, and Penta (2020). This
approach has also been shown to be consistent with the experimental results in Goeree and Holt (2001) and
Esteban-Casanelles and Gonçalves (2020), with the experiments on response time and attention allocation
by Alós-Ferrer and Buckenmaier (2021), and others. For further discussions, see Alaoui and Penta (2022)
and Kagel and Penta (2021). See also Gill and Prowse (2022) on strategic complexity and the value of
thinking in a setting with response times, and for the importance of strategic sophistication and lifetime
outcomes see Fe, Gill, and Prowse (2022). Halevy, Hoelzemann, and Kneeland (2021) is also related in
that they design an experiment on strategic reasoning with more sophisticated opponents.
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when the incentives to reason no longer compensate the extra cognitive costs. Then, if

they think that the opponent has stopped earlier (e.g., because they have higher costs,

or lower incentives), they try to understand where they may have stopped, and choose

optimally given their beliefs. Hence, the action that a player chooses is a function of both

his own reasoning and his belief about that of his opponent.

Returning to the BoS game in Fig. 1, the logic underlying our main results is the

following. For any responsive form of reasoning, it is the case that if r is high enough,

then it is more likely that a player’s reasoning will stop at the action associated with

his favorite equilibrium (this is true in the BoS, but not in other games). Now consider

again the cases above, in which the players commonly believe that they are (i) of similar

cognitive sophistication or (ii) of different sophistication. In the first case, the players

play according to their own understanding of the situation, and may miscoordinate. In

fact, as their preference for their favorite equilibrium increases, they become more likely

to miscoordinate. In the second case, instead, the player perceived to be less sophisticated

plays according to his own understanding of the situation. But the more sophisticated

player believes he has gone deeper than his opponent, and hence does not play according

to where his own reasoning has stopped, but rather according to where he believes the

opponent has stopped. As a consequence, the players are more likely to coordinate, and

they will do so on the preferred equilibrium of the player perceived to be less sophisticated.

Note that at no point does the logic above rely on the players’ perceptions about one

another to be correct, provided that they commonly agree on their relative sophistica-

tion. Such a situation naturally arises, for instance, if the context is one in which the

role assumed by players is suggestive of a certain hierarchy (e.g., student and professor,

supervisor and subordinate, experienced and inexperienced, etc.). Under such beliefs, co-

ordination increases with conflict over which action to take, when they believe that their

sophistication is sufficiently different. The opposite is true under perceived homogeneity,

in that increasing conflict reduces coordination.

After introducing our model and the theoretical results, we present our experimental

test of the theory. First, subjects take a test of strategic sophistication, and are labeled

according to their scores. The higher and lowest scoring subjects play both against their

own and against the other label in the BoS game as in Figure 1, for both a low and a high

payoff r. In line with our predictions, we find that: (i) high label subjects concede more

against low than against high; (ii) this effect is more pronounced when r is higher; (iii)

low label subjects play in a similar manner against low as against high, for both payoffs;

(iv) there is more coordination when playing against the other label than against their

own; (v) the increased coordination occurs on the low label’s favorite equilibrium. These

results confirm our theoretical insights, including that in our setting it is heterogeneity

rather than homogeneity that leads to increased coordination.4

4This may seem to contrast with the literature on in-group vs out-group behavior, in which shared
culture can favor coordination via a common focal point. But since we focus on the occurrence of co-
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Bach Stravinsky

Bach 130, 130 230, r

Stravinsky r, 230 170, 170

Figure 2: A reverse Strategic Advantage Game, with r ∈ [190, 220].

Lastly, the argument provided above might seem suggestive of a form of first-mover

advantage for the low type, in the sense that it is as if the low type ‘commits’ to stop

reasoning first, and at his preferred action profile, while the high type then concedes. This

analogy, however, does not adequately capture the logic of our model. To illustrate the

difference, we introduce another coordination game in our experiment, which we refer to

as the reverse Strategic Advantage (RevSA) game (see Figure 2). In this game, our model

delivers the opposite prediction to the one obtained from the ‘first mover’ argument:

here, the high type has the strategic advantage. A second natural conjecture is that

the asymmetry in players’ labels itself helps achieve more coordination. With this view,

however, it would be difficult to explain how coordination favors the low label subjects in

the BoS, and the high label in the RevSA game, as predicted by our theory. We find that

the experimental results are neither in line with the view that low types obtain a first-

mover advantage nor with the notion of ‘label focality’. Lastly, we consider a Stag Hunt

game and an Asymmetric Matching Pennies game, which have been included to assess the

viability of some alternative mechanisms, such as risk dominance, that may guide subjects’

choices in these games and to check whether the basic logic of the model also holds in

non-coordination games (these are discussed in the Appendix). Put together, this set of

results shows the empirical relevance of the mechanism introduced by our model.

The rest of the paper is organized as follows: Section 2 sets out the theoretical model

and Section 3 contains the main theoretical results underlying the experiment. Section 4

presents the experimental design, the predictions, and results for the BoS game. Section

5 discusses competing explanations and tests thereof. Section 6 concludes.

2 Model

In this section we introduce a model of stepwise reasoning and deliberation, for general

two-player games with complete information, G = (Ai, ui)i=1,2, where Ai denotes the set

of actions of player i ∈ {1, 2}, with typical element ai, and ui : A1 × A2 → R denotes

players i’s payoff function. Our leading example in this section, which will also form the

center of our experimental analysis, will be the canonical Battle of the Sexes (BoS) game,

with payoffs parameterized by r ∈ R, r ≥ 1:

ordination absent a focal point, the role of shared culture is effectively turned off, while our mechanism
remains present provided that there is agreement on relative cognitive sophistication.
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W2 B2

B1 r, 1 0, 0

W1 0, 0 1, r

Figure 3: Battle of the Sexes Game

Player 1 prefers to coordinate on (B1,W2) while Player 2 prefers to coordinate on

(W1, B2) (the labeling of the actions denote, respectively, the ‘best’ and ‘worst’ equilibrium

action for that player). If none of the actions are salient in some way, then there are no

focal points, and game theory does not provide any guidance as to how coordination can

be achieved, if at all. Our focus here will be precisely on this case.

We assume that, in their deliberation, both players follow a stepwise process, and that

it is “as if” they perform a cost-benefit analysis in deciding whether or not to take one

additional step of reasoning. That is, it is as if at a given step, players trade off the

cognitive cost, which represents the difficulty of thinking they are currently experiencing,

with some notion of value of reasoning, which is related to the game’s payoffs. We take

the cost and benefit functions to be incremental and myopic. The approach is as-if in

the sense that we do not assume that this procedure is due to a deliberate, conscious

calculation. Rather, to the extent that players’ reasoning satisfies certain regularities,

from the viewpoint of an external analyst it can be modelled as such. This is shown

axiomatically in Alaoui and Penta (2022), for general stepwise reasoning processes.

2.1 The ‘Path of Reasoning’

Fix a two-player game with complete information, G = (Ai, ui)i=1,2. For each player i, con-

sidered in isolation, his stepwise reasoning process is described by a sequence {(ai,ki , ai,kj )}k∈N,
which we refer to as the path of reasoning, where for each k, ai,kj ∈ Aj represents i’s best

conjecture, at step k, about the behavior of an opponent that has taken at least that many

steps of reasoning. We let ai,ki ∈ BRi(a
i,k
j ), denote his best response to that conjecture,

where BRi : Aj ⇒ Ai denotes player i’s pure-action best reply correspondence, defined as

BRi(aj) := argmaxai∈Ai u(ai, aj) for all aj ∈ Aj .
5

The path of reasoning {(ai,ki , ai,kj )}k∈N represents the sequence of conjectures and

choices that the agent could potentially consider in his reasoning and deliberation process.

We note that the predictions of the model that we will analyze apply to a broad class of

paths of reasoning {(ai,ki , ai,kj )}k∈N, such as:

1. Deliberation Over Equilibria: One natural form of reasoning is for a player to

progressively understand the equilibria of the game, and deliberate over which one to

play. This form of reasoning corresponds to the case in which the path of reasoning also

5The model can be extended to non-degenerate conjectures, of the form αi,k
j ∈ ∆(Aj). For simplicity,

however, we abstract from this possibility in the introduction of the baseline model, and only focus on
degenerate conjectures of the form ai,k

j ∈ Aj . We will discuss the case of non-degenerate conjectures below.
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satisfies the condition ai,kj ∈ BRi(a
i,k
i ) for every k. In the BoS game, for instance, players

could understand that the possible (pure) equilibria are (B1,W2) and (W1, B2). At any

given step, a player may think that the opponent is trying to coordinate on one equilibrium

or the other. It may be that as he thinks more, he remains convinced of this equilibrium,

and then his path of reasoning ‘stabilizes’ at such a profile. Alternatively, it may be that

as he thinks more, his reasoning leads him away from that equilibrium to another.

2. Level-k Reasoning: Another natural form of reasoning is level-k, introduced by Nagel

(1995) (see also Crawford, Costa-Gomes, and Iriberri (2013) and references therein). This

form of reasoning obtains letting player i’s conjecture over the opponent’s action at step

k be equal to the action of an opponent of level (k-1). Formally, for each k = 1, 2, ...,

this form of reasoning is such that ai,kj = aij (k − 1) and ail (k) = BR
(
ai−l (k − 1)

)
for each

l ∈ {1, 2}, where ai (0) =
(
ai1 (0) , a

i
2 (0)

)
is an arbitrary level-0 anchor. Note that, for

this specific model, if the anchor ai (0) is a Nash equilibrium a∗ ∈ A, then the path of

reasoning is constant, in the sense that ai (k) = a∗ for all k: in this case, in his deliberation

player i only contemplates playing the action ai,ki = a∗i at every step k. Thus, within the

level-k mode of reasoning, the case of a Nash equilibrium anchor can be thought of as a

situation in which player i has the initial ‘impulse’ of playing a∗, and further reasoning

does not challenge such initial disposition. If, in contrast, a (0) is not an equilibrium, then(
ai(k)

)
will not be constant, and may converge or keep cycling. In the BoS, for instance,

if ai(0) ∈ {(B1, B2), (W1,W2)}, then aii (k) will keep cycling between Bi and Wi.

In general, i’s path of reasoning could be absorbing, in the sense that ai,ki no longer

changes past a certain step k ≥ 0, or it could be responsive, in the sense that it does not

remain stuck at any one best action. For instance, in the case of the ‘deliberation over

equilibria’ mode of reasoning, this would occur if the reasoning does not stabilize on any

one equilibrium. In the case of level-k reasoning, this would be the case if the anchor is a

non-Nash equilibrium (i.e., either {(B1, B2), (W1,W2)} in the BoS game). Formally:

Definition 1 A path of reasoning {(ai,ki , ai,kj )}k∈N of player i is absorbing if there exists

a k̄ ≥ 0 such that, for all k > k̄, ai,ki = ai,k+1
i . A path of reasoning of player i is

responsive if it is not absorbing.

If i’s path is absorbing, then reasoning has no effect past step k̄ after which it no

longer changes. In the case where k̄ = 0, reasoning plays no role in changing the player’s

mind. If both players have the same absorbing path of reasoning, with k̄ = 0 for each,

then effectively there is a focal action profile, that is shared by the two players, on which

they agree. Any possible coordination would thus be due to this focality, and not to their

reasoning. Since it is reasoning and not focality that is at the center of our analysis, the

bite of our model will be for responsive paths.

Other forms of reasoning, however, may be absorbing, but only for some ‘high’ k̄ > 0.6

This property is best thought of as one way to capture a situation in which, if players

6For instance, Kets and Sandroni (2019, 2021)’s introspective equilibrium (see also Kets, Kager, and
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could potentially reason indefinitely (as in Kets and Sandroni (2019, 2021), in which k

is infinite), they would potentially never stop questioning their earlier conclusions. In

this sense, responsive paths of reasoning distill the ultimate dilemma in a coordination

problem, when no focal points or other fixed point logic can unambiguously pin down a

single action profile.7

As mentioned above, we do not assume that players reason indefinitely. Rather, we

view reasoning as costly, and players may well decide, consciously or not, that it is not

worth continuing reasoning. In what follows, the main factor is that, all else being the

same, a more sophisticated player will stop reasoning at a higher step k than a less

sophisticated player. We first explain what leads the agents to stop, based on their cost

and value of reasoning for the game in question, and then discuss the agents’ beliefs over

their opponents. Taken together, the two will determine players’ behavior.

2.2 Stopping rule

Player i has value of reasoning vi(k) and a cost of reasoning ci(k) associated with

each step of reasoning k > 0, where vi (k) and ci (k) represent, respectively i’s value and

cost of doing the k-th round of reasoning, given the previous k−1 rounds. Costs represent

players’ cognitive abilities; the value instead only depends on the game’s payoffs, such as

the r parameter in the BoS game, and will be discussed shortly. When deciding whether

or not to reason at that step, the agent compares the two, and continues as long as the

value of reasoning exceeds the cost of reasoning, i.e., so long as vi(k) ≥ ci(k). For future

reference, we define a mapping K : RN
+ × RN

+ → N such that, ∀ (c, v) ∈ RN
+ × RN

+,

K (c, v) := min {k ∈ N : c (k) ≤ v (k) and c (k + 1) > v (k + 1)} , (1)

with the understanding that K (c, v) = ∞ if the set in equation (1) is empty. In words,

this mapping identifies the first intersection between the value v and the cost c (see Fig.

4). Player i’s cognitive bound is the value that this function takes at (ci, vi):

k̂i = K (ci, vi) . (2)

Sandroni (2022)), describe a reasoning process in which the path of reasoning is generated by a chain of best-
responses similar to level-k, but in which players may be of different types, each with a possibly different
anchor (what they call impulse). Depending on the type space (which specifies players’ types, beliefs,
and impulses), and on the payoff of the game, the iteration of the best replies may either converge or not.
When such an iteration converges, then it forms an introspective equilibrium; otherwise, an introspective
equilibrium does not exist for that specific combination of game and type space. From this viewpoint,
one can regard our theoretical analysis also as complementary to Kets and Sandroni’s: while introspective
equilibrium is defined by reasoning processes that converge – and, hence, by paths of reasoning that are
absorbing – we focus instead on paths of reasoning that remain responsive.

7The theoretical analysis in this section focuses on individuals with responsive paths of reasoning.
However, the predictions derived for the treatments in the experiment do not require that all individuals
feature responsive paths of reasoning, but only a fraction. That is because, for individuals with absorbing
paths of reasoning, their choice would either be affected by our treatments in the same way as those with
responsive paths (that is, if the threshold k̄ beyond which their path stabilizes has not been reached), or
it would not be affected at all.
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To rank players’ sophistication, we rank their costs of reasoning, and refer to cost

function c′ as ‘more sophisticated’ than c′′ if c′ (k) ≤ c′′ (k) for every k (similarly, c′ is

‘less sophisticated’ than c′′ if c′ (k) ≥ c′′ (k) for all k). Then, for each ci ∈ RN
+, we let

C+ (ci) and C− (ci) denote the sets of cost functions that are respectively ‘more’ and ‘less’

sophisticated than ci.

Remark 1 For any cost of reasoning c(·) and value of reasoning v(·), K(v, c) ≥ K(v, c′)

if c′ ∈ C−(c) and K(v, c) ≤ K(v, c′) if c′ ∈ C+(c).

We assume the following for the cost functions.

Assumption 1 (Cost of Reasoning) For each i:

1. Not thinking is free: ci(0) = 0,

2. The cost is increasing: ci(k) > ci(k
′) if k > k′.

3. Costs are finite: ci(k) < ∞ for all k.

4. Costs are not uniformly bounded: ∄c̄ ∈ R such that ci (k) ≤ c̄ for all k.

The first property serves as a normalization of the minimal cost of thinking. The

content of the second assumption – which could be weakened, as we will discuss – is

in essence that of ‘theory of mind’: for any player, putting himself in the shoes of the

opponent putting himself in his own shoes, ...., becomes increasingly difficult.8 The third

assumption ensures that cognitive abilities are not such that they have an absolute limit.

This property – which could also be weakened – ensures that the value of reasoning always

plays a role. The last assumption rules out the possibility that some high but finite value

of reasoning could lead the player to reason endlessly.

In deciding whether to stop reasoning or not it is as if players have expectations

about what action of the opponent they would learn at the next step of reasoning, and

they anticipate that they would best respond to it. Then, they calculate the value of

reasoning as the expected gain of switching from the current action, ak−1
i , to such a best-

response to what they might learn. So, for instance, they would attach a value of zero (and

hence stop reasoning) if they expected their current conjecture ak−1
j to also be confirmed

at the next step; but it may be positive otherwise. This formulation is consistent with the

axiomatic foundation of Alaoui and Penta (2022). In the following, we maintain the most

stringent parametrization within this class, where it is as if the agent assigns probability

one that the next step of reasoning will yield the action of the opponent which maximizes

the opportunity cost of stopping. Hence, we assume the following functional form:

vi(k) = max
aj∈Aj

ui(BRi(aj), aj)− ui(a
i,k−1
i , aj). (3)

8This is because each step of reasoning adds to the set of hypothetical conjectures that a player is able
to formulate about the opponent. Since players in our model know how to best respond if they believe
their opponent has stopped at a lower level, such a set never shrinks, and hence the cost of the next step
of reasoning involves both keeping the previous steps in the working memory as well as adding a new one.
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Less extreme forms of the value of reasoning, which for instance consider non-degenerate

distributions over the opponent’s actions that player i may expect to learn (cf. Alaoui

and Penta (2022)), would not affect our main results. Hence, we use the maximum gain

(or maximum regret) representation above because it has the advantage of having no free

parameter and thus offering no degrees of freedom. This representation of the value of

reasoning will therefore be maintained throughout.

An implicit assumption in the formulation above is the idea that transformations of

the payoff functions do not affect the way in which individuals reason about the game

(namely, their path and cost of reasoning), but only their incentives and hence possibly

the depth of their reasoning. Since the payoff transformations that we focus on (such as

varying the r > 1 parameter in the BoS game) do not change the fundamental structure

of the game, this is a very weak assumption.9 But while we assume that the path of

reasoning is not affected by varying the r parameter in the BoS game, we do not assume

that an individual’s path of reasoning is the same across different classes of games.

2.3 Beliefs about Others’ Reasoning and Choice

The cognitive bound k̂i describes the thought process of the agent, but his behavior also

depends on his beliefs about his opponent, and particularly about the opponent’s cost

function. Such beliefs are then used to derive i’s beliefs over the opponent’s cognitive

bound. The type of a player is thus described by a pair ti = (ci, c
i
j), where ci represents

player i’s cost of reasoning, and cij represent his beliefs about player j’s cost function.10

Player i’s beliefs about j’s cognitive bound will thus be equal to the point where he thinks

j has stopped, given his beliefs over j’s cost of reasoning, cij , and taking into account j’s

value of reasoning, as entailed by i’s own understanding of j’s reasoning. Formally, let

vij : N → R be such that

vij(k) = max
ai∈Ai

uj(BRj(ai), ai)− uj(a
i,k−1
j , ai).

9This property, for instance, need not hold for payoff transformations that change the nature of the game
(e.g., turning a BoS into a Matching Pennies game). These ideas have been formalized in the axiomatic
foundation of Alaoui and Penta (2022), with the notion of cognitive equivalence. First, two games are
cognitively equivalent if the decision maker approaches them with the same reasoning process. Then,
the representation theorems ensure that two cognitively equivalent games are associated with the same
costs and path of reasoning, and only differ in the value of reasoning. Thus, it is meaningful to perform
comparative statics based on the value of reasoning only within, but not across, equivalence classes.

10The model can also be extended to include both non-degenerate beliefs about the opponent’s cost,
as well as higher order beliefs (i.e., i’s beliefs about j’s beliefs about i’s cost, etc.): Following Alaoui and
Penta’s (2016) EDR model, such belief hierarchies can be modelled through cognitive type spaces, which
can be used to represent arbitrary belief hierarchies over players’ costs (see also Alaoui, Janezic, and Penta
(2020)). As we will discuss below, our main results would not be affected by the introduction of non
degenerate beliefs, and allowing for more general higher order uncertainty over cost functions.
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Figure 4: An example in which the cost ci and value vi are such that i’s cognitive bound
k̂i = K(ci, vi) = 4. The behavioral level ki is equal to 2 or 4 depending on whether the
opponent is believed to be less or more sophisticated (respectively, on the left and on the
right). In this example, for illustrative purposes we set vi = vij and constant in k. Note

that, in this case, if i believes that j is more sophisticated (i.e., cij(k) < ci(k) for all k, as

in the right panel), then the cognitive bound is binding (k̂i = ki = 4).

With this notation, we define i’s beliefs about j’s cognitive bound (given his own bound

k̂i, his reasoning path {(ai,ki , ai,kj )}k∈N, and his beliefs about j’s cost, cij) as:

k̂ij = min
{
k̂i,K(cij , v

i
j)
}
. (4)

The minimum operator here represents the idea that i’s beliefs over j’s steps of reasoning

are bounded by his own cognitive bound, k̂i (see Fig. 4). Player i then plays ai = a
i,k̂ij
i ,

and hence we also refer to ki = k̂ij as player i’s behavioral level.

Note that this implies that a player always responds to either the opponent’s action

associated with the step where he thinks the opponent has stopped, or to the player’s own

maximum cognitive bound: in the latter case, the cognitive bound is binding in the sense

that the player’s beliefs about the number of steps undertaken by his opponent are limited

by his own cognitive bound. For the same reason, the following also holds:

Remark 2 If the path of reasoning is absorbing, then reasoning has ultimately no impact

on what is learned past the threshold k̄i where the path stops changing. But until such k̄i

is reached, reasoning has exactly the same effect as in the responsive case. Hence, in our

model, when beliefs or payoffs change, the choice of an individual with an absorbing path

of reasoning either does not change (that is, if he is already past his k̄i), or it changes in

exactly the same way as it would for an individual with a responsive path of reasoning.

We note that our formulation presumes that a player’s value of reasoning does not

depend on the opponent’s payoff function, costs of reasoning, or his beliefs, but only on

the player’s own payoff function and current action (see Alaoui and Penta (2022) for an

axiomatic foundation). That is, his cognitive bound (eq. (2)) does not depend on his

beliefs about the opponent, of any order. Nonetheless, the behavioral level defined in
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eq. (4) does. Hence, while the player’s cognitive bound (i.e., what he understands about

the problem) is independent of his beliefs, behavior in our model may accommodate rich

effects of players’ first- and higher-order beliefs. For an experimental investigation of both,

see Alaoui and Penta (2016) and Alaoui et al. (2020).

2.4 Focality, Alignment and Eductive Coordination: Discussion

Since Schelling (1960), a focal point is an action profile that is salient, self-enforcing

(i.e., consistent with players’ rationality), and such that players are firm in their expec-

tation that it would occur. Hence, if such a focal point exists – be it due to payoff

considerations (e.g., if efficiency, risk-dominance, etc., are shared refinement criteria), to

‘non-mathematical’ properties of the game (e.g., intrinsic characteristics or labeling of the

actions, as in Crawford et al. (2008), Charness and Sontuoso (2022), etc.), to players’

mode of cognition (e.g., Bilancini et al. (2017)), or to previous experience of play – then it

is natural to expect agents to play accordingly. All these cases can be naturally mapped

to our model as follows:

Definition 2 (Focal Points) Profile a∗ is (subjectively) focal for player i if it is a Nash

equilibrium and ai,k = a∗ for all k. Profile a∗ is focal if it is focal for both players.

In words: players start out with a common self-enforcing profile in mind (a Nash

equilibrium), and further introspection confirms that it should be played.

Clearly, if players share a focal point, then equilibrium coordination is not an issue:

the coordination problem is basically assumed away, and its explanation boils down to a

theory of focal points (e.g., Sugden (1995)). The focus of our analysis instead is on whether

coordination can be achieved in the absence of a focal point. Absence of a focal point may

be due to two possibilities: (i) at least one of the players, subjectively, has no focal point;

(ii) both players believe in a focal point, but not in the same. The second case may seem

odd, but it’s important nonetheless. For instance, within a level-k model of reasoning, a

practical example would be that of an American and a British car driver, who come from

opposite directions, and play the obvious coordination game in which they simultaneously

choose whether to drive on the left or on the right. If not aware of the nationality of

the opponent, they would (arguably) each embrace a social norm which is subjectively

focal, but not shared. The miscoordination which would obviously arise in this case can

be ascribed to the failure to recognize that the ‘old’ social norm does not apply to this

particular situation, an instance of case (ii) above. In this thought experiment, it is natural

to hypothesize that if the two drivers were made commonly aware of the nationality of

the opponent, then the subjective ai,1 would not be a NE, and hence players would not

believe in any particular point being focal. Clearly, miscoordination would be possible in

this situation, and it would instead be an instance of case (i) above.

In the next section we show that, while coordination could not be reached in the first

example (the two drivers are not aware of the opponent’s nationality, and hence their
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path of reasoning is absorbing), in the second case coordination can be achieved, despite

the absence of a focal social norm, if (i) players’ payoffs display a sufficiently strong bias

in favor of the ‘own side’ of the road (so that the game looks like a BoS, and the r is

sufficiently high), and if (ii) both players agree on their relative sophistication.

3 Endogenous Coordination in the BoS game

3.1 Theoretical Results

In this section we present the main theoretical results that underlie our experiment. Con-

sider player 1’s value of reasoning in the baseline BoS game of Figure 3. When a1,k−1
1 = B1,

then v1(k) = max{r−r, 1−0} = 1, and when a1,k−1
1 = W1, then v1(k) = max{1−1, r−0} =

r . Note that there is an asymmetry between the two actions: if, at step k− 1, the player

believes that B1 is best, then the maximum gain he could obtain is 1; but if he be-

lieves that W1 is best, then he has more to gain, and his value is now r. Hence, if r

increases, the maximum gain increases at steps where a1,k−1
1 = W1, but it remains at 1 at

steps in which ak−1
1 = B1. Note also that this value of reasoning need not coincide with

what the player will actually learn. For instance, whether the path of reasoning contains

a1,k−1
1 = a1,k1 = B1 or, alternatively, a1,k−1

1 = B1 and a1,k1 = W1, the value of reasoning for

the k-th step is the same, and equal to 1. This is because the agent does not know what

he will learn beforehand, otherwise it would imply that he has already performed the k-th

step of reasoning (cf. Alaoui and Penta (2022)).

Observe that since the cost of reasoning increases unboundedly and the value function

does not, for any r in the BoS game, for any player i and for his associated path of

reasoning, there is a k̂i(r) for which ci(k̂i) > v(k̂i), which is the stopping rule for player i

at that r. This simple structure yields very sharp implications for any path of reasoning

that is responsive. For any such path of reasoning, and for any r, consider any player i

with a responsive path, and whose last step of reasoning is k̂i(r). Clearly, we have either

ai,k̂ii = Bi or a
i,k̂i
i = Wi. Suppose first that ai,k̂ii = Bi. Then vi(k̂i + 1) = 1, and since the

agent doesn’t perform the (k̂i +1)-th step, it must be that ci(k̂i +1) > 1. In this case, an

increase in r has no effect on vi(k̂i + 1), and so the threshold k̂i(r) remains unchanged as

r goes up. Now suppose instead that ai,k̂ii = Wi. Then, vi(k̂i + 1) = r and ci(k̂i + 1) > r.

Since ci(k̂i+1) is not infinite, there exists a finite r′ such that r′ > ci(k̂i+1), given which

the agent would perform at least one extra step. Take now the minimum k̃i ≥ k̂i + 1 for

which ai,k̃ii = Bi. Such a k̃i is guaranteed to exist, by the assumption that player i’s path

is responsive. For high enough r′, this step will be reached, by the same argument as

above. But at that step, it must be that the agent stops: he would only have continued if

1 ≥ ci(k̃i+1), but we know that ci(k̃i+1) > ci(k̂i+1) > r > 1. Hence, here as well, player

i’s reasoning stops at Bi for a responsive path. This logic implies the following result:

Lemma 1 Under the maintained assumptions on the cost and value of reasoning, for any
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Figure 5: Low-payoff cognitive bound such that a1,k̂11 = W1.
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Figure 6: Low-payoff cognitive bound such that a1,k̂11 = B1.

ci(·) and for any responsive path of reasoning, in the BoS game above there exists r̄i such

that, for all r > r̄i, player i stops reasoning at some step k̂(r) such that a
i,k̂i(r)
i = Bi.

The logic of this result is illustrated in Figures 5 and 6, in which the (responsive)

path of reasoning is such that ai,ki alternates between Bi and Wi. This would be the case,

for instance, for the level-k reasoning example provided previously, when the anchor is

either (B1, B2) or (W1,W2), so that the path alternates between (B1, B2) and (W1,W2).

It would also be the case for the deliberation over equilibria form of reasoning, if the player

alternates between the two equilibria, (B1,W1) and (B2,W2). As can be seen in Figure

5, if 1’s depth k̂i for r = rl has associated a1,k̂i1 = W1, then a large enough increase in r

(from rl to rh, in the figures) will lead to B1. If, as in Figure 6, 1’s depth k̂1 for lower r

has associated a1,k̂11 = B1, then an increase in r has no effect. Whereas the actual step k̂1

at which the agent stops may vary in the two cases, in either case it would be such that

ak̂1i = B1 for high enough r.11

Note that applying the same logic as Lemma 1 to i’s reasoning about j – i.e., using

11We note that the same logic would also apply to less extreme forms for the value of reasoning function,
where it is as if player i has beliefs about what he could learn about the opponent’s action that are not
concentrated on the aj that maximizes the opportunity cost of playing the current action, ak−1

i . In 2× 2
games, any such non-degenerate beliefs would induce a scaled-down version of the ‘maximum gain’ value
of reasoning, which would affect the level of the r̄i threshold in the statement of Lemma 1, but not its
existence. The main advantage of the maximum gain representation is that it has no free parameter.

14



the cost and values cij and vij – yields the following implications for i’s expectation of his

opponent’s depth of reasoning, k̂ij :

Lemma 2 Under the maintained assumptions, for any cij(·) and for any responsive path

of reasoning, in the BoS game above there exists r̄ij such that, for all r > r̄ij, player i

thinks that j stops reasoning at some step k̂ij(r) such that a
i,k̂ij(r)

j = Bj.

As noted in Remark 1, if a player thinks that the opponent is more (resp., less)

sophisticated than he is himself – i.e., if cij ∈ C+(ci) (resp, if c
i
j ∈ C−(ci)) – then it implies

that, with symmetric incentives to reason, he would expect his depth of reasoning to be

weakly higher (resp., lower) than his own. In that remark, the inequality is weak because

it may be that the cost functions are very close to each other, and hence for some levels of

the value of reasoning they would effectively entail the same depth. The next assumption

rules out this possibility, in that it requires that players’ beliefs about the opponent’s

sophistication is different from one’s own, in the sense that beliefs cij are sufficiently lower

(resp., higher) than ci to effectively entail different depths of reasoning.

Formally: fix player i’s path of reasoning in the BoS game, and type ti = (ci, c
i
j). We

say that i thinks that j is strictly more (resp. less) sophisticated than i if cij ∈ C+(ci)

and if for every r ≥ 1, K(vi, ci) < K(vji , c
j
i ) (resp., c

i
j ∈ C−(ci) and K(vi, ci) > K(vji , c

j
i )).

Given this, if i believes that j is more sophisticated, then i plays the action associated

with i’s cognitive bound, K(vi, ci), which by Lemma 1 induces action Bi for high enough

r. If instead i believes that j is less sophisticated, then i thinks that j plays the action

associated with his cognitive bound, that is Bj , and best-responds to that by choosing

Wi. The next result follows:

Proposition 1 (Individual behavior in the BoS: Heterogeneous Sophistication)

Under the maintained assumptions, in the BoS game, for any responsive path of reasoning

there exists r̄i such that, for all r > r̄i, player i plays Bi if he thinks that j is strictly more

sophisticated, and Wi if he thinks that j is strictly less sophisticated.

Applying Proposition 1 to both players delivers the following result:

Proposition 2 (Eductive Coordination in the BoS) Under the maintained assump-

tions, in the BoS game, if both players’ paths of reasoning are responsive and if they agree

that i is strictly more sophisticated than j, there exists r̄ such that, for all r > r̄, players

play a = (Wi, Bj), the Nash equilibrium most favorable to player j.

Proposition 2 provides our main result concerning how coordination can occur endoge-

nously in the BoS game, when players believe they have different sophistication, and they

agree about their relative ranking. A noteworthy implication of Proposition 2 is that,

conditional on being in a ‘heterogeneous matching’, it is the relatively less sophisticated

player who has a strategic advantage. As mentioned in the introduction, however, this is
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a specific feature of this game, and does not hold in general. For instance, in the ‘Reverse

Strategic Advantage’ game that we present in Fig. 2, it is the more sophisticated player

that gets a strategic advantage. This raises interesting questions about individuals’ incen-

tives to be perceived as more or less sophisticated as a function of the setting. We return

to these points in the conclusions.

We now turn to the case in which a player believes that the opponent is equally

sophisticated. Within our model, this means that he believes they have equal costs, i.e.

ci(k) = cij(k) for all k. If that is the case, then player i chooses according to his own

bound when facing j, and not according to his beliefs. This leads to the following result:

Proposition 3 (Individual behavior in the BoS: Equal Sophistication) Under the

maintained assumptions, in the BoS game, if i’s path of reasoning is responsive and if i

thinks that j is equally sophisticated, there exists r̄i such that, for all r > r̄i, i plays Bi.

Hence, note that player i behaves in the same way if he thinks that the opponent is

equally or more sophisticated than he is himself: in both cases, his choice is driven by

his own cognitive bound. Note as well that Proposition 3 implies that, if both players

think that they are equally sophisticated, and if r is high enough, then they would end up

playing an action profile that is not a Nash equilibrium:

Proposition 4 (Miscoordination in the BoS) Under the maintained assumptions, in

the BoS, if both players’ paths of reasoning are responsive and if they agree that they are

equally sophisticated, then there exists r̄i such that players play a = (Bi, Bj) for all r > r̄i.

The fact that Propositions 1 and 2 obtain as r grows unboundedly is perhaps coun-

terintuitive, as one might expect that, at least for very high r, players would optimally

switch to their favorite equilibrium action. This intuition can be formalized by letting

players entertain non-degenerate beliefs in their reasoning process: in this case, if they

always attach a positive probability to the opponent conceding, then the condition that aki
is a best-response to player i’s conjectures at step k implies that there exists a threshold

r̂i beyond which only the ‘own’ favorite action is considered. The model can clearly be

extended in this direction, at the cost of less stark predictions (e.g., there would exist a

parameter range, (r̄i, r̂i) ⊆ R, within which the above coordination result obtains, but

not if r > r̂i). Abstracting from the possibility of non-degenerate conjectures distills the

essence of our coordination mechanism and delivers sharp and falsifiable predictions.

Similarly, the model can also be extended to account for non-degenerate beliefs about

the opponent’s cost of reasoning, as Alaoui and Penta (2016) do in the context of level-

k reasoning. The propositions above would not be affected by such an extension. The

reason is that the details of players’ beliefs about the costs of reasoning do affect the exact

position of the critical threshold r̂i, but not its existence. The fact that the results above

obtain under very minimal restrictions on players’ beliefs about each other is an important

strength of the model, particularly from the viewpoint of its testability.
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3.2 Extensions and Applications

We note that the model can be applied to general settings, but the specific results on

coordination would depend on the specific situation. The analysis of 2x2 games, however,

is especially useful to distill clearly the logic of the model and the fundamental source of

the coordination result (namely, agreement about players’ heterogeneous abilities, and re-

sponsiveness of the path of reasoning). While extending the analysis to other games is left

to future research, the fundamental logic that we are highlighting is a useful guideline. For

instance, for an application to a ‘mass action’ game, consider two populations of agents,

taking the roles of the row and column player, respectively. Each agent must choose be-

tween two actions (e.g., strike or not, attack one currency or another, attack or not, invest

or not, etc.).12 To fix ideas, suppose that the two populations of agents are members of dif-

ferent organizations, deciding which of two governments/firms to attack/protest against.

Within-organization coordination is made possible by communication, by a common lead-

ership, or by a deliberation procedure internal to the organization. But the coordination

problem remains between the two separate organizations. In this setting, both the logic

and the results above apply equally well: if members of the two organizations commonly

agree that the members of one organization have lower costs of reasoning than the other,

then coordination would arise for sufficiently high payoff parameters r. Such coordination

would occur on the equilibrium most favorable to the ‘high cost’ organization if payoffs are

akin to a BoS game, on the other equilibrium if they are closer to an RevSA game (cf. Fig.

2), on the efficient equilibrium if payoffs are as in Stag Hunt, etc. If, in contrast, the two

organizations failed to agree that the members of one organization are more sophisticated

than those of the other organization, then coordination need not be achieved, and it would

not be achieved if r is high enough.

The results in the paper would also extend to games with more than two actions,

except that the coordination result would require a more careful (and somewhat more

cumbersome) formulation of the notion of responsive paths. A simple requirement would

be that the path of reasoning ‘visits infinitely often all of the actions associated with all

the equilibria in the game’. Under this condition, the analysis above could be extended

to such settings. Alternatively, this assumption can be weakened by making stronger

assumptions on players’ beliefs, paths of reasoning, or cognitive costs, and for suitably

defined payoff transformations that increase players’ incentives to reason. For instance,

in coordination games with Pareto ranked equilibria, the logic of our results would apply,

regardless of the number of actions, to support efficient coordination, as long as players’

reasoning paths never settle on ruling out the efficient equilibrium actions.

12We note that it is very frequent in the literature to cast “mass action games” as 2x2 games in this
fashion, re-interpreting mixed actions in the game in terms of fraction of the populations of row and column
players taking one action or the other, often using precisely games such as BoS, Stag Hunt, etc. See Morris
and Shin (2003) on global games and applications, and references therein.
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4 The Experiment

4.1 Experimental design and logistics

The experiment is designed to test whether behavior in the BoS game is in line with our

hypotheses, which are derived from the propositions in the previous section and are stated

below. It also includes other games, which will be discussed in the next section, that allow

us to test whether the results can be explained by alternative theories instead.

At the beginning of the experiment, all subjects complete a test of cognitive sophis-

tication. The test contains the Muddy Faces game (cf. Weber (2001)), a version of the

Mastermind game and a centipede game. The questions are the same as in Alaoui and

Penta (2016) and in Alaoui, Janezic, and Penta (2020). As a robustness check, around a

third of subjects complete the Raven’s Advanced Progressive Matrices (APM) test (Raven

(1994)) rather than our test. To assess whether both tests can be used interchangeably,

subjects complete the alternative test at the end of the experiment (subjects who first

completed our test saw the APM test at the end of the experiment, and vice versa).

Results for the comparison between the two tests are given in Appendix A.3.5.

Subjects are then separated into three groups, depending on whether their scores were

High, Moderate, or Low. Cutoffs were predetermined and based on the distributions of

test scores obtained in Alaoui and Penta (2016), Alaoui, Janezic, and Penta (2020) and

subsequent pilots. The cutoffs are not determined session by session, because subjects

of the entire sample played against one another, and were paid once all the sessions

ended. The High and Low groups are informed of their labels, the Moderate group is

not. Subjects are only informed of their label, not of the scoring rule used to classify

the subjects. For the main experiment, we use only the High and Low groups, in order

to obtain enough perceived distance in sophistication between the groups. This reflects

the theoretical notion of heterogeneous sophistication underlying Propositions 1 and 2,

which requires that the perceived difference in sophistication is large enough to generate

different depths of reasoning (p. 15). Since only the High and Low groups are relevant

for our purposes, all discussions below refer to these groups. The Moderate group plays

an unlabeled treatment, as documented in Appendix A.3.6.

The first game that subjects play is the following BoS game, which subjects play both

against an opponent with the same label and against one with the other label:

W Z

X r, 50 0, 0

Y 0, 0 50, r

Figure 7: Battle of the Sexes

where r ∈ {51, 70}, depending on the treatment. The action labels (X, Y , W and Z) were
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chosen to avoid salience. For ease of mapping with the theoretical results in the previous

section, below we will use Bi and X (Z) interchangeably (and, respectively, Wi and Y

(W )). The experiment employs a within-subject design, with every subject playing each

of the following four versions of the game, in the role of the row player, without feedback

and with random anonymous matching at every round:13

• BoS-Hom: The BoS game is played against someone with the same label, for the

smaller reward r = 51.

• BoS-Het: The BoS game is played against someone with the other label, for the

smaller reward r = 51.

• BoS-Hom+: The BoS game is played against someone with the same label, for the

greater reward r = 70.

• BoS-Het+: The BoS game is played against someone with the other label, for

greater reward r = 70.

In addition to the BoS game, subjects also play the reverse Strategic Advantage game,

as well as a Stag Hunt and an Asymmetric Matching Pennies game. As with the BoS, they

each play four versions of these three games: against an opponent from their own label,

against someone with the other label, both for the low and the high payoff versions of the

games. These games are included to assess the viability of some alternative mechanisms

that may guide subjects’ choices in these games, and will be discussed in Sections 5, A.3.3

and A.3.4. Subjects in the experiment are matched randomly for each interaction, they

are paid randomly for one version, out of four, of each game and they receive no feedback.

At the end of the experiment, subjects were asked whether they believe that perfor-

mance in the initial test is correlated with success in the games. They then completed

a short cognitive reflection test (CRT, Frederick (2005)), a hypothetical acyclical 11-20

game (Alaoui and Penta (2016)) and the alternative test of cognitive sophistication.

The experiments were conducted in Spring 2022 at the BES lab at Universitat Pompeu

Fabra. It was coded using z-Tree (Fischbacher (2007)). In total, 183 subjects participated

in the full experiment, spread over 16 sessions. They received an average pay of AC21.5,

including a AC5 show-up fee, for an approximate duration of 110 minutes. Subjects were

paid for one version of each game. Specifically, one out of the four versions was picked at

random and this was repeated for each of the four types of games for the labeled treatment

and one out of two for the unlabeled treatment. Of the 183 subjects, 149 participated

in the labeled treatments, 43 of which were classified as Low and 106 as High, while 34

subjects were in the Moderate group and participated in the unlabeled treatment.

13In Appendix A.6, we provide a glossary of the terminology used to refer to the different treatments.
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4.2 Experimental Hypotheses for the BoS game

Let L denote the label of subjects who were classified as Low on the test, and H that

of those who were classified as High. Recall that subjects are informed of their own and

their opponents’ labels. The propositions from Section 2 then map to testable hypotheses

for the experiment, under the following assumptions:

Assumption 2 (Identification Assumptions) 1. Subjects of the same label com-

monly agree that they are equally sophisticated.

2. Subjects of different labels commonly agree that label H subjects are strictly more

sophisticated than label L subjects.

3. Paths of reasoning are responsive for at least some percentage of L and H subjects.

Assumptions 2.1 and 2.2 are the key assumptions for our exercise, and the entire

experiment (particularly the way that labels were created and assigned) was designed in

order to ensure that they are satisfied. They can of course be weakened to allow for

some noise, but we keep them as they are for ease of exposition. We discuss possible

variations in footnote 14, when we provide the hypotheses. As we explain below, strictly

speaking, Assumption 2.3 is not required for the hypotheses that follow. Without this

assumption, however, our model has no bite, since all our hypotheses are predicated on

the assumption that at least some paths of reasoning are responsive. We do not require

that all individuals have responsive paths of reasoning, because the choices of agents with

non-responsive paths would either not be affected by the treatments in our experiment,

or move in the same direction as those that we derived for responsive paths of reasoning

(see Remark 2). Hence, the comparative statics that underlie the hypotheses below are

driven by the results obtained for the latter paths of reasoning. Overall, these are very

weak assumptions, particularly within the context of our experimental design.

For g ∈ {L,H}, let pg(·) denote the percentage of subjects in group g that play their

own preferred action Bi, where the argument of the function refers to the treatment.

Assumption 2 and Propositions 1 to 4 directly imply the testable hypotheses that follow.

We first compare subjects’ behavior as they play against someone with the same or

with the other label (homogeneous compared to heterogeneous treatments), both for the

smaller and for the greater reward (respectively, r = 51 and r = 70):

Hypothesis 1 (Homogeneous to heterogeneous label comparison)

1. pH(BoS-Hom) ≥ pH(BoS-Het) and pH(BoS-Hom+) ≥ pH(BoS-Het+): the percent-

age of High subjects playing their own preferred action in the BoS game is lower when

playing against subjects with the other label than against subjects with the same label,

for both values of r.
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2. pL(BoS-Hom) = pL(BoS-Het) and pL(BoS-Hom+) = pL(BoS-Het+): the percentage

of Low subjects playing their own preferred action in the BoS game is the same when

playing against subjects with the other label than against subjects with the same label,

for both values of r.

Note that while the hypotheses in point 1 above involve weak inequalities, those in

point 2 are in terms of equalities. Retracing the logic from Section 3, the difference is due

to the following: Label H subjects play according to their beliefs about label L subjects

(which are viewed to be less sophisticated) but according to their own cognitive bound

when they play against label H subjects. This can lead to a difference in behavior, and

shift some subjects to the opponent’s preferred action when they play against an L subject.

Label L players, however, play according to their bound both against L (viewed as equally

sophisticated) and against H (viewed as more sophisticated), and therefore their behavior

does not change.14 Note as well that these hypotheses also hold without Assumption 2.3,

because if no subjects have a responsive path then their behavior would not change, which

is allowed by the weak inequalities in Hypothesis 1. But if that were the case, then the

mechanism discussed here would never be switched on, and hence we would observe no

change even as payoffs are varied, which we turn to next. As we will discuss when we

present our findings, the experimental results are indeed consistent with Assumption 2.3.

In addition to Hypothesis 1, in which we consider behavior as the opponent’s label is

varied but the payoffs remain the same (for both values of r), the model’s predictions also

yield the following testable hypotheses, as r is varied but the opponent is kept fixed:

Hypothesis 2 (Low to high payoffs comparison)

1. pH(BoS-Hom) ≤ pH(BoS-Hom+) and pH(BoS-Het) ≥ pH(BoS-Het+): the percent-

age of high subjects playing their own preferred action is weakly increasing in r when

playing their own label in the BoS game, and weakly decreasing when playing the

other label.

2. pL(BoS-Hom) ≤ pL(BoS-Hom+) and pL(BoS-Het) ≤ pL(BoS-Het+): the percent-

age of low subjects playing their own preferred action in the BoS game is weakly

increasing in r both when playing their own label and the other label.

Hypothesis 2, which also follows directly from Assumption 2 and Propositions 1 and

4, shows more subtle implications of our model which would arguably be challenging to

14Assumption 2.1 could be weakened, for instance, by allowing that a majority of the subjects believes
that those of the same label as themselves are equally (or more) sophisticated, while others believe that
those of the same label are less sophisticated. In that case, Hypothesis 1.1 would remain unaffected, while
Hypothesis 1.2 would change to weak inequalities rather than equalities. This is because those who believe
others of the same label are less sophisticated would play according to their beliefs, and not their cognitive
bound. This alternate assumption would therefore be more permissive in what it allows from our results
in testing the theory. As previously discussed, however, we maintain the simpler Assumption 2.1, which
requires a more demanding test of our theory (and analogously if we were to weaken Assumption 2.2).
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replicate with other mechanisms or alternative explanations. The reasoning behind this

hypothesis is as follows. In Hypothesis 2.1, the high type is playing according to his

bound when playing his own label, and as r increases, there is a higher percentage of high

types whose bound will be at their own preferred action (as demonstrated in Section 3).

In particular, subjects for whom r̄i ∈ [51, 70], may switch their action as their cognitive

bound is increased when r goes up, while for other subjects (those for whom 51 > r̄i)

their action at the cognitive bound may already be at Bi for r = 51. For this latter group,

increasing r has no effect. When playing against the low label, however, his bound is

irrelevant. Rather, a higher percentage of H label believe that their opponent’s bound

will stop at their (L’s) preferred action, and reacts accordingly. Label L players, instead,

play according to their bound whether their opponent is L or H. As r increases, there is

a percentage of subjects for whom this bound may switch to their own preferred action.

We test Hypotheses 1 and 2 using a paired Wilcoxon signed rank test and the McNemar

test (since they yield identical results, we only report results for the former). We also

use panel regressions with individual fixed effects. All regressions share the following

specification:

Yi,t = βXi,t + αi + ui,t

where Yi,t is the dummy variable capturing whether an individual chooses their favorite

equilibrium action, Xi,t is the dummy variable of whether they are playing against an

opponent with an H label (for tests of Hypothesis 1), or a dummy of whether the game

is of the high payoff version (for tests of Hypothesis 2), αi are individual fixed effects and

ui,t the error term. For Hypothesis 1, we conduct the regressions twice for each subject

label, one model for the low payoff games and one model for the high payoff games. To

test Hypothesis 2, we also conduct the regression twice for each label, one model for games

played against the L label and one model for games played against the H label.

We note that while all of the hypotheses above are about individual behavior, in the

Appendix A.3.1 we also discuss whether there is increased coordination in the heteroge-

neous treatments on the preferred action profile of the L label subjects.

4.3 Results of the BoS Game

In this section, we discuss the results relating to Hypotheses 1 and 2. Recall that subjects

always choose in the role of the row player. All of the reported analyses use the pooled

sample of subjects, combining subjects who are classified based on our test with those

classified using the Raven matrices test.

According to Hypothesis 1.1, High label subjects are more likely to play their own

preferred action in the BoS game (in this case X) against High label players than against

Low label players, both for low and high payoffs. Figure 8 shows the proportions with

which High label players choose their preferred action X against each opponent type and
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Figure 8: Results BoS Game - High Label Players: Proportion choosing X (their preferred
action). Hom (Hom+) refers to the low (high) payoff version of the BoS game played
against another player from the same label. Het (Het+) refers to the low (high) payoff
version of the BoS game played against another player from the other label.

for both payoff versions of the BoS game.

Analyzing first the low payoff version of the game, we observe that around 54% of High

label players choose their preferred action X when they play against another player with

the High label (see Figure 8). However, when they face a Low label player, this percentage

drops to 34.91%. We compare the distribution of chosen actions using a Wilcoxon signed

rank test.15 The p-value of the test statistic is 0.003. In addition, we conduct a fixed

effects panel regression with the High players, restricting the sample to the low payoff

version of the BoS, and find that the coefficient on a dummy of whether they are playing

against a High or Low label opponent is significant at the 1% level (regression results are

given in Table 1, Model (1)). These findings are all consistent with Hypothesis 1.1.

Repeating the analysis for the high payoff version of the game, we find that 67.92%

play X against a High opponent but that only 36.79% play X against a Low opponent.

The p-value of the Wilcoxon signed rank test statistic is less than 0.001. The regression

coefficient is also significant at more than 0.1% (see Table 1, Model (2)). This shows that

for both payoff versions of the BoS game, High label players play their preferred action,

X, significantly less when they play against a Low label opponent than against a High

label opponent. This lends further support to Hypothesis 1.1.

We next turn to Hypothesis 1.2, which predicts that the Low label subjects would

be as likely to play their own preferred action against Low label as against High label

opponents, for both low and high payoffs. The results for the Low label group are displayed

in Figure 9. In the low payoff BoS game, we find that 53.49% of Low subjects play their

15Note that whenever we give results for the Wilcoxon signed rank test, we are referring to the paired
version of the test. For ease of exposition, we will omit ‘paired’. As mentioned above, the McNemar test
for binary variables gives identical p-values.
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Low payoff games High payoff games
(1) (2)

Choice of X Choice of X

Opponent has H label 0.204*** 0.311***
(3.19) (4.60)

Constant 0.344*** 0.368***
(10.94) (10.87)

Observations 209 212

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 1: BoS Game: Panel (fixed effects) regression results for H label players.
Model (1) gives the results for the low payoff versions of the BoS game and (2) for the
high payoff versions. Standard errors are clustered at the subject level.

Low payoff games High payoff games
(1) (2)

Choice of X Choice of X

Opponent has H label 0.0930 0
(0.81) (0.00)

Constant 0.535*** 0.605***
(9.30) (10.89)

Observations 86 86

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 2: BoS Game: Panel (fixed effects) regression results for L label players.
Model (1) gives the results for the low payoff versions of the BoS game and (2) for the
high payoff versions. Standard errors are clustered at the subject level.

preferred action, X, against a Low label opponent. This percentage increases to 62.79%

when playing against an opponent from the High label group. This difference is not

statistically significant (Wilcoxon signed rank test, p-value= 0.541). We run equivalent

panel regressions to the H label discussed above. The regression results, in Table 2, Model

(1), show that there is no significant effect of playing against a high label opponent. The

lack of significance is consistent with Hypothesis 1.2.

For the high payoff version of the game, we find that 60.47% of Low label players

choose their preferred action, irrespective of the label of their opponents. The regression

coefficient is not significant (Model (2)) and the Wilcoxon signed rank test statistic is also

not significant (all have p-value= 1). This is again consistent with Hypothesis 1.2.

Testing next Hypothesis 2.1, we first consider whether it is the case that High label

subjects are (weakly) more likely to play their own preferred action against High labels as

24



0.53

0.60
0.63

0.60

0

.2

.4

.6

Pr
op

or
tio

n 
of

 X
 c

ho
se

n

Proportion of L-subjects choosing X

Hom Hom+ Het Het+

Figure 9: Results BoS Game - Low Label Players: Proportion choosing X (their preferred
action). Hom (Hom+) refers to the low (high) payoff version of the BoS game played
against another player from the same label. Het (Het+) refers to the low (high) payoff
version of the BoS game played against another player from the other label.

payoffs are increased, and less likely to play their preferred action when playing against

Low, as payoffs are increased. We indeed see from Figure 8 that when High label subjects

play against High opponents, 54.37% play X for the low payoff treatment, compared to

nearly 68% for the high payoff treatment. This difference is weakly statistically significant

at the 10% level (Wilcoxon signed rank test, p-value= 0.092, and see the corresponding

panel regression results given in Model (1) of Table 3 in the Appendix). These results

support Hypothesis 2.1. When playing against Low opponents, the percentage playing X

increases from roughly 35% to around 37%, but this is not significant (Wilcoxon signed

rank test, p-value= 0.851).

Hypothesis 2.2 states that Low label subjects are (weakly) less likely to play their

preferred action for low payoffs compared to high payoffs, against both Low and High

labels. We see from Figure 9 that the percentage of Low label subjects playing X does

increase from 53.49% to 60.47% against Low opponents, which is consistent with the

hypothesis. The percentage decreases against a High opponent from 62.79% to 60.47%,

but these results are both not significant (Wilcoxon signed rank test p-values= 0.648 and

≈ 1.000, respectively. See as well Table 4 in the Appendix).

We also check whether our results above are driven by a few outliers (see Appendix

A.3.2). We find that behavior is very consistent with the model’s predictions across the

sample. Jointly, therefore, the findings are consistent with our hypotheses for the BoS

game. Moreover, while Hypotheses 1.1 and 2 are in terms of weak inequalities, the fact

that we observe that a percentage of subjects change behavior is indicative that the payoffs

used in the experiment are sufficiently high for our model to have bite, and indeed the

hypotheses are confirmed with strict inequalities.

Note that Hypothesis 1.1 and Hypothesis 2 jointly imply higher coordination rates in
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B2 W2

B1 130, 130 230, r

W1 r, 230 170, 170

Figure 10: A reverse Strategic Advantage Game, with r ∈ [190, 220].

the heterogeneous (High vs. Low labels) than in the homogeneous (High vs. High and

Low vs. Low) treatments, at least for sufficiently high incentives. We indeed find that

coordination rates are higher in heterogeneous than in homogeneous treatments, and on

the preferred action profile of the Low labels (see Appendix A.3.1).

5 Competing Explanations

There are at least two alternative theories that one might consider to explain the exper-

imental results shown in the previous section. The first is the view that the increased

coordination that we observe in the heterogeneous treatments in the main experiment is

merely the result of the asymmetry in the group labels, which may themselves serve as a

coordination device (label focality). This view, however, is inconsistent with our finding

that H label subjects react to their opponent while L label subjects do not.

The second competing explanation is the view that our mechanism is akin to granting

the low type a sort of first-mover advantage (FMA), in the sense that it is as if the low

type “commits” to stop reasoning first, at his preferred action profile, while the high type

then concedes. To see that this is not an adequate way to summarize the insights of our

model, consider the reverse Strategic Advantage (RevSA) game that we presented in the

introduction, which we reproduce in Fig. 10 labeling players’ actions Bi and Wi to denote,

respectively, the action associated with the ‘best’ and ‘worst’ equilibrium for player i.

This game leads to predictions within our model, which are distinct from those of the

BoS game. To see this, first note that the lower bound on the r parameter ensures that both

(B1,W2) and (W1, B2) are equilibria, whereas the upper bound ensures that the ranking

over the two is maintained within the parameter range (that is, ui(Bi,Wj) > ui(Wi, Bj)).

Second, the value of reasoning is such that, when a1,k−1
1 = B1, then v1(k) = max{230 −

230, r− 130} = r− 130, and when a1,k−1
1 = W1, then v1(k) = max{r− r, 230− 170} = 60.

Thus, within the relevant parameter range of r ∈ [190, 220], it is the Wi action that is

associated with the higher value of reasoning, and such a value is increasing with r.

Hence, in the RevSA game, the prediction of our model contrasts with the view that

the low type receives a first-mover advantage: in this game, such a theory would predict

that equilibrium coordination occurs on the profile most favorable to the player who is

regarded to be of lower strategic sophistication; our model delivers the opposite prediction.

Similarly, the label focality argument predicts that coordination occurs on the equilibrium

preferred by the same label in both games, and thus contrasts with the predictions of

our model across the two games. Hence, the two games together can be used to discern
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between our model and these competing explanations.

Finally, we note that the latter discussion also addresses another possible view, ac-

cording to which, perhaps due to fairness concerns, higher sophistication subjects may

willingly ‘give in’ and allow less sophisticated opponents to obtain a higher payoff. If this

view is aligned with the prediction of our model in the BoS game, it yields an opposite

prediction for the RevSA game. Hence, these two games can also be used to discern our

model from such an alternative ‘fairness-based’ explanation.

5.1 FMA vs Cost-Benefit: Testable Hypotheses

The game used in the experiment takes exactly the form given in Figure 10, but adopting

the X,Y and W,Z labels for the actions of the row and column players, respectively, and

letting r ∈ {190, 220}, depending on the treatment. As with the BoS, the subjects played

four versions of this game: with r = 190 against someone with the same label or against

someone with the other label, and with r = 220 against an opponent with each label.

By the same logic above, and under the same identification assumptions discussed in

Section 4.2, our model implies the following testable hypotheses in the RevSA game:

Hypothesis 3 (Cost-Benefit in the RevSA Game) Under our Cost-Benefit model,

in the RevSA game the following holds:

1. pH(RevSA-Hom+) ≤ pH(RevSA-Het+): the percentage of High subjects playing their

own preferred action in the RevSA game with sufficiently high values of r is higher

when they play against subjects with the other label than against subjects with the

same label.

2. pL(RevSA-Hom+) = pL(RevSA-Het+): the percentage of Low subjects playing their

own preferred action in the RevSA game with sufficiently high values of r is the same

when they play against subjects with the other or with the same label.

Note that these predictions are opposite to the view that the low type gets a first-

mover advantage (FMA) under heterogeneous matching. Maintaining the same notation,

the predictions of the FMA-model lead to the following testable hypotheses:

Hypothesis 4 (FMA in the RevSA Game) Under the FMA-view, in the RevSA game

the following holds:

1. pH(RevSA-Hom+) > pH(RevSA-Het+)

2. pL(RevSA-Hom+) < pL(RevSA-Het+).
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Figure 11: Results RevSA Game - High Label Players: Proportion choosing X (their
preferred action). Hom (Hom+) refers to the low (high) payoff version of the RevSA
game played against another player from the same label. Het (Het+) refers to the low
(high) payoff version of the RevSA game played against another player from the other
label.

5.2 RevSA Game Results

Figure 11 displays the choices of the High label players in the four versions of the RevSA

game. For the High label group, more than 19% of players choose their preferred action,

X, when playing against someone with a High label in the low payoff version of the RevSA

game. When the opponent changes to being a Low label player, this increases to nearly

35%. As with the BoS game, we conduct a paired Wilcoxon signed rank test to confirm

whether the two distributions of actions are statistically significantly different when the

opponent’s label changes. We obtain a p-value of 0.014. We also conduct panel regressions

(Table 5 in the Appendix) to assess whether changing the opponent has a significant effect

on the action choice and find that the effect is significant at the 1% level. These results go

against the first-mover advantage explanation in that the High label players choose their

preferred action more frequently when playing against a Low label player in the RevSA

game while the opposite is true for the BoS game.

For the high payoff version of the game, we find that nearly 23% choose their preferred

action when playing against another High label player. This percentage increases to more

than 25% when the opponent changes to being a Low label player. However, this increase

is not statistically significant (p-value of 0.720 for the Wilcoxon signed rank test, see also

regression results in Table 5). Thus, also under high payoffs, the High label players do

not concede to the Low label players. We can therefore reject the first-mover advantage

argument.

For the Low label players, more than 41% choose their preferred action when playing

against another Low label player while around 47% select their preferred action against
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Figure 12: Results RevSA Game - Low Label Players: Proportion choosing X (their
preferred action). Hom (Hom+) refers to the low (high) payoff version of the RevSA
game played against another player from the same label. Het (Het+) refers to the low
(high) payoff version of the RevSA game played against another player from the other
label.

a High label opponent (see Figure 12). This difference is not statistically significant (p-

value= 0.845 for the Wilcoxon signed rank test). In the high payoff version, just over

38% select their preferred action against a Low label opponent and close to 33% against a

High label opponent. Again, this difference is not statistically significant (p-value= 0.804

for the Wilcoxon signed rank test). The finding that there are no statistically significant

changes to the choices by the Low label players is consistent with the model’s predictions.

While we can use the RevSA game to assess whether the first-mover advantage is

a likely explanation for observed behaviour, our model does not make a prediction for

games in which the value of reasoning is flat, and hence it cannot make a prediction for

the low payoff version of the RevSA game. For the high payoff version, we predict that a

greater fraction of High label subjects chooses X against a Low, compared to a High, label

opponent. As stated above, we find that under the high payoff version, behavior changes

in the desired direction but that the change is small. Observed behavior is also consistent

with the existence of beliefs over noise players. For instance, if a fraction p of players

believe that the opponents play either W or Z with equal probability, then the fraction

of row players who play Y should increase. This may explain why such a large fraction of

players selects Y (as well as the increase in the average number of players who choose Y

as payoffs increase). Notice that the existence of noise players would be consistent with

our predictions and is consistent with what we observe.

In addition to the BoS and the RevSA games, subjects also played four versions of

a Stag Hunt game and of an Asymmetric Matching Pennies game. These were included

to examine the viability of some alternative mechanisms, such as risk dominance, that
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may guide subjects’ choices in these games and to check whether the basic logic of the

model also holds in non-coordination games. Our findings for these additional games are

discussed in Appendices A.3.3 and A.3.4.

6 Conclusion

Individuals often face problems in which they must attempt to coordinate with other indi-

viduals with whom they rarely interact, with no possibility to communicate and no clear

focal points, therefore having only introspective reasoning to resort to. Up to date there

has been no mechanism to explain whether or under what conditions coordination might

be achieved in these situations. This paper provides such a theory and an experimental

test of its predictions.

We show that, even without focal points, coordination is the outcome of a large class

of introspective reasoning processes, as long as players view each other as having different

cognitive abilities, and that they agree on their relative sophistication. Thus, while it

is common to view homogeneity and shared culture as leading to increased coordination

(e.g., Kets and Sandroni (2019), Kets et al. (2022), and Kets (2022)), in the absence of

focal points it is heterogeneity that leads to coordination. Note that here, rather than

agreeing on the norms, players agree on relative cognitive abilities. But this agreement is

not in itself enough – if players believe that they have similar sophistication, then they

are less likely to coordinate.

Our model further predicts that, in the case of the BoS game with heterogeneous

sophistication, the increased coordination occurs on the preferred outcome of the less

sophisticated player. This may perhaps seem surprising, under the view that the more

sophisticated player should be the one to ‘win’. When testing our joint predictions for the

BoS game in an experiment, we find strong support for our model.16

At the same time, our mechanism might seem reminiscent of a kind of first mover

advantage (FMA), in which the player viewed to be less sophisticated has the advantage

of stopping reasoning first, so that the more sophisticated one must concede. We show,

however, that in different games (cf. Fig. 10) the attribution of the strategic advantage

is reversed, in that coordination occurs on the equilibrium that is more favorable to the

more sophisticated player. First, this shows that our model sheds light on the features of

the strategic interaction that determine whether, conditional on being in a heterogeneous

matching, it is more beneficial to be perceived as the relatively more or less sophisticated

player. Second, this observation clarifies that the predictions of our model are distinct

16As we explain in Appendix A.4, a level-k model with a mixture of types would generate the same
distribution across all of our treatments, and hence it would not be consistent with the experimental
results. Similarly, QRE would also generate the same distribution across all of the belief treatments (for
each payoff specification), unless of course one allows the logit parameter to freely change across treatments,
in which case it would not be falsifiable. Also, there may be multiple QRE for the same logit parameter,
and in those cases the QRE-model provides no insight about the equilibrium selection, which is one of the
central questions of our experimental investigation.
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from the ones that would obtain under FMA. We test this alternative mechanism and find

that it is inconsistent with the subjects’ behavior. We also conduct experiments using

well-known additional games (stag hunt and an asymmetric matching pennies game) and

again find support for our model. Taken jointly, the experimental results strongly support

the mechanism introduced in this paper.

The discussion above naturally gives rise to questions about individuals’ incentives to

be perceived as more or less sophisticated, if they had the opportunity to manipulate such

perceptions. In many settings, this is not easily done, because perceived sophistication

may be due to some characteristic of the group to whom they belong, or because it

may be the result of the agent’s past behavior in different situations, with different payoff

configurations. For instance, a professor would arguably be taken to be more sophisticated

than a student, or a more experienced agent than a less experienced agent. That said, for

settings in which agents could freely manipulate their perceived sophistication, our theory

provides insight into when they would want to appear as more sophisticated and when

they would want to appear less sophisticated. In the BoS game, for instance, they would

rather be perceived as less sophisticated, while in the RevSA game they would prefer to

be perceived as more. In both settings, however, they would prioritize wanting to appear

as having a different, rather than similar, degree of sophistication.

In closing, the role of cognitive sophistication, and specifically beliefs over relative

cognitive sophistication, has increasingly been recognized in game theoretical settings (cf.

Proto, Rustichini, and Sofianos (2019, 2022); Lambrecht, Proto, Rustichini, and Sofianos

(2022)). This paper shows that such beliefs can play an important role in achieving co-

ordination even in isolated settings. Note that we have focused on simple static games,

such as the BoS game, which are the standard archetypes to investigate fundamental ques-

tions of coordination, but richer strategic settings (such as repeated games, for instance)

may raise further dimensions to players’ reasoning, due to the complexity of the game

and the possibility of observing and reacting to the opponents’ actions, and accounting

for their reactions, and so forth. Interestingly, however, despite the important differences

between these environments and the games we consider, the qualitative predictions that

we obtain from our model are in line with the experimental findings of Proto, Rustichini,

and Sofianos (2019, 2022) and Lambrecht, Proto, Rustichini, and Sofianos (2022), on the

effects that these beliefs have on the behavior in the repeated BoS.17 A more systematic

extension of our model to dynamic games therefore seems to be a promising avenue for

future research.

17In these papers, the BoS game is played repeatedly, and hence players can use their moves as a signal
of their intelligence (cf. Lambrecht, Proto, Rustichini, and Sofianos (2022)). Despite these differences,
there there are very interesting similarities in the results. For example, increasing the payoffs’ inequalities
(tantamount to increasing r in our notation) helps the relatively less intelligent subjects (results 3.5 and
3.6 in Lambrecht, Proto, Rustichini, and Sofianos (2022)).
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Esteban-Casanelles, T. and D. Gonçalves (2020): “The effect of incentives on

choices and beliefs in games: An experiment,” .

Fe, E., D. Gill, and V. Prowse (2022): “Cognitive skills, strategic sophistication, and

life outcomes,” Journal of Political Economy, 130, 2643–2704.

Fischbacher, U. (2007): “z-Tree: Zurich toolbox for ready-made economic experi-

ments,” Experimental economics, 10, 171–178.

Frederick, S. (2005): “Cognitive reflection and decision making,” Journal of Economic

perspectives, 19, 25–42.

32



Gill, D. and V. L. Prowse (2022): “Strategic Complexity and the Value of Thinking,”

Tech. rep., Institute of Labor Economics (IZA).

Goeree, J. K. and C. A. Holt (2001): “Ten little treasures of game theory and ten

intuitive contradictions,” American Economic Review, 91, 1402–1422.

Guesnerie, R. (2001): Assessing Rational Expectations: Sunspot multiplicity and eco-

nomic fluctuations, MIT Press, Cambridge, MA.

——— (2005): Assessing Rational Expectations 2: Eductive stability in economics, MIT

Press, Cambridge, MA.

Halevy, Y., J. Hoelzemann, and T. Kneeland (2021): “Magic Mirror on the Wall,

Who Is the Smartest One of All?” .

Jagau, S. (2023): “To Catch a Stag: Identifying Payoff-and Risk-Dominance Effects in

Coordination Games,” SSRN 4463969.

Kagel, J. H. and A. Penta (2021): “Unraveling in guessing games: An experimental

study (by Rosemarie Nagel),” in The Art of Experimental Economics, Routledge, 109–

118.

Kets, W. (2022): “Organizational Design: Culture and Incentives,” mimeo.

Kets, W., W. Kager, and A. Sandroni (2022): “The value of a coordination game,”

Journal of Economic Theory, 201, 105419.

Kets, W. and A. Sandroni (2019): “A belief-based theory of homophily,” Games and

Economic Behavior, 115, 410–435.

——— (2021): “A theory of strategic uncertainty and cultural diversity,” The Review of

Economic Studies, 88, 287–333.

Lambrecht, M., E. Proto, A. Rustichini, and A. Sofianos (2022): “Intelligence

Disclosure in Repeated Interactions,” working paper.

Morris, S. and H. S. Shin (2003): Global Games: Theory and Applications, Cambridge

University Press, 56–114, Econometric Society Monographs.

Nagel, R. (1995): “Unraveling in guessing games: An experimental study,” The Ameri-

can Economic Review, 85, 1313–1326.

Proto, E., A. Rustichini, and A. Sofianos (2019): “Intelligence, personality, and

gains from cooperation in repeated interactions,” Journal of Political Economy, 127,

1351–1390.

——— (2022): “Intelligence, Errors, and Cooperation in Repeated Interactions,” The

Review of Economic Studies, 89, 2723–2767.

33



Raven, J. (1994): Raven’s Advanced Progressive Matrices & Mill Hill Vocabulary Scale,

Harcourt Assessment.

Schelling, T. (1960): The Strategy of Conflict, Harvard University Press, Cambridge,

MA.

Sugden, R. (1995): “A theory of focal points,” The Economic Journal, 105, 533–550.

Weber, R. A. (2001): “Behavior and learning in the “dirty faces” game,” Experimental

Economics, 4, 229–242.

34



A Appendix

A.1 Additional Regression Tables for BoS Game

(1) (2)
Choice of X Choice of X

High Payoff Dummy 0.126* 0.0189
(1.84) (0.38)

Constant 0.548*** 0.349***
(15.74) (13.89)

Observations 209 212

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 3: BoS Game: Panel (fixed effects) regression results testing Prediction 2.1 (H label
players).
Model (1) gives the choice of preferred action X for H label players in the BoS game
against a H label opponent while Model (2) gives the results against a L label opponent.
Standard errors are clustered at the subject level.

(1) (2)
Choice of X Choice of X

High Payoff Dummy 0.0698 -0.0233
(0.68) (-0.24)

Constant 0.535*** 0.628***
(10.43) (12.88)

Observations 86 86

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 4: BoS Game: Panel (fixed effects) regression results testing Prediction 2.2 (L label
players).
Model (1) gives the choice of preferred action X for L label players in the BoS game
against a L label opponent while Model (2) gives the results against a H label opponent.
Standard errors are clustered at the subject level.
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A.2 Regression Tables for RevSA Game

Low payoff games High payoff games
(1) (2)

Choice of X Choice of X

Opponent has H label -0.163*** -0.0286
(-2.66) (-0.54)

Constant 0.352*** 0.256***
(11.59) (9.64)

Observations 210 211

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 5: RevSA Game: Panel (fixed effects) regression results for H label players.
Model (1) gives the results for the low payoff versions of the RevSA game and (2) for the
high payoff versions. Standard errors are clustered at the subject level.

Low payoff games High payoff games
(1) (2)

Choice of X Choice of X

Opponent has H label 0.0488 -0.0476
(0.39) (-0.49)

Constant 0.416*** 0.377***
(6.42) (7.71)

Observations 84 85

t statistics in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Table 6: RevSA Game: Panel (fixed effects) regression results for L label players.
Model (1) gives the results for the low payoff versions of the RevSA game and (2) for the
high payoff versions. Standard errors are clustered at the subject level.

36



A.3 Additional Results

A.3.1 Coordination Results

While our experimental hypotheses are for individual behavior, we also analyze whether

coordination is more likely to occur under heterogeneous treatments (High vs. Low labels)

than homogeneous treatments (High vs. High and Low vs. Low), and on the preferred

action profile of the Low labels. Here we do not provide formal hypotheses on coordination

comparing homogeneous to heterogeneous treatments for equal payoffs, as they would

require stronger assumptions on the comparability of the L and H groups, which we have

not imposed.

When we examine coordination outcomes for the low payoff BoS where L and H

players are matched with each other, we find that 40.87% coordinate on the equilibrium

most favorable to the L players (Tables 7 and 8).

H row player: percentage of (Y,Z) Low payoff High payoff

vs. H opponent 18.86% 23.71%
vs. L opponent 40.87% 38.22%

Table 7: Results BoS Game - H label row players, % coordination on the opponents’
favorite equilibrium.

When we compare this to the frequency with which the same equilibria are achieved

when subjects are matched with an opponent of the same label, it becomes apparent how

strongly this increases under heterogeneous matching.18 When H play against other H

players, we find that only 18.86% coordinate on the (Y, Z) equilibrium under homogeneous

matching, which corresponds to the action profile in which the row players play the equilib-

rium most favorable to their opponent. Thus, this percentage is less than half that under

heterogeneous matching. In fact, even if we consider, for H versus H, the equilibrium

most favorable to the row players (X,W ), we find that the percentage of coordination is

31.56%, which is also lower than the 40.87% who coordinate on the equilibrium favorable

to the L players in the heterogeneous treatment.

L row player: percentage of (X,W) Low payoff High payoff

vs. L opponent 28.00% 34.00%
vs. H opponent 40.87% 38.22%

Table 8: Results BoS Game - L label row players, % coordination on the player’s favorite
equilibrium.

Similarly, considering L vs L, when we consider (X,W ) the percentage of coordination

18To calculate the coordination percentages for the homogeneous treatments, we split the groups ac-
cording to their exogenous row - column classification. For the heterogeneous treatments instead, Tables
7 and 8 provide the combined percentages, given the interchangeability of the two groups.
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is 28.00%, more than twelve points lower than 40.87%. Even if we consider (Y, Z), the

equilibrium favorable to the column players, coordination is equal to 22.00%, which is

even lower. In the case of the high payoff version, in the heterogeneous treatment 38.22%

coordinate on the equilibrium favorable to the L players. In the homogeneous treatment

with H versus H, we find that 23.71% coordinate on the (Y,Z) equilibrium, which again

is substantially lower than for the heterogeneous treatment. Again, even if we consider

(X,W ) instead (for H vs. H), we find that 19.94% coordinate, which is markedly lower

than 38.22%. For the L vs. L subjects, 34.00% coordinate on (X,W ), which is around

four points lower than 38.22%, and 16.00% coordinate on (Y,Z), which is less than half

of 38.22%. Again, heterogeneous matching leads to a marked increase in coordination on

this equilibrium, compared to either H vs H or L vs L, and for either equilibrium profile

of the homogeneous treatments. Overall, therefore, our results show that coordination

on the equilibrium preferable to the L player increases considerably when matching is

heterogeneous, both for low and high payoff.

A.3.2 BoS: Individual Level Analysis of Theoretical Predictions

In this section, we check whether the aggregate results, which are in line with our predic-

tions, might be driven by a small number of subjects. To see whether this is the case, we

conduct an individual level analysis. For this analysis, we use the predictions of the model

for the BoS game and assess whether subjects violate these. We find that there are very

few violations at the individual level.

Violations are calculated in the following way: For the H label group, if a subject

chooses X against a H label opponent in the low payoff version, they should not switch

to playing Y when the payoff increases. We find that 80% of subjects do not violate this

condition. Similarly, if a subject plays Y against a L label subject, thus expecting the

equilibrium favorable for the L player to occur, they should not switch to playing X when

payoffs increase. If a H subject already played Y against another H label player, they

should keep doing so when the opponent changes to a L label player. If a subject violates

any of these conditions, we count it as a violation and add the total number of violations

for each subject. A histogram of the number of violations is shown in Figure 13. The

figure shows that the number of violations is generally very low with nearly 90% of H

label subjects having only one or no violation. Individual level results are thus highly

consistent with those at the aggregate level.

For the Low label subjects, if someone selected X against a L opponent for the low

payoff version of the game, they should not switch to playing Y for any of the other

versions of the BoS game. Figure 14 shows that around two thirds of subjects have one

or fewer violations, again suggesting that aggregate and individual results are comparable.
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Figure 13: Histogram displaying the number of violations of H label subjects of conditions
on behavior set out by the model
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Figure 14: Histogram displaying the number of violations of L label subjects of conditions
on behavior set out by the model
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A.3.3 Stag Hunt

Stag Hunt was included to assess whether risk dominance might provide an alternative

explanation for observed behavior.19 This game, shown in Fig.15, also uses a standard

set-up with a low and a high payoff version (r = 50 and r = 70 respectively). As with the

BoS and the RevSA games, subjects played each of the two payoff versions against a Low

and against a High opponent and were informed of their opponent’s label.

W Z

X r, r 0, 30

Y 30, 0 30, 30

Figure 15: The Stag Hunt Game, with r ∈ {50, 70}.

In general, we find that a large majority of subjects chooses X, which is the preferred

action. For the High label players in the low payoff version of the game, we find that nearly

81% choose X when facing a High label opponent while around 75% select X against a

Low label opponent. For the high payoff version, we find similar results in that nearly 86%

select X against a High label opponent and close to 81% against a Low label opponent

(see Table 9). The differences in the frequency with which X is played across opponent

labels are not statistically significant (Wilcoxon signed rank test).

H players Against H label Against L label % point difference across opponents

Low payoff 80.95% 75.47% −5.48 (0.302)

High payoff 85.85% 81.13% −4.72 (0.302)

Table 9: Results Stag Hunt - High Label Players: % choosing X (their preferred outcome).
The exact p-values for paired Wilcoxon signed rank tests on differences across opponents
are given in brackets.

For the Low label players in the low payoff version, we observe that close to 77% select

X against both another Low label player or a High label player. For the high payoff version

of the game, we find that around 88% select X against a Low label opponent, while close

to 74% select X against a High label opponent (see Table 10). For the high payoff version,

the difference in behavior across different opponent labels is not statistically significant as

measured by a Wilcoxon signed rank test.

These results are largely consistent with our predictions. Note that in this game we

predict that all subjects are (weakly) more likely to choose X for a sufficiently high payoff

version of the game, and that there should not be a change in likelihood of playing X

against the Low type compared to the High.

19Note that risk-dominance in the BoS always predicts that players choose the action associated with
their most preferred equilibrium. For a thorough analysis of the experimental evidence on Stag Hunt and
risk-dominance, see Jagau (2023).
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L players Against L label Against H label % point difference across opponents

Low payoff 76.74% 76.74% 0 (1.000)

High payoff 88.37% 74.42% −13.95 (0.109)

Table 10: Results Stag Hunt - Low Label Players: % choosing X (their preferred outcome).
The exact p-values for paired Wilcoxon signed rank tests on differences across opponents
are given in brackets.

Also note that the result that subjects are more likely to choose X for the high payoff

version is also consistent with risk dominance, since Y is risk dominant for the low payoff

version andX is dominant for the high payoff version. But what is perhaps more surprising

is that a large majority of subjects chooses X even for the low payoff version, which goes

against risk dominance.20 This result is fully consistent with our model, however. The

value function here is asymmetric, in that there is a larger gain from continuing reasoning

at Y than at X, both for the low and high payoff versions. Therefore, while we fully expect

that risk dominance would be the dominant force for lower payoffs, it is noteworthy that

the mechanism described in this paper may overtake risk dominance close to the threshold

at which the payoff switch should theoretically occur.

A.3.4 Asymmetric Matching Pennies

In order to check whether the basic logic of our model also holds in non-coordination

games, subjects also played an Asymmetric Matching Pennies (AMP) game. As with the

other games, they played four versions, a low payoff and a high payoff version against both

a Low and a High label opponent. In the low payoff version, the incentives of the row player

are nearly flat, i.e. the asymmetry is slight. The asymmetry is much more pronounced in

the high payoff version. As such, we expect to find a larger effect on behavior for the high

payoff version. From the perspective of our model, the opponent has a flat value function

and so, without additional assumptions on the path of reasoning, we can only predict that

as payoffs increase, the frequency with which X is chosen should increase. This is exactly

what we observe for both labels.

W Z

X r, 20 20, 40

Y 20, 40 40, 20

Figure 16: The Asymmetric Matching Pennies (AMP) Game, with r ∈ {41, 160}.

Considering first the row players, we find that 58.82% of the High label players select

X against another High label player, while nearly 55% select X against a Low label player,

in the low payoff version of the game (see Table 11). This difference is not statistically

significant as measured by a Wilcoxon signed rank test (p-value =0.819). For the high

20Assuming a concave utility for money would not explain this result either.
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payoff version of the game, 62.26% of the High label players select X against a H opponent

and 60.38% against a L opponent (difference is not statistically significant as measured

by a Wilcoxon signed rank test). For the Low label row players, we find that 52% play

X against another Low label player (see Table 12). Against a High label player, this

increases to 60%. For the high payoff specification, 64% of Low label row players select X

against either label. Differences in behaviour across opponent labels are not statistically

significant (Wilcoxon signed rank test).21

H row players Against H label Against L label % point difference across opponents

Low payoff 58.82% 54.72% −4.10 (1.000)

High payoff 62.26% 60.38% −1.88 (1.000)

Table 11: Results AMP - High Label row Players: % choosing X (their preferred outcome).
The exact p-values for paired Wilcoxon signed rank tests on differences across opponents
are given in brackets.

L row players Against L label Against H label % point difference across opponents

Low payoff 52.00% 60.00% 8.00 (0.6875)

High payoff 64.00% 64.00% 0.00 (1.000)

Table 12: Results AMP - Low Label row Players: % choosing X (their preferred outcome).
The exact p-values for paired Wilcoxon signed rank tests on differences across opponents
are given in brackets.

Considering next the column players, we find that High label column players in the low

payoff specification choose Z with 69.23% frequency against High label players. Against

Low label players, they choose Z with close to 68%. This percentage increases to 75%

and 79.25% against a High, resp. Low, label opponent when they play the high payoff

version of the AMP game. The results are given in Table 13. The High label column

players thus best respond to the row player selecting X and anticipate the increase in the

choice of X after their opponent’s payoff from playing X increases. For the Low label

column player, we find that close to 47% choose Z against another Low label player in

the low payoff specification. This percentage increases to nearly 56% against a High label

opponent. For the high payoff specification, 72.22% choose Z against a Low label opponent

and nearly 67% against a High label opponent. Table 14 gives the results. Differences

in behavior across opponent labels is not statistically significant for either L or H label

column players (examined using a Wilcoxon signed rank test). Note that the model implies

that the column player’s value function is flat, but their opponent’s is not. For the low

payoff version, the opponent’s value function is nearly flat so that we do not have a clear

21In comparison with Goeree and Holt (2001), results for the low payoff version are similar to their
symmetric matching pennies game, while slightly more H label subjects choose X, likely owing to the
small asymmetry. While the effect for the high payoff version, with the large asymmetry, is smaller than
in their experiment, the effect goes in the same direction.
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prediction of which action column players should select. However, for the high payoff

specification, the row players are predicted to choose X more frequently. If the column

players form beliefs about their opponent’s incentives, here, they should best respond by

playing Z more frequently. Our findings are fully consistent with this prediction.

H column players Against H label Against L label % point difference across opponents

Low payoff 69.23% 67.92% −1.31 (1.000)

High payoff 75.00% 79.25% 4.25 (0.727)

Table 13: Results AMP Game - High Label column Players: % choosing Z. The exact
p-values for paired Wilcoxon signed rank tests on differences across opponents are given
in brackets.

L column players Against L label Against H label % point difference across opponents

Low payoff 47.06% 55.56% 8.5 (0.688)

High payoff 72.22% 66.67% −5.55 (1.000)

Table 14: Results AMP Game - Low Label column Players: % choosing Z. The exact
p-values for paired Wilcoxon signed rank tests on differences across opponents are given
in brackets.

A.3.5 Raven test versus our cognitive test

In order to compare both tests, we first examine the correlation between the two tests.

This is fairly high at 24.17%. Perhaps more interesting is whether resulting groups are cor-

related. Here, we find that the tests agreed on 24.18% of group allocations. This suggests

that either the tests measure a different characteristic or that subjects were fatigued when

they completed the second test at the end of the experiment, leading to inconsistent results.

Most importantly for our experiment, however, is the question of whether subjects

believed in the tests’ validity and thus in the labels of subjects. Here, we find that belief

in the tests is very similar across both treatments (Our Test first versus Raven test first).

A Kolmogorov-Smirnov test cannot reject the null that responses to the question about

belief in the test come from the same distribution for both versions of the cognitive test

(p-value = 0.834 for the Combined Kolmogorov-Smirnov test).

A.3.6 Unlabeled Treatment

Subjects who participated in the unlabeled treatments played the same BoS, RevSA,

AMP and Stag Hunt games as the subjects in the labeled treatments. However, they were

not informed of their own performance in the test or of that of their opponents. They

completed two versions of each game, the low and the high payoff versions, against an

unlabeled opponent (who was randomly drawn from the unlabeled group).
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We find that 50% of subjects choose X in the low payoff version and roughly 47% in

the high payoff version. This suggests that neither action is particularly salient.

For the RevSA game, 29.4% of unlabeled subjects play X in the low payoff game and

close to 26.5% in the high payoff game. This suggests that subjects anticipate that their

opponent is likely to choose W and best-respond by playing Y .

In the Stag Hunt game, nearly 80% of subjects choose X in the low payoff game and

82.35% in the high payoff version. This level is comparable to the behavior of subjects in

the labeled treatments. Table 15 gives the percentages for all of the above games.

BoS RevSA Stag Hunt

Low payoff 50.00% 29.41% 79.41%

High payoff 47.06% 26.47% 82.35%

Table 15: Results for BoS, RevSA and Stag Hunt - Unlabeled Players: % choosing X
(their preferred outcome)

For the AMP game, we find that row players choose their preferred action X with

close to 70% in the low payoff game. When the asymmetry increases, the frequency with

which they choose X increases to roughly 76.5%. Column players have flat incentives and

in the low payoff version, i.e. with the small asymmetry, they behave as if the game was

symmetric in the sense that 50% pick either Z or W . In the strongly asymmetric version,

however, more than 82% of subjects play Z, which is the best response if the opponent

chooses X. As with the labeled treatments, this suggests that subjects react to changes

in the value function of their opponents. Results are given in Table 16 below.

Row Column

Low payoff 70.59% 50.00%

High payoff 76.47% 82.35%

Table 16: Results for AMP - Unlabeled Players: % of row (column) players choosing X
(Z)

A.4 Alternative Models

It may be natural to ask whether our model is equivalent to standard level-k with a

mixture of more and less sophisticated players. In the following, we explain that this is

not the case, even under very permissive assumptions about the levels of the subjects.

To illustrate, take the BoS game, and assume that the Low label subjects are of lower

level than the High labels subjects. First, note that this assumption would not suffice to

make predictions on behavior. Even so, fixing any level for the subjects, the level-k model

would generate the same behavior across all treatments in our experiment. This is in
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contrast with the predictions of our model and with the observed behavior.

Second, note that if we were to assume that the subjects changed their beliefs over

their opponents when facing different labels, then we would have an issue defining level-k

behavior. In particular, consider a High player facing another High player. From within

the level-k model, it cannot be that a player takes the other player to be of the same level

as his own, and so behavior here is not well-specified. Being more permissive here with

the level-k model and assuming that when facing the same level, they best respond to the

level below, we would be back to the issue discussed above – there would be no variation

across treatments. Hence, even with a very ‘hands-on’ approach, a level-k model with a

higher and lower cognitive type could not explain the findings.

Similarly, QRE would also generate the same distribution across all of the belief treat-

ments (for each payoff specification), unless of course one allows the logit parameter to

freely change across treatments, but then it cannot be used to make predictions across

treatments. It would also not be falsifiable. Moreover, for some logit parameters there

may be multiple QREs, and in those cases the QRE-model does not provide a criterion

for equilibrium selection, which is one of the central questions of our paper.

A.5 Experimental Design

A.5.1 Experimental Structure

Before starting the experiment, subjects were randomly assigned the role of either row or

column player. The subjects first completed either Our Cognitive Test or the Raven Test.

Based on their performance, they were then assigned to the Low label, the High label

or the Unlabeled group. Subjects first played the BoS game, then the Stag Hunt game,

the RevSA game and finally the Asymmetric Matching Pennies (AMP) game. The order

of the games was the same for all subjects. They first saw the main game, the BoS, to

prevent that other games influence behavior in the game that is the focus of the analysis.

Furthermore, subjects completed the Stag Hunt between the BoS and the RevSA games

to ensure that subjects were paying attention to the fact that the BoS and the RevSA

were different games. They saw the Asymmetric Matching Pennies game last. While the

order of the Stag Hunt and the Asymmetric Matching Pennies games could have been

randomized, this order was chosen such that subjects completed the symmetric games

first, before exposing them to the asymmetric one. Due to the symmetric nature of the

first three games, players saw the games displayed as the row player’s game; for the AMP

game, the game was shown as either the row or the column version. Before each type

of game, i.e. BoS, RevSA, Stag Hunt or AMP, subjects had to complete comprehension

checks. The four versions of the games were played in the following sequence. First,

the low payoff version against an opponent with the same label as them, then against

an opponent with the opposite label. Second, the high payoff version against someone

from the same and then from the other label group. After completion of the main games,
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subjects answered a question on how much they believed performance in the test was

correlated with performance in the games. They then played the alternative test, i.e.

either the Raven test or Our Cognitive Test, depending on which test they had already

completed. Afterwards, they participated in a hypothetical 11-20 game, subjects in the

labeled treatments played both against a hypothetical H and a L label player, and answered

three questions from the Cognitive Reflection Test (Frederick (2005)).

A.5.2 Experimental Instructions

The experiment was conducted in Spanish as all participants were students at a Spanish

university. The instructions displayed here are translations to English. Text that subjects

saw is shown in italics. Note that the cognitive test contained the same questions as the

cognitive tests used in Alaoui and Penta (2016) and Alaoui et al. (2020) and that instruc-

tions for the individual questions of the test, the Mastermind game, the Centipede game

and the Muddy Faces game, are thus identical.

Instructions for Our Cognitive Test

This test consists of three questions. You must answer all three within the time limit stated.

Instructions Mastermind game

In this question, you have to guess four numbers in the correct order. Each number is

between 1 and 7. No two numbers are the same. You have nine attempts to guess the four

numbers. After each attempt, you will be told the number of correct answers in the correct

place, and the number of correct numbers in the wrong place.

Example: Suppose that the correct number is: 1 4 6 2.

If you guess: 3 5 4 6, then you will be told that you have 0 correct answers in the correct

place and 2 in the wrong place.

If you guess: 3 5 6 4, then you will be told that you have 1 correct answer in the correct

place and 1 in the wrong place.

If you guess: 3 4 7 2, then you will be told that you have 2 correct answers in the correct

place and 0 in the wrong place.

If you guess: 1 4 6 2, then you will be told that you have 4 correct answers, and you have

reached the objective.

Notice that the correct number could not be (for instance) 1 4 4 2, as 4 is repeated twice.
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You are, however, allowed to guess 1 4 4 2, in any round.

You have a total of 90 seconds per round: 30 seconds to introduce the numbers and 60

seconds to view the results.

Instructions Centipede game

Consider the following game. Two people, Antonio and Beatriz, are moving sequentially.

The game starts with 1 euro on the table. There are at most 6 rounds in this game:

Round 1) Antonio is given the choice whether to take this 1 euro, or pass, in which case

the game has another round. If he takes the euro, the game ends. He gets 1 euro, Beatriz

gets 0 euros. If Antonio passes, they move to round 2.

Round 2) 1 more euro is put on the table. Beatriz now decides whether to take 2 euros, or

pass. If she takes the 2 euros, the game ends. She receives 2 euros, and Antonio receives

0 euros. If Beatriz passes, they move to round 3.

Round 3) 1 more euro is put on the table. Antonio is asked again: he can either take 3

euros and leave 0 to Beatriz, or pass. If Antonio passes, they move to round 4.

Round 4) 1 more euro is put on the table. Beatriz can either take 3 euros and leave 1 euro

to Antonio, or pass. If Beatriz passes, they move to round 5.

Round 5) 1 more euro is put on the table. Antonio can either take 3 euros and leave 2 to

Beatriz, or pass. If Antonio passes, they move to round 6.

Round 6) Beatriz can either take 4 euros and leaves 2 to Antonio, or she passes, and they

both get 3.

Assume Antonio and Beatriz are infinitely sophisticated and rational and they each want

to get as much money as possible. What will be the outcome of the game?

a) Game stops at Round 1, with payoffs: (Antonio: 1 euro Beatriz: 0 euros)

b) Game stops at Round 2, with payoffs: (Antonio: 0 euro Beatriz: 2 euros)

c) Game stops at Round 3, with payoffs: (Antonio: 2 euros Beatriz: 1 euro)

d) Game stops at Round 4, with payoffs: (Antonio: 1 euro Beatriz: 3 euros)

e) Game stops at Round 5, with payoffs: (Antonio: 3 euros Beatriz: 2 euros)

f) Game stops at Round 6, with payoffs: (Antonio: 2 euros Beatriz: 4 euros)

g) Game stops at Round 6, with payoffs: (Antonio: 3 euros Beatriz: 3 euros)

You have 8 minutes in total for this question.
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Instructions Muddy Faces game

There are three people, A, B and C, each with a circle on their forehead. The circle can

be white or black. Every person can see the circle on the others’ forehead but not the one

on their own. In reality, A and C have a white circle and B has a black circle:

They are given the following instructions, in this order, and can observe the reaction of

the others:

If you know that your circle is black, take a step forward. Who will take a step forward?

Now, they are informed that at least one of them has a black circle. They are then asked:

If you know the color of your circle, take a step forward. Who will take a step forward?

They observe the reaction to the previous question (in other words, they see who took a

step forward). They are asked: Now that you have seen who stepped forward, if you know

the color of your circle, take a step forward. Who will take a step forward? (Include only

those new persons who take a step forward, don’t include anyone who already took a step

forward in the previous questions.)

Scoring of Our Cognitive Test

The Mastermind game gave a total of 100 points if the correct sequence was entered. Oth-

erwise, subjects received 15 points for a correct number in the correct place and 5 points

for a correct number in the wrong place, in the last round. The Centipede game gave a

total of 100 points if the correct answer was given. Otherwise, they received 60, 45, 30,

15, or 0 points depending on how close their answer was to the true one. For the Muddy

Faces game, subjects obtained 120 points if each sub-question was correctly answered. Al-

ternatively, they received partial points depending on how closely their reasoning followed

the correct iterative reasoning. The points were summed up and divided by 3.2 to create

a maximum of 100 points.

Instructions for Raven Test

Subjects completed Set I to keep the time of the experimental sessions below two hours.

They completed a practice question to show what it means for a piece to be “correct” in

the sense that it completes the pattern shown on the screen. Instructions for each of the

twelve questions were the following:

Please select the correct piece from the eight pieces shown below. You can select the piece

by clicking on the corresponding number.
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Scoring of Raven Test

The Raven Test was scored by calculating the percentage of correct answers to the twelve

matrices that the subjects had to complete.

Instructions for BoS, RevSA, Stag Hunt, and AMP games

Your score in the test was: very high (low).

The other player is:

- A person with a very high (low) score in the test.

- Furthermore, they have the same information as you.

To make your choice, click on one of the buttons.

The game matrix was displayed below the text. The specific matrices of each game can

be found in the main text. Each version of a game was shown on a separate screen.

Instructions for “Belief in Test” question

Please indicate to what degree you agree with the following statement, on a scale from 1

(I do not agree) to 5 (I fully agree):

“A higher score in the test indicates that the person can more easily reason in the games

of this experiment.”

Instructions for Hypothetical 11-20 game

Imagine a game with following structure:

Pick a number between 11 and 20. You will always receive the amount that you announce,

in tokens.

In addition:

- If you give the same number as your opponent, you receive an extra 10 tokens.

- If you give a number that’s exactly one less than your opponent, you receive an extra 20

tokens.

Imagine that your opponent is someone who:

- has a low/very high score in the test.

- has been given the same rules as you.

Instructions for CRT questions

For the wording of the three CRT questions, please see Frederick (2005).
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A.6 Glossary

This section contains a glossary of the terminology used to describe the experimental de-

sign and results.

• BoS: Battle of the Sexes game.

• BoS-Hom: the low payoff version of the Battle of the Sexes game, played against an

opponent with the same cognitive sophistication label as the decision-maker.

• BoS-Het: the low payoff version of the Battle of the Sexes game, played against an

opponent with a cognitive sophistication label different from the decision-maker’s.

• BoS-Hom+: the high payoff version of the Battle of the Sexes game, played against

an opponent with the same cognitive sophistication label as the decision-maker.

• BoS-Het+: the high payoff version of the Battle of the Sexes game, played against an

opponent with a cognitive sophistication label different from the decision-maker’s.

• RevSA: Reverse Strategic Advantage game.

• RevSA-Hom: the low payoff version of the Reverse Strategic Advantage game, played

against an opponent with the same cognitive sophistication label as the decision-

maker.

• RevSA-Het: the low payoff version of the Reverse Strategic Advantage game, played

against an opponent with a cognitive sophistication label different from the decision-

maker’s.

• RevSA-Hom+: the high payoff version of the Reverse Strategic Advantage game,

played against an opponent with the same cognitive sophistication label as the

decision-maker.

• RevSA-Het+: the high payoff version of the Reverse Strategic Advantage game,

played against an opponent with a cognitive sophistication label different from the

decision-maker’s.

• AMP: Asymmetric Matching Pennies game.
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