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Abstract

This paper discusses the role of deterministic components in the DGP and in the

auxiliary regression model which underlies the implementation of the Fractional Dickey-

Fuller (FDF) test for I(1) against F I(d) processes with d 2 [0; 1): Invariant tests to the
presence of a drift under the null of I(1) are derived. In common with the standard DF

approach in the I(1) vs: I(0) framework, we also examine the consequences of including

a constant and /or a linear trend in the regression model when there is a drift under the

null. A simple testing strategy entailing only asymptotically normally-distributed tests
is proposed. Finally, an empirical application is provided where the FDF test allowing

for deterministic components is used to test for long-memory in the per capita GDP of

several OCDE countries.

Keywords: Deterministic components, Dickey-Fuller test, Fractionally Dickey-
Fuller test, Fractional processes, Long memory, Trends, Unit roots.

INTRODUCTION

The goal of this paper is to extend an existing statistical procedure for detecting a unit

root against mean-reverting fractional alternatives in time series which may exhibit a trend-
ing behavior or/and a non-zero initial conditions. In particular we focus on the test proposed
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by Dolado, Gonzalo and Mayoral (2002, DGM henceforth) who have generalized the tra-

ditional Dickey-Fuller (DF henceforth) test of I(1) against I(0) processes to the broader
framework of testing for a unit root against long-range dependence. Relying upon the DF

approach, the underlying idea is to test for statistical signi…cance of the coe¢cient on the
regressor in a potentially unbalanced regression where the regressand is the …ltered series

under the null and the regressor is the lagged value of …ltered series under the alternative
hypothesis.

The advantages of this test, in parallel with the DF approach, rely on its simplicity and
on its good performance in …nite samples, both in terms of size and power. Speci…cally,

when compared to other well-known tests for long memory, like the Lagrange Multiplier
(LM) tests developed by Robinson (1994) and Tanaka (1999), the FDF test presents the
advantage of not requiring the correct speci…cation of a parametric model. For this reason,

although the FDF test is not the asymptotically UIMP test (see Tanaka, 1999) under a
sequence of alternatives approaching the null at the T ¡1=2 rate in a parametric model

with gaussian errors, it fares very well in terms of power relative to both parametric and
semiparametric tests in the frequency and time domains, and even better than the UIMP

test when errors are non-gaussian, as discussed at length in DGM (2002).1

Within the class of fractionally-integrated, FI(d), processes, the so-called Fractional

Dickey-Fuller test (FDF test henceforth) tests the null hypothesis of d = 1 against the
alternative of 0 · d < 1 by considering the OLS regression ¢yt = Á ¢dyt¡1 + "t, where "t
is an i.i.d. disturbance, ¢ = (1 ¡L) and L is the lag operator. To operationalise the FDF
test, the regressor ¢dyt¡1 is constructed by applying the truncated binomial expansion of

the …lter (1 ¡L)d to yt¡1, so that ¢dyt =
Pt¡1

0 ¼i(d) yt¡i where ¼i(d) is the i-th coe¢cient
in that expansion.

The FDF test is based upon the t-ratio of Á̂ols , tÁ(d); so that non-rejection of H0: Á = 0
against H1: Á < 0, implies that the process is I(1), namely, ¢yt = "t. Conversely, rejection

of the null implies that the process is FI(d), 0 · d < 1, that is ¢dyt = C(L)"t; where the lag
polynomial C(L) has all its roots outside the unit circle. The distribution of tÁ(d) depends

on whether d is assumed (arbitrarily) pre-…xed (when considering a simple alternative) or
estimated (when considering a composite alternative), and the distance 1¡d. When d is pre-

…xed as in the standard DF case (where d = 0), the asymptotic distribution of the tÁ(d) is
a N(0; 1) variate when 0:5 · d < 1; whilst it is nonstandard, i.e., a functional of Fractional

Brownian motion (fBM henceforth), when 0 · d < 0:5. In particular, for d = 0, tÁ(d)
follows the well-known DF distribution, otherwise the critical values become less negative

than the standard DF case as d ! 0:5: By contrast, whenever d is pre-estimated using any
1As shown in DGM (2002), the proposed test has also better power properties than those based on a

direct estimation of d in semiparametric or parametric models since the former often yield large con…dence

intervals whilst the precision of the latter hinges on the correct speci…cation of the model.
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(trimmed) T 1=2-consistent estimator2, bd; of d 2 [0; 1), the asymptotic distribution of tÁ (bd)
becomes pivotal and is always N(0;1) for any value of d within the pre-speci…ed range.3

Following the development of unit root tests in the past, where the initial canonical AR(1)

model was subsequently augmented with further deterministic components (including linear,
nonlinear and broken trends), our goal in this paper is to investigate how the limiting

distribution of the FDF test changes when some deterministic components are considered
in the DGP and in the maintained hypothesis. In particular, we will focus on the role

of a drift and/or a linear trend in such a hypothesis. After all, many (macro) economic
time series have a trending behavior in their levels which should be carefully treated when

extracting the stochastic component of the series which is commonly subject to unit root
tests.

In the I(1) vs. I(0) framework, a constant and a linear time trend are typically included

in the auxiliary regression model in such cases so that, if a unit root exists, the constant
term becomes a trend under the null hypothesis. As DF (1981) showed, including the linear

time trend in the maintained model allows one to achieve an invariant test to the presence
of a drift in the true data generation process. When dealing with FI(d) processes, two

approaches have been considered in the literature to cater for deterministic components,
both in the context of LM tests for the null of d = d0. Some authors, like e.g. Robinson

(1994), consider an additive setup where yt = ¹(t) + FI(d), with ¹(t) being a vector of
deterministic functions like a constant or a time trend, so that E(¢dyt) = ¢d¹(t). In

this setup, our …rst contribution in this paper is to derive the corresponding (numerically)
invariant test w.r.t. ¹(t) for a unit root against a fractional one when ¹(t) = ® +¯t under

the alternative hypothesis of an FI(d) process. As will be shown below, invariance of the
FDF test to the values of ® and ¯ is achieved by including the nonlinear trend ¢d¹(t) in

the maintained hypothesis. When d is pre-…xed, the asymptotic distributions of the FDF
test di¤er according to 0 · d < 0:5 and 0:5 · d < 1: However, if d is estimated with a

(trimmed) T 1=2-consistent estimator, then the asymptotic distribution of the invariant FDF
test is always N(0;1):

By contrast, other authors, like e.g. Breitung and Hassler (2002), assume an innovative
setup whereby ¢dyt = ¹(t) + I(0) so that E(¢dyt) = ¹(t): In line with this approach,

our second contribution deals with the case where only a constant and /or linear trend is
included in the regression model, like in the standard DF approach to test I(1) vs. I(0)

2A trimming such as the one proposed in DGM (2002, formula (33)) may be necessary in small samples

to avoid estimates of d above 1.
3The intuition for these results is that whenever the values of d under the null and the alternative hy-

pothesis are close (i.e., when d belongs to the nonstationary range or when d is estimated using a trimmed

T1=2-consistent estimator) asymptotic normality follows under the null hypothesis, whereas when they dis-

tant (i.e., when d belongs to the stationary range) the limiting distributions are nonstandard.
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in the presence of deterministic components. In this case, the test is not similar since the

value of the statistics depend upon the value of the deterministic components included in
the DGP. When d is pre-…xed, three results arise. First, when the null is a driftless random

walk, the FDF test with a constant and/or linear trend is non-standard for 0 · d < 0:5
and asymptotically normal when 0:5 < d < 1: Second, the result derived by West (1988)

about the limiting N(0;1) distribution of the DF test when both the DGP and the model
share the same deterministic terms also holds for the FDF test, although the size of the

true coe¢cients on those components relative to the variance of the disturbance, may lead
to serious size distortions in …nite samples. And third, when the null is a random walk

with drift and a linear trend is included in the maintained hypothesis, in contrast to the
non-standard limiting distribution of the DF test, a limiting N(0; 1) distribution holds for
the FDF test, subject to similar size distortions in …nite samples as before. Finally, as with

the invariant FDF test; estimation of d using a (trimmed) T1=2-consistent procedure always
yields an asymptotic N(0;1) distribution. Hence, although the test is not numerically

invariant to the values of the deterministic components in the DGP, asymptotically it is
similar when an estimate of d is used, since in this case the asymptotic distributions of the

test-statistics are always normal regardless the values of those latter components.
In view of these properties, our results provide a simple testing strategy of H0 : d = 1

vs. H0 : 0 < d < 1 when d is estimated to implement the FDF test in the presence of
deterministic terms since only N (0;1) critical values need to be used.

At this stage it should be pointed out that, in recent work, Lobato and Velasco (2003)
have addressed the issue of optimality of the FDF test where the DGP is a pure FI(d)

process with no deterministic components and found that T 1=2- consistency in the estima-
tion of d can be relaxed to T 1=4 log(T )- consistency. Since this condition holds for many

semiparametric estimators with an appropriate choice of the bandwidth parameter (see Ve-
lasco, 1999) the range of estimators that can be used to implement the FDF test is much

larger. However, investigating how this generalization extends to the presence of determin-
istic components exceeds the scope of this paper. Thus, in the sequel we will restrict our

results to T 1=2- consistency although we conjecture that, under weaker conditions, their
results may still hold.

Lastly, we wish to stress that, despite focusing on the case where the error term in
the DGP is i:i:d; the asymptotic results obtained in this paper remain valid when the

disturbance is allowed to be autocorrelated, as it happens in the (augmented) DF case
(ADF henceforth). In this respect, DGM (2002, Theorems 6 and 7) have proved that,

in order to remove the correlation, it is su¢cient to augment the set of regressors in the
auxiliary regression described above with k lags of the dependent variable such that k " 1
as T " 1;and k3=T " 0, as in Said and Dickey (1984). This procedure gives rise to the
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(augmented) FDF test (ADF henceforth) which will be used in the empirical section below

and whose properties, being the same as those of the FDF test, are omitted to save space.
The rest of the paper is structured as follows. Sections 2 analyzes the derivation of

invariant FDF tests when the null hypothesis is a random walk with or without drift.
Section 3 focuses on the case where only a constant and/or a linear trend is used in the

regression model emphasizing the di¤erences with the standard results for the DF test
and identifying those key parameters that may lead to poor …nite-sample behavior of the

limiting distributions. Each section contains detailed Monte-Carlo evidence. Further, we
also analyze how the previous results change when d needs to be pre-estimated to make

the FDF test feasible. Section 4 discusses some empirical applications of the previous tests.
Finally, Section 5 draws some concluding remarks.

Proofs of theorems and lemmae are gathered in Appendix 1 whereas sets of non-standard

critical values for the FDF test with pre-…xed d 2 [0; 0:5) appear in Appendix 2.
In the sequel, the de…nition of a FI (d) process that we will adopt is that of an (asymptot-

ically) stationary process, when d < 0:5 and that of a non-stationary (truncated) process,
when d ¸ 0:5: Those de…nitions are similar to those used in, e.g., Robinson (1994) and

Tanaka (1999) and are summarized in Appendix A of DGM (2002). Moreover, the fol-
lowing conventional notation is adopted throughout the paper: ¡(:) denotes the gamma

function, f¼i (d)g represents the sequence of coe¢cients associated to the expansion of ¢d

in powers of L and are de…ned as

¼i (d) =
¡ (i ¡d)

¡ (¡d)¡(i + 1)
:

The indicator function is denoted by 1(:) and In is the identity matrix of order n; Wd (:)

and B (:) represent standard fBM corresponding to the limit distributions of the standard-
ized partial sums of asymptotically stationary (truncated) FI (d) processes as de…ned in

Marinucci and Robinson (1999) and standard BM, respectively. Finally, w! and p! denote
weak convergence and convergence in probability, respectively.

DEFINITION OF THE INVARIANT FDF TEST

Employing the methodology in DGM (2002), we assume, like in Robinson (1994), that the

process yt is generated as the sum of a constant and a linear time trend, and an integrated
component ut;

yt = ® + ¯t + ut; (1)

with

ut =
"t1(t>0)

¢ ¡ Á¢dL
; (2)
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where, for simplicity, "t is assumed to be an i:i:d: error term. Our interest is in H0 : Á = 0

versus H1 : Á < 0:
The null and alternative hypotheses can be rewritten as

H0 : ¢ (yt ¡® ¡¯t) = "t; (3)

versus

H1 :
³
¢ ¡ Á¢dL

´
(yt ¡® ¡¯t) = "t; (4)

where ® represents the constant term, capturing the initial condition y0, while ¯ captures
the trending behavior of the process in levels. Both can take are any real value (including

zero). In DGM (2002) it is shown that
¡
¢ ¡ Á¢dL

¢
= ¦(L)¢d; where ¦(L) = (¢1¡d¡ÁL)

has all its roots outside the unit circle if ¡2Á1¡d < 0; and veri…es ¦(0) = 1 and ¦(1) = ¡Á:

Thus, under H1; denoting C(L) = ¦(L)¡1 with C(0) = 1 and C(1) = ¡1=Á; yt is governed
by the process ¢d (yt ¡ ®¡ ¯t) = C(L)"t with C(L) having its roots outside the unit circle

as well:
Premultiplying (1) by the polynomial (¢ ¡Á¢dL) we get the following regression model

(denoted as RM, henceforth) as the maintained hypothesis

RM 1 : ¢yt = Á¢dyt¡1 +¯ ¡Á®¿ t¡1 (d) ¡Á¯¿ t¡1 (d ¡ 1) + "t; (5)

with

¿ t (±) =
t¡1X

i=0
¼i (±) ;

where the coe¢cients ¼i (±) come from the binomial expansion of (1 ¡ L)± in powers of L:
Note that ¢dt = ¢d¢¡11ft>0g so that, in accord with the notation used above, such a trend

is labelled in the sequel as ¿ t¡1 (d ¡ 1) : Both nonlinear time trends capture the trending
behavior of the series under the alternative. Notice that the DF case for d = 0 is embedded

in this setup since ¿ t¡1(0) = 1 and ¿ t¡1 (¡1) = t ¡ 1, giving rise to a constant and a linear
time trend in the maintained hypothesis. As for the intermediate cases, Figure 1 plots a
range of time trends generated with di¤erent values of d 2 [0; 1).
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The test of H0 : I (1) relies upon Á = 0 in model (5). Thus, when H0 is true, the process
becomes

DGP 1 : ¢yt = ¯ + "t; t ¸ 1; (6)

whereas, under H1; it is a FI (d) process with a linear time trend like in (4).

If the presence of the linear trend in the level of the series is discarded from the outset
(as e.g. in interest rates or in exchange rates) then ¯ = 0 in (1), giving rise to

DGP 2 : ¢yt = "t; t ¸ 1: (7)

with the corresponding regression becoming

RM 2 : ¢yt = Á¢dyt¡1 +®1¿ t¡1 (d) + "t: (8)

As in the traditional DF framework, it is not di¢cult to prove that the t-ratio on the

OLS estimator of Á in either (5) or (8), denoted as tÁ̂¿olsand tÁ̂¹ols , respectively, is numerically
invariant to the (unknown) value of ® and ¯. In the following theorem, the asymptotic

properties of the test under the null hypothesis are presented.

Theorem 1 Under the null hypothesis that yt is generated by DGP 1 (DGP 2), the OLS

coe¢cient associated to Á in RM 1; Á̂
¿
ols; (to Á in RM 2, Á̂

¹
ols, when ¯ = 0) is a consistent

estimator of Á = 0 and converges to its true value (Á = 0) at a rate T 1¡d when 0 ·
d < 0:5 and at the standard rate T1=2 when 0:5 < d < 1: The asymptotic distributions of
the associated t ¡ ratios; tÁ̂¿olsand tÁ̂¹olsare given by

t
Á̂
i
ols

w! ¤i (d) if 0 < d < 0:5; for i = f¹; ¿g;
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and,

t
Á̂
i
ols

w! N (0;1) if 0:5 < d < 1; for i = f¹;¿g;

where ¤i (d) ; i = f¹;¿g are functionals of fBM (see Appendix 1) that depend on d but not
on other parameters of the model.

If rather than assuming that the integration order under the alternative hypothesis is an
(arbitrary) pre-…xed value, d is estimated then RM 1 would be as follows

¢yt = Á¢bdT yt¡1 + ®1 +®2¿ t¡1(bdT ) +®3¿ t¡1
³

bdT ¡ 1
´

+ "t; (9)

where bdT (bd in short-hand notation) is a (trimmed) T 1=2¡consistent estimate of d.4 If no
drift is allowed under H0; like in (8), then the model would be

¢yt = Á¢bdyt¡1 + ®1¿ t¡1(bd) + "t; (10)

As discussed in DGM (2002), among the di¤erent estimation procedures available in the

time domain which yield which yield T1=2¡consistent estimates of d in the permissible
range, the ML estimators derived by Beran (1995) and Tanaka (1999) or the Minimum

Distance estimators derived by Galbraith and Zinde-Walsh (2001) and Mayoral (2003) can
be used. Besides, as discussed in the Introduction, Lobato and Velasco (2003) have relaxed

the assumption of T 1=2-consistency to T 1=4 log (T)- consistency of the estimator in a simple
context, which imply that also semiparametric estimators of d could be used, although the

following theory does not cover this case.

Theorem 2 Let be a (trimmed) T1=2¡consistent estimator of d, 0 · d < 1; such that

T 1=2(bdT ¡d) w! »; where » is a non-degenerate distribution. Then, under the null hypothesis
that yt is a random walk with initial condition y0, the asymptotic distribution of the t¡ratios

on the OLS coe¢cient associated to Á in (9)and in (10) ; tÁ̂¿ols(
bd) and tÁ̂¹ols(

bd) are given by

t
Á̂
i
ols

(bd) w! N (0; 1) ; i = f¹; ¿g:

It is important to notice that use of the Frisch-Waugh Theorem and invariance to the

presence of deterministic components in RM 1 and RM 2 imply that the test statistics can
also be computed in a two-step procedure as follows. First, regress yt on a linear trend (RM

1) or only on a constant term (RM 2) and obtain the residuals but. Second, construct the
…ltered series ¢ but and ¢d but¡1 and compute the t-ratio of the estimated coe¢cient in the

regression of ¢ but on ¢d but¡1where d can be pre-…xed or estimated.
4E¤ectively, if edT is a T1=2-consistent estimator of d; bdT = edT , if edT < 1¡ c; and bdT = 1¡ c; if edT ¸ 1,

where c > 0 is a (…xed) value in the neighborhood of zero that ensures that bdT is strictly smaller than unity.
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To check how the previous asymptotic results perform in …nite samples, Tables A2 a,b

(Appendix 2) report the empirical critical values of tÁ̂¿ols and tÁ̂¹ols in RM 1 and RM 2 for
di¤erent signi…cance levels and di¤erent values of d. The results are based on a Monte-Carlo

study with a number of replications N = 10;000 of DGP 2 (since the test is invariant to the
value of ® and ¯) where ¾" = 1 and T = 100, 400;1000: The critical values for d 2 [0; 0:5) are

clearly di¤erent from those corresponding to a one-sided test using a standardized N (0;1)
distribution ( ¡1:28; ¡1:64 and ¡2:33, respectively, for the three signi…cance levels reported

below). By contrast, when d 2 [0:5; 1), the critical values resemble much more those of a
N(0; 1) distribution, particularly for values of d > 0:6 and samples sizes T¸ 400: As for

the case where d is estimated using Mayoral´s (2003) Minimum Distance estimator which
satis…es the requirements above, the empirical sizes at the 5% nominal level are 5.18, 5.12
and 4.98 for T= 100, 400 and 1000, respectively. As for power, Table 1 shows the rejection

rates of the FDF test with estimated d test under the alternative. The most relevant
…nding is that there does not seem to be a power loss in …nite samples when deterministic

components are included relative to the case where they are not (see DGM, 2002, Table 5).

TABLE 1
Power (size corrected). S.L. 5%

DGP 2: ¢yt = "t;Estimated d

RM 1 RM 2

T = 100 T = 400 T = 1000 T = 100 T = 400 T = 1000

0.9 23.7% 61.4% 94.5% 23.3% 62.7% 95.5%

0.7 84.9% 100% 100% 89.9% 100% 100%

0.6 97.4% 100% 100% 99.6% 100% 100%

0.4 100% 100% 100% 100% 100% 100%

0.2 100% 100% 100% 100% 100% 100%

PROPERTIES OF THE FDF TEST IN THE PRESENCE OF A
CONSTANT/LINEAR TIME TREND IN DGP AND MODEL

In parallel with the conventional DF procedure to deal with deterministic components,

we now consider the case where only a constant term and/or a linear time trend, rather than
the nonlinear trends discussed above, are included in the regression model. Thus, in accord

with the setup in Breitung and Hassler (2002), we deal now with a procedure for testing
the null hypothesis that yt has a unit root with or without drift versus the alternative that

the series is a FI(d) process, with d < 1; possibly around a constant or a constant and a
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linear time trend. More explicitly, we will consider that yt is generated according to

yt =
¯ + ±t + "t1(t>0)

¢ ¡ Á¢dL
; (11)

where ± is a multiple of Á; say ± = kÁ:5 Then, under H0: Á = 0; becomes DGP 1 above

yt = ¯ + yt¡1 + "t; t ¸ 1; (12)

if ¯ 6= 0; whereas it becomes DGP 2 if ¯ = 0; i.e.

yt = yt¡1 + "t; t ¸ 1; (13)

In order to test H0, two regression models are considered, one including a constant term

and another including a constant term and a linear time trend

RM 3 : ¢yt = ®1 + Á¢ dyt¡1 + "t; (14)

or
RM 4 : ¢yt = ®1 + ®2t +Á¢ dyt¡1 + "t; (15)

where yt is a driftless random walk when ®1 = ®2 = Á = 0. Conversely, under the

alternative hypothesis that Á < 0; when ± = 0 (i.e., k = 0); (11) implies that RM 3 can be
expressed as

¢dyt = C (L) (¯ + "t);

where C (L) is de…ned above: Since we are considering truncated processes, this implies
that:

¢dyt = ¯
t¡1X

i=0
ci +C (L) "t;

where lim
Pt¡1
i=0 ci = C (1) < 1: Hence, ¢dyt is (asymptotically) an I (0) process with a

non-zero drift, given by ¯¤ = ¯C (1).
Likewise, if ± 6= 0, then the corresponding reformulation of RM 4 becomes

³
¢1¡d¡ ÁL

´
¢dyt = ¯ + ±t + "t;

implying that

¢dyt = ¯
t¡1X

i=0
ci + ±

t¡1X

i=0
ci(t ¡ i) + C (L) "t

= ¯
t¡1X

i=0

ci ¡ ±

Ã
t¡1X

i=0

ici

!
+

Ã
t¡1X

i=0

ci

!
±t + C (L) "t:

5In this fashion we exclude the possibility that the deterministic component of yt under H0:Á = 0 may

be a quadratic trend. Note that the constant in this case is denoted by ¯, so that, under the null, the DGP

corresponds to (6).
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The order of magnitude of each of the three components of ¢dyt is as follows. The …rst

term, as stated before, is O(1) since it tends to a bounded constant ®¤ = ®C (1). The
second term

Pt¡1
i=0 ici is O

¡
td

¢
. To check this, notice that

Pt¡1
i=0 ici is the sum of the …rst

(t ¡ 1) terms of C0 (1) where

C0 (z) =
¡ (1 ¡d) (1 ¡ z)¡d+ Á

³
(1 ¡ z)1¡d¡ Áz

´2 :

When evaluated at z = 1; the denominator is a bounded quantity. As for the numerator

(1 ¡ z)¡d jz=1 1(t>0) = O
³
td

´
;

since the coe¢cients associated to the expansion of this polynomial, ¼i (¡d) are equiva-
lent to i¡1+d for large i: This implies that C 0 (1) = O

¡
td

¢
: Then, de…ning the sequence

f'1; :::;'t; :::g, where

't =

Ã
t¡1X

i=0
ici

!
=t;

so that
Pt¡1
i=0 ici = 'tt for each t, it is clear that the limit of the sequence {'tg, ', is zero

for all d < 1. Hence, the process yt can be rewritten as:

¢dyt = ¯¤+ ±¤t +C (L) "t + o(1)

where ¯¤ = ¯C (1) ; ±¤ = ±C (1) : This implies that the process yt is (asymptotically) a

FI (d) process with a constant and a linear time trend where E(¢dyt) = ¯¤+ ±¤t.
In the following subsections we study the behavior of the test statistics associated to

the above mentioned regression models under the null hypothesis of a random walk with
(¯ = 0) and without (¯ 6= 0) drift.

Case I: Deterministic terms included in the regression. DGP is a driftless
random walk.

In this subsection, DGP 2 is considered whereas RM 3 and RM 4 are estimated. The
next theorems state the consistency of the estimators of Á in RM 3 and RM 4 and present

the asymptotic distributions of these estimators and their corresponding t ¡ ratios. As in
the previous section, a di¤erent asymptotic behavior is found to hold depending on what

pre-…xed value of d is used to implement the test.

Theorem 3 Under the null hypothesis that yt is generated according to DGP 2, the OLS

coe¢cient associated to Á in RM 3, Á̂
¿
ols; ( to Á in RM 4; Á̂

¹
ols;when ± = 0) is a consistent

estimator of Á = 0 and converges to its true value at a rate T1¡d when 0 · d < 0:5;
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(T log T)1=2 when d = 0:5; and at the standard rate T 1=2 when 0:5 < d < 1. The asymptotic

distributions of the associated t ¡ ratios; tÁ̂¿olsand tÁ̂, are given by

t
Á̂iols

w!
R 1
0 W i

¡d (r)dB(r)
³R 1

0
¡
Wi¡d (r)

¢2 dr
´1=2

if 0 · d < 0:5; i = f¹;¿g

and,
t
Á̂
i
ols

w! N (0; 1) if 0:5 < d < 1; for i = f¹; ¿g:

where W¹¡d (r) is a demeaned fBM de…ned as W¹¡d (s) = W¡d (s)¡
R 1
0 W¡d (r)dr and W ¿

¡d (s)
is a detrended fractional Brownianmotion de…ned as W ¿

¡d (s) = W¡d (s)+(6s ¡ 4)
R 1
0 W¡d (r)dr¡

(12s ¡ 6)
R 1
0 rW¡d (r)dr.

Case II: Constant term included in the regression. DGP is a random walk with
drift.

We now turn to the interesting case considered by West (1988) in the I(1) vs: I(0)

framework where both the DGP and the model share the same deterministic component.
For simplicity, we restrict the analysis to the presence of a drift, although similar results

obtain when both DGP and model share a drift and a linear trend. Hence yt is assumed to
be generated by DGP 1 whilst the regression model considered is RM 2.

Before exploring the asymptotic properties of the test statistic in this case, it is useful to
analyze the nature of the process ¢dyt under the null hypothesis. Under DGP 1 ; ¢dyt can

be rewritten as the sum of a deterministic term and a purely stochastic FI (1 ¡d) process:

¢dyt = ¢d¡1¯ + ¢d¡1"t: (16)

The …rst component in the RHS of (16) is the nonlinear trend ¢d¡1¯ = ¯¿ t(d ¡ 1) =
Pt¡1
i=0 ¼i (d ¡ 1) : As argued in Section 2, when d = 0, (the DF case), ¼i (d ¡ 1) = 1 for all

i, which implies ¿ t(¡1) = t: By contrast, when d = 1; ¼0 (d ¡ 1) = 1 and the remaining
¼i (d ¡ 1) = 0 for all i > 0; which implies that ¿ t(0) = 1. For all intermediate values

of d 2 (0; 1),
Pt¡1
i=0 ¼i (d ¡ 1) represents and increasing time trend bounded by these two

extreme cases. It turns out that it is easy to prove that the latter trend is of order O(T1¡d)

since, by Stirling ´s approximation, we get that ¼i (d ¡ 1) = ¡(i +1 ¡d)=[¡(1 ¡d)¡(i +1)]
» i¡d= ¡(1 ¡ d). Hence, the sum from 1 to T of those terms will yield the previous order

of magnitude. Note that d = 1 implies O(1) whereas d = 0 implies O(T ), in accord with
the previous discussion of the two extreme cases. Since for any value of d 2 [0;1); the

term ¯¢ d¡1 induces a time trend, albeit a linear one only for d = 0, the process ¢ dyt
is always non-stationary for any value of d in that range. This behavior contrasts with

what happens in the case where yt is a dri‡ess random walk, where ¢ dyt happens to be an
(asymptotically) stationary process when d 2 [0:5;1).
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The results in the next theorem parallel those found by West (1988) in the DF case. As

a consequence of the inclusion of a drift in the DGP, the asymptotic distributions of Á̂
¹
ols

and tÁ̂¹ols are normal for all values of d:

Theorem 4 Under the null hypothesis that yt is generated according to DGP 1, Á̂
¹
ols is a

consistent estimator of Á = 0 and converges to its true value at a rate T3=2¡ d for 0 ·
d < 1: Its asymptotic distribution is given by

0
@ T1=2

³
^̄
ols ¡ ¯

´

T 3=2¡ dÁ̂¹ols

1
A w! N

¡
0; ¾2Q¡1

2
¢
;

where

Q2 =

0
@ 1 ¯

¡(3¡ d)
¯

¡(3¡ d)
¯2

¡(2¡ d)2(3¡2 d)

1
A :

The asymptotic distribution of the t ¡ ratio of Á̂
¹
ols in RM 3 is given by

tÁ̂¹ols
w! N (0;1) :

Tables 2a, b report the empirical sizes for two alternative values of ¯, namely ¯ = 0:5

and 5:0 for the three sample sizes considered above: Distinguishing between low and high
values of the drift in the DGP relative to the variance of the error term (¾" = 1 in our

case) turns out to be important since, as pointed out by Hylleberg and Mizon (1989), the
orders of magnitude of the variability of the deterministic and the stochastic components

of yt¡1 in the DF framework are Op(¯2T 3) and Op(¾2
"T2), respectively, where the leading

coe¢cients ¯2 and ¾2" have been included in the Op(:) terms for analytical convenience.

In e¤ect, note that if the squared drift, ¯2; is very small relative to the variance, ¾2
", the

leading term will be scaled by a very small number. This implies that, in …nite samples, the
stochastic component may dominate the behavior of the distribution of tÁ in such a way

that it will resemble the distribution of the DF test when a constant term is included in the
model and the DGP is a driftless random walk. In our setup, the orders of magnitude of

the variability of the deterministic and stochastic components of ¢dyt¡1 are Op(¯2T 3¡2d)
for the former; and Op(¾2

"T 2(1¡d));Op(¾2
"T logT ) and Op(¾2

"T ) for the latter, depending on

whether d 2 (0; 0:5); d = 0:5 or d 2 (0:5; 1) (see proof of Lemma 1 in the Appendix). As it
can be observed below , a low value of ¯ distorts somewhat the 5% size for T = 100;400,

yet the distortions are not that large, particularly for d ¸ 0:5: By contrast, when ¯ = 5;
the empirical sizes match almost perfectly the nominal 5%. An intuitive explanation of

why the size distortions in Tables 3a, b tend to decline with the value of d is that when
d 2 [0:5;1), the stochastic component also behaves closely to a normal distribution so that

the size of ¯ is less relevant. Notice also that a comparison of the orders of magnitude of

13



the deterministic and stochastic components of ¢dyt¡1; for large T and ¾2
" = 1, implies that

the former will dominate the latter when ¯ > T¡1=2 for d 2 (0;0:5), ¯ > (log T )1=2T¡1 for
d = 0:5, and when ¯ > T¡(1¡d) for d 2 (0:5;1): Thus, these results extend those presented in

Hylleberg and Mizon (1989) for the case d = 0; for which they found that the deterministic
term will dominate when ¯ > T¡1=2; implying that small values of ¯ will generate stronger

size distortions in …nite samples.

TABLE 2a.
Empirical Size 5%; ¯=0.5

DGP : ¢yt = ¯ + "t;Regression: ¢yt = ® + Á¢ dyt¡1 + at

d = T T=100 T=400 T=1000

0.0 0.011 0.071 0.063

0.2 0.144 0.093 0.066

0.4 0.112 0.091 0.075

0.5 0.109 0.087 0.080

0.6 0.091 0.082 0.083

0.8 0.083 0.070 0.066

0.9 0.071 0.061 0.058

TABLE 2b.
Empirical Size 5%;̄ =5

DGP: ¢yt = ¯ + "t; Regression: ¢yt = ¯ +Á¢ dyt¡1 + at

d = T T=100 T=400 T=1000

0.0 0.059 0.053 0.051

0.2 0.054 0.056 0.048

0.4 0.053 0.055 0.052

0.5 0.052 0.053 0.050

0.6 0.052 0.053 0.049

0.8 0.053 0.052 0.049

0.9 0.052 0.051 0.050

Finally, it should be pointed out that the results by West have been extended by Lubian

(1999, Theorem 3.3) to the case where the standard DF test with a constant term in the
model is applied to a FI(1 +d) process with ¡1

2 < d < 1
2, …nding that T

3
2¡d(bÁols¡ 1) tends

to a normal distribution. It can be easily checked that, when d = 0, West´s results are
recovered both in Lubians´s analysis and ours.
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Case III: Constant term and time trend included in the regression. DGP is
random walk with drift.

Finally, we now examine the case where a linear trend is included in the maintained
hypothesis, as in RM 4. As mentioned above, the presence of a linear trend in the regression

allows one to achieve an invariant test in the DF framework. However, as shown in (5),
this will not be the case once FI(d) processes are allowed for. Our setup is one where yt is

generated according to DGP 1 and the regression model is RM 4.
To explain the di¤erent behavior of the FDF test vis-á-vis the DF test in this case, it is

convenient to recall that the introduction of a trend in the DF regression achieves invariance
of the DF test because the regressors t and yt¡1 become colinear in large samples isolating

in this manner the purely stochastic component of yt¡1. Nonetheless, this is not the case
for ¢ dyt¡1 for any value of d 6= 0; since t and ¢ dyt¡1 are no longer colinear under the null

hypothesis. This is so since the order of magnitude of the variability of the deterministic
component of ¢ dyt¡1 is Op(¯2T 3¡2d) while that of the linear trend is O(¾2"T3): Hence,

like in Case II, the stochastic component of ¢dyt¡1 is dominated by the smooth time trend
represented by ¢d¡1¯ leading to asymptotic normality for all values of d 2 (0;1). Also

note that, in common with the discussion of Case II, the size of the drift under the null
matters again since the leading term is scaled by ¯: Thus the test may su¤er from lack of
invariance with respect to the size of the drift relative to the variance of the error term in

…nite samples, as was the case in the previous section. Of course, the solution to recover
invariance would be to replace RM 4 by RM 1 and use the corresponding critical values.

The theorem derives the relevant asymptotic distributions, stressing the discontinuity that
there exists between the DF case (d = 0) and the other values of d under the alternative

(0 < d < 1):

Theorem 5 Under the null hypothesis that yt is generated according to DGP 1, Á̂¿ols com-

puted in RM 4 is a consistent estimator of Á = 0 and converges to its true value at a rate
T when d = 0; and T3=2¡d when 0 < d < 1: The asymptotic distribution of the t ¡ ratio of

Á̂
¿
ols computed in RM 4 is given by
1. If d = 0, the DF distribution of tÁ in RM 4.

2. If 0 < d < 1
tÁ̂ols

w! N (0;1) :

As in Case II, Monte-Carlo simulations, not reported this time for the sake of brevity,
show that, for ¯ = 5:0; the empirical sizes almost mimic the nominal size. Conversely, for

¯ = 0:5, size distortions are serious for d · 0:5:
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Deterministic Components in the FDF test with estimated d:

As with the invariant tests described in Section 2, when d is estimated using a (trimmed)

T 1=2-consistent estimator, the asymptotic distribution of tÁ is N (0; 1) in all of the three
cases analyzed above. This result turns out to be very convenient since it allows to use

standard critical values in all possible setups. The following theorem sums up the results
obtained in this case.

Theorem 6 Under the null hypothesis that yt is a random walk without or with a drift, the
t ¡ ratio associated to the bÁols in RM 3 and RM 4 where d̂ is a T1=2-consistent (possibly

trimmed) estimator of d, is asymptotically distributed as:

tiÁ̂ols

³
d̂
´
w! N (0;1) ; for i = f¹;¿g:

A simple strategy to test for the value of d in the presence of deterministic
components

In view of the above results, a natural strategy arises to test for the null of I(1) vs. FI(d)

in the presence of deterministic components when d is estimated. Before commenting on
this testing strategy, it is important to stress that an interesting consequence from our

analysis is that, in contrast to the use of the DF test for H0 : d = 1 when deterministic
components are present, there is no need to use new critical values relative to the case where

no deterministic components are considered. Furthermore, in our framework, all the critical
values come from standard distributions. These two features transform the problem of

determining the right deterministic components into the standard issue of variable selection.
Another important advantage of our strategy, as will be discussed in the next section, is

that we do not need to pre-…lter the data by …lters like (1 ¡ L)1=2 to apply an estimation
method only valid for jdj < 1=2; or to remove a linear trend by means of the …lter (1 ¡L):

Our proposed testing strategy for H0 : d = 1 vs. H1 : 0 · d < 1 will take as starting
point RM 1 in (5) or in the two-step procedure using residuals, when it is assumed that

E(¢dyt) = ¢d¹(t); or RM 4 in (15) when E(¢dyt) = ¹(t); and is based on the t-ratio of
bÁ along the following steps. First, if the null is rejected, then the process is not I(1) and

the testing strategy stops. If the null is not rejected, then we can use critical values from
the N(0;1) distribution to test whether the coe¢cient ¯ is signi…cant. If it is signi…cant,

we stop. Otherwise, we estimate RM 2 or RM 3 with ¯ = 0 and follow again the same
strategy. In sum, our proposed strategy is easy to apply and turns out to be much simpler

than those used in applied work, as the next section illustrates.
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EMPIRICAL ILLUSTRATION

An interesting application of the theoretical results applied above is to examine whether

the time-series of GDP per capita of several OECD countries behave as FI(d) processes with
0:5 < d < 1. These are series which are clearly trending upwards and therefore provide nice

examples of the role of deterministic terms in the use of the FDF test. As pointed out in an
interesting paper by Michelacci and Za¤aroni (2000) such a long- memory behavior could

well explain the seemingly contradictory results obtained in the literature on growth and
convergence that a unit root cannot be rejected in (the log of) those series and yet a 2% rate

convergence rate to a steady-state level (approximated by a linear trend) is typically found
in most empirical exercises of this kind (see Barro and Sala i Martín, 1995 and Jones, 1995).

The explanation o¤ered by these authors to this puzzle relies upon two well-known results
in the literature on long-memory processes, namely that standard unit root tests have low

power against values of d in the nonstationary range (0:5 < d < 1), and that for all values of
d 2 [0;1) there is “mean reversion”, in the sense that shocks do not have permanent e¤ects.

Using Maddison´s (1995) data set of annual GDP per capita series for 16 OECD countries
during the period 1870 - 1994 (125 observations) and a log-periodogram estimator of d due

to Robinson (1995), they …nd that in most countries the order of fractional integration is
within the prespeci…ed range, validating in this way their explanation of the puzzle. Since
that estimation procedure is restricted to the range of FI(d) processes with …nite variance

jdj < 1=2 , the authors proceed by …rst detrending the data and then applying the truncated
…lter (1 ¡L)1=2 to the residuals, discarding the …rst 10 observations.

The previous results have been recently criticized by Silverberg and Verspagen (2001) on
the grounds of the use of the (1¡L)1=2 …lter and of Robinson´s semi-parametric estimation

procedure, which su¤ers from serious small-sample bias. Instead, they propose the use of
the …rst-di¤erence …lter, (1¡L); to remove the trend and of Sowell´s (1992) parametric ML

estimator of ARFIMA models to tackle short-memory contamination in the estimation of d.
Using those alternative procedure they …nd, in stark contrast to Michelacci and Za¤aroni

´s results, that d tends to be either not signi…cantly di¤erent from unity or signi…cantly
above unity for most countries in an extended sample of 25 countries.

To shed light on this controversy we apply the invariant FDF test developed in Section 2 to
the logged GDP p.c. of a subset of ten of the main OECD countries which are listed in Table

3, where the estimated intercept and its standard deviation in the regression ¢yt = ¯+ ut
is reported. As can be observed the mean (average GDP p.c. growth rate) is always highly

signi…cant making it convenient to use RM 1 or RM 4 as the maintained hypothesis. Indeed,
when the ADF and the Phillips-Perron (P-P) unit root tests (not reported) were computed

using a constant and a time trend in the regression model, the I(1) null hypothesis could
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not be rejected. By contrast, the KPPS test, which takes I(0) as the null, yielded overall

rejection con…rming the high persistence of the series. Thus there are clear signs that the
…rst-di¤erence series have a drift and that it is likely that they are nonstationary.

TABLE 3
Estimates of b̄ and SD(b̄)

Country Mean St. D.

Australia 0.012 0.004

Canada 0.0195 0.005

Denmark 0.018 0.008

France 0.018 0.006

Germany 0.018 0.007

Italy 0.019 0.006

Netherlands 0.015 0.006

UK 0.013 0.003

USA 0.017 0.005

Spain 0.019 0.005

Since there were clear signs of autocorrelation in ut; an AFDF test with intercept and

linear trend was applied to the series. The number of lags of the dependent variable was
chosen according to the AIC criterion with a maximum lag of length k = 4, since T = 125

(95 for Spain) and T1=3 = 5: Pre-estimation of d using Sowell´s (1992) ML parametric
approach for various ARFIMA (p,d,q) speci…cations of the …rst-di¤erenced data, with p

and q up to four lags, allows one to select a value of d for each country on the basis of the
AIC criterion: The reported values of d in the preferred models, bdML, presented in the …rst
two columns of Table 4, add unity to the obtained estimates. Estimates were also obtained

using Mayoral ´s (2003) MD estimation approach, with the series in levels, yielding the
pre-estimates of d, bdML , in the preferred models presented in the last two columns of Table

4. Both sets of estimates tend to provide similar results. In general, the estimated values
of d belong to (0:5;1). Thus, in view that the size distortions of the FDF test in Case III

are not too important for d 2 (0:5; 1) and that the ADF and P-P tests have reasonable
power against stationary FI(d) processes, i.e., d 2 [0;0:5);we initially tested in RM 4 for

the null of d = 1 against the sequence of alternative hypotheses d = 0:6; 0:7; 0:8 and 0:9;
each at a time, by using the 95%-critical value of a standardized normal, i.e. ¡1:64. The

…rst four columns of Table 5 show strong rejections of H0: d = 1 in most cases. Likewise,
for robustness, the last column reports the results of the FDF test in RM 1 with estimated

d, using the bdMD estimates in Table 4 and a trimming value of c = 0:05 for Australia whose
estimated d exceeds unity. Again, with the exception of Spain, we …nd strong rejections of
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the null. Thus, our results seem to favor nonstationary, albeit mean-reverting, values of d.6

TABLE 4
Estimates of d (ML and MD)

Country bdML model bdMD model

Australia 1.003 (0; d;0) 1.03 (0; d;0)
Canada 0.50 (1; d;0) 0.44 (1; d;0)

Denmark 0.71 (1; d;0) 0.72 (1; d;0)
France 0.77 (0; d;1) 0.82 (0; d;1)

Germany 0.81 (0; d;1) 0.80 (0; d;1)
Italy 0.82 (0; d;1) 0.81 (0; d;1)

Netherlands 0.77 (0; d;1) 0.77 (0; d;1)
UK 0.60 (1; d;0) 0.71 (1; d;0)

USA 0.78 (0; d;0) 0.73 (1; d;0)
Spain 0.83 (1; d;0) 0.92 (0; d;0)

TABLE 5
AFDF Test against FI(d)

Country j d 0.9 0.8 0.7 0.6 bdMD
Australia -2.27* -2.41* -2.55 -2.67* -2.54*

Canada -2.78* -2.87* -2.95* -3.05* -4.21*

Denmark -2.84* -2.99* -3.09* -5.83* -3.16*

France -2.26* -2.32* -2.38* -2.47* -2.42*

Germany -2.63* -2.73* -2.81* -3.87* -2.77*

Italy -2.04* -2.06* -2.03 -2.05 -2.11*

Netherlands -2.41* -2.52* -2.56* -2.62* -2.54*

UK -2.31* -2.34* -2.36* -2.36* -2.41*

USA -3.12* -3.29* -3.39* -3.53* -3.42*

Spain -0.24 -0.39 -0.66 -0.79 -0.34

Note: (*) denotes 5%- rejection of the null hypothesis of a unit root.

CONCLUSIONS

This paper has developed statistics for detecting the presence of a unit root in time-series
data against the alternative of mean-reverting fractional processes allowing for deterministic

terms, ¹(t); (a constant /a linear time trend) in the DGP and in the auxiliary regression
6Use of the testing strategy described in Section 3 yields similar results.
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used to implement the FDF test. Two setups have been considered. First, if it assumed

under the alternative that yt = ¹(t) + FI(d); so that E(¢dyt) = ¢d¹(t) then including
nonlinear trends of the form ¢d¹(t) in the regression model yields invariant test to the

parameters de…ning ¹(t): Alternatively, one can use the simple two-step procedure based
on the residuals of the regression of yt on a constant or a linear trend described above.

This test has a non standard asymptotic distribution when d is (arbitrarily) pre-…xed in
the range (0; 0:5). However, asymptotic normality holds when d 2 (0:5;1). Second, when

assuming that E(¢dyt) = ¹(t), so that a linear trend (not a nonlinear trend) is included in
the model to capture a non-zero drift under the null, the FDF test is asymptotically normal

for all d 2 (0;1); in contrast to the nonstandard distribution achieved by the traditional
DF test when d = 0. However, in …nite samples, the use of standard critical values and
con…dence intervals has to be taken some doses of caution when d < 0:5 and when the drift

is small relative to the variance of the …rst-di¤erenced series.
Nonetheless, and most importantly, if d is pre-estimated using a (trimmed) T1=2-consistent

estimator, as the ones discussed in DGM (2002), all possible forms of the FDF test turn
out to have standard asymptotic distributions. Since estimation of d turns out to be the

most realistic case in applied work, our results provide a simple testing strategy to test for
d = 1 against 0 · d < 1 based on starting from RM 1 or RM 4 and testing for the sig-

ni…cance of the coe¢cients on the deterministic components whenever the null hypothesis
is not rejected. This testing strategy turns out to be much simpler than those typically

used in applied work and only entails the use of asymptotically normally-distributed test
statistics .

Useful extensions of the present paper´s setup that are under current investigation by
the authors include allowing for structural breaks and testing for cointegration between two

FI(d) series which have a non-zero drift and where a constant term or a linear trend is
included in the regression model.
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APPENDIX 1

In order to prove Theorem 1, the following lema would be needed.

Lemma 1 Let yt be a random walk process de…ned as in (7) : Under the assumptions of
Section 2, the following convergences follow:

If 0 < d < 1; then

1. T¡(1¡d) PT
i=2 ¿ t¡1 (d) ! 1

(d¡1)¡(¡d) :

2. T¡(2¡d) PT
i=2 ¿ t¡1 (d ¡ 1) ! 1

¡(3¡d) :

3. T¡(1¡2d)PT
i=2 ¿2t¡1 (d) ! C1 (d) < 1; for d 2 (0;0:5) and

PT
i=2 ¿2t¡1 (d) ! C2 (d) < 1; for d 2 (0:5; 1) :

4. T¡(3¡2d)PT
i=2 ¿2t¡1 (d ¡ 1) ! 1

(3¡2d)¡2(2¡d) :

5. T¡(2¡2d)PT
i=2 ¿ t¡1 (d) ¿ t¡1 (d ¡ 1) ! C3 (d) :

6.
PT
i=2 ¿ t¡1 (d) "t

d! N
¡
0;¾2C1

¢
for d 2 (0; 0:5) :

T¡(1=2¡d)PT
i=2 ¿ t¡1 (d) "t

w! N
¡
0; ¾2C2

¢
for d 2 (0:5; 1) :

7. T¡(3=2¡d)PT
i=2 ¿ t¡1 (d ¡ 1) "t

w! N
¡
0;¾2C4

¢
; C4 = 1

(3¡2d)¡2(2¡d) :

8. T¡(1¡d) PT
i=2¢dyt¡1"t

w! ¾2
R 1
0 W¡d (r)dB(r) for d 2 (0;0:5) and

T¡0:5 PT
i=2 ¢dyt¡1"t

w! ¾2N
³
0; ¡(2d¡1)¡(d)

´
for d 2 (0:5;1) :

9. T¡(3=2¡2d) PT
i=2 ¿ t¡1 (d)¢dyt¡1

w! 1
¡(¡d)(d¡1)

R 1
0 r¡dW¡d (d)dr for d 2 (0;0:5) ; and

T¡(1¡d) PT
i=2 ¿ t¡1 (d)¢dyt¡1

w! 0 for d 2 (0:5;1) :

10. T¡(2¡d) PT
i=2 ¿ t¡1 (d ¡ 1)¢dyt¡1

p! 0 for d 2 (0:5; 1)

T¡(5=2¡2d) PT
i=2 ¿ t¡1 (d¡ 1)¢dyt¡1

w! ¾2
R 1
0 r1¡dW¡d (r)dr.

11. T¡1P
(¢dyt¡1)2

p! V ar(y) if d 2 (0:5; 1) and

T¡2(1¡d)P(¢dyt¡1)2
w! ¾2

R 1
0 W 2

¡d (r)dr if d 2 [0;0:5);

12. T¡1PT
i=2 ¢dyt¡1

p! 0 if d 2 (0:5;1) and

T¡(3=2¡d)PT
i=2 ¢dyt¡1

w!
R 1
0 W¡d (r)dr if d 2 (0;0:5):

Proof of Lemma 1
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1. Notice that
PT
i=2 ¿ t¡1 (d) can alternatively be written as

lim
T!1

TX

i=2

¿ t¡1 (d) = lim
T!1

T¼0 (d) + (T ¡ 1)¼1 (d) + ::: (17)

and also note that
P1
i=0¼i (d) = 0; then,

lim
T!1

T¡(1¡d)
TX

i=2
¿ t¡1 (d) = lim

T!1
T¡(1¡d)

TX

i=0
(T ¡ i))¼i

= Td lim
T!1

TX

i=0

¼i (d) ¡T¡(1¡d) lim
T!1

TX

i=1

i¼i (d) (18)

= 1
¡ (¡d)

lim
T!1

T¡(1¡d)
TX

i=1

i¡d = ¡1
¡ (¡d) (1 ¡d)

; (19)

where the last equality follows from applying L´hopital´s rule to the …rst term of (18)
and noticing that it tends to zero.

2. In this case,

lim
T!1

T¡(2¡d)
TX

i=2

¿ t¡1 (d ¡ 1) =
1

¡(1 ¡ d)
lim
T!1

TX

t=1

tX

i=1

i¡d =
1

¡ (3 ¡d)
:

3. Since
P1
i=0¼i (d) = 0; it is possible to write ¼0 = ¡P1

i=1 ¼i (d) ;¼0+¼1 = ¡P1
i=2 ¼i (d) ;

etc. Then,
TX

i=2
¿2t¡1 (d) = ¡

TX

j=1

0
@

1X

i=j
¼i (d)

1
A

2

: (20)

Since the coe¢cients {¼i (d)}1i=0 are such that ¼i » i¡1¡d; then
³P1

i=j ¼i (d)
´2

=
O

¡
j¡2d

¢
(see, Davidson (1994; p: 32)). This implies that if d 2 (0:5;1) ; the quantity

in (20) is summable and if d 2 (0; 0:5) it is O
¡
T1¡2d¢ :

4. The proof of this result is similar to the previous ones and therefore is omitted.

5. Idem.

6. These limits are a direct application of Corollary 5.25 p.130 in White (1984).

7. Idem

8. See DGM (2002) for the proofs of these results

9. The …rst result follows from point 1 in this lemma and the results in Dolado and Mar-

mol (2003) : The second follows from noting that T¡(1¡d)E
³PT

i=2 ¿ t¡1 (d)¢dyt¡1)
´

=

0 and that T¡2(1¡d)E
µ³PT

i=2 ¿ t¡1 (d)¢dyt¡1)
´2

¶
! 0.
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10. Idem.

11. See DGM for the proof of this result.

12. Idem.¥

Proof of Theorem 1
For simplicity, let us consider …rst RM 2 de…ned in equation (8). Since the nature of the

asymptotic distribution depends upon the value of d used to run the regression, two cases

ought to be distinguished.
I. First case: 0 · d < 0:5: De…ne the scaling matrix

¨T =

Ã
T1=2¡d 0

0 T1¡d

!
; (21)

and taking into account the results in Lemma 1 we easily get
Ã

T 1=2 0

0 T1¡d

!Ã
®̂

Á̂

!
=

0
@ C1

1
¡(¡d)(1¡d)¾

R 1
0 r¡dW¡d (d)dr

1
¡(¡d)(1¡d)¾

R 1
0 r¡dW¡d (d)dr ¾2 R 1

0 W 2
¡d (r)dr

1
A
¡1

Ã
¾N (0; C1)

¾2 R 1
0 W¡d (r)dB(r)

!
;

which implies that

t¹
Á̂
d!

C1=2
1 (¡(¡d) (1 ¡d))¡1

hR 1
0 W¡d (r)dB(r) ¡ B (1)

R 1
0 r¡dW¡d (r) dr

i

·
C1

R 1
0 W 2

¡d (r)dr ¡
³

1
¡(¡d)(1¡d)

R 1
0 r¡dW¡d (d)dr

´2
¸1=2

which is a functional of fractional brownian motions and other terms just depending on d:
II. Second case: 0:5 · d < 1: De…ning the scaling matrix

¨T =

Ã
1 0
0 T 1¡d

!

and taking into account the results of Lemma 1 is straightforward to check that t¹
Á̂

»
N (0;1) :

Consider now RM 1 as de…ned in (5) : To see that the parameter Á is numerically invariant

to any linear transformation in yt; note that the regression (5) can be equivalently written
as

¢yt = Á¢d(yt¡1 ¡ y0 +¯ (t ¡ 1)) + ®0 + (®1 +Áy0) ¿ t¡1 (d) + (®2 + Á¯) ¿ t¡1 (d¡ 1) + "t:(22)

= Á¤¢d»t¡1 +®¤0 + ®¤1¿ t¡1 (d) + ®¤2¿ t¡1 (d ¡ 1) : (23)

where Á¤ = Á; ®¤0 = ®0;®¤1 = (®1 + Áy0) and ®¤2 = (®2 +Á¯) and under the null hypoth-
esis, »t is a random walk without drift and with initial condition equal to zero. Following
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Hamilton (1994; p:498) ; it is straightforward to see that the OLS estimator of Á and its

associated t-statistic are numerically identical to the one that would be obtained if the
original process was » t in stead of yt. Taking into account this invariance property, it is

possible to consider without loss of generality that y0 = ¯ = 0. Then, the rest of the proof
is similar to the previous one and, therefore, is omitted.

Proof of Theorem 2
When bd is chosen such that bd = bdT if bdT < 1 ¡ c and bd = 1 ¡ c if bdT ¸ 1 ¡ c, where c is a

(…xed) value in the neighborhood of zero, it is clear that d̂ p! 1 ¡ c; since d̂T is a consistent
estimator of d (= 1) : Applying the mean value theorem (MV T ) on t¹Áols around the point

(1 ¡ c) yields

t¹Áols

³
d̂
´

= t¹Áols (1 ¡ c) +
@t¹Áols

³
ḑ
´

@d

³
d̂ ¡ (1 ¡ c)

´
; (24)

where ḑ is an intermediate point between d̂ and (1 ¡ c) : This implies that in order to prove

that
³
t¹Áols

³
d̂
´

¡ t¹Áols (1 ¡ c)
´

= op (1) it has to be shown that
@t¹Áols(ḑ)
@d

³
d̂¡ (1 ¡ c)

´
=

op (1). Notice that ḑ 2
³
d̂;1 ¡ c

´
and therefore, ḑ p! (1 ¡ c) : In order to replace ḑ in (24)

by its probability limit, 1¡ c; it is needed to show that @t¹Áols (d)=@d converges uniformly to
a non-stochastic function in an open neighborhood of (1 ¡ c) (see Amemiya, 1985). Using

the same strategy as in DGM (2002), it can be shown that T¡1=2@t¹Áols (d)=@d converges
pointwise to zero. The uniform convergence follows from the pointwise convergence and an
equicontinuity argument deriving from the di¤erenciability of @t¹Áols (d)=@d with respect to

d (cf. Davidson, (1994), p. 340, and Velasco and Robinson, 2000). The result follows just by
noticing that T1=2

³
d̂ ¡ (1 ¡ c)

´
is Op (1) and therefore @t¹Áols (d) =@d

³
d̂ ¡ (1 ¡ c)

´
= op (1) :

The proof for the case where a deterministic trend is included can be constructed along
the same lines.¥

Proof of Theorem 3
Consider …rst RM 3 in (14). We distinguish three cases according to the value of d:

I. First case: 0 · d < 0:5: In this case, ¢ dyt¡1 is a nonstationary FI (1 ¡ d) :
De…ne the scaling matrix:

¨T =

Ã
T1=2 0

0 T 1¡ d

!
: (25)

Then,

¨T

Ã
®̂

Á̂ols

!
w!

Ã
1 ¾

R 1
0 W¡ d (r)dr

¾
R 1
0 W¡ d (r)dr ¾2

R 1
0 W2

¡ d (r) dr

!¡1 Ã
¾B(1)

¾2
R 1
0 W¡ d (r)dB(r)

!
:

and consequently,

T 1¡ dÁ̂ols
w!

R 1
0 W¡ d (r)dB(r) ¡B(1)

R 1
0 W¡ d (r)dr

R 1
0 W 2

¡ d (r)dr ¡
³R 1

0 W¡d (r)dr
´2 : (26)
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De…ning W¹¡d (s) = W¡d (s) ¡
R 1
0 W¡d (r)dr; it is straightforward to check that

T 1¡ dÁ̂ols
w!

R 1
0 W¹¡d (r)dB(r)

R 1
0

¡
W¹
¡ d (r)

¢2dr
:

Consider now the OLS t ¡ test of the null hypothesis that Á = 0; t¹
Á̂ols

= Á̂ols=¾̂Á̂ols .
Straigth forward calculations show that,

T 2(1¡ d)¾̂2
Á̂ols

w! s2T
³

0 ¾¡1
´Ã

1
R

W¡ d (r)dr
R

W¡ d (r)dr
R

(W¡ d (r))2 dr

!¡1 Ã
0

¾¡1

!
:

where

s2T = (T ¡ 2)¡1
TX

t=1

³
¢yt ¡ ®̂ols ¡ Á̂ols¢dyt¡1

´
:

Given the consistency of ®̂ols and Á̂ols; it is easy to show that

s2T
p! ¾2:

Therefore
T2(1¡ d)¾̂2

Á̂ols

w! 1
R

(W¡ d (r))2 dr ¡
¡R

W¡ d (r)dr
¢2 ; (27)

and this implies that:

tÁ̂ola
w!

R 1
0 W¡ d (r)dB(r) ¡ B(1)

R 1
0 W¡ d (r)dr

·R 1
0 W2

¡ d (r)dr ¡
³R 1

0 W¡ d (r)dr
2́ 1̧=2;

or equivalently

t¹
Á̂ola

w!
R 1
0 W¹

¡d (r)dB(r)
hR 1

0
¡
W¹
¡ d (r)

¢2 dr
i1=2 :

II. Second case: d = 0:5

De…ne the weighting matrix:

¨T =

Ã
T 1=2 0

0 (T log T )1=2

!
: (28)

Since
Ã

1 T¡1 (log T)¡1=2
PT
t=1 ¢dyt¡1

T¡1 (log T)¡1=2
PT
t=1 ¢dyt¡1 (T log T )¡1

PT
t=1

¡
¢dyt¡1

¢2

!
p!

Ã
1 0
0 ¾2

¼

!
;

and Ã
T¡1=2 PT

t=1 "t
(T log T)¡1=2

PT
t=1 "t¢dyt¡1

!
w! N

Ã
0;¾2

Ã
1 0
0 ¾2

¼

!!
;
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then

¨T

Ã
®̂

Á̂ols

!
w! N

Ã
0;

Ã
¾2 0
0 ¼

!!
:

Proceeding in the same way as before, is easy to check that in this case,

(T log T) ¾̂2
Á̂ols

p!
³

0 1
´Ã

1 0

0 1
¼

!¡1 Ã
0

1

!
= ¼;

which implies the desired result.
III. Third case: 0:5 < d < 1:

Since in this case the process ¢dyt¡1 is stationary, then:

T1=2

Ã
®̂

Á̂ols

!
w!

Ã
1 0

0 ¾2 P1
i=1 ¼2i (1 ¡ d)

!¡1 Ã
¾B (1)

¾2(
P1
i=1¼2

i (1 ¡ d))1=2B (1)

!
:

Therefore,

T 1=2

Ã
®̂

Á̂ols

!
w! N2

Ã
0;

Ã
¾ 0

0 ¡2(d)
¡(2d¡1)

!!
: (29)

Now, taking as scaling matrix ¨T = T1=2I2, the distribution of the t ¡ statistic follows
trivially.

Next, consider RM 4. Again, we need to di¤erenciate di¤erent cases according to the
value of d: The OLS-statistic is given as usual by,

0
BB@

®̂
±̂

Á̂

1
CCA =

0
BB@

T
P

t
P

¢ dyt¡1P
t

P
t2

P
t¢ dyt¡1P

¢ dyt¡1
P

t¢ dyt¡1
P

(¢ dyt¡1)2

1
CCA

¡1

£

0
BB@

P
"tP
t"tP

¢ dyt¡1"t

1
CCA : (30)

I. First case: 0 · d < 0:5: In this case, ¢ dyt¡1 is a nonstationary FI (1 ¡ d) and the

following convergence hold (see Dolado and Mármol, 2003):

T¡(5=2¡ d)
X

t¢ dyt¡1
w! ¾

Z 1

0
rW¡d (r)dr (31)

De…ne the scaling matrix:

¨T =

0
BB@

T 1=2 0 0

0 T 3=2 0
0 0 T1¡ d

1
CCA : (32)
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then,

¨T

0
BB@

®̂
±̂

Á̂

1
CCA
w!

0
BB@

1 1
2 ¾

R 1
0 ¡ dW (r)dr

1
2

1
3 ¾

R 1
0 rW¡ d (r)dr

¾
R 1
0 W¡ d (r)dr ¾

R 1
0 rW¡ d (r)dr ¾2

R 1
0 W 2

¡d (r)dr

1
CCA

¡1

£

0
BB@

¾B(1)
¾B(1) ¡ ¾

R 1
0 B (r)dr

¾2 R 1
0 W¡ d (r)dB(r)

1
CCA : (33)

De…ning

W ¿
¡d (s) = W¡d (s) + (6s ¡ 4)

Z 1

0
W¡d (r)dr ¡ (12s ¡ 6)

Z 1

0
rW¡d (r)dr;

it is straight forward to show that

Á̂ w!
R 1
0 W ¿

¡d (r)dB (r)
³R 1

0
¡
W ¿
¡d (r)

¢2 1́=2 :

II. Second case: d = 0:5:

In this case, the scaling matrix is

¨T =

0
BB@

T 1=2 0 0
0 T3=2 0

0 0 (T log T)1=2

1
CCA : (34)

Since
0
BB@

1 T¡2
P

t T¡1 (log T)¡1=2
P

¢ dyt¡1
T¡2 (

P
t) T¡3 ¡P

t2
¢

(log T)¡1=2 T¡2
P

t¢ dyt¡1
T¡1 (log T )¡1=2

P
¢ dyt¡1 (log T)¡1=2 T¡2

P
t¢ dyt¡1 (T log T )¡1

P
(¢ dyt¡1)2

1
CCA

¡1

p!

0
BB@

1 1
2 0

1
2

1
3 0

0 0 ¾2
¼

1
CCA

¡1

; (35)

and 0
BB@

T¡1=2
P

"t
T¡3=2P

t"t
(T log T)¡1=2

P
¢ dyt¡1"t

1
CCA
w! N

0
BB@0;¾2

0
BB@

1 1
2 0

1
2

1
3 0

0 0 ¾2
¼

1
CCA

1
CCA :

Then

¨T

0
BB@

®̂
±̂

Á̂

1
CCA
w! N

0
BB@0; ¾2

0
BB@

1 1
2 0

1
2

1
3 0

0 0 ¾2
¼

1
CCA

¡11
CCA = N

0
BB@0;

0
BB@

4¾2 ¡6¾2 0
0 12¾2 0

¡6¾2 0 ¼

1
CCA

1
CCA : (36)
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III. Third case: 0:5 < d < 1:

In this case the process ¢dyt¡1 is stationary. We de…ne:

¨T =

0
BB@

T 1=2 0 0

0 T 1=2 0
0 0 T3=2

1
CCA : (37)

Taking into account that
0
BB@

1 T¡2 P
t T¡1

P
¢ dyt¡1

T¡2 (
P

t) T¡3 ¡P
t2

¢
T¡2P

t¢ dyt¡1
T¡1P

¢ dyt¡1 T¡2P
t¢ dyt¡1 T¡1P

(¢ dyt¡1)2

1
CCA

¡1

p!

0
BB@

1 1
2 0

1
2

1
3 0

0 0 ¾2P1
i=1 ¼2

i (1 ¡d)

1
CCA

¡1

;

and that
0
BB@

T¡1=2 P
"t

T¡3=2
P

t"t
(T log T)¡1=2

P
¢dyt¡1"t

1
CCA
w! N

0
BB@0;¾2

0
BB@

1 1
2 0

1
2

1
3 0

0 0 ¾2(
P1
i=1 ¼2

i (1 ¡d))1=2

1
CCA

1
CCA ;

then

¨T

0
BB@

®̂

±̂
Á̂

1
CCA
w! N

0
BB@0; ¾2

0
BB@

4¾2 ¡6¾2 0
¡6¾2 12¾2 0

0 0 ¡2(d)
¡(2d¡1)

1
CCA

1
CCA :¥ (38)

For the sake of brevity, the proofs of the distributions of the t¡statistics are not reported
although they can be easily obtained following the steps of the …rst part of this proof.¥

To prove Theorem 4, the following lemmas are needed.

Lemma 2 Let {"tg be a sequence of zero-mean i:i:d. random variables with variance ¾2

such that E
¯̄
"4t

¯̄
< 1 and let yt be generated according to DGP 1 and consider the …ltered

process

zt = ¢dyt = ¢d¡1¯1(t>0) +¢d¡1"t1(t>0) d 2 [0; 1);

Then:

1. if 0 · d < 1

T¡(2¡d)
TX

t=1

¢dyt
p! ¯

¡(3 ¡ d)
;

2. if 0 · d < 1

T¡(3¡2d)
TX

t=1

³
¢dyt

´2 p! ¯2

(¡ (2 ¡d))2 (3 ¡ 2d)
:
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Lemma 3 Let "t and yt be de…ned as in Lemma 2. Then the process ¢dyt¡1"t is a mar-

tingale di¤erences and verify that if 0 · d < 1;

T¡(3=2¡ d)
TX

t=2

¢dyt¡1"t
w! N

µ
0; ¾2¯2

¡(2 ¡d)2 (3 ¡ 2d)

¶
:

Proof of Lemma 2
Consider yt to be random walk as in (7). The di¤erenced process ¢dyt can then be

rewritten as

¢dyt = ¢d¡1®1(t>0) + ¢d¡1"t1(t>0) = ®
t¡1X

i=0

¼i (d¡ 1) +
t¡1X

i=0

¼i (d¡ 1) "t¡i: (39)

1. Expression (39) implies

TX

t=1
¢dyt = ®

TX

t=1

Ã
t¡1X

i=0

¼i (d ¡ 1)

!
+
TX

t=1

Ã
t¡1X

i=0

¼i (d ¡ 1) "t¡i

!
(40)

The …rst term in the RHS of (40) is Op
¡
T 2¡d¢ since

T¡(2¡d) lim
T!1

®
TX

t=1

Ã
t¡1X

i=0
¼i (d ¡ 1)

!
= T¡(2¡d)

®
¡ (1 ¡ d) (1 ¡ d)

lim
T!1

TX

t=1
t1¡ d

=
®

¡ (1 ¡d) (1 ¡ d)(2 ¡ d)

=
®

¡ (3 ¡d)
: (41)

The second term in the RHS of (40) is the sum over time of a FI (1 ¡d) process and

therefore is Op
¡
T 3=2¡d¢, Op

³
T (log T)1=2

´
or Op (T) according to whether d 2 [0; 0:5);

d = 0:5 and d 2 (0:5;1) respectively and therefore, converges to zero when divided by

T 2¡ d:

2. The process
PT
t=1 (¢yt)2 is given by

TX

t=1

³
¢ dyt

2́
= ®2

TX

t=1

Ã
t¡1X

i=0
¼i ( d ¡ 1)

!2

+
TX

t=1

Ã
t¡1X

i=0
¼i ( d ¡ 1) "t

!2

+2®
TX

t=1

Ã
t¡1X

i=0
¼i ( d ¡ 1)

!
¢ d¡1"t: (42)

The …rst term in the RHS of (42) is Op
¡
T 3¡2d¢ and converges to

T¡(3¡2 d) lim
T!1

®2
TX

t=1

Ã
t¡1X

i=0

¼i ( d ¡ 1)

!2

=
®2

¡2 (2 ¡ d) (3 ¡ 2 d)
: (43)

The second term in (42) is Op
¡
T2(1¡ d)¢, Op (T log T ) or Op (T ) according to whether

d 2 [0;0:5); d = 0:5 or d 2 (0:5; 1) respectively. Finally, the third term in the RHS of (42)
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is Op
¡
T5=2¡d¢ (see Dolado and Marmol, 2003), which implies that again the …rst term is

the leading one and the whole expression is Op
¡
T3¡2d¢ being its limit that of (43) :¥

Proof of Lemma 3.
Notice that

TX

t=2

¢dyt¡1"t = ®
TX

t=2

Ã
t¡1X

i=0

¼i (d¡ 1)

!
"t +

TX

t=2

Ã
t¡1X

i=0

¼i (d ¡ 1) "t¡i

!
"t: (44)

The …rst term in the RHS of expression (44) is a martingale di¤erence sequence and veri…es

a CLT for this type of processes. To show that this is the case, it is necessary to check that
the sequence f

³Pt¡1
i=0 ¼i (d ¡ 1)

´
"tg veri…es the conditions of the standard Central Limit

Theorem (CLT) for martingale di¤erence sequences (m.d.s.) (see Hall and Heyde, 1980,
Chapter 3 and Helland, 1982). These conditions are: i) the sequence is a m.d.s., ii) the sum

of the conditional variances tends to unity and iii) the Lindeberg condition (LC) holds.
De…ne:

~"t = ¾¡1"t; (45)

~xt =
µ

(T (2¡d) ®2

¡2 (2 ¡ d) (3 ¡ 2d)

¶¡1=2 t¡1X

i=0
¼i (1 ¡ d) ; (46)

and
XT:t = T¡1=2~xt¡1~"t: (47)

Let FT:t be an array of ¾¡…elds such that FT:t¡1 ½ FT:t: Condition (i) is ful…lled since

T¡1=2E (~xt¡1~"tjFT:t¡1) = T¡1=2~xt¡1E (~"tjFT:t¡1) = 0: (48)

since ~"t is m.d.s. Regarding condition (ii), we have

T¡1
TX

t=2
Var (~xt¡1~"tjFT:t¡1) = T¡1

TX

t=2
~x2t¡1E

¡
~"2t jFT:t¡1

¢
¡ ~x2t¡1E (~"tjFT:t¡1)2

= T¡1X
~x2t¡1

p! 1: (49)

Finally, condition (iii) holds since

TX

t=1
E

³
jXT:tj2 I fjXT:tj > %jg

´
= E

³
j~xt¡1~"tj2 Ifj~xt¡1~"tj>T 1=2%jg

´
! 0; for all % > 0: (50)

Conditions (48) ; (49) and (50) jointly imply the desired result. The proof for the truncated
process x¤t is similar. Condition (i) holds since x¤t¡1 and "t are independent. Condition (ii)

holds since T¡1
³P¡

~x¤t¡1
¢2 ¡P

(~xt¡1)2
´

= op (1) (see Lemma 1) implies T¡1 P¡
~x¤t¡1

¢2 p!
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1. Lastly, a su¢cient condition for condition (iii) is Liapunov’s condition, 1=T 2PT
t=1 E

¡
~x4t¡1~"4t

¢
!

0. To prove this, consider

1
T 2

TX

t=1
E

¡
~x4t¡1~"

4
t
¢

=
1

T2¹4

TX

t=1
~x4
t¡1 =

1
T6¡2d ¹4

µ
®2

¡2 (2 ¡ d) (3 ¡ 2d)

¶¡2 T¡2X

t=1

Ã
t¡1X

i=0

¼i (1 ¡ d)

!4

: (51)

Noticing that ¼i (d ¡ 1) = i¡d; it is easy to check that
PT¡2
t=1

³Pt¡1
i=0 ¼i (1 ¡d)

4́
is Op

¡
T 5¡4d¢

which implies that (51) tends to zero for all d > ¡1=2:
The second term of the RHS of (44) is Op

¡
T 1¡ d¢ if 0 · d < 0:5; Op

³
(T log T )1=2

´
if

d = 0:5 and Op
¡
T 0:5

¢
when 0:5 < d < 1 (see lemma 1) and therefore vanishes when divided

by T 3=2¡d:¥
Proof of Theorem 4
De…ne the scaling matrix,

¨T =

Ã
T 1=2 0

0 T 3=2¡ d

!
; (52)

and notice that

¨T

Ã
®̂¡ ®

Á̂ols

!
=

0
@ 1 ®

¡(1¡d)(1¡d)
®

¡(1¡d)(1¡d)
®2

¡(1¡ d)2(1¡ d)2(3¡2d)

1
A
¡1

¨¡1
T

Ã PT
t=1 "tPT

t=1 "t¢dyt¡1

!
+op (1) ;

(53)

and

¨¡1
T

Ã PT
t=1 "tPT

t=1 "t¢dyt¡1

!
w! N

¡
0; ¾2Q2

¢
;

where

Q2 =

0
@ 1 ®

¡(3¡d)
®

¡(3¡d)
®2

¡(2¡d)2(3¡2d)

1
A ;

Then

¨T

Ã
®̂ ¡®

Á̂ols

!
w! N

¡
0;¾2Q¡1

2 Q2Q¡1
2

¢
= N

¡
0; ¾2Q¡1

2
¢

: (54)

The distribution of the t ¡ statistic can be obtained from (54) using the same procedure

as in Theorem 3.¥

Lemma 4 Let {"tg be a sequence of zero-mean i:i:d. random variables with variance ¾2

such that E
¯̄
"4t

¯̄
< 1 and yt be generated by DGP 1: Then, if 0 < d < 1

TX

t=2
t¢dyt¡1 = Op

³
T 3¡d

´
: (55)
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Proof of Lemma 3
The LHS of (55) can be rewritten as

X
t¢dyt¡1 = ¯

X
t

Ã
t¡1X

i=0
¼i (d ¡ 1)

!
+

X
txt¡1; (56)

where xt is a pure FI (1 ¡ d) with no deterministic components. The …rst term of the RHS

of (56) is completely deterministic and its limit is given by

lim
T!1

T¡(3¡d)¯
X

t

Ã
t¡1X

i=0
¼i (d ¡ 1)

!
= lim
T!1

T¡(3¡d)

¡(2 ¡ d)

X
t2¡d =

1
¡(2 ¡ d) (3 ¡ d)

:

The second term of the RHS of (56) is Op
¡
T 5=2¡d¢ (see Dolado and Mármol, 2003) and

therefore the …rst term dominates.¥
Proof of Theorem 5
1.The …rst part of the Theorem is the standard result for the Dickey-Fuller case (see DF,

1981). When 0 < d < 1; let us de…ne the scaling matrix:

¨T =

0
BB@

T1=2 0 0

0 T 3=2 0
0 0 T3=2¡d

1
CCA ; (57)

The …rst term of the OLS estimator, conveniently standardized, converges in probability

to 0
BB@

1 1=2 ¯
¡(3¡d)

1=2 1=3 ¯
¡(2¡d)(3¡d)

¯
¡(3¡d)

¯
¡(2¡d)(3¡d)

¯2

¡(2¡d)2(3¡2d)

1
CCA

¡1

; (58)

and the second term converges weakly to
0
BB@

T¡1=2 P
"t

T 3=2 P
t"t

T3=2¡dP¢dyt¡1"t

1
CCA
w! N

¡
0;¾2Q3

¢
: (59)

Expressions (58) and (59) imply the desired result.¥
Proof of Theorem 9
This proof can be constructed along the same lines as that of Theorem 2 and therefore

it is omitted.¥
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APPENDIX 2

TABLE A2a
Critical Values

DGP 2: ¢yt = "t;RM 1:¢yt = ®1 + ®2¿ t¡1(d) +®3¿ t¡1 (d ¡ 1) +Á¢d1yt¡1 + et

T T = 100 T = 400 T = 1000

d1 = sig.lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.0 (DF c.v.)

0.05 -3.277 -3.583 -4.211 -3.219 -3.524 -4.076 -3.094 -3.488 -4.006

0.10 -3.179 -3.478 -4.059 -3.116 -3.418 -4.021 -3.006 -3.360 -3.877

0.15 -3.036 -3.357 -3.985 -2.993 -3.325 -3.880 -2.931 -3.252 -3.759

0.20 -2.947 -3.157 -3.835 -2.869 -3.124 -3.769 -2.784 -3.101 -3.643

0.25 -2.792 -3.014 -3.765 -2.739 -2.993 -3.674 -2.731 -2.975 -3.548

0.30 -2.670 -2.895 -3.619 -2.597 -2.889 -3.504 -2.481 -2.882 -3.433

0.35 -2.576 -2.716 3.564 -2.468 -2.806 -3.398 -2.303 -2.781 -3.352

0.40 -2.469 -2.695 -3.432 -2.340 -2.653 -3.261 -2.214 -2.600 -3.247

0.45 -2.315 -2.586 -3.320 -2.226 -2.565 -3.229 -2.049 -2.441 -3.148

0.50 -2.202 -2.428 -3.183 -2.086 -2.402 -3.050 -1.974 -2.318 -2.978

0.55 -2.100 -2.282 -3.222 -1.847 -2.370 -3.021 -1.751 -2.279 -2.930

0.60 -2.009 -2.182 -3.001 -1.758 -2.116 -2.881 -1.621 -2.164 -2.994

0.65 -1.807 -2.102 -2.849 -1.666 -2.188 -2.811 -1.563 -1.981 -2.708

0.70 -1.753 -2.015 -2.757 -1.629 -2.056 -2.735 -1.524 -1.971 -2.673

0.75 -1.641 -1.962 -2.644 -1.568 -1.982 -2.630 -1.448 -1.969 -2.617

0.80 -1.563 -1.833 -2.564 -1.492 -1.902 -2.554 -1.376 -1.759 -2.501

0.85 -1.491 -1.750 -2.505 -1.341 -1.760 -2.495 -1.331 -1.758 -2.446

0.90 -1.441 -1.702 -2.437 -1.293 -1.750 -2.428 -1.292 -1.705 2.418

0.95 -1.381 -1.682 -2.388 -1.283 -1.710 -2.372 -1.279 -1.280 -2.331
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TABLE A2b
Critical Values

DGP 2: ¢yt = "t;RM 2:¢yt = ®1¿ t¡1(d) + Á¢d1yt¡1 + et

T T = 100 T = 400 T = 1000

d1 = sig.lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.0 (DF c.v.)

0.05 -2.508 -2.808 -3.508 -2.468 -2.751 -3.360 -2.516 -2.826 -3.383

0.10 -2.424 -2.762 -3.424 -2.406 -2.676 -3.276 -2.404 -2.703 -3.296

0.15 -2.311 -2.665 -3.311 -2.318 -2.641 -3.241 -2.334 -2.651 -3.160

0.20 -2.217 -2.542 -3.217 -2.214 -2.511 -3.111 -2.168 -2.497 -3.086

0.25 -2.099 -2.380 -3.099 -2.108 -2.419 -3.033 -2.104 -2.434 -3.055

0.30 -1.994 -2.344 -2.994 -1.951 -2.296 -2.940 -1.980 -2.296 -2.904

0.35 -1.885 -2.242 -2.885 -1.880 -2.190 -2.977 -1.816 -2.158 -2.777

0.40 -1.801 -2.1267 -2.801 -1.734 -2.070 -2.749 -1.677 -2.001 -2.625

0.45 -1.724 -2.082 -2.724 -1.640 -1.999 -2.687 -1.628 -1.974 -2.673

0.50 -1.623 -1.971 -2.643 -1.514 -1.886 -2.569 -1.537 -1.872 -2.575

0.55 -1.540 -1.913 -2.596 -1.486 -1.840 -2.541 -1.430 -1.781 -2.467

0.60 -1.456 -1.821 -2.525 -1.408 -1.743 -2.511 -1.366 -1.769 -2.423

0.65 -1.449 -1.811 -2.483 -1.370 -1.730 -2.448 -1.345 -1.751 -2.469

0.70 -1.422 -1.815 -2.439 -1.347 -1.746 -2.403 -1.314 -1.696 -2.393

0.75 -1.353 -1.793 -2.393 -1.347 -1.699 -2.386 -1.307 -1.676 -2.357

0.80 -1.341 -1.736 -2.371 -1.296 -1.681 -2.351 -1.336 -1.669 -2.342

0.85 -1.310 -1.694 -2.350 -1.290 -1.682 -2.339 -1.335 -1.673 -2.337

0.90 -1.298 -1.664 -2.347 -1.305 -1.651 -2.338 -1.324 -1.649 -2.343

0.95 -1.257 -1.654 -2.337 -1.266 -1.643 -2.406 -1.262 -1.642 -2.3339
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