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Abstract

Individuals often attach a special meaning to attaining a certain goal, and getting past a

threshold marks the difference between what they consider a success or a failure. In this paper

we take a standard von Neumann-Morgenstern Expected Utility setting with an exogenous

reference point that separates success from failure, and define attitudes towards success and

failure as features of preferences over lotteries. The distinctive feature of our definitions is

that they all concern a local reversal of the decision maker’s risk attitude, between risk-

aversion and risk-lovingness, across the reference point. Our findings provide a unified view

of several well-known models of reference-dependent preferences in economics, finance and

psychology, and also include novel representations. We order the intensity of each attitude in

the space of preferences, and characterize these orderings in terms of properties of the utility

representation, with indices analogous to the well-known Arrow-Pratt index of risk aversion.

Our findings shed new light on frequently used notions of reference-dependent preferences,

and suggest new ways of conducting comparative statics in these settings. Finally, we argue

that our framework may prove useful to incorporate, within a standard economic model,

behavioral manifestations of personality traits that have received increasing attention within

the empirical economics literature.
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1 Introduction

Individuals often attach a special meaning to attaining a certain goal, and whether or not they

get past a threshold marks the difference between what they perceive as being successful and

what they perceive as having failed. This general metaphor of success and failure emerges in

different forms, both in economics and in psychology, in ways that are not fully understood.

The study of personality, for instance, considers attitudes towards achieving a goal (in tenac-

ity, perseverance and conscientiousness; cf. Deary et al. (2009)), as does the vast literature

on reference dependence, with the notion of gains and losses (Kahneman and Tversky (1979,

1992)).1 In development economics too, the idea of aspirations (Genicot and Ray (2017)) relates

to achieving a goal that one aspires to. In business and finance, benchmarking and aspiration

level models (Payne et al. (1980, 1981)) refer to the objective of reaching a specific target, and

they are closely related to the idea of “gambling for resurrection” that is familiar in political

science.

The formal models above are apparently disconnected, but they all share the feature that

their utility representations induce reversals of the decision maker’s risk-attitude, around the

critical threshold: for instance, an otherwise risk-averse agent may be risk-loving over lotteries

that can mark the difference between a failure and a success. Concerning the personality traits

mentioned above, which are increasingly used in empirical economics (e.g., Heckman and Ru-

binstein (2001), Almlund et al. (2011), Gill and Prowse (2016), Proto and Rustichini (2015)

Proto, Sofianos and Rustichini (2019, 2020), Heckman et al. (2021), etc.), but for which there

is currently no agreed upon formal representation, we perhaps have an intuitive understanding

of their meaning, but we lack a definition of these traits in terms of preferences and choice, the

way we have for instance with risk and time attitudes. More broadly, we do not know whether

the shared metaphor of success and failure, and the corresponding attitudes which are studied

in these different areas of research, are in some way linked to each other, and what are their

fundamental economic underpinnings.

The aim of this paper is to systematically analyze various attitudes towards success and

failure underlying the concepts alluded to in several branches of research. We do this while re-

maining within the standard von Neumann-Morgenstern expected utility (EU) framework, which

we supplement with an exogenous reference point, x0, that serves as the threshold between suc-

cess and failure: any outcome above x0 is a success, any outcome below is a failure. Within

this setting, we define the various attitudes towards success and failure in terms of primitive

preferences over monetary lotteries, just as is done for risk-aversion, and we obtain represen-

tations of each attitude in terms of properties of the corresponding Bernoulli utility function.

1Reference-dependence has a long history in economics, starting with the seminal works of Markowitz (1952)
and Kahneman and Tversky (1979), and it has been explored from several angles, typically departing from the
von Neumann-Morgenstern axioms. References for theoretical work include Ok and Masatlioglu (2007, 2014),
Masatlioglu and Raymond (2016), Wakker (2010), etc. Models with endogenous reference point include Koszegi
and Rabin (2006, 2007), Kibris, Masatlioglu and Suleymanov (2021). For recent work on the determination of
reference points, see for instance Cerulli-Harms, Goette and Sprenger (2019), and for a neuroscience-based models
connected to prospect theory, see Steiner and Stewart (2016) and Netzer, Robson, Steiner and Kocourek (2022).
As we explain below, in this paper we maintain the expected utility axioms, and take the reference point to be
exogenous. For a survey of the most closely related ideas, see O’Donoghue and Sprenger (2018).
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These representations highlight the connections between the various attitudes, and show that

the seemingly distinct concepts discussed in different research fields interconnect in ways that

may not have seemed obvious, prima facie. We also define orderings over the intensity of these

attitudes, and characterize them in terms of transformations over their utility representations,

thereby providing a means to perform comparative statics exercises, in a manner analogous

to risk-aversion indices such as the Arrow-Pratt coefficient. These orderings and their corre-

sponding indices thus provide tractable models of decision-making that can be used to capture

economically relevant personality traits using standard economics notions and techniques.

Motivated by the common feature of the disparate models mentioned above, we aim to under-

stand how different attitudes towards success and failure affect a decision maker’s willingness to

take risk, and induce reversals between risk-lovingness and risk-aversion around the threshold be-

tween perceived failure and success. To this end, we maintain all the von Neumann-Morgenstern

axioms for an EU representation, as well as monotonicity (i.e., more money is preferred to less).

Remaining within EU allows us to focus purely on attitudes towards success and failure and to

pinpoint their determinants, while abstracting away from other factors, such as reweighting of

the probabilities. As we will show, doing so leads to key insight into these attitudes, that would

have been easy to miss otherwise.

To isolate the role played by the critical threshold in inducing reversals of the individual’s

risk-attitude, we further assume that, at least over some (arbitrarily small) left- and right-

neighborhood of the threshold, the agent can be (weakly) risk-averse or risk-loving, but does

not switch from risk-aversion to risk-lovingness for lotteries that are ‘on the same side’ of x0. In

contrast, all the attitudes we consider do entail a switch of risk attitude for lotteries that go across

the threshold, in the sense that they attach positive probability to an outcome x′ > x0 and to an

outcome x < x0. The various attitudes differ in the way that these reversals manifest themselves.

The idea in our approach is to take such reversals, which are present in several models of

reference-dependence, as the defining feature of these behavioral phenomena. As our results

show, this novel perspective provides a unified view on seemingly unrelated models of reference-

dependent preferences, as well as shed a new light on familiar notions and patterns of behavior.

This includes the shape of the utility function used in prospect theory (leading to loss aversion

and diminishing sensitivity), the aspiration representation used in Development Economics (e.g.,

Genicot and Ray (2017), and the discontinuous model from the Finance literature (cf., Payne

et al. (1980, 1981), Diecidue and Van DeVen (2008)). It further allows for a choice-based

identification of the reference point, precisely for its inducement of the reversals in risk attitude.

The first two attitudes we consider are what we call failure avoidance and success attachment.

Both attitudes posit a reversal of the risk-attitude for binary lotteries that go across x0: over

such lotteries, individuals would be risk-averse for some and risk-loving for others. The difference

between the two is given by the source of the reversal, which could be primarily driven by the

potential failures, or by the potential successes. Failure avoidance concerns the agent’s desire to

avoid the failure region, no matter by how small a margin. The idea is that, for any potential

failure x in some left-neighborhood of x0, the agent is willing to take a risk in order to attain

a potential success x′ > x0, no matter how small, as long as the probability of failure is high
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enough. Success attachment instead captures the agent’s desire to end up in the success region,

no matter how small the potential failure might be. Symmetrically to failure avoidance, the

idea is that for any potential success x′ in some right-neighborhood of x0, the agent is willing to

take a risk in order to avoid a potential failure x < x0, no matter how close x is to the critical

threshold, as long as the probability of failure is above a certain threshold.

In both attitudes, the agent switches from risk-lovingness to risk-aversion, as the probability

of success increases. But the two definitions are symmetric in the role played by the potential

failures and successes. This captures that, with failure avoidance, the agent’s objective is to

pursue (via his willingness to take some risk) any success to get out of the failure region, while

success attachment denotes the willingness to take some risk in order to avoid any failure.

Our first results characterize the shape of the utility function for both attitudes, and jointly

reveal a striking finding: failure avoidance and success attachment cannot co-exist, except when

there is a discontinuity at x0. They also reveal that a special case of failure avoidance, without

success attachment, characterizes the hugely influential representation used in prospect theory,

namely that of the kinked S-shaped utility function (e.g., Kahneman and Tversky (1979)). An

important offshoot of our analysis therefore is to provide a characterization of this functional form

in terms of the primitives that are standard in the theory of decisions under risk, i.e,. the agent’s

preferences over lotteries.2 Hence, independent of one’s position in the debate on the specification

of the outcome space (e.g., Rabin (2000), Rabin and Thaler (2001), Rubinstein (2001); see also

O’Donoghue and Sprenger (2018)), our results formally show that key behavioral phenomena

that are commonly associated with prospect theory – namely, loss aversion and diminishing

sensitivity – may be captured by risk preferences within a completely standard expected utility

setting. As we discuss below, this characterization also brings in new insights about both

the prospect theory utility representation and on loss aversion, especially with respect to how

to perform interpersonal comparisons over these prominent notions. Our approach therefore

provides a new perspective that complements the active literature on this topic.3

We then introduce attitudes that mirror failure avoidance and success attachment, which

we call failure acceptance and success seeking. The difference between these attitudes and the

previous ones is that, rather than having reversals in which risk aversion is ‘at the top’ (i.e.,

for high probability of success), the switch occurs in the opposite direction, with risk-aversion

‘at the bottom’. In the case of failure acceptance, for instance, the agent is willing to take a

risk to pursue an arbitrarily small failure, only when the probability of success is high enough.

With success seeking, instead, the individual is unmotivated to take a risk to avoid an arbitrarily

small failure, unless the likelihood of success is high enough. This last attitude is perhaps not

2A large empirical and experimental literature has explored loss aversion under risk, eliciting subjects prefer-
ences over lotteries (for some classic and recent references, see, e.g., Camerer et al. (1997), Abdellaoui, Bleichrodt
and Paraschiv (2007), Choi, Fisman, Gale and Kariv (2007), Crawford and Meng (2011), Imas (2016), Imas,
Sadok and Samek (2016), Bernheim and Sprenger (2021), Ellis, Kariv and Ozbay (2022), etc.). Theoretical in-
vestigations of its foundations have typically focused on settings with certainty or specified properties directly
in the space of utility representations (cf. Wakker (2010) and references therein, and Footnote 8 below). Our
characterization results on loss aversion, both of the utility representation and on the index, are directly in terms
of preferences over lotteries.

3See, for instance, Cerreia-Vioglio, Dillenberger and Ortoleva (2023), for recent work on loss aversion in a
model of Cautious Utility, which is neither within EU nor cumulative prospect theory.
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as prevalent as the others, but we characterize it for completeness.

Equipped with the representation of the four attitudes, we then study how they interconnect

with one another. In doing so, we obtain a complete map of how they determine the shape of

the utility function, when they are displayed both individually and jointly (when possible). This

is best seen graphically (see Figure 3, p. 13), but we briefly discuss some of the findings. As

previously mentioned, the kinked S-shaped utility function is a special case of failure avoidance

that precludes success attachment, and also cannot co-exist with failure acceptance or success

seeking. Another noteworthy intersection is that of success attachment and failure acceptance,

which characterizes an aspiration representation that has been used in development economics

(e.g., Genicot and Ray (2017, 2019)). This intersection instead cannot co-exist with failure

avoidance or success seeking. Finally, unlike failure avoidance or success attachment, which can

only co-exist with a utility function that is discontinuous at x0, as in the so called “aspiration

level” models in the finance literature (e.g., Payne et al. (1980, 1981), Diecidue and Van de Ven

(2008)), failure acceptance and success seeking are mutually exclusive attitudes.

Following the definition of attitudes towards success and failure, we introduce orderings over

the degrees of each attitude. We show that what may seem to be natural orderings would in

fact lack crucial features. For instance, consider the case of failure avoidance, and the special

case of the kinked S-shaped utility function that is typically used in prospect theory. It may

seem natural to rank an agent with a sharper kink to be more failure avoidant (as with the

standard definition of loss aversion, cf. Kobberling and Wakker (2005)). But this would be

incomplete: an agent with a sharper kink, all else being equal, is more loss averse, but he also

exhibits less manifestations of failure avoidance. A sharper kink therefore does not suffice to

rank individuals by this attitude. We rectify this issue by defining our rankings directly in terms

of the (more transparent) primitive preferences, and obtain as a result indices in the utility space

that characterize each ranking. These indices involve both a ranking of the sharpness of the

kink at the threshold, and measures of concavity of the Bernoulli utility functions around it.

Put together, our approach serves to understand attitudes towards success and failure, to

characterize them in terms of properties of the Bernouilli utility function, and to provide choice-

based indices for their intensity. It further shows at a foundational level the ways in which

seemingly disparate models that involve some form of reference-dependent preferences are linked.

Our map of attitudes towards success and failure include several of the most influential repre-

sentations of reference-dependence, as well as novel ones. As we demonstrate, the ways in which

these preferences are connected depends fundamentally on the direction and source of reversal

of risk attitude around the reference point.

The rest of the paper is organized as follows: Section 2 introduces the general framework

and the maintained axioms. Section 3 introduces the four attitudes towards success and failure,

as well as the corresponding representation theorems. Section 4 discusses the joint implications

of the main representation theorems, and discusses some special cases of interest, such as the

kinked S-shape utility of prospect theory, aspirations, and the discontinuous case. Section 5

focuses on the interpersonal comparisons of the four attitudes (both their behavioral definitions

and their utility characterizations). Section 6 concludes.
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2 Model

We let R denote the space of monetary outcomes, and let L denote the set of simple lotteries over

monetary outcomes, with typical elements p, q, r ∈ L. For any x, x′ ∈ R, we let ∆ (x, x′) ⊆ L

denote the set of lotteries with support included in {x, x′}. With a slight abuse of notation, in

that case we let p denote both the lottery itself, as well as the probability p ∈ [0, 1] attached to

the high prize, x′ ≥ x (x receives probability (1− p)). For any lottery p ∈ L, we let Ep denote

its expected value, and for any x ∈ R, we let δx ∈ L denote the degenerate lottery which assigns

probability one to x.

We assume that the decision maker (DM)’s preferences are represented by a weak order %,

with symmetric and asymmetric parts � and ∼, respectively. For any p ∈ L, we let CE (p) ∈ R
denote the certainty equivalent of p, if it exists, as the degenerate lottery δCE(p) which satisfies

δCE(p) ∼ p. We maintain throughout all the von Neumann-Morgenstern (1954, vNM) axioms

for an expected utility (EU) representation, as well as monotonicity:

� [Weak Order:] % is complete and transitive.

� [Independence:] For any p, q, r ∈ L and α ∈ [0, 1], p % q if and only if αp+ (1− α)r %

αq + (1− α)r.

� [Archimedean Property:] For all p, q, r ∈ L such that p � q � r, there exists an

a, b ∈ (0, 1) such that ap+ (1− a)r � q � bp+ (1− b)r.

� [Monotonicity:] δx′ � δx if and only if x′ > x.

We recall that the first three axioms (i.e., the standard vNM axioms) hold if and only if the

preferences have an EU representation, i.e. there exists a Bernoulli utility function u : X → R
such that p % q if and only if

∑
x∈X p(x)u(x) ≥∑x∈X q(x)u(x). We also remind the reader that

these axioms alone do not impose any particular structure on u (cf. Kreps (1987), Gilboa (2010)).

In particular, they impose neither continuity of u nor concavity or convexity properties, but they

do identify the utility function uniquely, up to positive affine transformations. If monotonicity

is also assumed, then u is increasing. For later reference, it also useful to recall the standard

(model-free) definition of risk-aversion, as well as some basic results:

Definition 1. Preferences % exhibit (global) risk-aversion if δEp % p for every p ∈ L.

Result. Under the maintained axioms above: (1.) If p is s.t. CE(p) exists, then δEp % p if and

only if CE(p) ≤ Ep; (2.) If CE (p) exists for every p ∈ L, then % exhibits (global) risk aversion

if and only if CE (p) ≤ Ep; (3.) %i exhibits (global) risk aversion if and only if ui is concave.

As explained in the introduction, we aim to understand how different attitudes towards

success and failure affect a decision maker’s willingness to take risk, and induce reversals between

risk-lovingness and risk-aversion, for lotteries that can mark the difference between what he

perceives as a failure or as a success. To this end, we let x0 ∈ R denote the (exogenous)

threshold, that separates successful outcomes (x′ > x0) from failures (x < x0). All the attitudes

we consider do entail a switch of risk attitude for lotteries that go across the threshold: that is,

6



for lotteries that attach positive probability to an outcome x′ > x0 and to an outcome x < x0,

the agent would be risk-averse for some probability of success, and risk-loving for others.4

In order to isolate the role that the threshold plays in inducing reversals of the agent’s risk-

attitude, we further assume that at least for some (arbitrarily small) left- and right-neighborhoods

of the threshold, the agent can be (weakly) risk-averse or risk-loving, but does not switch be-

tween one and the other for lotteries that are supported over such (arbitrarily small) intervals,

and “on the same side” of x0. Hence, all our notions will have in common the following fea-

tures: (i) There is no reversal of the agent’s risk-attitude (be it risk-aversion or risk-lovingness,

or risk-neutrality) over lotteries whose prizes are all on the same side of the reference point;

(ii) There is a reversal of the agent’s risk-attitude for lotteries across the reference point: over

such lotteries, the agent would be risk-averse for some and risk-loving for others. The various

attitudes will differ in the way that such reversals manifest themselves.

To formalize these ideas, for any interval (xl, xw) that contains x0, and for any x ∈ [xl, xw],

we define the set Sxwxl (x, x0) of all outcomes y ∈ [xl, xw] which are on the same side of x0 as

outcome x.5 Then, we can define the property of Same-Side No Reversal over an interval:

Definition 2 (Same-Side No Reversal). Let xl < x0 < xw. Preferences % display Same Side

No-Reversal (SSNR) over the interval (xl, xw) if, for any x ∈ [xl, xw] , @x′ ∈ Sxwxl (x, x0) s.t.

δEp′ � p′ and p � δEp for some p, p′ ∈ ∆(x, x′).

3 Attitudes Towards Success and Failure

In this section we introduce attitudes towards success and failures, and the corresponding rep-

resentation theorems. All such attitudes posit a reversal of the risk-attitude for binary lotteries

that go across x0 – that is, lotteries that assign prize x′ > x0 with probability p ∈ (0, 1), and

x < x0 otherwise: over such lotteries, individuals would be risk-averse for some and risk-loving

for others. The difference between them is given by the source of the reversal, which could be

primarily driven by the potential failures, or by the potential successes, and by the direction of

such reversal. We start with failure avoidance and success attachment, before moving to their

“duals”, success seeking and failure acceptance.

3.1 Failure Avoidance and Success Attachment: Model-Free Definitions

We introduce next the formal definition of failure avoidance and success attachment. As dis-

cussed, failure avoidance concerns the agent’s desire to avoid the failure region, no matter by

how small a margin. The idea is that, for any potential failure x in some left-neighborhood of x0,

the agent is willing to take a risk in order to attain a potential success x′ > x0, no matter how

small, as long as the probability of failure is high enough. But once the probability of success is

high enough, he reverts instead to being risk-averse. We formalize these ideas as follows:

4As we further discuss below, it will be easy to see from the definitions that the position of the threshold can
be identified from choice. We nonetheless fix x0 from the outset in order to simplify the notation.

5Formally, Sxwxl (x, x0) := {y ∈ [xl, xw] : sign (x− x0) = sign (y − x0)} .
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Definition 3 (Failure Avoidance). Preferences % display failure avoidance at x0 ∈ R if ∃xl, xw :

xl < x0 < xw s.t.: (i) % display SSNR over (xl, xw); and (ii) ∀x ∈ [xl, x0), ∃x̄ ∈ (x0, xw] : ∀x′ ∈
(x0, x̄], ∃p, p′ ∈ ∆(x, x′) such that p > p′, δEp � p and p′ � δEp′.

The formal definition of success attachment is completely symmetrical to that of failure

avoidance, with the roles of failures and successes swapped:

Definition 4 (Success Attachment). Preferences % display success attachment at x0 ∈ R if

∃xl, xw : xl < x0 < xw s.t.: (i) % display SSNR over (xl, xw); and (ii) ∀x′ ∈ (x0, xw], ∃x
¯
∈

[xl, x0) : ∀x ∈ [x
¯
, x0), ∃p, p′ ∈ ∆(x, x′) such that p > p′, δEp � p and p′ � δEp′ .

In both attitudes, the agent switches from risk-lovingness to risk-aversion, as the probability

of success increases. But notice that the order of quantifiers over failures and successes is

different. This captures that, with failure avoidance, the agent’s objective is to pursue (via

his willingness to take some risk) any success to get out of the failure region, while success

attachment denotes the willingness to take some risk in order to avoid any failure. The difference

between the two concepts is thus given by the ultimate source of the reversal of the agent’s risk-

attitude. Common to both attitudes is the direction of the switch, with the agent going from

risk-loving to risk-averse as the probability p of the success outcome increases.

We note that these notions (including the SSNR requirement, as well as the attitudes we

introduce in Section 3.3), are local notions, in the sense that they refer to properties of the

agent’s preferences for lotteries supported on some neighborhood of the threshold. In fact, the

definitions refer to a particular attitude at a threshold x0, with no implication that x0 is the

only point at which the agent displays a specific attitude. So, for instance, different thresholds

may be relevant for the same agent, and trigger the same or different attitudes at different

levels. For example, the same gambler may display failure avoidance for gambles that can mark

the difference between ‘winning something’ and ‘losing’ (i.e., for x0 = 0$), and display instead

success attachment over gambles that may take him right above or right below some other salient

threshold, e.g., for x̂0 = 1M$.6 The definitions above also clarify that, while such thresholds are

exogenous in our model, in the sense that they don’t depend on the menu of choices that are

presented to the agent, their position can be identified from choice: a particular outcome x̂ ∈ R
is a ‘threshold’ if and only if the agent’s preferences over lotteries around it satisfy the kind of

reversals of risk-attitude that are entailed by the definitions (as well as the SSNR property on

either side of it – cf. Definitions 2-6).

3.2 Failure Avoidance and Success Attachment: Representation Theorems

Before moving to the representation theorems, it is useful to first introduce some notation. Given

the Bernoulli utility function that represents the agent’s preferences (its existence is ensured by

the vNM axioms), u : X → R, and the threshold x0 ∈ R, we let u− (x0) := limx→x−0
u (x),

6Markovitz (1952) provides an early argument for the existence of multiple points of risk-attitude reversals.
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Figure 1: Failure Avoidance: Bernoulli Utility Representation

Graphical illustration of the possible Bernoulli utility functions under failure avoidance.

u+ (x0) := limx→x+0
u (x), and for any [xl, xw] and any x ∈ [xl, xw] \ {x0}, we let

m(x) =

{
u(x)−u+(x0)

x−x0 if x > x0
u(x)−u−(x0)

x−x0 if x < x0

denote the average slope of the utility function in the interval (x0, x) or (x, x0), depending on

whether x > x0 or x < x0. (By monotonicity, m(x) ≥ 0 for any x). Also define m− :=

limx→x−0
m(x) and m+ := limx→x+0

m(x), and K := u+(x0)− u−(x0).

We state next the first representation theorem for failure avoidance.

Theorem 1 (Failure Avoidance: Representation). Under the vNM plus monotonicity, % dis-

plays failure avoidance at x0 if and only if there exist xw, xl ∈ R : xl < x0 < xw such that either:

(i) u is continuous on (xl, xw), strictly convex on (xl, x0), either concave or convex on (x0, xw),

and such that m− > m+; or (ii) u is discontinuous at x0, it is either convex or concave on each

interval (xl, x0) and (x0, xw), and such that m+ <∞.

The logic is as follows (see Fig. 1). Consider first the continuous case. With failure avoid-

ance, the agent is strictly risk-loving, over lotteries that go across the threshold, whenever the

probability of the outcome in the failure region is sufficiently high. For this reason, his utility

must be strictly convex on that region (locally, on an interval (xl, x0)). But since there must

be a reversal from risk-lovingness to risk-aversion, this convexity must be counteracted by some

form of concavity. This concavity does not come from concave utility on the success region,

because the switch from risk-lovingness to risk-aversion occurs for binary lotteries that include

any success, no matter how small (i.e., how close to x0). Instead, it must come at the threshold

itself, and it must come in form of a kink. Hence, m− > m+. The requirement on the success

region is simply that due to SSNR, that there is concavity or convexity locally, without any

imposition on which of the two it is.

This intuition captures two important features of the continuous case, whose logic will be

adapted to all the attitudes we discuss: (i) since the attitude requires a reversal, it requires

countervailing forces, one that provides risk-lovingness (convexity) and one that provides risk-

aversion (concavity), and (ii) there is an asymmetry between the two regions. In the failure
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Figure 2: Success Attachment: Bernoulli Utility Representation

Graphical illustration of the possible Bernoulli utility functions under success attachment.

region, there is convexity over an interval, because the agent aims to avoid that entire region.

An analogous curvature (concavity) is not required on the success region; instead, there is a kink

at the threshold x0 that captures the concavity.

Considering now the discontinuous case, the switch from risk-lovingness at the bottom to

risk-aversion at the top comes from the discontinuity at x0 directly. Intuitively, on the left of

the discontinuity, the agent is willing to take a risk to ‘jump up’ to the success side. But if

success is likely enough, so that it is likely enough to be on the success side, then the agent is

risk-averse so as to avoid being on the left of the jump down. As for the requirement of convexity

or concavity on either side, this is again due to SSNR. Note that, unlike the continuous case,

there is no apparent asymmetry between the two regions in the logic above. This is because

here, the discontinuity trumps the need for curvature on the left and the kink at the thresholds.

The next result, analogous to Theorem 1, characterizes the properties of the Bernoulli utility

function for preferences that display Success Attachment, as per Def. 4:

Theorem 2 (Success Attachment: Representation). Under the vNM plus monotonicity, % dis-

plays Success Attachment at x0 if and only if there exist xw, xl ∈ R : xl < x0 < xw such that

either: (i) u is discontinuous at x0, it is either convex or concave on each interval (xl, x0) and

(x0, xw), and such that m− <∞; or (ii) u is continuous on (xl, xw), strictly concave on (x0, xw),

either concave or convex on (x0, xl), and such that m− < m+.

A similar logic to that of the previous theorem holds (see Fig. 2). Here as well, there is an

asymmetry for the continuous case between the two regions. But now, note that it is the success

region over which the agent is risk-averse due to success attachment, and so here the curvature

on an interval must be on the right. As it is risk-aversion, this corresponds to concavity of u.

The counteraction to obtain a reversal can again not come from curvature on the failure region,

as the agent is aiming not to be in any failure, no matter how small. Hence, it must again come

from a kink at x0. Since now the kink must counteract concavity, it must provide convexity. In

other words, it must be that m− < m+.

As for the discontinuous case, the logic here is identical, as is the result. Risk-aversion at the

top is induced by the desire not to jump down, while risk-lovingness at the bottom is induced
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by the desire to jump up. Again, the discontinuity trumps the curvature on either side, and

hence there is no requirement for concavity or convexity other than that due to SSNR.

While the definitions of the two attitudes and the logic behind the theorems above are

related, note that there is a conflict in the continuous case of the representation theorems. The

kink for failure avoidance must provide concavity (m− > m+) to counteract the convexity in the

failure region, but for success attachment it must provide convexity (m− < m+) to counteract

convexity in the success region. These two are incompatible, and so the two attitudes cannot

coexist in the continuous case. They can only coexist in the discontinuous case, where the jump

itself is responsible for the reversal, and provides the two counteracting forces.

Corollary 1. Under the vNM plus monotonicity, % displays both Success Attachment and

Failure Avoidance at x0 if and only if it is discontinuous at x0.

Notice also that a special case of the continuous representation of failure avoidance is one

that takes the classical form, as in Fig. 1, of loss aversion: u is convex in the failure region,

concave in the success region, and the slope on the left is steeper than on the right (m− > m+).

It is only a special case because, while convexity and this kink shape are required for failure

avoidance, concavity at the right is not. By the corollary above, it is immediate that loss aversion

is incompatible with success attachment. We will return to this point more formally once all of

the attitudes have been defined.

3.3 Failure Acceptance and Success Seeking

In this section we introduce attitudes that mirror failure avoidance and success attachment,

in the sense that rather than having reversals in which risk-aversion is ‘at the top’ (i.e., for

high probability of success), the switch occurs in the opposite direction, with risk-aversion ‘at

the bottom’. The only difference compared to Definitions 3 and 4 is thus the direction of the

inequality between the p and p′ over which the agent is risk-averse and risk-loving:

Definition 5 (Failure Acceptance). Preferences % display failure acceptance at x0 ∈ R if

∃xl, xw : xl < x0 < xw s.t.: (i) % display SSNR over (xl, xw); and (ii) ∀x ∈ [xl, x0), ∃x̄ ∈
(x0, xw] : ∀x′ ∈ (x0, x̄], ∃p, p′ ∈ ∆(x, x′) such that p < p′, δEp � p and p′ � δEp′.

Definition 6 (Success Seeking). Preferences % display success seeking at x0 ∈ R if ∃xl, xw : xl <

x0 < xw s.t.: (i) % display SSNR over (xl, xw); and (ii) ∀x′ ∈ (x0, xw], ∃x
¯
∈ [xl, x0) : ∀x ∈ [x

¯
, x0),

∃p, p′ ∈ ∆(x, x′) such that p < p′, δEp � p and p′ � δEp′ .

In words, with failure acceptance the agent is willing to take a risk to pursue an arbitrarily

small success, as long as the probability of success is high enough. With success seeking, instead,

the individual is willing to take a risk to avoid an arbitrarily small failure, if success is sufficiently

likely. The next two results are analogous to the previous representation theorems, for these

two attitudes:

Theorem 3 (Failure Acceptance: Representation). Under the vNM plus monotonicity, % dis-

plays Failure Acceptance at x0 if and only if there exist xw, xl ∈ R : xl < x0 < xw such that: u
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is continuous on (xl, xw), strictly concave on (xl, x0), either concave or convex on (x0, xw), and

such that m+(x0) > m−(x0).

Theorem 4 (Success Seeking: Representation). Under the vNM plus monotonicity, % displays

Failure Acceptance at x0 if and only if there exist xw, xl ∈ R : xl < x0 < xw such that: u is

continuous on (xl, xw), strictly convex on (x0, xw), either concave or convex on (x0, xl), and

such that m−(x0) > m+(x0).

The logic of these results is completely analogous to those we discussed in the previous

section, adequately adjusting the roles of convexity/concavity and the restrictions on the ‘kink’.

In particular, where failure avoidance requires convexity in the failure region and the kink

to have m− > m+ to counteract it, failure acceptance requires concavity and m− < m+.

Likewise, where success attachment requires concavity in the success region and m− < m+,

success seeking requires convexity in the success region and m− > m+. As a consequence,

unlike the attitudes discussed in the previous sections, Success Seeking and Failure Acceptance

are mutually exclusive. This is because here too the continuous cases cannot coexist, since they

require kinks in different directions, and furthermore they do not have discontinuous analogues

where they can. In the next section we discuss the relationship with Success Attachment and

Failure Avoidance, and more generally the relationship between all four attitudes.

4 Attitudes Towards Success and Failures: A Full Map

What is especially informative at this point is to reflect on the full picture that emerges from the

four representations theorems considered jointly, and the corollaries that follow from drawing the

implications of all possible combinations of conjunctions and disjunctions of the four attitudes,

which we summarize in Figure 3, and in the corollaries in the next Section, which will discuss

some important special cases that emerge from Theorems 1-4.

4.1 Special Cases of Interest

As previously mentioned, some special cases of our representation are especially significant, and

have emerged in different contexts in different parts of the literature.

Prospect Theory Utility Function and Loss Aversion: A widely used representation

within economics and psychology corresponds to the case, typically with x0 = 0, where the

utility function is convex on the losses (failure) and concave on the gains (success), and that

it has a kink around the reference point such that m− > m+. The first feature is typically

referred to as diminishing sensitivity, the second as loss aversion, to capture the idea that losses

loom larger than commensurate gains. This representation is widely used in cumulative prospect

theory and in the related literature (e.g., Kahneman and Tversky (1979); see also Abdellaoui

(2000), Wakker (2010), O’Donoghue and Sprenger (2018), and references therein, both with a

non-linear rank dependent weighting function and with a linear weighting function (the latter
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Figure 3: Attitudes Towards Success and Failures: A Full Map
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Graphical illustration of the logical relationship between the four representation theorems.

is especially common in applications). In the following we maintain a linear weighting function,

as the vNM axioms are maintained throughout this paper.7

A frequent specification of this functional form, for instance, takes v : R+ → R to be a

concave increasing function defined on the gains domain, and letting the overall utility function

u : R→ R be such that:

u(x) :=

{
v(x− x0) if x > x0

−λv(−(x− x0)) if x < x0
, (1)

where the parameter λ > 1 is used to capture the notion of loss aversion (e.g., Wakker (2010),

Imas (2016), etc.), and is equivalent to the ratio m−/m+ in our notation.

Despite the importance of this representation in the literature, to the best of our knowledge

no axiomatic characterization has been provided for it in terms of the underlying preferences

over lotteries.8 Theorems 1-4 jointly provide such a characterization, thereby complementing

7We maintain linear probability weighting here to focus on attitudes towards success and failure and to isolate
them from other confounds, such as probability distortion. Allowing for non-linear weighting functions and
exploring the possible composition effects would be an interesting extension for future research. We note, however,
that doing so in this setting would require separate reweighting functions for failures and success. Otherwise,
given the appropriate adaptations of SSNR and our attitudes to an RDU setting, the weighting function would
have to be both convex and concave (and, hence, linear), thereby reducing to EU. To avoid such a high number
of parameters, we do not include the RDU extension in this paper, so as to focus on the key innovations first.

8There have been several important contributions in the axiomatic literature on CPT focusing on the distinct
point of separating the utility function from the probability weighting function, which in our case is taken to be
linear (see Wakker (2010)). Wakker and Zank (2002) obtain a loss-aversion shape in a representation with power
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the literature along several dimensions. First, focusing only on loss aversion, without imposing

diminishing sensitivity, it is immediately clear from Fig. 3 that the case of loss aversion (i.e., a

continuous utility function with m−/m+ > 1) is completely characterized by the union of failure

avoidance and success seeking, with none of the other attitudes. Formally:

Corollary 2. Under the maintained vNM and monotonicity axioms, preferences are represented

by a Bernoulli utility function that displays Loss Aversion at x0 (i.e. continuous, with m− < m+)

if and only if they display Failure Avoidance or Success Seeking, but none of the other attitudes.

As previously mentioned, loss aversion is incompatible with success attachment, which joint

with failure avoidance would entail a discontinuity. But it is also incompatible with failure ac-

ceptance, whose kink goes in the opposite direction. If we further impose diminishing sensitivity,

to obtain the kinked S-shape utility function of Prospect Theory, then we must further rule out

Success Seeking, for which the utility function must be convex in the success region. This char-

acterization therefore provides insight into the nature of preferences that are compatible with

the Prospect Theory utility representation. Formally:

Corollary 3. Under the maintained vNM and monotonicity axioms, preferences are represented

by a Bernoulli utility function that displays the Prospect Theory utility representation at x0

(i.e., continuous, convex on a left-neighborhood of x0, concave on a right-neighborhood, and with

m− < m+) if and only if they display Failure Avoidance, but none of the other attitudes.

It is also worth stressing that this result shows that a behavioral characterization of be-

havioral phenomena that are commonly associated with prospect theory (such as loss aversion

and diminishing sensitivity) can be given within a completely standard expected utility setting.

Hence, setting aside the important and long-debated issue of whether the outcome space should

be regarded as that of total wealth, prospects, or the result of other forms of narrow brack-

eting (see, e.g., Rabin (2000), Rabin and Thaler (2001), Rubinstein (2001), etc.), our results

formally show that loss aversion may be captured by standard risk preferences under the vNM

axioms. That is, it need not involve other components of Prospect Theory, such as non-linear

probability weighting or rank-dependence. Besides providing a formal result concerning this

point of debate, Corollary 3 may thus also serve as a preliminary step to understand the behav-

ioral foundation of other components of Prospect Theory, which have typically been considered

jointly and which therefore have not been fully understood in terms of their distinct roles in

accommodating deviations from the classical expected utility benchmark.

The Discontinuous Case: The discontinuous model has a long tradition within the finance

literature, in which it is often referred to as the aspiration level model (see, e.g., Payne et al.

(1980, 1981)), and has been studied both theoretically and experimentally.

Within the decision theoretic literature, Diecidue and Van De Ven (2008) also present a

model of decision under risk with a discontinuous Bernoulli utility in correspondence to what

they call ‘aspiration level’. Like ours, their model is also within a standard expected utility

utility functions. Schmidt and Zank (2012) axiomatize an S-shaped utility function in a setting of uncertainty
and non-linear weights, but is silent on the kink, i.e. on loss aversion.
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setting. The key axioms in that paper (other than vNM and stochastic dominance), however,

are not in terms of preferences over lotteries, but they are formulated directly as continuity

properties of the Bernoulli utility function. Hence, another outgrowth of Theorems 1 and 2

– namely, Corollary 1 – is to provide a fully preference-based foundation to the discontinuous

utility function, and hence to the broader finance literature on the ‘aspiration level model’.9

From an empirical viewpoint, several findings in the literature are suggestive of the existence

of discontinuities. Fishburn (1977, p. 122), for instance, reports that similar preferences are often

found in the literature, which can be represented by a ‘pronounced change in the shape of their

utility function.’ Within finance, Mezias (1988) provides evidence in this sense in the pricing

of securities in the stock market, when there is a fixed and predetermined benchmark return

(similar evidence was provided by earlier work, e.g. Swalm (1966) and Holthausen (1981)). The

influential paper by Chevalier and Ellison (1999) is also consistent with a discontinuity around

the ‘benchmark’ return, although in that case the phenomenon may be at least partly due to

a discontinuity in the reward scheme of the managers, in addition to the possible discontinuity

in their primitive preferences. A few papers have further tested experimentally the existence of

discontinuities at specific points (typically at x0 = 0, as customary within the finance literature),

with contrasting results. For instance, Payne (2005) finds experimental evidence in support of the

discontinuity hypothesis, with findings replicated by Venkatraman et al. (2009, 2014). Markle et

al. (2018) find evidence suggestive of discontinuities in a context of marathon running. Diecidue

et al. (2015), instead, find no evidence of discontinuities at x0 = 0.

Aside from the possibly supportive experimental evidence, it is worth noting that the dis-

continuous representation is often a convenient modeling tool to capture the basic feature of

the attitudes introduced above, namely the reversal of the decision maker’s risk-attitude around

the critical threshold. Alaoui and Fons-Rosen (2021), for instance, use a Bernoulli utility func-

tion with a discontinuity around the critical threshold to represent the effects of ‘tenacity’ on a

gambling task, so as to capture the cost of failure. Their experimental analysis relate subjects’

behavior in the task with grit, as measured by the questionnaire of Duckworth and Quinn (2006).

Aspirations: A large literature within economics has studied the origins and implications

of aspirations, modeled as reference points that serve as a dividing line between achievement and

failure (see Genicot and Ray (2019) for a survey of the literature). The focus of that literature

is largely on the determinants of such reference points, and on the interplay between individual

behavior and economic development, which affects the former through its effect on aspirations,

and hence preferences (e.g., Ray (1998, 2006), Appadurai (2004), Genicot and Ray (2017), etc.).

The literature has studied various mechanisms for the determination of aspirations levels. As

discussed in Genicot and Ray (2019), the key ideas of this notion of aspirations can be modeled

by a utility functions that is concave on both sides of the reference point, with a ‘convex kink’

at the aspiration threshold (i.e., with m− < m+), as in the representation that is characterized

by the intersection of Success Attachment and Failure Acceptance. For instance, the functional

form in Genicot and Ray (2017), presumes that crossing the threshold is “celebrated” by an

additional, separable payoff. That is, letting z denote the threshold, and w0 and w1 denote

9A distinct model of discontinuity, due to the consumption of ‘values’, is Gilboa, Minardi and Wang (2023).
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Figure 4: A model of aspirations
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Figure 1. Aspirations Along a Single Dimension.

has a single child. A parent-child sequence forms a dynasty. Parents allocate their
starting wealth y across their own consumption and investment x in their child. Parental
aspirations are defined over a single variable, the wealth of their child’s wealth z. In
short, L = K = M = 1, u(y, x) is simply defined on parental consumption c = y � x,
w0 is defined on the child’s wealth z, and w1 is on the excess e of that wealth over
parental aspirations. See Figure 1. It is possibly the simplest model of aspirations that
can be written down.

This simplest one-dimensional model can be extended without much harm. Panels A and
B of Figure 2 outline a variant in which there is not only satisfaction when aspirations
are met, but an active sense of disappointment when they are not met (rather than a mere
flat). That imparts a more complex shape to the combined function (Panel B) but — as
we shall see — does not substantially alter the central insight of this model. Panel C
outlines a second variant in which there are several milestones, each of which kicks in
when the next generation crosses different thresholds, such as various education levels.
We briefly return to these variants below.

But the multidimensional version presented here does have additional implications. Pos-
sibly the most important of these variations comes from the possibility that an individual
may not only harbor economic aspirations, as in Genicot and Ray (2017), but also other
aspirational goals such as self-esteem, recognition by peers, and — on a somewhat more
sinister note — cultural or religious dominance (see Ray 2006). In Section 5.2, we ap-
ply the model to multi-dimensional thresholds as substitutes, so that satisfaction across
one threshold can serve as some compensation for failure along another. In Section 5.3,
we consider multiple levels of aspirations in one dimension, income, to study conflict

The functional form in the aspiration model of Genicot and Ray (2017).

two concave real functions over R+, the overall utility u(x) is given by w0(x) if x < x0, and by

w0(x) + w1(x− x0) if x ≥ x0 (see Figure 4).

The next result provides a behavioral characterization of this class of functional forms:

Corollary 4. Under the maintained vNM and monotonicity axioms, preferences are represented

by a Bernoulli utility function that displays an aspiration point at x0 (i.e., continuous, concave

on a left- and right-neighborhood of x0, with m− < m+) if and only if they display both failure

acceptance and success attachment.

This result shows that the key feature that aspiration models typically capture in a risk-less

setting – namely, the sudden increase in marginal utility past the aspiration threshold, for an

otherwise concave utility function – can be given a behavioral characterization in a standard

choice setting with risk.

Other Cases: The remaining cases, which are characterized by success seeking, or by

failure acceptance without success attachment, are perhaps not as frequently encountered, but

they complete the map of possible attitudes. It is worth mentioning though that, motivated

by the classic paper by Friedman and Savage (1948) – who observe the existence of decision

makers who simultaneously buy insurance for moderate risks and tickets for actuarially unfair

lotteries – Markovitz (1952) argues for a utility function over gains and losses (as opposed to

wealth levels), with a pattern of risk lovingness followed by risk aversion as the stakes increase

for gains, and the opposite for losses. We note that this suggestion is indeed consistent with the

pattern characterized by success seeking without failure avoidance at x0 = 0.

The empirical literature on loss aversion has also produced some evidence of behavior con-

sistent with such representations, again for the x0 = 0 threshold. In the experiment conducted

by Schmidt and Traub (2002), for instance, 24 percent of subjects behave exactly opposite to

loss aversion, i.e., as if they focus more on gains than on losses. In a decision context involving

health outcomes and no risk, Bleichrodt and Pinto (2002) instead find that the proportion of

such gain-seeking subjects is very low, between 0 and 2.5 percent.
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4.2 Discussion and Variations

It is easy to show that equivalent formulations of the attitudes in Definitions 3-6 can be provided

in terms of certainty equivalents, as it is standard for the notion of risk-aversion. Also, note that

the definitions only require the existence of two lotteries, p and p′, over which the decision maker

displays opposite risk attitudes, but without imposing any form of ‘single crossing’ condition. It

can be shown that strengthening 3-6 so as to impose such a single crossing conditions would have

no impact on the representation theorems, and hence it would be an equivalent way to formulate

the same attitudes. This is so due to the combination of the maintained SSNR condition, and

due to the local nature of our notions (cf. discussion in p. 8).

In practice, it is essentially impossible to test exactly whether an individual’s utility function

is continuous or differentiable at a particular point. So, just as it is impossible to literally test

global risk-aversion, and as it is standard in the lab to elicit subjects’ preferences over a ‘grid’ of

outcomes, so the representations in Theorems 1-4 could only be tested up to some neighborhood

around the threshold. This can be given a formal foundation by providing weaker versions of

definitions 3-6 which are not referred to a specific threshold x0, but to some threshold within a

(small) interval.10 The corresponding representation, and hence the predictions that are directly

testable, are exactly those that can be obtained from those in the theorems above, for x and x′

that do not converge to x0 (as it would be in the continuum), but to x0 ± ε, where ε denotes

the smallest available discrete increment. For failure avoidance, for instance, it would still be

the case that the agent would be risk-loving for lotteries concentrated on the left of x0 − ε, and

for each x ≤ x0 − ε on the discrete grid, and for x′ = x + ε, there would exist a probability

p∗ ∈ ∆(x, x′) such that the agent is risk-loving for all p < p∗ and risk-averse for all p > p∗.

Foundational considerations notwithstanding, it is worth mentioning that a substantial body

of literature has tested the discontinuous model, sometimes finding evidence in favor of a dis-

continuity (see, e.g., Payne (2005), Venkatraman et. al. (2009, 2014) and Markle et. al. (2018).

This is typically done through maximum likelihood estimation of the parameters of a utility

function which include discontinuity parameters at the relevant thresholds. The same applies

to the point of non-differentiability in the entire literature on loss aversion and prospect theory.

5 Interpersonal Comparisons

In this section we provide model-free definitions to rank individuals by the intensity of the four

attitudes we introduced above. We first focus on failure avoidance, which thanks to its close

connection with the well-understood prospect theory representation, is best suited to explain the

key features that an adequate ordering of this attitude must satisfy. The corresponding notions

for the other attitudes will follow a similar logic, and will be introduced later.

5.1 Failure Avoidance: Interpersonal Comparisons

We next introduce interpersonal comparisons of agents’ attitude of failure avoidance. Intuitively,

an individual is more failure avoidant than another one if, compared to the preferences of the

10We are thankful to Antonio Cabrales for this suggestion.
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latter, his preferences satisfy the following two requirements: i) first, there is a smaller set of

lotteries which he regards as ‘net successes’, and (ii) there is a smaller set of lotteries over which

he is unwilling to take a risk in order to get out of the failure region.

Formally, for any x < x0 and x′ > x0, we define the following sets:

Si(x, x′) := cl
{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) > x0

}
, (2)

RAi(x, x
′) := cl

{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) < Ep

}
. (3)

In words, the Si(x, x′) set represents (the closure of) the set of lotteries which he regards as net

successes, in the sense that their certainty equivalent is larger than x0. The RAi(x, x
′) set instead

represents the set of lotteries over which failure avoidance is not manifested, in the sense that the

agent is not willing to take risk in order to avoid the potential failure, provided that a certainty

equivalent exists. In the continuous case, these sets could be equivalently defined, respectively,

as Si(x, x′) = {p ∈ ∆(x, x′) : p % δx0} and RAi(x, x
′) = {p ∈ ∆(x, x′) : δEp % p}, which have

a straightforward interpretation.11 For the discontinuous case, however, the formulations above

add the further requirement that CEi(p) exists (which of course is not guaranteed for all p, when

u is discontinuous).

To gain some intuition as to why it is desirable to specify this further requirement in the

discontinuous case, note that implicit in Def. 3 there is the idea that the agent starts out

from being risk-averse for high p ∈ [0, 1] – or, in certainty equivalents terms, they start out by

having Ep > CEi(p) for sufficiently high p. Their desire to avoid failure is what may upset their

risk-aversion, and in particular the ranking Ep > CEi(p), either by turning it into the opposite

direction, or (for the case of a discontinuous Bernoulli utility function) by first preventing the

existence of CE(p). So, either the inversion of the inequality, or the non-existence region for

the CE, are manifestations of a desire to avoid failure. Since, under Def. 3, CEi(p) < Ep

implies that CEi(p
′) < Ep′ for all p′ > p, the set RAi (x, x′) thus represents the set of lotteries

over which this phenomenon is not (yet) manifested, and similarly Si(x, x′) represents the set of

lotteries that are viewed as net successes, before the discontinuity (and, hence, the non-existence

of the certainty equivalence) has kicked in. Fig. 5 illustrates the Si and RAi sets for preferences

that display failure avoidance, both in the discontinuous and in the loss aversion case.

The next definition states that an agent is more failure avoidant than another one if he is

both more reluctant to regard a lottery as a net success (i.e., a smaller Si set), and if he manifests

a desire to avoid failure for a larger set of lotteries (i.e., a smaller RAi set), for all the x and x′

which identify the phenomenon of failure avoidance (as per Def. 3):

Definition 7. Let preferences %1 and %2 both satisfy the conditions in Def. 3 with respect to

the same x0 ∈ R. Then, %1 displays (weakly) more failure avoidance than %2 if, ∃xl, xw : xl <

x0 < xw s.t. ∀x ∈ [xl, x0), ∃x̄ ∈ (x0, xw] such that, for each x′ ∈ (x0, x̄], both the following

conditions are satisfied: (i) S1 (x, x′) ⊆ S2 (x, x′), and (ii) RA1 (x, x′) ⊆ RA2(x, x
′).

The next result provides necessary and sufficient conditions on the relationship between

two Bernoulli utility functions, for their corresponding preferences to be ranked by their failure

11In fact, the equivalence between the two formulations would hold for any ui that is right-continuous at x0.
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Figure 5: Illustration of the Si and RAi sets

The Si and RAi sets for the discontinuous (left) and loss aversion case (right).

avoidance, as we just defined.12

Theorem 5 (Failure Avoidance: Interpersonal Comparisons). Let %1 and %2 both satisfy the

conditions in Def. 3 with respect to the same x0 ∈ R and such that m+
i > 0 and m−i < ∞ for

both i = 1, 2. Then, %1 displays more failure avoidance than %2 only if one of the following

applies:
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m+
2

,

2. K1

m+
1

= K2

m+
2

> 0 and
m−1
m+

1

≥ m−2
m+

2

,

3. K1

m+
1

= K2

m+
2

= 0,
m−1
m+

1

≥ m−2
m+

2

, and
(
limx→x−0

[m−1 −m1(x)]/m
−
1

[m−2 −m2(x)]/m
−
2

)
≥ 1−m+

1 /m
−
1

1−m+
2 /m

−
2

.

These conditions are also sufficient if all the inequalities hold strictly.

The conditions in this theorem have a straightforward interpretation. First, the condition
K1

m+
1

≥ K2

m+
2

says that the size of the discontinuity at x0, normalized by m+
i , is larger for 1 than

for 2. Hence, this result implies that the first determinant of the relative failure avoidance is

the size of the normalized discontinuity. In case of ties in this first component, if the utility

functions are discontinuous, then the ranking is determined by the sharpness of the kink of the

utility function around x0, which is captured by the ratio m−i /m
+
i : the larger the ratio, the

stronger the failure avoidance. If instead the functions are continuous, then agent 1 displays

stronger failure avoidance than agent 2 if not only its utility function displays a sharper kink

(
m−1
m+

1

≥ m−2
m+

2

), but also if u1 is sufficiently more convex than u2 in some left-neighborhood of x0.

12Theorem 10 in the Appendix provides tight (but harder to read) if and only if conditions.
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To see that this is the content of the limit condition in point 3 of the result, note that

limx→x−0
[m−1 −m1(x)]/m

−
1

[m−2 −m2(x)]/m
−
2

≥ 1 is equivalent to requiring that u1 is more convex than u2 (in the

Arrow-Pratt sense) in some left-neighborhood of x0. Condition 3 strengthens this requirement

by requiring the limit of this ratio to not be just larger than one, but also larger than
1−m+

1 /m
−
1

1−m+
2 /m

−
2

,

which is a measure of the ratio of the kinks of the two utility functions (which in turn is also

required to be larger than one, under the condition
m−1
m+

1

≥ m−2
m+

2

). Intuitively, a sharper kink

determines a stronger concavity on some right-neighborhood of x0; the condition in point 3

requires that u1 not only has a sharper kink, but it is also sufficiently more convex on the losses

than u2, so as to offset the stronger concavity on the successes associated with its sharper kink.

The intuition above is perhaps easiest to see in the case of differentiable utility functions,

in which the conditions above take an easy-to-interpret form, analogous to the classical Arrow-

Pratt indices of risk-aversion. Letting Du−i and Du+i denote the left- and right-derivatives of ui

at x0, and D2u−i the second left-derivative at x0, we have:

Theorem 6 (F.A. Indices under Differentiability). Suppose that (%i)i=1,2 are such that m+
i > 0

and m−i < ∞ and ui is twice differentiable in some left- and right-neighborhoods of x0. Then:

%1 displays more failure avoidance than %2 only if one of the following applies:

1. K1

Du+1
> K2

Du+2
,

2. K1

Du+1
= K2

Du+2
> 0 and

Du−1
Du+1

≥ Du−2
Du+2

,

3. K1

Du+1
= K2

Du+2
= 0,

Du−1
Du+1

≥ Du−2
Du+2

and
D2u−1

Du−1 −Du
+
1

≥ D2u−2
Du−2 −Du

+
2

.

These conditions are also sufficient if all the inequalities hold strictly.

5.1.1 Ordering Failure Avoidance: Discussion

In this section we discuss the role of the two components that make up our definition of inter-

personal comparison of failure avoidance, in terms of both the Si and RAi sets.

First, as can be seen from proof of Theorem 5, the following holds:

Lemma 1. Let ui be discontinuous at x0 and represent preferences that exhibit failure avoidance

at x0. Then, ∃xl < x0 s.t.: ∀x ∈ (xl, x0), ∃x̄ > x0 : ∀x′ ∈ (x0, x̄), Si(x, x′) = RAi(x, x
′).

That is, in the case of discontinuous representation, the Si and RAi sets coincide. Hence, the

two conditions involved in Def. 7 are equivalent to each other if both u1 and u2 are discontinuous

at x0. For continuous Bernoulli utility functions, however, the two conditions are distinct.

Hence, dropping either part of Def. 7 would have no bearing on the ranking of discontinuous

utility functions, and it would yield a more complete order over the continuous utility functions.

Either of these more complete orders, however, would not yield a satisfactory ranking of failure

avoidance. To see this, first suppose that part (ii) is dropped from Def. 7, so that the ranking

is solely based on the Si sets. Then, the proof of Theorem 5 also shows the following:
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Lemma 2 (Ordering Kinks). Let u1 and u2 be continuous utility functions. Then: m−1 /m
+
1 >

m−2 /m
+
2 only if ∃xl < x0 s.t.: ∀x ∈ (xl, x0), ∃x̄ > x0 : ∀x′ ∈ (x0, x̄), S1(x, x′) ⊂ S2(x, x′). The

converse holds with m−1 /m
+
1 ≥ m−2 /m+

2 .

Intuitively, given two agents with continuous utility functions, function u1 has a sharper kink

than u2 at x0 if and only if, for any x and x′ (with the order of quantifiers as in Def. 3), the set

of lotteries p ∈ ∆(x, x′) that 1 regards as ‘net successes’ is a subset of those that 2 regards as

‘net successes’.

Now, consider a sequence of utility functions (u(n))n∈N such that, for each n ∈ N,

u(n) (x) =

{
û (x) if x ≥ x0

− (2m+ − α (n)) · (x0 − x)
1

(1−α(n)) if x < x0
,

where û is an arbitrary concave function, with corresponding m+, and α (n) is a decreasing

sequence such that α(1) < min{m+, 1} and such that limn→∞α (n) = 0. As n → ∞, the kink

gets sharper along this sequence, and hence it is increasing in the ranking induced by part (i)

of Def. 7, but û(n) approaches risk neutrality over the loss domain, and hence at the limit,

u∗ := limn→∞û
(n), the u∗ function is globally concave, and hence there is no failure avoidance.

Thus, an order based on part (i) of Def. 7 alone would allow the possibility of sequences of

increasingly failure avoidant preferences which converge to preferences that display no failure

avoidance. This would not be a desirable property for an adequate ordering of failure avoidance.

Alternatively, suppose that part (i) was dropped, so that utility functions were ranked solely

based on part (ii) of Def. 7. First, the proof of Theorem 5 also shows the following result:

Lemma 3. Let u1 and u2 be continuous utility functions that exhibit failure avoidance at x0.

Then: (
limx→x−0

[m−1 −m1(x)]/m−1
[m−2 −m2(x)]/m−2

)
>

1−m+
1 /m

−
1

1−m+
2 /m

−
2

.

only if ∃xl < x0 s.t.: ∀x ∈ (xl, x0), ∃x̄ > x0 : ∀x′ ∈ (x0, x̄), RA1(x, x
′) ⊂ RA2(x, x

′). The

converse holds with the weak inequality.

Now, let û be a continuous utility function which satisfies the condition of the representation

theorem, and which is linear in the success region. Next, consider a sequence of utility functions

(u(n))n∈N such that, for each n ∈ N,

u(n) (x) =

{
û (x) if x ≤ x0

α (n) · û (x) if x > x0
,

where α (n) is an increasing sequence of real numbers such that α (1) = 1 and limn→∞α (n) =
m̂−

m̂+ . Then, it can be verified that the sequence u(n) is increasing in the order defined by part (ii)

of Def. 7, and yet u∗ := limn→∞ u
(n) is globally convex, and hence does not display any failure

avoidance. Thus, just like the case discussed above, also an the order only based on part (ii) of

Def. 7 would allow for the possibility of sequences of increasingly failure avoidant preferences

which converge to preferences that display no failure avoidance at all. This, again, would not

be a desirable feature for a conceptually sound notion of comparative failure avoidance.
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5.1.2 Ordering Loss Aversion

The discussion above is also significant in relation to established notions of comparative loss

aversion, which rank loss aversion by the sharpness of the kink, so that agent 1 is more loss

averse than agent 2 if and only if
m−1
m+

1

>
m−2
m+

2

(cf. Kobberling and Wakker (2005), Abdellaoui,

Bleichrodt and Paraschiv (2007); see also Wakker (2010) and references therein) – or, in the

parametric specification of eq. (1), if and only if λ1 > λ2. To the best of our knowledge, such

interpersonal comparisons have been defined only in the space of the utility representation, but

a characterization of such orderings in terms of primitive preferences is lacking. The next result

provides such a characterization, and hence it also serves to open another perspective on loss

aversion, in terms of preferences over lotteries:

Proposition 1 (Ordering Loss Aversion). Let u1 and u2 be continuous utility functions. Then:

there exist x < x0 and x̄ > x0 such that, for all x ∈ (x, x0) and for all x′ ∈ (x0, x̄), S1(x, x′) ⊂
S2(x, x′) if m−1 /m

+
1 > m−2 /m

+
2 and only if m−1 /m

+
1 ≥ m−2 /m+

2 .

Namely, agent 1 has a sharper kink at x0 than agent 2 if for all failures x < x0 and successes

x′ > x0 in some neighborhood of x0, S1(x, x′) ⊂ S2(x, x′) – meaning that the binary lotteries

across the threshold that 1 views as net successes are a subset of those that agent 2 views as such.

We note that the order of quantifiers in Proposition 1 is slightly different from that of Lemma 2,

in that it is symmetric on both sides of the threshold. The reason is that Proposition 1 follows

directly from the joint implications of Lemma 2 (in which the ordering stems from the possibility

an arbitrarily small success, as in failure avoidance) and of an analogous result for when the

ordering stems from the possibility of an arbitrarily small failure (as in Success Seeking) that

also involves a condition on the nestedness of the S-sets, but for an order of quantifiers that is

symmetric with respect to that involved in Def. 3 (see Section 5.2). In other words, within the

spirit of our approach, Proposition 1 captures the union of ordering loss aversion as driven by

the mere chance of success or by the mere chance of failure.

Suppose that, in addition to ordering loss aversion more generally, one wishes such an order-

ing while remaining exactly within the context of the Prospect Theory utility representation,

in the sense that the kink is sharpened while at the same time maintaining convexity on the

left and concavity on the right. Then, the characterization of “Ordering Loss Aversion within

Prospect Theory” is the one provided by Lemma 2, with the added restriction that the agents’

preferences display failure avoidance and only failure avoidance, thereby leading to both loss

aversion and diminishing sensitivity. If, in contrast, one wishes to rank loss aversion per se,

independent of the S-shape of the utility representation, then Proposition 1 is the appropriate

characterization.

These results also clarify a certain subtlety that is associated with the intuitive view of what

sharpening the kink does. Namely, it is clear that a sharper kink instills extra risk aversion

in the preferences.13 The RAi(x, x
′) and the Si(x, x′) sets defined above both seem to capture

the same qualitative idea, but in slightly different ways. The Si(x, x′) set identifies the set

of lotteries supported on {x, x′} that are at least as good as the threshold: as risk aversion

13Theorem 5 in Kobberling and Wakker (2005) formalizes precisely this argument.
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increases, a larger set of lotteries ends up in the lower contour set of δx0 ,and hence Si(x, x′) gets

smaller. The RAi(x, x
′) set instead is exactly the set of lotteries over which the agent displays

risk aversion, and hence it increases as risk aversion increses. But while they are obviously

related, they do not coincide, and hence it is possible (as in Def. 7) that both sets get larger

at the same time. Lemma 2 shows that, as long as loss aversion is identified with the presence

of a kink at the threshold (as in the classical behavioral economics literature), increasing its

intensity does amount to a local increase in risk aversion (as argued, for instance, by Cerreia-

Vioglio, Dillenberger and Ortoleva (2023)). Its exact ordering, however, is captured by shrinking

of the Si(x, x′) sets, and not by the enlargment of the RAi(x, x
′) sets.

The discussion in the previous section also demonstrates that, as long as loss aversion is

defined as something to be ranked solely by the sharpness of the kink, then it is distinct from

our notion of failure avoidance. In particular, while a more loss averse agent 1 will have S1 to

be a subset of that of a less loss averse agent 2, it need not be the case that RA1 will also be

a subset of RA2. In fact, the increased sharpness of the kink on its own provides a force in the

opposite direction. Intuitively, this is because a sharper kink effectively leads to a more concave

function, which on its own implies that there are fewer lotteries over which the agent is willing

to take a risk to avoid failure. In the limit, failure avoidance disappears altogether. Hence,

while the first requirement of Definition 7 is satisfied, the second requirement is violated. It is

in fact for this reason that in our index, point 3 of Theorem 5 (the relevant case here) requires a

sufficient increase in the convexity to offset the concavity associated with the sharper kink. This

highlights that ranking loss aversion merely by the sharpness of the kink in the representation

is appropriate in capturing the idea of ‘losses looming larger than gains’ (cf. Kobberling and

Wakker (2005) and Abdellaoui, Bleichrodt and Paraschiv (2007)). But it does not adequately

capture a ranking of the reversals of the risk-attitude, which is the focus of this paper. Such

a ranking requires an opposition of forces, in that any force that leads to an increase in risk

aversion must be countervailed by a force that increases the risk-lovingness.

These results also show the advantage of remaining within EU for our objectives, as the

distinction between the ranking of failure avoidance and the standard one of loss aversion might

have been easy to miss in a more complex setting, in which the centrality of the opposing forces

may have been less transparent, when interacting with other factors.14

5.2 Ordering the Remaining Attitudes

An analogous exercise to that of ordering failure avoidance can be conducted for success at-

tachment, success seeking and failure acceptance as well. Much of the reasoning above carries

through, mutatis mutandis, to the definitions and results of these attitudes, as we now discuss.

Concerning success attachment, the first requirement will be that the more success-attaching

agent will have a smaller set of lotteries that he regards as net failures, in the sense of being

worse than the certain x0. In the continuous case, this would be identical to saying that there

is a larger set of lotteries that he regards as net successes, and so the first requirement is simply

14While in this paper we remain within the vNM model, it may be interesting for future research to analyze what
our model would imply in settings which allow for a non-linear reweighting of probabilities. Such a reweighting
provides another source of reversal of risk-attitude, independent of the shape of the utility function.
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the reverse of that for failure avoidance. But, as discussed above, for the discontinuous case it

is important to account for the existence of certainty equivalents, and hence the notion of net

failure is adequately captured by a set, Fi(x, x′), whose definition is specular to Si(x, x′) above:

Fi(x, x′) := cl
{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) < x0

}
(4)

Similarly, we define the set RLi(x, x
′) of lotteries over which success attachment is not

manifested, symmetrically to the RAi(x, x
′) sets above:

RLi(x, x
′) := cl

{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) > Ep

}
. (5)

The ranking over success attachment is thus defined as follows:

Definition 8. Let preferences %1 and %2 both satisfy the conditions in Def.4 with respect to

the same x0 ∈ R. Then, %1 displays (weakly) more success attachment than %2 if there exist

xl, xw : xl < x0 < xw : ∀x′ ∈ (x0, xw], ∃x
¯
∈ [xl, x0) such that, for each x ∈ [x

¯
, x0), both the

following conditions are satisfied: (i) F1 (x, x′) ⊆ F2 (x, x′), and (ii) RL1 (x, x′) ⊆ RL2(x, x
′).

Analogous of Theorems 5 and 6 hold for this definition too. Here we only reproduce the

statement of the differentiable case, which is easier to read and most useful in applications:

Theorem 7 (Success Attachment: Interpersonal Comparisons). Suppose that (%i)i=1,2 are such

that Du−i > 0 and Du+i <∞ and ui is twice differentiable in some left- and right-neighborhoods

of x0. Then: %1 displays more success avoidance than %2 only if one of the following applies:

1. K1

Du−1
> K2

Du−2
,

2. K1

Du−1
= K2

Du−2
> 0 and

Du+1
Du−1

≥ Du+2
Du−2

,

3. K1

Du−1
= K2

Du−2
= 0,

Du+1
Du−1

≥ Du+2
Du−2

and
D2u+1

Du−1 −Du
+
1

≥ D2u+2
Du−2 −Du

+
2

.15

These conditions are also sufficient if all the inequalities hold strictly.

For the remaining two attitudes, Success Seeking and Failure Acceptance, things are simpler,

due to the fact they only admit a continuous representation, and hence the certainty equivalent

existence requirement in the definitions of the S, F , RA and RL sets are moot. As a consequence,

the F and RL sets are, respectively, the complements of the S and RA sets, and hence F1 ⊆ F2

if and only if S2 ⊆ S1, and RA1 ⊆ RA2 if and only if RL2 ⊆ RL1. The definitions of the

orderings for these two attidues therefore may be equivalently expressed in several ways.

Definition 9. Let preferences %1 and %2 both satisfy the conditions in Def.5 with respect to

the same x0 ∈ R. Then, %1 displays (weakly) more failure acceptance than %2 if thre exist

xl, xw : xl < x0 < xw s.t. ∀x ∈ [xl, x0), ∃x̄ ∈ (x0, xw] such that, for each x′ ∈ (x0, x̄], both the

following conditions are satisfied: (i) F1 (x, x′) ⊆ F2 (x, x′), and (ii) RA1 (x, x′) ⊆ RA2(x, x
′).

15Note that, given the restrictions imposed by Theorem 2, both the numerators and the denominators on both
sides of the latter inequality are negative.
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Definition 10. Let preferences %1 and %2 both satisfy the conditions in Def.4 with respect

to the same x0 ∈ R. Then, %1 displays (weakly) more success seeking than %2 if there exist

xl, xw : xl < x0 < xw s.t.: ∀x′ ∈ (x0, xw], ∃x
¯
∈ [xl, x0) such that, for each x ∈ [x

¯
, x0), both the

following conditions are satisfied: (i) S1 (x, x′) ⊆ S2 (x, x′), and (ii) RL1 (x, x′) ⊆ RL2(x, x
′).

The next results provide the characterization of these orderings in the space of utility repre-

sentations. They are completely analogous to the previous two theorems, with the only difference

that they only account for the continuous case, and hence Ki = 0 for both agents:

Theorem 8 (Failure Acceptance: Interpersonal Comparisons). Suppose that (%i)i=1,2 are such

that Du−i > 0 and Du+i <∞ and ui is twice differentiable in some left- and right-neighborhoods

of x0. Then: %1 displays more success avoidance than %2 only if both (i)
Du+1
Du−1

≥ Du+2
Du−2

and (ii)

D2u−1
Du−1 −Du

+
1

≥ D2u−2
Du−2 −Du

+
2

. These conditions are also sufficient if all the inequalities hold strictly.

Theorem 9 (Success Seeking: Interpersonal Comparisons). Suppose that (%i)i=1,2 are such

that Du−i <∞ and Du+i > 0 and ui is twice differentiable in some left- and right-neighborhoods

of x0. Then: %1 displays more success seeking than %2 only if both (i)
Du−1
Du+1

≥ Du−2
Du+2

and (ii)

D2u+1
Du−1 −Du

+
1

≥ D2u+2
Du−2 −Du

+
2

. These conditions are also sufficient if all the inequalities hold strictly.

6 Conclusions

This paper aims to understand, at a fundamental level, attitudes towards success and failure

that are crucial to decision-making, as evidenced by their emergence in several influential fields.

Within a standard expected-utility setting, we provide characterizations of these attitudes in

terms of properties of the Bernoulli utility function. This exercise serves several purposes: First,

it reveals the interconnection between different models of reference-dependent preferences. Sec-

ond, it provides a decision theoretic foundation to important representations used in economics,

finance and psychology (including influential models of aspirations and loss aversion), for which

a standard preference-based characterization was lacking. This not only favors more direct

comparisons of these models with standard expected utility notions, but it also uncovers sub-

tleties which may be easily overlooked by only looking at the space of utility representations.

A case in point is provided by the rankings that we introduce in order to perform interper-

sonal comparisons on the intensity of each attitude. The indices we develop, which are akin

to the Arrow-Pratt indices used for studying risk aversion, shed a new light on seemingly in-

tuitive notions of comparative statics that are directly based on the utility representation of

reference-dependent models.

The distinctive feature of our approach, which enables a unified perspective on several in-

fluential models of reference dependence, is to identify the core of such behavioral phenomena

in the reversals of the decision maker’s risk-attitude (between risk-aversion and risk-lovingness)

over lotteries that go across a reference point. This novel perspective not only enables us to

derive behavioral characterizations of several known models of decision making, and requires the

development of new orderings for interpresonal comparisons, but it also provides a direct way

of identiying reference points through choice, by the occurrences of such reversals around them.
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As briefly mentioned in the introduction, individuals’ attitudes towards success and failures

are the focus of central notions in the literature on personality traits, such as grit, tenacity,

conscientiousness and neuroticism (e.g., Deary et al. (2009)). The key methodology in this

literature involves ‘indices’ that are essentially scores on non-incentivized questionnaires, often

based on self-reported scales, which are intended to capture various aspects of personality. The

empirical economics literature has paid increasing attention to these measurements, showing

that they are often predictive of systematic differences in behavior and measures of economic

performance (e.g., Heckman and Rubinstein (2001), Almlund et al. (2011), Burks et al. (2015)),

Gill and Prowse (2016, 2023), Proto, Rustichini and Sofianos (2019, 2020), Heckman et al.

(2021), etc.). These findings confirm that such psychological measures capture fundamental

components of individuals’ heterogeneity, and the next natural step is to develop economic

models of these traits, so as to perform comparative statics and counterfactual analysis in

structural models. But several features of the psychology approach to personality traits make it

difficult to perform a direct translation of those concepts into tractable economics notions: First,

the lack of precise and agreed-upon definitions of terms such as grit, tenacity, conscientiousness,

etc., as something that is separate from their way of measurement. Second, although related,

the high dimensionality of the objects involved in each trait.

In contrast, albeit limited in its richness, the straightjacket of economic analysis has proven

very successful in providing rigorous definitions of behavioral notions, which can be used both

to make theoretical predictions and for empirical measurement. The analysis of risk is especially

paradigmatic in this sense: risk-aversion, for instance, is clearly defined in the fundamental space

of economics primitives (namely, preferences); the preference-based definitions provide the basis

for choice-based measurements of these attitudes; representation theorems provide tractable

modeling tools for theoretical predictions; the Arrow-Pratt indices provide a direct link between

the choice-based measurements and scalar variables which may be used in empirical analysis.

Our approach to attitudes towards success and failure mimics the development of the risk analysis

program, building from the bottom up notions that are directly expressed in terms of primitive

preferences and within the dictamen of the economics methodology.

Further empirical research is needed to assess to what extent the attitudes formalized in this

paper are correlated with the psychology measures of personality traits.16 However, while our

notions inevitably miss some of the richness of the psychology definitions, they are amenable

both to measurement based on choice data, and to theoretical and counterfactual analysis. In

this sense, our framework may prove useful to incorporate, within a standard economic model,

behavioral manifestations of personality traits that have proven relevant in empirical analysis

but that have hitherto appeared to be elusive to formal modeling and structural analysis.

16Jagelka (2023), for instance, recently explored the correlation between various psychological traits and stan-
dard notions of risk preferences. Further extending that agenda so as to account for the novel notions put forward
by this paper is part of our ongoing research (funded by ERC consolidator grant 101089139).
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Appendix

A Representation Theorems: Proofs

Proof of Theorem 1:

Step 1. First note that, under the vNM axioms, SSNR (Def. 2) holds if and only if there

exist intervals [xl, x0) and (x0, xw], with xl < x0 < xw, such that u is either concave or convex

on [xl, x0), and either concave or convex on (x0, xw]. We also know that we cannot have global

concavity nor global convexity, since the first would imply that Ep % p for all p and the second

would imply that p % Ep for all p, contrary to Def. 3.

Step 2. [The discontinuous case] For the sufficiency part, suppose that m+(x0) < ∞.

Then, because u is discontinuous at x0, and letting K := limx→x+0
u(x) − limx→x−0

u(x) > 0,

there exists xw > x0 and xl < x0 s.t.u(x
′)−u(x)
x′−x > max{m+(x0),m(xw)} for all x ∈ (xl, x0) and

for all x′ ∈ (x0, xw). Hence, for any x ∈ (xl, x0) and for all x′ ∈ (x0, xw), the straight line

connecting u(x) to u(x′) never intersects u(·) (other than at its extremes, that is), and is such

that it is below u(·) on the interval (x0, xw), and above it on (xl, x0), which implies that the

agent is risk averse for all p ∈ ∆(x, x′) such that Ep > x0, and risk-loving otherwise. Hence,

preferences satisfy Def. 3.

For the necessity part, given Step 1, the only thing which is left to prove for the discontinuous

case is that m+(x0) < ∞. So, suppose that m+(x0) = ∞ (first note that this is only possible

if u is concave in the success region). Then, for any x < x0, we can find x̄ > x0 such that for

any x′ ∈ (x0, x̄), u(x′)−u(x)
x′−x < m(x′). Hence, the straight line connecting u(x) to u(x′) is always

above u(·), and never intersects it other than at its extremes, contrary to Def. 3.

Step 3. [The continuous case] Given Step 1 above, for the case in which u is continuous,

the remaining possibilities are the following:

1. u is concave on both the losses (i.e., on [xl, x0)) and on the gains (i.e., on (x0, xw]), but

with m−(x0) < m+(x0) (otherwise it would be concave on [xl, xw]);

2. u is concave on the losses and convex on the gains;

3. u is convex on the loss and on convex the gains, with m−(x0) > m+(x0) (otherwise it

would be convex on [xl, xw]);

4. u is convex on the losses and concave on the gains.

We show that Cases 1 and 2 can be discarded, and that failure avoidance holds if and only

either a) Case 3 holds with u being strictly convex on some interval [x̃l, x0] or Case 4 holds with

m−(x0) > m+(x0) and u being strictly convex on some interval [x̃l, x0].

Case (1) can be discarded geometrically. First, since m−(x0) < m+(x0), by continuity of u,

there exists x̂l ∈ [xl, x0) such that, m(x̂l) < m+(x0). We now show that for any x ∈ [x̂l, x0),

there is no x̄ > x0 such that for all x′ ∈ (x0, x̄], ∃p > p′ ∈ ∆(x, x′) such that Ep � p and p′ � Ep′.
To this end, note that since m(x̂l) < m+(x0), it follows from the continuity of u that ∃x̄ > x0
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such that, for all x′ ∈ [x0, x̄], m(x̂l) <
u(x′)−u(x̂l)

x′−x̂l , and such that the line segment connecting

u(x̂l) to u(x′) does not cross the utility function on [x0, x
′) . Moreover, on [x̂l, x0], by concavity

the slope m(x) is decreasing which implies m(x) ≤ m(x̂l), and by the utility function being

below the line segment between u(x̂l) to u(x′), it implies u(x′)−u(x̂l)
x′−x̂l < u(x′)−u(x)

x′−x . Therefore, it

must be that m(x) < u(x′)−u(x)
x′−x for any x ∈ [x̂l, x0) and x′ ∈ [x0, x̄].

For the reversal in Def. 3 to hold for x̂l, for any x′ ∈ (x0, x̄], the line segment connecting

u(x̂l) to u(x′) must cross the utility function somewhere in (x̂l, x
′). By the previous argument,

it cannot be in [x0, x
′), and so it must be in (x̂l, x0). Let x∗ denote such a point. Note that

since x∗ ∈ (x̂l, x0), the slope m(x∗) < u(x′)−u(x∗)
x′−x∗ , so that the line segment crosses the utility

function from below. Since this must hold for any such point, it must be that there is at most

one crossing. Moreover, since it crosses from below, there exists a lottery pt on ∆(x̂l, x
′ such

that pt ∼ Ept, and such that for all p > pt, p % Ep, and for all p′ < pt, Ep
′ % p′. Since the same

argument would hold replacing x̂l with any x̂′l ∈ [x̂l, x0), this implies that Condition 2 of failure

avoidance cannot hold for this case.

Case (2). For this case, we consider three subcases:

� if m−(x0) < m+(x0), then it can be discarded based on the same argument as above, since

that argument did not rely on the shape of the function on (x0, xw].

� If m−(x0) > m+(x0), then by continuity, there exists an x̂l ∈ [xl, x0) such that m(x̂l) >

m+(x0), and there exists a x̄ > x0 such that u(x′)−u(x̂l)
x′−x̂l > m+(x0) for all x′ ∈ (x0, x̄].

Since, the slope m is decreasing on [x̂l, x0) by concavity in that interval, and since the

above inequality holds, then for any such x′, Ep % p,

� If m−(x0) = m+(x0), it is easy to verify geometrically that for any x′ ∈ [xl, x0) and

x′′ ∈ (x0, xw], ∃p∗ ∈ ∆(x′, x′′) such that p∗ ∼ Ep∗ and such that p % Ep for all p > p∗,

and Ep % p for all p < p∗, thereby violating the reversal condition in Def. 3.

Cases (1) and (2) are thus both discarded. We are left with Cases (3) and 4, in which the

utility is convex in the loss domain.

Case (3). Considering Case (3), the necessity of the condition m−(x0) > m+(x0) follows

directly from the fact that Condition 2 in Def. 3 can only hold if u is not convex on the entire

interval [xl, xw]. Moreover, if the utility function is linear on any interval [x̃′l, x0], where x̃′l < x0,

then for any x′ > x0, the line segment going from x̃′l to x′ will be below the utility function,

and hence Ep � p for any binary lottery p∗ ∈ ∆(x̃′′l ). As this is true for any such interval, there

must be some x̃l for which u is strictly convex on [x̃l, x0]. We next show that u being as in case

(3), with strict convexity on some interval [x̃l, x0], is also sufficient to satisfy the conditions in

Def. 3. Since m−(x0) > m+(x0), by continuity of u ∃x̂l ∈ [x̃l, x0) such that m(x̂l) > m+(x0),

and there exists a x̄ > x0 such that u(x′)−u(x̂l)
x′−x̂l > m+(x0) for all x′ ∈ (x0, x̄]. Since u is strictly

convex on [x̂l, x0), the slope m(x) is strictly increasing on [x̂l, x0), and since the above inequality

holds, then ∀x′ ∈ (x0, x̄], ∃p∗ ∈ ∆(x̂l, x
′) such that p∗ ∼ Ep∗, and such that Ep � p whenever
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p > p∗, and p � Ep whenever p < p∗. The same argument would hold replacing x̂l with any

xl ∈ [x̂l, x0), which implies that Def. 3 holds for this case.

Case (4). For Case 4, we will show that it is consistent with Def. 3 if and only if (i)

m−(x0) > m+(x0), and (ii) there is an x̃l such that u is strictly convex on the interval [x̃l, x0].

To this end, we consider three subcases:

� Suppose that m−(x0) < m+(x0). Taking any x̂l ∈ [xl, x0), by convexity m(x) < m−(x) for

any x ∈ x̂l, x0), and so m(x) < m+(x0). Moreover, by continuity there exists an x̄ > x0

such that u(x′)−u(x̂l)
x′−x̂l < m+(x0) for all x′ ∈ (x0, x̄]. Hence, a line segment from x̂l to x̄ is

above (weakly at the endpoints) the utility function on x̂l, x̄, and so p % Ep for all p on

∆(x̂l, x
′). The reversal condition in Def. 3 therefore is violated.

� If m−(x0) = m+(x0), then a similar logic to the one above applies. First, observe that if

there is no x̂l ∈ [xl, x0) such that m(x̂l) < m−x̂0 (i.e., if it is locally linear in the losses),

then the function [xl, xw] is weakly concave, and will not satisfy failure avoidance. Hence,

it must be that there exists a x̂l ∈ [x̃l, x0) such that m(x̂l) < m−x̂0 = m+(x0) =. The rest

of the argument is then identical to the case above.

� If m−(x0) > m+(x0) then the logic from Case 3 above applies, and % display failure

avoidance. Moreover, as in the case of m−(x0) = m+(x0), the utility function cannot be

locally linear on any interval [x̂l, x0], since it would imply that the function on [x̂l, xw] is

weakly concave, and hence he reversal condition in Def. 3 could not be satisfied. Noting

that this holds for x̂l arbitrarily close to x0, it must then be that there is an interval [x̃′l, x0]

on which u is strictly convex.

Lastly, since we have covered all possible cases for continuous u, it must be that for a

continuous u, Def. 3 holds if and if only there exists an xl < x0 < xw such that u is strictly

convex on [xl, x0), concave or convex on (x0, xw) and such that m0
x0 > m+

x0 . �

The proofs of Theorems 2-4 are completely specular to that of Theorem 1, inverting the

role of convexity and concavity, and the order of quantifiers in the success and failure regions,

according to the corresponding definitions.

B Interpersonal Comparisons: Proofs

Proof of Theorem 5:

Consider the following objects:

p̄i(x, x
′) := inf

{
p ∈ ∆

({
x, x′

}
: CEi (p) exists and CEi (p) > x0

)}
and (6)

p̂i(x, x
′) := inf {p : CEi(p) exists and CEi(p) < Ep} . (7)

First note that, from the definition of the Si (x, x′) and RAi (x, x′) sets, it is clear that

S1 (x, x′) ⊂ S2 (x, x′) if and only if p̄1(x, x
′) > p̄2(x, x

′), and RA1 (x, x′) ⊂ RA2 (x, x′) if and

only if p̂1(x, x
′) > p̂2(x, x

′). The following observation follows immediately:
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Lemma 4. Let %1 and %2 satisfy the properties of Def. 3 with respect to x0. Then:

1. Part (i) of Def. 7 holds if and only if ∃xl, xw : xl < x0 < xw s.t. ∀x ∈ [xl, x0), ∃x̄ ∈ (x0, xw]

such that, for each x′ ∈ (x0, x̄], p̄1(x, x
′) > p̄2(x, x

′).

2. Part (ii) of Def. 7 holds if and only if ∃xl, xw : xl < x0 < xw s.t. ∀x ∈ [xl, x0),

∃x̄ ∈ (x0, xw] such that, for each x′ ∈ (x0, x̄], p̂1(x, x
′) > p̂2(x, x

′).

Hence, the proof of the theorem will crucially rely on understanding the properties of the

objects defined in equations (6) and (7).

First notice that, letting ui denote the Bernoulli utility functions which represent preferences

%1 and %2, as per Theorem 1, p̄i(x, x
′) can be equivalently defined as follows:

p̄i(x, x
′) :=

u+i (x0)− ui(x)

ui(x′)− ui(x)
. (8)

The equivalence of (6) and (8) follows directly from observing that (8) implies p̄i(x, x
′) ·

ui(x
′) + (1 − p̄i(x, x′)) · ui(x) = u+i (x0), and the fact that, under the maintained assumptions,

ui is both continuous and strictly increasing on (x0, x
′).

Lemma 5. For any x < x0 and x′ > x0, p̄1(x, x
′) > p̄2(x, x

′) if and only if

K1

m1 (x′)
+

m1(x)

m1 (x′)
(x0 − x) >

K2

m2 (x′)
+

m2(x)

m2 (x′)
(x0 − x).

Proof. Exploiting the representation theorem, and the notation introduced above, p̄i(x, x
′) can

be rewritten as follows:

p̄i(x, x
′) :=

u+i (x0)− ui(x)

ui(x′)− u(x)
=

Ki +mi (x) (x0 − x)

Ki +mi (x) (x0 − x) +mi (x́) (x́− x0)

Re-arranging terms and simplifying, it can be shown that p̄1(x, x
′) > p̄2(x, x

′) if and only if
K1+m1(x)(x0−x)

m1(x′)
> K2+m2(x)(x0−x)

m2(x′)
.

*** Part (i): Characterization, Necessary and Sufficient conditions ***

Lemma 6 (Part (i): Characterization). Part (i) of Def. 7 holds if and only if there exists

x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t, for all x′ ∈ (x0, x̄):

K1

m1 (x′)
+

m1(x)

m1 (x′)
(x0 − x) >

K2

m2 (x′)
+

m2(x)

m2 (x′)
(x0 − x). (9)

Proof. This result follows directly from Lemma 5 and part 1 of Lemma 4.

The next results provide necessary and sufficient conditions for part (i) of Def. 7:

Lemma 7 (Part (i): Necessity). If m+
i (x0) > 0 for both i = 1, 2, then:
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1. Part (i) of Def. 7 implies K1

m+
1 (x0)

≥ K2

m+
2 (x0)

.

2. If m−i (x0) < ∞ for both i = 1, 2, and K1

m+
1 (x0)

= K2

m+
2 (x0)

, then Part (i) of Def. 7 implies

m−1 (x0)

m+
1 (x0)

≥ m−2 (x0)

m+
2 (x0)

Proof. For part 1, note that, by definition, mi(x) · (x0−x) = ui(x)−u−i (x0), and hence Lemma

6 implies that there exists x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t, for all

x′ ∈ (x0, x̄): K1
m1(x′)

+
(u−1 (x0)−u1(xn))

m1(x′)
> K2

m2(x′)
+

(u−2 (x0)−u2(xn))
m2(x′)

, and hence we can construct a

sequence (xn, x̄n, x
′
n)n∈N converging to (x0, x0) such that, for every n, we have

K1

m1 (x′)
+

(u−1 (x0)− u1(xn))

m1 (x′)
>

K2

m2 (x′n)
+

(u−2 (x0)− u2(xn))

m2 (x′n)

Taking limits, and particularly for xn → x0, since the (u−i (x0) − ui(xn)) terms on both sides

go to 0, and both the ui(·) and mi(·) functions are continuous on the relevant range, with

mi(x
′) → m+

i (which, by assumption is non-zero), we obtain the condition in the statement:
K1

m+
1 (x0)

≥ K2

m+
2 (x0)

.

For part 2, Lemma 6 again implies that there exists x < x0, such that ∀x ∈ (x, x0), there

exists x̄ > x0, s.t, for all x′ ∈ (x0, x̄):

K1

m1 (x′)
+

m1(x)

m1 (x′)
(x0 − x) >

K2

m2 (x′)
+

m2(x)

m2 (x′)
(x0 − x). (10)

Holding x fixed, and taking limits as x′ → x+0 , this holds if:

K1

m+
1 (x0)

+
m1(x)

m+
1 (x0)

(x0 − x) >
K2

m+
2 (x0)

+
m2(x)

m+
2 (x0)

(x0 − x)

and only if
K1

m+
1 (x0)

+
m1(x)

m+
1 (x0)

(x0 − x) ≥ K2

m+
2 (x0)

+
m2(x)

m+
2 (x0)

(x0 − x).

Using the hypothesis K1

m+
1 (x0)

= K2

m+
2 (x0)

, and dividing everything by (x0 − x), this holds

if m1(x)

m+
1 (x0)

> m2(x)

m+
2 (x0)

and only if m1(x)

m+
1 (x0)

≥ m2(x)

m+
2 (x0)

. Hence, taking limits as x → x−0 , we have

m−1 (x0)

m+
1 (x0)

≥ m−2 (x0)

m+
2 (x0)

.

Lemma 8 (Part (i): Sufficiency). If m+
i (x0) > 0 for both i = 1, 2, then:

1. K1

m+
1 (x0)

> K2

m+
2 (x0)

implies that Part (i) of Def. 7 holds.

2. If m−i (x0) <∞ for both i = 1, 2, and K1

m+
1 (x0)

= K2

m+
2 (x0)

, then
m−1 (x0)

m+
1 (x0)

>
m−1 (x0)

m+
2 (x0)

implies that

Part (i) of Def. 7 holds.

Proof. For Part 1, if K1

m+
1 (x0)

> K2

m+
2 (x0)

, then ∀ε > 0, ∃x̄ > x0 s.t. K1
m1(x′)

− K2
m2(x′)

> ε for all x′ ∈

(x0, x̄). Hence, x < x0 can be chosen close enough to x0 to ensure that
[
m1(xn)
m1(x′n)

− m2(xn)
m2(x′n)

]
(x0 −

xn) < ε for all x ∈ (x, x0), satisfying the condition stated in Lemma 6.
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For Part 2, if
m−1 (x0)

m+
1 (x0)

>
m−2 (x0)

m+
2 (x0)

, then ∃x < x0 s.t.

m1(x)

m+
1 (x0)

(x0 − x) >
m2(x)

m+
2 (x0)

(x0 − x)

for all x′ ∈ (x, x0). Furthermore, since K1

m+
1 (x0)

= K2

m+
2 (x0)

, for any such x ∈ (x, x0), ∃x̄ > x0 s.t.

∀x′ ∈ (x0, x̄)
K1

m1(x′)
+
m1(x)

m1(x′)
(x0 − x) >

K2

m2(x′)
+
m2(x)

m2(x′)
(x0 − x).

Then, the result follows from Lemma 6.

*** Part (ii): Characterization, Necessary and Sufficient conditions ***

We turn next to the characterization of part (ii) of Def. 7. As discussed above, this requires

focusing on the ranking of the p̂i(x, x
′). However, as shown by next lemma, p̂i(x, x

′) is the same

as p̄i(x, x
′) when ui is discontinuous at x0:

Lemma 9. If ui is discontinuous, then p̂i(x, x
′) = p̄i(x, x

′), and Ep̄i(x, x
′) > x0.

Proof. As shown in Fig. 5,, p.19, the two numbers coincide in the discontinuous case merely

because the existence of the certainty equivalent, common to both definitions, is the binding

constraint for both notions when u is discontinuous.

Lemma 10. If both u1 and u2 are discontinuous, the following are equivalent:

1. Part (i) of Def. 7 holds

2. Part (ii) of Def. 7 holds

3. There exists x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t, for all x′ ∈ (x0, x̄):

K1

m1 (x′)
+

m1(x)

m1 (x′)
(x0 − x) >

K2

m2 (x′)
+

m2(x)

m2 (x′)
(x0 − x).

Proof. This follows immediately from part 2 of Lemma 4, Lemma 9, and Lemma 6.

The next Lemma summarizes what we have learned so far about part (ii) of Def. 7:

Lemma 11. If u1 is continuous and u2 is discontinuous, then part (ii) of Def. part (ii) of Def.

7 does not hold.

Proof. For any x < x0 and x′ > x0, if u1 is continuous then Ep̂1(x, x
′) < x0, and if u2 is

discontinuous implies Ep̂2(x, x
′) = Ep̄2(x, x

′) > x0. It follows that p̂1(x, x
′) < p̂2(x, x

′), which

(by Lemma 4) implies that part (ii) of Def. 7 does not hold.

Lemma 12 (Part (ii): Summary of discontinuous case). The following holds:
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1. If u1 and u2 are discontinuous, m+
i (x0) > 0 for both i = 1, 2, then part (ii) of Def. 7

holds if K1

m+
1

> K2

m+
2

, or if K1

m+
1

= K2

m+
2

> 0 and
m−1
m+

1

≥ m−2
m+

2

; and only if either K1

m+
1

> K2

m+
2

, or

K1

m+
1

= K2

m+
2

> 0 and
m−1
m+

1

≥ m−2
m+

2

.

2. If u1 is discontinuous and u2 is continuous, then part (ii) of Def. 7 holds (and hence, by

Lemma 10, point (i) holds as well).

3. If u1 is continuous and u2 is discontinuous, then part (ii) of Def. 7 does not hold.

Proof. We consider each point separately:

1. For the (⇒) direction, note that if u1 and u2 are discontinuous, part (ii) of Def. 7 implies

part (i) of Def. 7, and hence K1

m+
1

≥ K2

m+
2

by Lemma 7. This of course can either be

K1

m+
1

> K2

m+
2

or K1

m+
1

= K2

m+
2

. If the latter, it also needs to satisfy ∀x ∈ (x, x0), there exists

x̄ > x0, s.t, for all x′ ∈ (x0, x̄): K1
m1(x′)

+ m1(x)
m1(x′)

(x0−x) > K2
m2(x′)

+ m2(x)
m2(x′)

(x0−x), or it would

contradict Lemma 10 (particularly, the fact that point 2 implies point 3). It then follows

from continuity of u aside from at x0 that in the limit, K1

m+
1

+
m−1
m+

1

(x0−x) ≥ K2

m+
2

+
m−2
m+

2

(x0−x),

and hence that
m−1
m+

1

≥ m−2
m+

2

.

For the (⇐) direction, in the case in which K1

m+
1 (x0)

> K2

m+
2 (x0)

holds, the result follows

from Lemma 8. In the other case, it follows from
m−1
m+

1

>
m−2
m+

2

and the continuity of u

aside from at x0 that there exists x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0 s.t.
K1

m1(x′)
+ m1(x)

m1(x′)
(x0− x) > K2

m2(x′)
+ m2(x)

m2(x′)
(x0− x). The statement then follows from lemma

10 (particularly, from the fact that point 3 implies point 2).

2. If u1 is discontinuous and u2 is continuous, then for any x < x0 and x′ > x0, we have

Ep̂1 > x0 > Ep̂2, which implies p̂1 > p̂2, and hence the result follows from the second part

of Lemma 4.

3. This is just the statement of Lemma 11.

Part 1 of this lemma concludes the proof of parts 1 and 2 of the theorem, which concern

the comparison between utility functions for which at least of them is discontinuous at x0.

We now focus on the rest of the proof of part 3 of the theorem.

Hence, to complete the characterization of Part (ii) of Def. 7, we need to characterize the

condition in part 2 of Lemma 4.

Step 1:

First note that, if both u1 and u2 are continuous, then K1 = K2 = 0. In this case, by

continuity, CEi (p) exists for all p, and hence, letting Ep̂i(x, x
′) = p̂i(x, x

′) ·x′+(1− p̂i(x, x′)) ·x,

the cutoff probability p̂i(x, x
′) can be written in implicit form as:

Ep̂i(x, x
′) = u−1i

(
Ep̂i(x, x

′)
)

, (11)
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From (11), and from the definition of mi (x), the continuity of ui implies the following properties:

limx′→x+0
Ep̂i(x, x

′) = x−0 , (12)

limx′→x+0
p̂i(x, x

′) = 1, (13)

limx′→x+0
mi

(
Ep̂i(x, x

′)
)

= m−i (x0) , (14)

limx′→x+0
mi

(
x′
)

= m+
i (x0) . (15)

With these results in hand, we proceed to the next Lemma.

Lemma 13. Under the maintained assumptions of the representation theorem, if ui is contin-

uous, then: (
x0 − Ep̂i
x′ − Ep̂i

)(
(x′ − x)

(x0 − x)

)
=

mi (x)−mi (x′)[
mi (Ep̂i)

(x0−x)
(x′−x) −mi (x′)

] . (16)

Proof. To simplify notation, in the following we will write p̂i instead of p̂i(x, x
′), with the un-

derstanding however that p̂i should still be regarded as a function of x′. From (11), it is easy to

see that for any x < x0 and x′ > x0, p̂i satisfies the following condition:

mi (Ep̂i) ·
x0 − Ep̂i
x′ − Ep̂i

+mi

(
x′
)
· x
′ − x0

x′ − Ep̂i
= mi (x) · x0 − x

x′ − x +mi

(
x′
)
· x
′ − x0
x′ − x (17)

adding and subtracting mi (x′) · x0−Ep̂ix′−Ep̂i from the LHS, and rearranging terms, we obtain:

(
x0 − Ep̂i
x′ − Ep̂i

)[
mi (Ep̂i)−mi

(
x′
)]

+mi
(
x′
)(x0 − Ep̂i + x′ − x0

x′ − Ep̂i

)
= mi (x)

(
x0 − x
x′ − x

)
+mi

(
x′
)(x′ − x0

x′ − x

)
(
x0 − Ep̂i
x′ − Ep̂i

)[
mi (Ep̂i)−mi

(
x′
)]

+mi
(
x′
)(x′ − Ep̂i

x′ − Ep̂i

)
= mi (x)

(
x0 − x
x′ − x

)
+mi

(
x′
)
·
x′ − x0
x′ − x(

x0 − Ep̂i
x′ − Ep̂i

)[
mi (Ep̂i)−mi

(
x′
)]

= mi (x) ·
x0 − x
x′ − x

+mi
(
x′
) [x′ − x0

x′ − x
− 1

]
(
x0 − Ep̂i
x′ − Ep̂i

)[
mi (Ep̂i)−mi

(
x′
)]

= mi (x) ·
x0 − x
x′ − x

−mi
(
x′
) [x− x0

x′ − x

]
(
x0 − Ep̂i
x′ − Ep̂i

)(
(x′ − x)
(x0 − x)

)[
mi (Ep̂i)

(x0 − x)
(x′ − x)

−mi
(
x′
)]

= mi (x)−mi
(
x′
)

(
x0 − Ep̂i
x′ − Ep̂i

)(
(x′ − x)
(x0 − x)

)
=

mi (x)−mi (x′)[
mi (Ep̂i)

(x0−x)
(x′−x) −mi (x′)

]

Lemma 14. If both u1 and u2 are continuous, p̂1(x, x
′) > p̂2(x, x

′) if and only if

[m1 (Ep̂1)−m1 (x)]

m1(x′)
− [m2 (Ep̂1)−m2 (x)]

m2(x′)
>

(
m1 (Ep̂1)

m1(x′)
− m2 (Ep̂1)

m2(x′)

)[
1−

(
x0 − Ep̂1
x′ − Ep̂1

)(
x′ − x
x0 − x

)]
.

Proof. Using the characterization of p̂i (x, x′) in (17), we have:

m1 (x)

(
x0 − x
x′ − x

)
+m1

(
x
′
)(x′ − x0

x′ − x

)
= m1 (Ep̂1)

(
x0 − Ep̂1
x′ − Ep̂1

)
+m1

(
x
′
)( x′ − x0

x′ − Ep̂1

)
, or

m1

(
x
′
) [(x′ − x0

x′ − x

)
−
(
x′ − x0
x′ − Ep̂1

)]
= [m1 (Ep̂1)−m1 (x)]

(
x0 − x
x′ − x

)
−m1 (Ep̂1)

[(
x0 − x
x′ − x

)
−
(
x0 − Ep̂1
x′ − Ep̂1

)]
(18)
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and, for α = m1(x′)
m2(x′)

, we also have that p̂1 (x, x′) > p̂2 (x, x′) if and only if

αm2 (x)

(
x0 − x
x′ − x

)
+ αm2

(
x
′
)(x′ − x0

x′ − x

)
> αm2 (Ep̂1)

(
x0 − Ep̂1
x′ − Ep̂1

)
+ αm2

(
x
′
)( x′ − x0

x′ − Ep̂1

)
, or

αm2

(
x
′
) [(x′ − x0

x′ − x

)
−
(
x′ − x0
x′ − Ep̂1

)]
> [αm2 (Ep̂1)− αm2 (x)]

(
x0 − x
x′ − x

)
− αm2 (Ep̂1)

[(
x0 − x
x′ − x

)
−
(
x0 − Ep̂1
x′ − Ep̂1

)]
(19)

Notice that, by the definition of α, the LHS of equation (18) is the same as the LHS of (19).

Hence, equalizing both sides we obtain that p̂1 (x, x′) > p̂2 (x, x′) if and only if

[m1 (Ep̂1)−m1 (x)]

(
x0 − x
x′ − x

)
−m1 (Ep̂1)

[(
x0 − x
x′ − x

)
−
(
x0 − Ep̂1
x′ − Ep̂1

)]
> α [m2 (Ep̂1)−m2 (x)]

(
x0 − x
x′ − x

)
− αm2 (Ep̂1)

[(
x0 − x
x′ − x

)
−
(
x0 − Ep̂1
x′ − Ep̂1

)]

re-arranging, substituting for α = m1(x′)
m2(x′)

, and dividing everything by m1(x
′), this is equivalent

to:
[m1 (Ep̂1)−m1 (x)]

m1(x′)
−

[m2 (Ep̂1)−m2 (x)]

m2(x′)
>

(
m1 (Ep̂1)

m1(x′)
−
m2 (Ep̂1)

m2(x′)

)[
1−

(
x0 − Ep̂1
x′ − Ep̂1

)(
x′ − x
x0 − x

)]
.

Lemma 15. If both u1 and u2 are continuous, p̂1(x, x
′) > p̂2(x, x

′) if and only if

m1(y)−m1(x)

m2(y)− βm2(x)
>
m1(y)−m1(x

′)

m2(y)−m2(x′)
+ (1− β)γ(x, x′, y), (20)

where γ(x, x′, y) = m1(y)m1(x)m2(x′)−m2(x)m1(x′2)
m1(x′)(m2(y)−m2(x′))(m2(y)−βm2(x))

.

Proof. Let β := x0−x
x′−x , and note that β ∈ (0, 1) and β → 1 as x′ → x0. Also let y = Ep̂1, and

note that y → x0 as x′ → x0 (these facts will be useful in the lemmas that follow). Then, from

Lemma 13, we have that:(
x0 − y
x′ − y

)(
(x′ − x)

(x0 − x)

)
=

m1 (x)−m1 (x′)

βm1 (y)−m1 (x′)
. (21)

Substituting this notation in the condition of Lemma 14, and particularly using eq. (21), we

obtain

m1(y)−m1(x)

m1(x′)
−
m2(y)−m2(x)

m2(x′)
>

(
m1(y)

m1(x′)
−

m2(y)

m2(x′)

)(
1−

m1(x)−m1(x′)

βm1(y)−m1(x′)

)
. (22)

Next, re-arrange (22) to:
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(
m1(y)

m1(x′)
−

m2(y)

m2(x′)

)
−
(
m1(x)

m1(x′)
−
m2(x)

m2(x′)

)
>

(
m1(y)

m1(x′)
−

m2(y)

m2(x′)

)(
1−

m1(x)−m1(x′)

βm1(y)−m1(x′)

)
⇐⇒(

m1(y)

m1(x′)
−

m2(y)

m2(x′)

)(
m1(x)−m1(x′)

βm1(y)−m1(x′)

)
>

(
m1(x)

m1(x′)
−
m2(x)

m2(x′)

)
⇐⇒

1

m1(x′)

(
m1(y)(m1(x)−m1(x′))

βm1(y)−m1(x′)
−m1(x)

)
>

1

m2(x′)

(
m2(y)(m1(x)−m1(x′))

βm1(y)−m1(x′)
−m2(x)

)
⇐⇒

m1(y)(m1(x)−m1(x′))−m1(x)(βm1(y)−m1(x′))

m1(x′)(βm1(y)−m1(x′))
>
m2(y)(m1(x)−m1(x′))−m2(x)(βm1(y)−m1(x′))

m2(x′)(βm1(y)−m1(x′))

⇐⇒
m1(y) ((1− β)m1(x)−m1(x′)) +m1(x)m1(x′)

m1(x′)
>
m2(y)(m1(x)−m1(x′))−m2(x)(βm1(y)−m1(x′))

m2(x′)

⇐⇒

m1(x′)(m1(x)−m1(y)) + (1− β)m1(y)m1(x)

m1(x′)
>
m2(y)(m1(x)−m1(x′))−m2(x)(βm1(y)−m1(x′))

m2(x′)

⇐⇒

m1(x)−m1(y) +
(1− β)m1(y)m1(x)

m1(x′)
>
m2(y)(m1(x)−m1(x′)) +m2(x)m1(x′)

m2(x′)
−
βm2(x)m1(y)

m2(x′)

⇐⇒

m1(y)

(
βm2(x)

m2(x′)
− 1

)
+m1(x) >

m2(y)(m1(x)−m1(x′)) +m2(x)m1(x′)

m2(x′)
−

(1− β)m1(y)m1(x)

m1(x′)

⇐⇒

m1(y) (βm2(x)−m2(x′)) +m1(x)m2(x′)

m2(x′)
>
m2(y)(m1(x)−m1(x′)) +m2(x)m1(x′)− (1−β)m1(x)m1(y)m2(x

′)
m1(x′)

m2(x′)

from which we obtain the following:

m1(y)
(
βm2(x)−m2(x

′)
)
−m1(x

′)m2(x) +
(1− β)m1(x)m1(y)m2(x′)

m1(x′)
> m2(y)(m1(x)−m1(x

′))−m1(x)m2(x
′). (23)

rearranging now Equation 20 (and writing γ rather than γ(x, x′, y), we have:

m1(y)m2(y)−m1(y)m2(x
′)−m1(x)m2(y) +m1(x)m2(x

′) >

m1(y)m2(y)− βm1(y)m2(x)−m1(x
′)m2(y)+βm1(x

′)m2(x)− γ(1− β)
(
m2(y)−m2(x

′)
)
(m2(y)− βm2(x))

⇐⇒

m1(y)
(
βm2(x)−m2(x

′)
)
− βm1(x

′)m2(x) >

m2(y)
(
m1(x)−m1(x

′)
)
−m1(x)m2(x

′)− γ(1− β)(m2(y)−m2(x
′))(m2(y)− βm2(x)).

Using that −βm1(x
′)m2(x) = (1− β)m1(x

′)m2(x)−m1(x
′)m2(x), we obtain:
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m1(y)
(
βm2(x)−m2(x

′)
)
−m1(x

′)m2(x) +
[
γ(1− β)(m2(y)−m2(x

′))(m2(y)− βm2(x)) + (1− β)m1(x
′)m2(x)

]
>

m2(y)
(
m1(x)−m1(x

′)
)
−m1(x)m2(x

′).

(24)

For Inequality 23 to hold if and and only Inequality 24 holds, it must be that:

γ(1− β)(m2(y)−m2(x
′))(m2(y)− βm2(x))+(1− β)m1(x

′)m2(x) =
(1− β)m1(x)m1(y)m2(x′)

m1(x′)

⇐⇒ (25)

γ =

m1(y)m1(x)m2(x)
m1(x′)

−m1(x′)m2(x)

(m2(y)−m2(x′))(m2(y)− βm2(x))
(26)

⇐⇒ (27)

γ =
m1(y)m1(x)m2(x′)−m2(x)m1(x′2)

m1(x′) (m2(y)−m2(x′)) (m2(y)− βm2(x))
, (28)

which concludes the proof of the lemma.

Lemma 16. [Part (ii): Necessity]If both u1 and u2 are continuous, and if m−i < ∞ for both

i = 1, 2, then Part (ii) of Def.7 implies

limx→x−0
[m−1 −m1(x)]/m−1
[m−2 −m2(x)]/m−2

≥ 1−m+
1 /m

−
1

1−m+
2 /m

−
2

.

Proof. Part 2 of Lemma 4 and Lemma 15 imply that, if part (ii) of Def.7 holds, then there exists

x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t., for all x′ ∈ (x0, x̄),

m1(Ep̂1(x, x
′))−m1(x)

m2(Ep̂1(x, x′))− βm2(x)
>
m1(Ep̂1(x, x

′))−m1(x
′)

m2(Ep̂1(x, x′))−m2(x′)
+
[
1− β(x, x′)

]
γ(x, x′), (29)

where β = x0−x
x′−x , and γ(x, x′) = m1(Ep̂1(x,x′))m1(x)m2(x′)−m2(x)m1(x′2)

m1(x′)(m2(Ep̂1(x,x′))−m2(x′))(m2(Ep̂1(x,x′))−β(x,x′)m2(x))
. For any

such x ∈ (x, x0), taking limits as x′ → 0+, and using the limits in equations (12)-(15), the

condition in (29) converges to the following:

m−1 (x0)−m1(x)

m−2 (x0)−m2(x)
≥ m−1 (x0)−m+

1 (x0)

m−2 (x0)−m+
2 (x0)

,

dividing both sides by m−1 /m
−
2 , this yields[

m−1 (x0)−m1(x)
]
/m−1 (x0)[

m−2 (x0)−m2(x)
]
/m−2 (x0)

≥ 1−m+
1 (x0)/m

−
1 (x0)

1−m+
2 (x0)/m

−
1 (x0)

.

Since this needs to hold for all x ∈ (x, x0), it also holds for x→ x−0 , i.e.(
limx→x−0

[m−1 −m1(x)]/m−1
[m−2 −m2(x)]/m−2

)
≥ 1−m+

1 /m
−
1

1−m+
2 /m

−
2

,
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which completes the proof of the Lemma.

Lemma 17. [Part (ii): Sufficiency]If both u1 and u2 are continuous, and if m−i < ∞ for both

i = 1, 2, then (
limx→x−0

[m−1 −m1(x)]/m−1
[m−2 −m2(x)]/m−2

)
>

1−m+
1 /m

−
1

1−m+
2 /m

−
2

implies that Part (ii) of Def.7 holds

Proof. If
(
limx→x−0

[m−1 −m1(x)]/m
−
1

[m−2 −m2(x)]/m
−
2

)
>

1−m+
1 /m

−
1

1−m+
2 /m

−
2

, then there exists x < x0, such that ∀x ∈ (x, x0),

[
m−1 (x0)−m1(x)

]
/m−1 (x0)[

m−2 (x0)−m2(x)
]
/m−2 (x0)

≥ 1−m+
1 (x0)/m

−
1 (x0)

1−m+
2 (x0)/m

−
1 (x0)

, that is

m−1 (x0)−m1(x)

m−2 (x0)−m2(x)
≥ m−1 (x0)−m+

1 (x0)

m−2 (x0)−m+
2 (x0)

But since functions β (·), γ (·), mi (·) and Ep̂1(·) are all continuous in x′, for any such ∀x ∈ (x, x0),

there exists x̄ > x0, s.t., for all x′ ∈ (x0, x̄),

m1(Ep̂1(x, x
′))−m1(x)

m2(Ep̂1(x, x′))− βm2(x)
>
m1(Ep̂1(x, x

′))−m1(x
′)

m2(Ep̂1(x, x′))−m2(x′)
+
[
1− β(x, x′)

]
γ(x, x′). (30)

The result then follows from Lemma 15.

Lemmas 4, 16 and 17, together with Lemma 6 (noting that for K1 = K2 = 0, the expression

in the lemma reduces to m1(x)
m1(x′)

> m2(x)
m2(x′)

, which by continuity holds if
m−1
m+

1

>
m−2
m+

2

, and only if

m−1
m+

1

≥ m−2
m+

2

), prove the theorem.

Proof of Theorem 6.

Proof. Note that with differentiability, Du+i = m+
i , Du−i = m−i , and thatD2u−i = limx→x−0

m−i −mi(x)
x0−x

for i = {1, 2}. Parts 1 and 2 of the theorem therefore follow directly from parts 1 and 2, respec-

tively, of Theorem 5. Part 3 follows from the following:

limx→x−0
[m−1 −m1(x)]/m−1
[m−2 −m2(x)]/m−2

≥1−m+
1 /m

−
1

1−m+
2 /m

−
2

⇐⇒

limx→x−0

[
m−1 −m1(x)

x0−x ]/m−1

[
m−2 −m2(x)

x0−x ]/m−2

≥(m−1 −m+
1 )/m−1

(m−2 −m+
2 )/m−2

⇐⇒
D2u−1
D2u+

≥Du
−
1 −Du+1

Du−2 −Du+2
⇐⇒

D2u−1
Du−1 −Du+1

≥ D2u−2
Du−2 −Du+2

.
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Proof of Lemma 2, Lemma 3 and Proposition 1.

Proof. Lemma 3 follows directly from Lemma 16 and 17. Then, using Lemma 6 from the proof

of Theorem 5, and using that K1 = K2 = 0 since u1, u2 are continuous functions, we know that

S1(x, x
′) ⊂ S2(x, x′)⇔ p̄1(x, x

′) > p̄2(x, x
′)⇔ m1(x)

m1(x′)
(x0 − x) >

m2(x)

m2(x′)
(x0 − x).

dividing both sides by (x0 − x), this holds if and only if m1(x)
m1(x′)

> m2(x)
m2(x′)

.

Holding x fixed, and taking limits as x′ → x+0 , this holds if m1(x)

m+
1 (x0)

> m2(x)

m+
2 (x0)

and only if

m1(x)

m+
1 (x0)

≥ m2(x)

m+
2 (x0)

.

Taking now limits as x → x−0 , this holds if
m−1 (x0)

m+
1 (x0)

>
m−2 (x0)

m+
2 (x0)

and only if
m−1 (x0)

m+
1 (x0)

>
m−2 (x0)

m+
2 (x0)

,

which proves Lemma 2.

To prove Proposition 1, and given Lemma 2, it suffices to also prove that this results holds

when the order of limits is reversed. Specifically, starting with m1(x)
m1(x′)

> m2(x)
m2(x′)

, holding x′ fixed

and taking the limits as x→ x−0 , this holds if
m−1 (x0)
m1(x′)

>
m−2 (x0)
m2(x′)

and only if
m−1 (x0)
m1(x′)

≥ m−2 (x0)
m2(x′)

.

Taking now limits as x′ → x+0 , this holds if
m−1 (x0)

m+
1 (x0)

>
m−2 (x0)

m+
2 (x0)

and only if
m−1 (x0)

m+
1 (x0)

>
m−2 (x0)

m+
2 (x0)

,

which concludes the proof of Proposition 1.

B.1 Interpersonal Comparisons: A Tight Characterization

The next result provides a tight characterization of the ranking of agents’ failure avoidance (as

per Def. 7), in terms of the key elements in the main representation theorem:

Theorem 10. Let preferences %1 and %2 both satisfy the conditions in Def. 3 with respect to

the same x0 ∈ R. Then, %1 displays more failure avoidance than %2 if and only if there exists

x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t., for all x′ ∈ (x0, x̄), one of the following

applies:

1. K1 > 0 and K1
m1(x′)

− K2
m2(x′)

>
[
m2(x)
m2(x′)

− m1(x)
m1(x′)

]
(x0 − x).

2. K1 = K2 = 0, m1(x)
m1(x′)

> m2(x)
m2(x′)

and

m1(Ep̂1(x, x
′))−m1(x)

m2(Ep̂1(x, x′))− βm2(x)
>
m1(Ep̂1(x, x

′))−m1(x
′)

m2(Ep̂1(x, x′))−m2(x′)
+
[
1− β(x, x′)

]
γ(x, x′), (31)

where β = x0−x
x′−x , and γ(x, x′) = m1(Ep̂1(x,x′))m1(x)m2(x′)−m2(x)m1(x′2)

m1(x′)(m2(Ep̂1(x,x′))−m2(x′))(m2(Ep̂1(x,x′))−β(x,x′)m2(x))
.

Proof. Lemma 10 above proves part 1 of the theorem, while Lemma 4, together with Lemma 6

(concerning the p̄i ranking, noting that for K1 = K2 = 0, the expression in the lemma reduces

to m1(x)
m1(x′)

> m2(x)
m2(x′)

) and Lemma 15 (concerning the p̂i ranking) prove part 2 of the theorem.
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