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Abstract

We study procedurally fair matching mechanisms that produce stable matchings for the
so-called marriage model of one-to-one, two-sided matching. Our main focus is on two such
mechanisms: employment by lotto introduced by Aldershof et al. (1999) and the random
order mechanism due to Roth and Vande Vate (1990) and Ma (1996). For both mechanisms
we give various examples of probability distributions on the set of stable matchings and
discuss properties that differentiate employment by lotto and the random order mechanism.
Furthermore, we correct some misconceptions by Aldershof et al. (1999) and Ma (1996) that
exist on the probability distribution induced by both mechanisms. Finally, we consider an
adjustment of the random order mechanism, the equitable random order mechanism.

Keywords: procedural fairness, random mechanism, stability, two-sided matching.

JEL classification: C78, D63

1 Introduction

The marriage model describes a two-sided matching market without money where the two sides
of the market for instance are workers and firms (job matching) or medical students and hospitals
(matching of students to internships). We use the common terminology in the literature and
refer to one side of the market as “men” and to the other as “women.” An outcome for a marriage
market is called a matching, which can simply be described by a collection of single agents and
“married” pairs (consisting of one man and one woman). Loosely speaking, a matching is stable
if all agents have acceptable spouses and there is no couple whose members both like each other
better than their current spouses. Gale and Shapley (1962) formalized this notion of stability
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for marriage markets and provided an algorithm to calculate stable matchings. These classical
results (Gale and Shapley, 1962) inspired many researchers to study stability not only for the
marriage model, but for more general models as well. We refer to Roth and Sotomayor (1990)
for a comprehensive account on stability for two-sided matching models.

In this paper we study a combination of fairness and stability in the marriage model.
Masarani and Gokturk (1989) showed several impossibilities to obtain a fair deterministic match-
ing mechanism within the context of Rawlsian justice. In contrast to this cardinal approach we
focus on the ordinal aspects of the model and opt for an approach of procedural fairness. Since
for any deterministic matching mechanism we can detect an inherit favoritism either for one
side of the market or for some agents over others, in order to at least recover ex ante fairness,
we consider probabilistic stable matching mechanisms that assign to each marriage market a
probability distribution over the set of stable matchings. We do not intend to judge the fairness
of a probabilistic stable matching mechanism by judging the assigned probability distributions,
but by considering procedurally fair matching algorithms in which the sequence of moves for the
agents is drawn from a uniform distribution. Hence, whenever an agent has the same probability
to move at a certain point in the procedure that determines the final probability distribution,
we consider the random stable matching mechanism to be procedurally fair. In other words, here
we focus on “procedural justice” rather than on “endstate justice” (see Moulin, 1997,2003).

First, we analyze a random matching mechanism proposed by Aldershof et al. (1999) called
employment by lotto. Loosely speaking, employment by lotto can be considered to be a random
serial dictatorship on the set of stable matchings. A first agent is drawn randomly and can
discard all stable matchings in which he/she is not matched to his/her best partner in a stable
matching. Exclude the first agent and his/her partner from the set of agents and randomly
choose the next agent who can discard all stable matchings in which he/she is not matched
to his/her best partner in the reduced set of stable matchings. Continue with this sequential
reduction of the set of stable matchings until it is reduced to a singleton. Using all possible
sequences of agents, this mechanism induces a probability distribution on the set of stable
matchings. The associated probabilistic matching mechanism of this probabilistic sequential
dictatorship equals employment by lotto. We give various examples of probability distributions
on the set of stable matchings induced by employment by lotto, show certain limitations of this
mechanism (e.g., complete information of all agents’ preferences is needed), and disprove several
conjectures about the distribution of probabilities made in Aldershof et al. (1999).

Next, we consider a random matching mechanism based on Roth and Vande Vate’s (1990)
results. We follow Ma (1996) and refer to this rule as the random order mechanism. The basic
idea is as follows. Imagine an empty room with one entrance. At the beginning, all agents are
waiting outside. At each step of the algorithm one agent is chosen randomly and invited to enter.
Before an agent enters the matching in the room is stable. However, once an agent enters the
room, the existing matching in the room may become unstable, meaning that the new agent can
form a blocking pair with another agent that already is present in the room. By satisfying this
(and possible subsequent) blocking pair(s) in a certain way a new stable matching including the
entering agent is obtained for the marriage market in the room. After a finite number of steps
a stable matching for the original marriage market is obtained. Using all possible sequences of
agents, this mechanism induces a probability distribution on the set of stable matching. The
associated probabilistic matching mechanism equals the random order mechanism. We give
various examples of probability distributions on the set of stable matchings induced by the
random order mechanism. Furthermore, we show that the probability distribution Ma (1996)
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presented is not correct. The mistake in the calculations by Ma (1996) is due to the fact that
even though the example looks very symmetric, some of the calculations are not as “symmetric”
since the random order mechanism does not satisfy what we call independence of dummy agents;
that is, the final probability distribution on the set of stable matchings may crucially depend on
preferences of agents who are matched to the same partner in all stable matchings. Moreover,
we answer in the negative a question posed by Cechlárová (2002) on whether certain matchings
can always be reached.

Finally, following a suggestion by Romero-Medina (2002), we briefly discuss an adjustment
of the random order mechanism, the equitable random order mechanism. This mechanism limits
the set of options available for each agent, trying to avoid the inherent favoritism of optimal
matchings. We show that even for small markets the three mechanisms may give completely
different and somewhat surprising outcomes.

In all our examples, we implement the mechanisms discussed so far in Matlab c©. In some
examples the resulting probabilities are rounded.

The article is organized as follows. In Section 2 we introduce the marriage model and the
concepts of stability and procedural fairness. In Section 3 we recall and study employment by
lotto. In Section 4 we recall and study the random order mechanism and its adjustment, the
equitable random order mechanism.

2 Matching Markets, Stability, and Procedural Fairness

2.1 Matching Markets

First we introduce the model of a two-sided matching market without money where each agent
may be matched to (at most) one agent of the opposite side. For convenience we apply Gale and
Shapley’s (1962) interpretation of a “marriage market.” For further details on the interpretation
and standard results we refer to Roth and Sotomayor’s (1990) comprehensive book on two-sided
matching.

There are two finite and disjoint sets of agents: a set M = {m1, . . . , ma} of “men” and a set
W = {w1, . . . , wb} of “women,” where possibly a 6= b. The set of agents equals N = M ∪W .
Let n = |N |. We denote a generic agent by i, a generic man by m, and a generic woman by w.

Each agent has a complete, transitive, and strict preference relation over the agents on
the other side of the market and the prospect of being alone. Hence, man m’s preferences
ºm can be represented as a strict ordering P (m) of the elements in W ∪ {m}, for instance:
P (m) = w3, w2,m, w1, . . . , w4, which indicates that m prefers w3 to w2 and he prefers remaining
single to any other woman. Similarly, woman w’s preferences ºw can be represented as a
strict ordering P (w) of elements in M ∪ {w}. Let P be the profile of all agents’ preferences:
P = (P (i))i∈N .

We write wÂmw′ if m strictly prefers w to w′ (w 6= w′), and wºmw′ if m likes w at least
as well as w′ (wÂmw′ or w = w′). Similarly we write mÂwm′ and mºwm′. A woman w is
acceptable to a man m if wÂmm. Analogously, m is acceptable to w if mÂww.

A marriage market is a triple (M, W,P ). An outcome for a marriage market (M, W,P ) is
a matching, a one-to-one function µ from N to itself, such that for each m ∈ M and for each
w ∈ W we have µ(m) = w if and only if µ(w) = m, µ(m) 6∈ W implies µ(m) = m, and similarly
µ(w) 6∈ M implies µ(w) = w. If µ(m) = w, then man m and woman w are matched to one
another (they are mates). If µ(i) = i, then agent i is single or unmatched.
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2.2 Stability

A key property of matchings is stability. First, since agents can always choose to be single, we
require a voluntary participation condition. A matching µ is individually rational if each agent is
acceptable to his/her mate, i.e., µ(i)ºii for all i ∈ N . Second, if an agent can improve upon his
present matching by switching to another agent such that this agent is better off as well, then we
would expect this mutually beneficial “trade” to be carried out, rendering the given matching
instable. For a given matching µ, a pair (m,w) is a blocking pair if they are not matched to one
another but prefer one another to their mates at µ, i.e., wÂmµ(m) and mÂwµ(w). A matching
is stable if it is individually rational and if there are no blocking pairs. With a slight abuse of
notation, we denote the set of stable matchings for marriage market (M, W,P ) by S(P ). Gale
and Shapley (1962) proved that S(P ) 6= ∅. Furthermore, any set of stable matchings has the
structure of a (distributive) lattice, which we explain next.

For any two matchings µ and µ′ we define a function λ ≡ µ∨M µ′ on N that assigns to each
man his more preferred mate from µ and µ′ and to each woman her less preferred mate. Formally,
let λ = µ∨M µ′ be defined for all m ∈ M by λ(m) := µ(m) if µ(m)Âmµ′(m) and λ(m) := µ′(m)
otherwise, and for all w ∈ W by λ(w) := µ(w) if µ′(w)Âwµ(w) and λ(w) := µ′(w) otherwise. In
a similar way we define the function µ ∧M µ′, which gives each man his less preferred mate and
each woman her more preferred mate. Knuth (1976) published the following theorem, but it is
attributed to John Conway.

Theorem 2.1 [Lattice Theorem, Conway] If µ, µ′ ∈ S(P ), then also µ ∨M µ′, µ ∧M µ′ ∈ S(P ).

From Theorem 2.1 and the existence of a stable matching it follows easily that there is a stable
matching µM that is optimal for all men in the sense that no other stable matching µ gives to
any man m a mate µ(m) that he prefers to µM (m). Similarly, there is a stable matching µW

that is optimal for all women. In fact, Gale and Shapley (1962) already proved the existence of
µM and µW , and provided an algorithm, called the deferred acceptance procedure, to calculate
these matchings.

Since preferences are strict, the set of matched agents does not vary from one stable matching
to another. In other words, the set of unmatched agents is the same for all stable matchings.

Theorem 2.2 [McVitie and Wilson (1970), Roth (1982)] For all i ∈ N and all µ, µ′ ∈ S(P ),
µ(i) = i implies µ′(i) = i.

2.3 Procedural Fairness

We are interested in matching mechanisms that produce stable matchings and that can be
considered “fair.” Before explaining the concept of procedural fairness that we apply here, we
define stable matching mechanisms. A stable matching mechanism µ is a function that for any
marriage market (M, W,P ) assigns a stable matching µ(M,W,P ).

Two well-known and widely applied stable matching mechanisms are the man-optimal and
the woman-optimal deferred acceptance (DA) algorithm by Gale and Shapley (1962). As dis-
cussed in Section 2.2, for any marriage market (M,W,P ), the man-optimal DA algorithm yields
the (unique) stable matching preferred by all men and the woman-optimal DA algorithm yields
the (unique) stable matching preferred by all women. However, although stable, for all marriage
markets where the man-optimal matching differs from the woman-optimal matching, which is
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the rule rather than the exception, each of the matching mechanisms clearly favors one side of
the market. If there is no obvious reason why one side of the market should be favored, this
favoritism can be considered “unfair.”

This inherit incompatibility between stability and fairness is not restricted to the man-
optimal and the woman-optimal DA algorithm, but in fact extends to all deterministic matching
rules. Given the lattice structure of the set of stable matchings, for some marriage markets
any deterministic matching mechanism is bound to favor one side of the market; for instance
whenever the set of stable matchings consist of a man-optimal and a woman-optimal matching.
Even if the matching mechanism does not choose a man-optimal or woman-optimal matching
whenever possible, depending on the lattice structure of stable matchings, some agents may have
to be favored relative to other agents on both sides of the market. Therefore, in order to formulate
fairness without sacrificing stability, we consider probabilistic stable matching mechanisms, that
is, for each marriage problem (M,W,P ) a probabilistic stable matching mechanism assigns a
probability distribution P(M, W,P ) over the set of stable matchings S(P ).

We do not intend to judge the fairness of a probabilistic stable matching mechanism by
judging the assigned probability distributions, but by considering procedurally fair matching
algorithms in which the sequence of moves for the agents is drawn from a uniform distribution.
Loosely speaking, whenever each agent has the same probability to move at a certain point
in the procedure that determines the final probability distribution, we consider the respective
probabilistic stable matching mechanism to be procedurally fair.

3 Procedural Fairness: Employment by Lotto

Aldershof et al. (1999) proposed a probabilistic stable matching mechanism, called employment
by lotto, that is intended to avoid the inherent favoritism of optimal matchings by using ran-
domization. Loosely speaking employment by lotto can be considered to be a random serial
dictatorship on the set of stable matchings. A first agent is drawn randomly and can discard all
stable matchings in which he/she is not matched to his/her best partner in a stable matching.
Note that now the first agent is matched to the same partner in all remaining stable matchings.
Exclude the first agent and his/her partner from the set of agents and randomly choose the
next agent who can discard all stable matchings in which he/she is not matched to his/her best
partner in the reduced set of stable matchings. Continue with this sequential reduction of the
set of stable matchings until it is reduced to a singleton. Using all possible sequences of agents,
this mechanism induces a probability distribution on the set of stable matchings. The associated
probabilistic matching mechanism of this probabilistic sequential dictatorship mechanism equals
employment by lotto. An alternative definition of employment by lotto is given by Aldershof et
al. (1999).

3.1 The Employment by Lotto Algorithm

As mentioned before, we opt for a different description of the procedure than Aldershof et
al. (1999). The description of employment by lotto as a probabilistic sequential dictatorship
mechanism on the set of stable matchings enables us to avoid introducing further notation and
technicalities.
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Employment by Lotto (EL) Algorithm

Input
A marriage market (M, W,P ).
Set N1 := N , S1 := S(P ), and t := 1.

Step t
Choose an agent it from Nt at random.
Match agent it to his most preferred mate ch(it) among {j : j = µ(it) for some µ ∈ St}.
If Nt\{it, ch(it)} = ∅, then stop and define {EL(P )} := St.
Otherwise set Nt+1 := Nt\{it, ch(it)}, St+1 := St\{µ ∈ St : µ(it) 6= ch(it)}, and go to Step
t := t + 1.

Recall that |M | = a and |W | = b. It is easy to see that the algorithm ends in a finite number
r (max{a, b} ≤ r ≤ a + b) of steps that only depends on the preferences (this follows from
Theorem 2.2). The outcome is a random stable matching EL(P ) ∈ S(P ), generated by a
sequence of agents (i1, . . . , ir). Let Q be the set of such sequences and let q = |Q|. Moreover,
for any µ ∈ S(P ), let Qµ ⊆ Q be the (possibly empty) set of sequences that lead to µ. Denote
qµ = |Qµ|. Note that if a = b and if all men and women are mutually acceptable, then r = a
and q = 2a · (2a− 2) · . . . · 2.

The employment by lotto algorithm induces in a natural way a probability distribution
P = {pµ}µ∈S(P ) over the set of stable matchings: for any µ ∈ S(P ), the probability that
EL(P ) = µ equals pµ = qµ

q . Aldershof et al. (1999) observe that if a stable matching µ does
not match any agent to his/her man/woman optimal mate, then pµ = 0. More precisely, if for
all i ∈ N it holds that µM (i) 6= µ(i) 6= µW (i), then pµ = 0. We demonstrate this characteristic
of the EL algorithm in the following example. In addition, we show how the example can be
adjusted to prove that the converse is not true, i.e., pµ = 0 does not necessarily imply that
for all i ∈ N , µM (i) 6= µ(i) 6= µW (i). More importantly, the example proves that a stable
matching that constitutes a “perfect compromise” between contrary preferences on both sides
of the market may never result from employment by lotto.

Example 3.1 Employment by lotto may never find the perfect compromise
Let (M, W,P ) with a = b = 3 and P such that

P (m1) = w1, w̃2, w3, m1

P (m2) = w3, w̃1, w2, m2

P (m3) = w2, w̃3, w1, m3

P (w1) = m3, m̃2, m1, w1

P (w2) = m2, m̃1, m3, w2

P (w3) = m1, m̃3, m2, w3

There exist three stable matchings, µ, µ, and µ̃, where men m1,m2,m3 are matched to

w1, w3, w2, (µ)

w2, w1, w3, and (µ̃)
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w3, w2, w1. (µ)

Note that in matching µ all men are matched to their most preferred mate and all women are
matched to their least preferred mate (µ = µM is underlined at preference profile P )1. Matching
µ establishes the other extreme: all women are matched to their most preferred mate and all
man are matched to their least preferred mate (µ = µW ). At matching µ̃ agents are matched
neither to their most, nor to their least preferred mate. In fact, at µ̃ all agents are matched to
their second choice, which is why we consider µ̃ to be a perfect compromise in this situation.
We depict the corresponding lattice in Figure 1. The nodes denote the stable matchings and
the first number in each series is the corresponding probability resulting from employment by
lotto (the other two numbers are probabilities from other random matching mechanisms that
we discuss later). The solid arcs denote comparability or unanimity on each side of the market.
For instance µ → µ̃ in Figure 1 means that all men at least weakly prefer their mates at µ̃ to
their mates at µ and all women at least weakly prefer their mates at µ to their mates at µ̃ (i.e.,
µ ∨M µ̃ = µ̃).

0.5/0.5/0

0/0/1

0.5/0.5/0

µ

µ

µ_

_

~

Figure 1: Lattice of Example 3.1

It is easy to check that whenever agent i1 in the EL algorithm is a man, then EL(P ) = µM ,
and whenever agent i1 in the EL algorithm is a woman, then EL(P ) = µW (pµM = 1

2 = pµW ).
Hence, for the perfect compromise matching µ̃, pµ̃ = 0.

In order to show that pµ = 0 does not necessarily imply that for all i ∈ N , µM (i) 6= µ(i) 6=
µW (i), we add two agents m4, w4 to the market above such that for all i = 1, 2, 3, 4, m4 Âm4 wi,
w4 Âw4 mi, and m4, w4 are placed anywhere in the preferences of the other agents. Then, for
stable matching µ, where man m1, m2, m3, and m4 are matched to w2, w1, w3,m4, pµ = 0 and
µ(m4) = µM (m4) and µ(w4) = µW (w4). ¦

Finally, one might think that the employment by lotto algorithm is equivalent to the following
procedure: first pick an agent i1 at random, match i1 to ch(i1), and remove i1 and ch(i1) from
the marriage market and the preference lists of the remaining agents. Repeat this procedure
with the reduced marriage market, etc.. Unfortunately, this procedure may not find a stable
matching since, for instance, ch(i1) and ch(i2) thus obtained may form a blocking pair for the
resulting matching. We demonstrate this using the marriage market introduced in Example 3.1.
Suppose that m1 first chooses w1. In the reduced market there are two stable matchings: at µ1

1Matchings µ and µ̃ are marked in a similar way.
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men m2,m3 are matched to w3, w2 and at µ2 men m2,m3 are matched to w2, w3. Next, assume
that w2 can choose in the reduced market. Since w2 prefers her mate at µ2 over her mate at µ1,
the resulting matching for the original market matches men m1,m2,m3 to w1, w2, w3. However,
this matching is not stable ((m2, w1) is a blocking pair).

Hence, in general it is necessary to calculate the complete set of stable matchings. For
an algorithm polynomially bounded in n we refer to Irving and Leather (1986) and Roth and
Sotomayor (1990).

3.2 Properties and Misconceptions of Employment by Lotto

We discuss two properties that set employment by lotto apart from the second procedurally
fair matching mechanism that we consider in Section 4. First, we explain that employment by
lotto is based on a strong information requirement. Next, we point out that the probability
distributions obtained by employment by lotto do not depend on agents that are matched to
the same partner in all stable matchings.

Complete Information needed: As mentioned in Section 3.1, in order to apply employment
by lotto it is necessary to calculate the set of stable matchings. From an informational point of
view that means that either a central planner or all agents need complete information of the
preference profile.

We call an agent that is matched to the same partner (including being single) at all stable
matchings a dummy agent. We call a stable matching mechanism independent of dummy
agents if dummy agents do not have an influence on the final probability distribution in the
following sense. Delete all dummy agents from the original set of agents and apply the matching
mechanism to the obtained reduced marriage market. Then, the probabilities for the remaining
agents do not change. In order to formalize this property, we need some notation. Let (M,W,P )
be a marriage market and let D ⊆ N be the set of all dummy agents. Then M\D denotes all
men that are not dummy agents, W\D denotes all women that are not dummy agents, and
PN\D = (P (i)N\D)i∈N\D denotes the profile of reduced preferences induced by (P (i))i∈N\D.
Formally, for all i ∈ M\D and all j, k ∈ {i} ∪W\D, if j ºi k at P (i), then j ºi k at P (i)N\D.
(Similarly for i ∈ W\D.) Then, after eliminating all dummy agents, we obtain the reduced
marriage market (M\D, W\D,PN\D). Note that there exists a one-to-one mapping between
matchings in S(P ) and S(PN\D): by eliminating dummy agents from a matching µ ∈ S(P )
we obtain a matching µN\D ∈ S(PN\D), and vice versa, by adding dummy agents with their
respective matches to a matching µN\D ∈ S(PN\D) we obtain a matching µ ∈ S(P ).

Independence of Dummy Agents: Let (M, W,P ) be a marriage market and P̃ the proba-
bility distribution on the corresponding set of stable matchings induced by a stable matching
mechanism, that is, for all matchings µ ∈ S(P ), P̃(µ) denotes the probability that matching µ
is chosen. Similarly, for the reduced marriage market (M\D,W\D, PN\D), P̃(µN\D) denotes
the probability that the reduced matching µN\D is chosen.

Then, the matching mechanism satisfies independence of dummy agents for (M, W,P ) if
and only if for all matchings µ ∈ S(P ), P̃(µ) = P̃(µN\D). A matching mechanism satisfies
independence of dummy agents if it satisfies independence of dummy agents for all marriage
markets (M, W,P ).
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Since in the employment by lotto algorithm a dummy agent will never reduce the set of
remaining stable matchings, it is easy to see that employment by lotto satisfies independence
of dummy agents.

In the remainder of the section we correct some misconceptions by Aldershof et al. (1999) on
the probability distributions induced by employment by lotto. Since in Aldershof et al. (1999)
the assumption that |M | = |W | is crucial, for the remainder of this section we assume that
a = |M | = |W | = b.

Aldershof et al. (1999) made the following conjectures about the probability distribution P
generated by employment by lotto over the set of stable matchings.

Conjecture 3.2 [Aldershof et al. (1999), p. 288] For any marriage market, pµM = pµW .

Conjecture 3.3 [Aldershof et al. (1999), p. 288] “Consider a lattice of stable matchings for an
instance of the stable matching problem. All matchings with rank i have the same probability pi

of resulting from employment by lotto. Also the function f(i) = 1− pi is unimodal.”

We start with Conjecture 3.2. The following two results give a complete answer. The proof
of Theorem 3.4 can be found in the Appendix.

Theorem 3.4 If a ≤ 3, then pµM = pµW .

Theorem 3.5 If a > 3, then not necessarily pµM = pµW .

Proof. Let (M, W,P ) with a = 4 and P such that2

P (m1) = w1, w2, w3, w4, m1

P (m2) = w2, w1, w4, w3, m2

P (m3) = w3, w4, w1, w2, m3

P (m4) = w4, w3, w2, w1, m4

P (w1) = m4, m2, m3, m1, w1

P (w2) = m3, m4, m1, m2, w2

P (w3) = m2, m1, m4, m3, w3

P (w4) = m1, m2, m3, m4, w4.

There are seven stable matchings and for the man and woman optimal matchings we find pµM =
2
8 6= 3

8 = pµW . There are three other matchings with positive probability. For a > 4 one can
simply add agents that find any other agent on the other side of the market unacceptable. 2

Next, we consider Conjecture 3.3. Our first remark is that “rank” was not formally defined
by Aldershof et al. (1999). It suggests that the matchings in any lattice can be partitioned in
certain “natural” levels, which is true for many examples of lattices that are used throughout
the literature on stable matching. The following example demonstrates that this notion of
natural level/rank is not obvious at all. Given that Blair (1984) showed that every lattice can

2We switch the 2nd and 3rd position of agent w1’s preference in a marriage market taken from Knuth (1976).
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be obtained as the set of stable matchings of some marriage market, this result is not surprising.
In addition, the example also shows that even if two stable matchings are incomparable (i.e., the
men are not unanimous on which of the two is better) they may still have different probabilities
of resulting from employment by lotto.

Example 3.6 Let (M,W,P ) with a = 5 and P such that3

P (m1) = w1, w3, w2, w4, w5, m1

P (m2) = w2, w3, w1, w4, w5, m2

P (m3) = w3, w2, w1, w4, w5, m3

P (m4) = w4, w5, w1, w2, w3, m4

P (m5) = w5, w4, w1, w2, w3, m5

P (w1) = m2, m1, m3, m4, m5, w1

P (w2) = m3, m2, m1, m4, m5, w2

P (w3) = m1, m2, m3, m4, m5, w3

P (w4) = m5, m4, m1, m2, m3, w4

P (w5) = m4, m5, m1, m2, m3, w5.

There are six stable matchings, where men m1,m2, m3,m4,m5 are matched to

w3, w1, w2, w5, w4, (µ1)

w3, w1, w2, w4, w5, (µ2)

w1, w3, w2, w5, w4, (µ3)

w1, w3, w2, w4, w5, (µ4)

w1, w2, w3, w5, w4, and (µ5)

w1, w2, w3, w4, w5. (µ6)

Note that µM = µ6 and µ1 = µW . We depict the corresponding lattice in Figure 2. The nodes
denote the stable matchings and the numbers the corresponding probabilities resulting from
employment by lotto. The solid arcs denote again comparability or unanimity on each side of
the market. Dotted edges denote incomparability or disagreement on each side of the market.
For instance µ4 · · ·µ5 in Figure 2 means that there is disagreement among the men (women)
about which matching is better (µ5(m2) Âm2 µ4(m2), but µ4(m4) Âm4 µ5(m4)).

The fact that there is no unanimity with respect to matchings µ4 and µ5 and also with
respect to µ2 and µ5, but µ2 → µ4, shows that a natural concept of “rank” is difficult to define.
Moreover, for the two incomparable matchings µ4 and µ5 we have that pµ4 = 2

24 6= 5
24 = pµ5 . ¦

The following example shows that for a > 3 even if the matchings in a lattice can be
partitioned in natural levels (i.e., the notion of a “rank” can be defined), the function f in
Conjecture 3.3 needs not be uni-modal (by the proof of Theorem 3.4 this part of the conjecture
is true for a ≤ 3).

3We complete the preferences of a marriage market taken from Blair (1984).
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0.208/0.208/0
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0.083/0.083/0.50.208/0.208/0

0.083/0.083/0.5

0.208/0.208/0

µ

µ

µ

µ

µ

µ

Figure 2: Lattice of Example 3.6

Example 3.7 Let (M,W,P ) with a = 4 and P such that

P (m1) = w1, w2, w4, w3, m1

P (m2) = w2, w1, w3, w4, m2

P (m3) = w3, w4, w1, w2, m3

P (m4) = w4, w3, w1, w2, m4

P (w1) = m3, m2, m1, m4, w1

P (w2) = m4, m1, m2, m3, w2

P (w3) = m1, m2, m3, m4, w3

P (w4) = m2, m1, m4, m3, w4.

There are six stable matchings, where men m1,m2, m3,m4 are matched to

w3, w4, w1, w2, (ν1)

w4, w3, w1, w2, (ν2)

w4, w1, w3, w2, (ν3)

w2, w3, w1, w4, (ν4)

w2, w1, w3, w4, and (ν5)

w1, w2, w3, w4. (ν6)

We depict the corresponding lattice in Figure 3. Since pν2 = pν5 = 2
48 < 5

48 = pν3 = pν4 it is
clear that the function f as defined in Conjecture 3.3 is not uni-modal here. ¦
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0.354/0.369/0
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ν

ν

ν

ν

ν

ν

Figure 3: Lattice of Example 3.7

4 Procedural Fairness: the Random Order Mechanism

Ma (1996) described the random order mechanism, which is based on Roth and Vande Vate’s
(1990) random paths to stability. The basic idea is as follows. Imagine an empty room with
one entrance. At the beginning, all agents are waiting outside. At each step of the algorithm,
one agent is chosen randomly and invited to enter. Before an agent enters the matching in the
room is stable. However, once an agent enters the room, the existing matching in the room may
become unstable, meaning that the new agent can form a blocking pair with another agent that
already is present in the room. By satisfying this (and possible subsequent) blocking pair(s)
in a certain way (described below in full detail) a new stable matching including the entering
agent is obtained for the marriage market in the room. Since at each step a new agent enters
the room and no agent leaves the room, the final outcome is a stable matching for the original
marriage market. Using all possible sequences of agents, this mechanism induces a probability
distribution on the set of stable matchings. The associated probabilistic matching mechanism
equals the random order mechanism.

4.1 The Random Order Mechanism

We first give a formal description of the random order mechanism.

Random Order (RO) Mechanism

Input
A marriage market (M, W,P ).
Set R0 := ∅, µ0 such that for all i ∈ N , µ0(i) = i, and t := 1.

Step t
Choose an agent it from N\Rt−1 at random. Set Rt := Rt−1 ∪ {it}.
Suppose it = w ∈ W . (Otherwise replace w by m in Step t.)

Stable Room Procedure

12



Case (i) There exists no blocking pair (m,w) for µt−1 with m ∈ Rt:

Stop if t = n and define RO(P ) := µt−1. Otherwise set µt = µt−1 and go to Step t := t + 1.

Case (ii) There exists a blocking pair (m,w) for µt−1 with m ∈ Rt:

Choose the blocking pair (m∗, w) for µt−1 with m∗ ∈ Rt that w prefers most.

If µt−1(m∗) = m∗, then define µt such that µt(w) := m∗, µt(m∗) := w, and for all i ∈ N\{w, m∗},
µt(i) := µt−1(i). Stop if t = n and define RO(P ) := µt. Otherwise go to Step t := t + 1.

If µt−1(m∗) = w′ ∈ W , then redefine µt−1(w) := m∗, µt−1(m∗) := w, µt−1(w′) := w′, and for all
i ∈ N\{w, m∗, w′}, µt−1(i) := µt−1(i). Set w := w′, and repeat the Stable Room Procedure.

It is not difficult to see that the algorithm ends in exactly n steps. The outcome is a random
stable matching RO(P ) ∈ S(P ), generated by a sequence of agents (i1, . . . , in). The set of
possible sequences of agents equals the set of permutations of all agents denoted by Q∗. Hence,
|Q∗| = n!. Moreover, for any µ ∈ S(P ), let Q∗

µ ⊆ Q∗ be the (possibly empty) set of sequences
that lead to µ. Denote q∗µ = |Q∗

µ|.
The random order mechanism induces in a natural way a probability distribution P∗ over

the set of stable matchings: for any µ ∈ S(P ), the probability that RO(P ) = µ equals p∗µ = q∗µ
n! .

In all our examples, these probabilities are the second numbers in each series in the lattices.
Note that, similarly as employment by lotto, the random order mechanism never chooses the

“perfect compromise” matching µ̃ in Example 3.1.

4.2 Properties and Misconceptions of the Random Order Mechanism

We compare the random order mechanism with employment by lotto, using the same properties
as in Section 3.2.

No Complete Information needed: An important advantage of the random order mecha-
nism over employment by lotto is that it is not necessary to calculate the set of stable matchings
beforehand. In order to be a part in the random order mechanism, each agent only needs to
know his/her own preferences.

The following example shows however that the random order mechanism fails to satisfy inde-
pendence of dummy players.

Example 4.1 The random order mechanism does not satisfy independence of
dummy agents. Let (M,W,P ) with a = b = 3 and P such that

P (m1) = w1, w2, w3, m1

P (m2) = w2, w1, w3, m2

P (m3) = w3, w2, w1, m3

P (w1) = m2, m1, m3, w1

P (w2) = m1, m3, m2, w2

P (w3) = m3, m2, m1, w3.

There exist two stable matchings µM and µW , where men m1, m2, and m3 are matched to

13



w1, w2, w3, (µM )

w2, w1, w3. (µW )

Some calculations give (p∗µM
, p∗µW

) = ( 5
12 , 7

12).
After elimination of the two dummy agents m3 and w3, we obtain the marriage market (M̂, Ŵ , P̂ )
with a = b = 2 and P̂ such that

P̂ (m1) = w1, w2, m1

P̂ (m2) = w2, w1, m2

P̂ (w1) = m2, m1, w1

P̂ (w2) = m1, m2, w2.

There exist two stable matchings µ̂M and µ̂W , where men m1 and m2 are matched to

w1, w2, (µ̂M )

w2, w1. (µ̂W )

Some calculations give (p∗µ̂M
, p∗µ̂W

) = (1
2 , 1

2). ¦

Ma (1996) showed that the random order mechanism may not reach all stable matchings.
Although Ma’s (1996) theorem is true, we show in Example 4.2 that one of the two claims on
which the proof relies is not true.

Example 4.2 Let (M,W,P ) with a = b = 4 and P such that4

P (m1) = w1, w2, w3, w4, m1

P (m2) = w2, w1, w4, w3, m2

P (m3) = w3, w4, w1, w2, m3

P (m4) = w4, w3, w2, w1, m4

P (w1) = m4, m3, m2, m1, w1

P (w2) = m3, m4, m1, m2, w2

P (w3) = m2, m1, m4, m3, w3

P (w4) = m1, m2, m3, m4, w4.

There are ten stable matchings, where men m1,m2, m3,m4 are matched to

w4, w3, w2, w1, (µ1)

w4, w3, w1, w2, (µ2)

w3, w4, w2, w1, (µ3)

w3, w4, w1, w2, (µ4)

w3, w1, w4, w2, (µ5)

w2, w4, w1, w3, (µ6)
4This is a marriage market taken from Knuth (1976).
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w2, w1, w4, w3, (µ7)

w2, w1, w3, w4, (µ8)

w1, w2, w4, w3, and (µ9)

w1, w2, w3, w4. (µ10)

We depict the corresponding lattice in Figure 4. Ma (1996) claimed that (p∗µ1
, p∗µ2

, p∗µ3
,

p∗µ4
, p∗µ5

, p∗µ6
, p∗µ7

, p∗µ8
, p∗µ9

, p∗µ10
) = (1

4 , 1
8 , 1

8 , 0, 0, 0, 0, 1
8 , 1

8 , 1
4), but it is clear from Figure 4 that

this is not true. Note however that EL does give these probabilities. A proof that Ma’s (1996)
claim on the probabilities in this example is wrong (that is, P∗ 6= P) that does not rely on our
computational results can be found in the Appendix. ¦

10

8 9

0.250/0.238/0

0.125/0.131/00.125/0.131/0 µ

µ

µ

µ

4

2 3

1

0/0/0.250

0.125/0.131/0

0.250/0.238/0

0.125/0.131/0 µ

µ

µ

µ

7

5 6

0/0/0.250

0/0/0.2500/0/0.250 µµ

Figure 4: Lattice of Example 4.2

Cechlárová (2002) extended Ma’s result showing that for any marriage market the only
matchings that may be obtained are those that assign to at least one agent his/her best stable
partner. One of the open problems Cechlárová (2002, p.4) mentioned is that “... it is not clear
whether for each of those not excluded it is possible to find a suitable order of players [agents] to
get it.” The answer to this question can be found by repeating the procedure described in the
last paragraph of Example 3.1. If we add two agents m4, w4 to the marriage market such that
for all i = 1, 2, 3, 4, m4 Âm4 wi, w4 Âw4 mi, and m4, w4 are placed anywhere in the preferences
of the other agents, then the extended matching µ̃, where men m1,m2,m3,m4 are matched to

w2, w1, w3, w4, (µ̃)

respectively, is stable. It not difficult to see, however, that p∗
µ̃

= 0.
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4.3 The Equitable Random Order Mechanism

Romero-Medina (2002) adapted the random order mechanism in order to limit the set of options
available for each agent, trying to avoid in this way the inherit favoritism of optimal matchings.
Since the description of his algorithm would be a bit tedious and we only discuss briefly the
differences between the three mechanisms in a few examples, we refer the reader to Romero-
Medina (2002) for its definition. In fact, Romero-Medina (2002) defined the algorithm for a
fixed order of the agents and only in his final remarks suggested an extension by randomizing
the order of the agents. Henceforth, we will call this extension the equitable random order
mechanism.

For any marriage market (M, W,P ) and any µ ∈ S(P ), let p̄µ be the probability that µ is
the outcome of the equitable random order (ERO) mechanism. By P̄ we denote the associated
probability distribution over the set of stable matchings. These probabilities are the third
numbers in each series in the lattices.

In contrast to employment by lotto and the random order mechanism, the ERO mechanism
chooses the “perfect compromise” matching µ̃ in Example 3.1 not only with positive probability,
but in fact with probability one. In the classical Example 4.2 the ERO mechanism demonstrates
again nicely its avoidance of optimal matchings. The same occurs in Examples 3.6 and 3.7,
although here probabilities seem to be split more arbitrarily.

In the example below we show that already for a = b = 3 the three mechanisms may
give completely different and somewhat surprising outcomes. More specifically, it shows that
the ERO mechanism may not always choose a probabilistic solution that compromises between
both sides of the market: unlike the other two mechanisms, here the ERO mechanisms always
chooses the woman optimal matching µW .

Example 4.3 Recall that for the matching market in Example 4.1 there are two stable match-
ings, where men m1,m2,m3 are matched to

w1, w2, w3, and (µM )

w2, w1, w3. (µW )

Some calculations give (pµM , pµW ) = (1
2 , 1

2), (p∗µM
, p∗µW

) = ( 5
12 , 7

12), and (p̄µM , p̄µW ) = (0, 1).
Note that the equitable random order mechanism fails to avoid the favoritism of one of the
optimal matchings (µW ). In contrast, the order two mechanisms, employment by lotto and the
random order mechanism, spread probability over the two stable matchings, albeit in a slightly
different way. ¦

A Appendix

Proof of Theorem 3.4:

From Theorem 2.2 it follows that the probability distribution over the set of stable matchings
does not change if we leave out all agents that are single in some (and hence all) stable match-
ing(s). In other words, in the EL algorithm we can take N1 := N\{i ∈ N : µ(i) = i for some µ ∈
S(P )}. In order to simplify the proof, we assume that no agent is single in any stable matching.
Let P be any preference list for agents in N . Recall that a = |M | = |W | = b.
Case a = 1: Since µM (m1) = µW (m1) = w1, it follows immediately that pµM = pµW = 1.
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Case a = 2: Clearly, S(P ) ⊆ {µ1(m1,m2) = (w1, w2), µ2(m1,m2) = (w2, w1)}. So, |S(P )| ≤ 2.
If |S(P )| = 1, then µM = µW , and hence, pµM = pµW = 1. If |S(P )| = 2, then the gender of the
first agent i1 in the EL algorithm determines the resulting matching, and hence, pµM = pµW = 1

2 .
Case a = 3: If µM = µW , then pµM = pµW = 1. Thus, let µM 6= µW .
Subcase 1: pµM + pµW = 1. Let N = {i ∈ N : µM (i) 6= µW (i)}. Note that i ∈ N ∩M implies
that there exist j, k ∈ N ∩W such that j 6= k. Similarly, i ∈ N ∩W implies that there exist
j, k ∈ N ∩M such that j 6= k. Thus, |N ∩M | = |N ∩W | ≥ 2. Hence, the set Q of EL sequences
is the union of the following disjoint sets

Q1
µM

= {(i1, i2, i3) ∈ Q : i1 ∈ N ∩M},
Q1

µW
= {(i1, i2, i3) ∈ Q : i1 ∈ N ∩W},

Q2
µM

= {(i1, i2, i3) ∈ Q : i1 6∈ N, i2 ∈ N ∩M}, and

Q2
µW

= {(i1, i2, i3) ∈ Q : i1 6∈ N, i2 ∈ N ∩W}.5

Note that Q1
µM
∪Q2

µM
⊆ QµM and Q1

µW
∪Q2

µW
⊆ QµW . Since |Q1

µM
| = |Q1

µW
| and |Q2

µM
| = |Q2

µW
|,

it follows that pµM = pµW = 1
2 .

Subcase 2: pµM + pµW < 1. There exists a stable matching µ 6∈ {µM , µW } with pµ > 0. Thus,
there exists a sequence (i1, i2, i3) ∈ Qµ. Therefore, either
(a) i1 ∈ M and µ(i1) = µM (i1) or
(b) i1 ∈ W and µ(i1) = µW (i1).
We consider Case (a) (Case (b) is proven similarly). Without loss of generality let i1 = m1.
First we show that at matching µ at most one man can be matched to his man optimal match.
Assume there exist i, j ∈ M , i 6= j such that µ(i) = µM (i) and µ(j) = µM (j). Then, µ = µM ,
a contradiction. Hence, µ(m1) = µM (m1), µ(m2) 6= µM (m2), µ(m3) 6= µM (m3), and i2 ∈ W .
After Step 1 of the EL algorithm only 4 agents are still to be matched. So, |S2| ≤ 2. But then
µ 6= µM yields S2 = {µ, µM}. Similarly as above it follows that at matching µ at most one woman
can be matched to her woman optimal match. In the remainder of the proof we will denote
µ = (µ(m1), µ(m2), µ(m3)). Without loss of generality assume that µ = (w1, w2, w3). Then by
µM (m1) = µ(m1) and the assumption that no agent is single we have µM = (w1, w3, w2).
Next, we consider the case µM (m1) = µ(m1), µM (m2) 6= µ(m2) 6= µW (m2), and µM (m3) 6=
µ(m3) 6= µW (m3).

Since, µW (m2) 6= µ(m2), µW (m2) 6= w2. Furthermore, µW (m2) 6= µ(m2) implies
µM (m2) Âm2 µW (m2). Thus, µW (m2) 6= w3. Hence, µW (m2) = w1. However, applying
the same arguments to agent m3, we obtain µW (m3) = w1 as well; a contradiction.
Now, the only case that remains is µM (m1) = µ(m1) 6= µW (m1) and, without loss of generality,6

µM (m2) 6= µ(m2) = µW (m2), and µM (m3) 6= µ(m3) 6= µW (m3).
Since µM (m1) = µ(m1) = w1, µM (m2) 6= µ(m2) and µM (m3) 6= µ(m3) we have µM =

(w1, w3, w2). Since µW (m2) = µ(m2) = w2, µW (m1) 6= µ(m1) and µW (m3) 6= µ(m3) we have
µW = (w3, w2, w1).
In fact, S(P )\{µ, µM , µW } = ∅. Suppose not. Let µ′ ∈ S(P )\{µ, µM , µW }. Then µ′ ∈
{(w2, w1, w3), (w2, w3, w1), (w3, w1, w2)}. However, it can easily be checked that in all three
cases µ ∨M µ′ is not a well-defined matching, contradicting Theorem 2.1.

6The roles of m2 and m3 can be switched.
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Finally, we calculate the probabilities pµM , pµW , and pµ.7 Note that after Step 2 of the EL algo-
rithm only 2 agents remain, which hence will be matched to one another. Thus, it suffices to con-
sider the sets Q̂µ, Q̂µM , Q̂µW , where Q̂µ := {(i1, i2) : there is an agent i3 s.t. (i1, i2, i3) ∈ Qµ}
(the sets Q̂µM and Q̂µW are defined similarly).8 One easily verifies that Q̂µM = {(m1,m2),
(m1,m3), (m2,m1), (m2, m3), (m2, w1), (m2, w2), (m3,m1), (m3,m2), (m3, w1), (m3, w3)},
Q̂µW = {(w1, w2), (w1, w3), (w1,m1), (w1,m2), (w2, w1), (w2, w3), (w3, w1), (w3, w2), (w3,m2),
(w3,m3)}, Q̂µ = {(m1, w2), (m1, w3), (w2,m1), (w2,m3)}. Thus, |Q̂µM | = 10 = |Q̂µW | and
|Q̂µ| = 4. So, pµM = pµW = 10

24 = 5
12 and pµ = 4

24 = 2
12 . 2

Proof that P∗ 6= P in Example 4.2: We consider the marriage market (M, W,P ) and
the corresponding set of stable matchings S(P ) = {µ1, . . . , µ10} as specified in Example 4.2.
To prove that P∗ 6= P we calculate P∗ by checking which stable matchings the random
order mechanism induces for various sequences (i1, . . . , i8). Whenever we refer to a unique
stable matching obtained for a marriage market not containing all agents, we calculated
the man-optimal and the woman-optimal matching for the “submarket” using the deferred
acceptance algorithm and detected that they coincide (this calculation is not included in the
proof). Furthermore, whenever we “satisfy” a blocking pair, the (unique) proposing agent does
not propose to agents that are better than his/her previous match (all these proposals would
be rejected).

Case a: m1 enters last; i.e., the sequence of agents is (i1, . . . , m1). There are only two stable
matchings µ′ and µ′′ when the set of agents consists of all women W and the remaining three
men {m2,m3,m4}:

w1 m2 m3 m4

| | | |
w1 w2 w3 w4

(µ′)

w1 m2 m3 m4

| | | |
w1 w2 w4 w3

(µ′′)

When m1 enters last, he proposes to the single woman w1, who accepts. So, matching µ′ implies
matching µ10 and matching µ′′ implies µ9.

7Recall that for all men mi ∈ M , µM (mi) ºmi µ(mi) ºmi µW (mi). Similarly, for all women wi ∈ W ,
µM (mi) ¹wi µ(wi) ¹wi µW (wi). Under the assumptions made in the proof without loss of generality, we can
conclude that for µ to be reached with positive probability using the EL algorithm, the agents’ preferences look
as follows (by ∗ we indicate possible positions for the man/woman that is not specified in the preference lists of
some agents such that the two agents that are underlined in the preference list of each agent are the best and
worst partner to be matched to in a stable matching):

P (m1) = ∗, w1, ∗, w3, ∗, m1, ∗
P (m2) = ∗, w3, ∗, w2, ∗, m2, ∗
P (m3) = w2, w3, w1, m3

P (w1) = ∗, m3, ∗, m1, ∗, w1, ∗
P (w2) = ∗, m2, ∗, m3, ∗, w2, ∗
P (w3) = m1, m3, m2, w3

8Note that |Q̂µM |+ |Q̂µW |+ |Q̂µ| = 6 · 4 = 24.
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Case a.1: m2 enters before m1; i.e., the sequence is (i1, . . . , m2,m1).
Case a.1.1: m3 enters before m2 and m1; i.e., the sequence is (i1, . . . ,m3,m2,m1). The
unique stable matching before m3, m2, and m1 enter matches m4 to w4 and everybody else to
themselves. Next, when m3 enters he proposes to w3, who accepts. Similarly, when m2 enters
he proposes to w2, who accepts. Thus, w1 is single and the resulting matching is µ′. Hence, all
5! sequences induce µ10.
Case a.1.2: m4 enters before m2 and m1; i.e., the sequence is (i1, . . . ,m4,m2,m1). Similarly
as in Case a.1.1, all 5! sequences induce µ10.
Case a.1.3: w1 enters before m2 and m1; i.e., the sequence is (i1, . . . , w1,m2,m1). There are
only two stable matchings µ̃′ and µ̃′′ before w1, m2, and m1 enter:

w2 m3 m4

| | |
w2 w3 w4

(µ̃′)

w2 m3 m4

| | |
w2 w4 w3

(µ̃′′)

It is easy to check that half of the partial sequences (i1, . . . , i5) with {i1, . . . , i5}∩{w1,m2,m1} =
∅ result in µ̃′, the other half in µ̃′′: if [i5 ∈ {m3,m4}] then (i1, . . . , i5) results in µ̃′, if [i5 ∈
{w3, w4}] then (i1, . . . , i5) results in µ̃′′, if [i4 ∈ {m3,m4} and i5 = w2] then (i1, . . . , i5) results
in µ̃′, and if [i4 ∈ {w3, w4} and i5 = w2] then (i1, . . . , i5) results in µ̃′′. After agents w1, m2,
and m1 enter, µ̃′ induces µ′. Similarly, µ̃′′ induces µ′′. Hence, 5!

2 sequences induce µ9 and 5!
2

sequences induce µ10.
Case a.1.4: w2 enters before m2 and m1; i.e., the sequence is (i1, . . . , w2,m2,m1). Similarly as
in Case a.1.3, 5!

2 sequences induce µ9 and 5!
2 sequences induce µ10.

Case a.1.5: w3 enters before m2 and m1; i.e., the sequence is (i1, . . . , w3,m2,m1). The unique
matching before agents w3, m2, and m1 enter matches m3 to w4, m4 to w2, and w1 to herself.
When w3 enters she proposes to m4, who accepts. Now w2 is single. Next, when m2 enters he
proposes to w2, who accepts. Thus, w1 is single and the resulting matching is µ′′. Hence, all 5!
sequences induce µ9.
Case a.1.6: w4 enters before m2 and m1; i.e., the sequence is (i1, . . . , w4,m2,m1). Similarly as
in Case a.1.5, all 5! sequences induce µ9.
Summary Case a.1: 360 sequences (i1, . . . ,m2,m1) induce µ9 and 360 sequences
(i1, . . . , m2,m1) induce µ10.

Case a.2: m3 enters before m1; i.e., the sequence is (i1, . . . ,m3,m1). The unique stable
matching before m3 and m1 enter matches m2 to w2, m4 to w4, and w1 and w3 to themselves.
When m3 enters he proposes to w3, who accepts. Thus, w1 is single and the resulting matching
is µ′. Hence, all 6! sequences induce µ10.
Summary Case a.2: all 720 sequences (i1, . . . , m3,m1) induce µ10.

Case a.3: m4 enters before m1; i.e., the sequence is (i1, . . . , m4,m1). Similarly as in Case a.2,
all 6! sequences induce µ10.
Summary Case a.3: all 720 sequences (i1, . . . , m4,m1) induce µ10.
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Case a.4: w1 enters before m1; i.e., the sequence is (i1, . . . , w1,m1).
Case a.4.1: m2 enters before w1 and m1; i.e., the sequence is (i1, . . . ,m2, w1,m1). Note that
the marriage market before agents m2, w1, and m1 enter is the same as in Case a.1.3. Similarly
as in Case a.1.3, 5!

2 sequences induce µ9 and 5!
2 sequences induce µ10.

Case a.4.2: m3 enters before w1 and m1; i.e., the sequence is (i1, . . . , m3, w1,m1). The unique
stable matching before m3, w1, and m1 enter matches m2 to w2, m4 to w4, and w3 to herself.
When m3 enters he proposes to w3, who accepts. Next, when w1 enters all her proposals are
rejected. Thus, w1 is single and the resulting matching is µ′. Hence, all 5! sequences induce µ10.
Case a.4.3: m4 enters before w1 and m1; i.e., the sequence is (i1, . . . ,m4, w1,m1). Similarly as
in Case a.4.2 all 5! sequences induce µ10.
Case a.4.4: w2 enters before w1 and m1; i.e., the sequence is (i1, . . . , w2, w1,m1). The unique
stable matching before agents w2, w1, and m1 enter matches m2 to w4, m4 to w3, and m3 to
himself. When w2 enters she proposes to m3, who accepts. Next, when w1 enters she proposes
to m4, who rejects, then to m3, who accepts. Now w2 is single and proposes to m4, who rejects,
then to m2, who accepts. Now w4 is single and proposes to m3, who accepts. Thus, w1 is single
and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.4.5: w3 enters before w1 and m1; i.e., the sequence is (i1, . . . , w3, w1,m1). The unique
stable matching before agents w3, w1, and m1 enter matches m2 to w4, m3 to w2, and m4 to
himself. When w3 enters she proposes to m2, who rejects, then to m4, who accepts. Next, when
w1 enters she proposes to m4, who rejects, then to m3, who accepts. Now w2 is single and
proposes to m4, who rejects, then to m2, who accepts. Now w4 is single and proposes to m3,
who accepts. This leaves w1 single and the resulting matching is µ′′. Hence, all 5! sequences
induce µ9.
Case a.4.6: w4 enters before w1 and m1; i.e., the sequence is (i1, . . . , w4, w1, m1). Similarly as
in Case a.4.5 all 5! sequences induce µ9.
Summary Case a.4: 420 sequences (i1, . . . , w1,m1) induce µ9 and 300 sequences
(i1, . . . , w1, m1) induce µ10.

Case a.5: w2 enters before m1; i.e., the sequence is (i1, . . . , w2,m1).
Case a.5.1: m2 enters before w2 and m1; i.e., the sequence is (i1, . . . ,m2, w2,m1). Note that
the marriage market before agents m2, w2, and m1 enter is the same as in Case a.1.4. Similarly
as in Case a.1.4, 5!

2 sequences induce µ9 and 5!
2 sequences induce µ10.

Case a.5.2: m3 enters before w2 and m1; i.e., the sequence is (i1, . . . , m3, w2,m1). The unique
stable matching before m3, w2, and m1 enter matches m2 to w1, m4 to w4, and w3 to herself.
When m3 enters he proposes to w3, who accepts. Next, when w2 enters she proposes to m3,
who rejects, then to m4, who rejects, and then to m2, who accepts. Now w1 is single, but all her
proposals are rejected. Thus, the resulting matching is µ′. Hence, all 5! sequences induce µ10.
Case a.5.3: m4 enters before w2 and m1; i.e., the sequence is (i1, . . . ,m4, w2,m1). Similarly as
in Case a.5.2 all 5! sequences induce µ10.
Case a.5.4: w1 enters before w2 and m1; i.e., the sequence is (i1, . . . , w1, w2,m1). The unique
stable matching before agents w1, w2, and m1 enter matches m2 to w4, m4 to w3, and m3 to
himself. When w1 enters she proposes to m4, who rejects, then to m3, who accepts. Next, when
w2 enters she proposes to m3, who rejects, then to m4, who rejects, then to m2, who accepts.
Now w4 is single and proposes to m3, who accepts. Now w1 is single and proposes to m2, who
rejects. Thus, w1 is single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
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Case a.5.5: w3 enters before w2 and m1; i.e., the sequence is (i1, . . . , w3, w2,m1). The unique
stable matching before agents w3, w2, and m1 enter matches m2 to w4, m4 to w1, and m3 to
himself. When w3 enters she proposes to m2, who rejects, then to m4, who accepts. Now w1 is
single and proposes to m3, who accepts. Next, when w2 enters she proposes to m3, who rejects,
then to m4, who rejects, then to m2, who accepts. Now w4 is single and proposes to m3, who
accepts. Now w1 is single and proposes to m2, who rejects. Thus, w1 is single and the resulting
matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.5.6: w4 enters before w2 and m1; i.e., the sequence is (i1, . . . , w4, w2, m1). Similarly as
in Case a.5.5 all 5! sequences induce µ9.
Summary Case a.5: 420 sequences (i1, . . . , w2,m1) induce µ9 and 300 sequences
(i1, . . . , w2, m1) induce µ10.

Case a.6: w3 enters before m1; i.e., the sequence is (i1, . . . , w3,m1).
Case a.6.1: m2 enters before w3 and m1; i.e., the sequence is (i1, . . . , m2, w3,m1). The unique
stable matching before agents m2, w3, and m1 enter matches m3 to w4, m4 to w2, and w1 to
herself. When m2 enters he proposes to w2, who rejects, then to w1, who accepts. Next, when
w3 enters she proposes to m2, who rejects, then to m4, who accepts. Now w2 is single and
proposes to m2, who accepts. This leaves w1 single and the resulting matching is µ′′. Hence, all
5! sequences induce µ9.
Case a.6.2: m3 enters before w3 and m1; i.e., the sequence is (i1, . . . , m3, w3,m1). The unique
stable matching before agents m3, w3, and m1 enter matches m2 to w2, m4 to w4, and w1 to
herself. Next, when m3 enters he proposes to w4, who accepts. Now m4 is single and proposes
to w2, who accepts. Now m2 is single and proposes to w1, who accepts. Next, when w3 enters
she proposes to m2, who rejects, then to m4, who accepts. Now w2 is single and proposes to
m2, who accepts. This leaves w1 single and the resulting matching is µ′′. Hence, all 5! sequences
induce µ9.
Case a.6.3: m4 enters before w3 and m1; i.e., the sequence is (i1, . . . , m4, w3,m1). The unique
stable matching before agents m4, w3, and m1 enter matches m2 to w2, m3 to w4, and w1 to
herself. When m4 enters he proposes to w4, who rejects, then to w2, who accepts. Now m2 is
single and proposes to w1, who accepts. Next, when w3 enters she proposes to m2, who rejects,
then to m4, who accepts. Now w2 is single and proposes to m2, who accepts. This leaves w1

single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.6.4: w1 enters before w3 and m1; i.e., the sequence is (i1, . . . , w1, w3,m1). The unique
stable matching before agents w1, w3, and m1 enter matches m2 to w4, m3 to w2, and m4 to
himself. When w1 enters she proposes to m4, who accepts. Next, when w3 enters she proposes
to m2, who rejects, then to m4, who accepts. Now w1 is single and proposes to m3, who accepts.
Now w2 is single and proposes to m4, who rejects, then to m2, who accepts. Now w4 is single
and proposes to m3, who accepts. Now w1 is single and proposes to m2, who rejects. This leaves
w1 single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.6.5: w2 enters before w3 and m1; i.e., the sequence is (i1, . . . , w2, w3,m1). The unique
stable matching before agents w2, w3, and m1 enter matches m2 to w4, m4 to w1, and m3 to
himself. When w2 enters she proposes to m3, who accepts. Next, when w3 enters she proposes
to m2, who rejects, then to m4, who accepts. Now w1 is single and proposes to m3, who accepts.
Now w2 is single and proposes to m4, who rejects, then to m2, who accepts. Now w4 is single

21



and proposes to m3, who accepts. Now w1 is single and proposes to m2, who rejects. This leaves
w1 single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.6.6: w4 enters before w3 and m1; i.e., the sequence is (i1, . . . , w4, w3,m1). There are
only two stable matchings µ̄′ and µ̄′′ before w4, w3, and m1 enter:

m2 m3 m4

| | |
m2 w1 w2

(µ̄′)

m2 m3 m4

| | |
m2 w2 w1

(µ̄′′)

Suppose that the sequence of agents is such that it induces µ̄′ before w4, w3, and m1 enter.
When w4 enters she proposes to m2, who accepts. Next, when w3 enters she proposes to m2,
who rejects, then to m4, who accepts. Now w2 is single and proposes to m2, who accepts. Now
w4 is single and proposes to m3, who accepts. This leaves w1 single and the resulting matching
is µ′′.

Suppose that the sequence of agents is such that it induces µ̄′′ before w4, w3, and m1 enter.
When w4 enters she proposes to m2, who accepts. Next, when w3 enters she proposes to m2,
who rejects, then to m4, who accepts. Now w1 is single and proposes to m3, who accepts. Now
w2 is single and proposes to m4, who rejects, then to m2, who accepts. Now w4 is single and
proposes to m3, who accepts. This leaves w1 single and the resulting matching is µ′′.

Hence, all 5! sequences induce µ9.
Summary Case a.6: all 720 sequences (i1, . . . , w3,m1) induce µ9.

Case a.7: w4 enters before m1; i.e., the sequence is (i1, . . . , w4,m1).
Case a.7.1: m2 enters before w4 and m1; i.e., the sequence is (i1, . . . , m2, w4,m1). The unique
stable matching before agents m2, w4, and m1 enter matches m3 to w1, m4 to w3, and w2 to
herself. When m2 enters he proposes to w2, who accepts. Next, when w4 enters she proposes to
m2, who rejects, then to m3, who accepts. Now w1 is single and proposes to m2, who rejects.
This leaves w1 single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.7.2: m3 enters before w4 and m1; i.e., the sequence is (i1, . . . , m3, w4,m1). The unique
stable matching before agents m3, w4, and m1 enter matches m2 to w2, m4 to w3, and w1 to
herself. Next, when m3 enters he proposes to w3, who rejects, then to w1, who accepts. Next,
when w4 enters she proposes to m2, who rejects, then to m3, who accepts. Now w1 is single and
proposes to m2, who rejects. This leaves w1 single and the resulting matching is µ′′. Hence, all
5! sequences induce µ9.
Case a.7.3: m4 enters before w4 and m1; i.e., the sequence is (i1, . . . , m4, w4,m1). The unique
stable matching before agents m4, w4, and m1 enter matches m2 to w2, m3 to w3, and w1 to
herself. When m4 enters he proposes to w3, who accepts. Now m3 is single and proposes to w1,
who accepts. Next, when w4 enters she proposes to m2, who rejects, then to m3, who accepts.
Now w1 is single and proposes to m2, who rejects. This leaves w1 single and the resulting
matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.7.4: w1 enters before w4 and m1; i.e., the sequence is (i1, . . . , w1, w3,m1). The unique
stable matching before agents w1, w3, and m1 enter matches m2 to w4, m3 to w2, and m4 to
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himself. When w1 enters she proposes to m4, who accepts. Next, when w3 enters she proposes
to m2, who rejects, then to m4, who accepts. Now w1 is single and proposes to m3, who accepts.
Now w2 is single and proposes to m4, who rejects, then to m2, who accepts. Now w4 is single
and proposes to m3, who accepts. Now w1 is single and proposes to m2, who rejects. This leaves
w1 single and the resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.7.5: w2 enters before w4 and m1; i.e., the sequence is (i1, . . . , w2, w4,m1). The unique
stable matching before agents w2, w4, and m1 enter matches m2 to w3, m4 to w1, and m3 to
himself. When w2 enters she proposes to m3, who accepts. Next, when w4 enters she proposes
to m2, who accepts. Now w3 is single and proposes to m4, who accepts. Now w1 is single and
proposes to m3, who accepts. Now w2 is single and proposes to m4, who rejects, then to m2,
who accepts. Now w4 is single and proposes to m3, who accepts. This leaves w1 single and the
resulting matching is µ′′. Hence, all 5! sequences induce µ9.
Case a.7.6: w3 enters before w4 and m1; i.e., the sequence is (i1, . . . , w3, w4,m1). Note that
the marriage market before agents w3, w4, and m1 enter is the same as in Case a.6.6. Thus the
only two stable matchings µ̄′ and µ̄′′ are:

m2 m3 m4

| | |
m2 w1 w2

(µ̄′)

m2 m3 m4

| | |
m2 w2 w1

(µ̄′′)

Suppose that the sequence of agents is such that it induces µ̄′ before w3, w4, and m1 enter.
When w3 enters she proposes to m2, who accepts. Next, when w4 enters she proposes to m2,
who accepts. Now w3 is single and proposes to m4, who accepts. Now w2 is single and proposes
to m2, who accepts. Now w4 is single and proposes to m3, who accepts. This leaves w1 single
and the resulting matching is µ′′.

Suppose that the sequence of agents is such that it induces µ̄′′ before w3, w4, and m1 enter.
When w3 enters she proposes to m2, who accepts. Next, when w4 enters she proposes to m2,
who accepts. Now w3 is single and proposes to m4, who accepts. Now w1 is single and proposes
to m3, who accepts. Now w2 is single and proposes to m4, who rejects, then to m2, who accepts.
Now w4 is single and proposes to m3, who accepts. This leaves w1 single and the resulting
matching is µ′′.

Hence, all 5! sequences induce µ9.
Summary Case a.7: all 720 sequences (i1, . . . , w4,m1) induce µ9.

Summary Case a: 2640 sequences (i1, . . . , m1) induce µ9 and 2400 sequences (i1, . . . ,m1)
induce µ10.

Case b: m2 enters last; i.e., the sequence is (i1, . . . ,m2).
Because of the symmetry of the preferences, by changing the roles of agents [m1 and m2],

[w1 and w2], [m3 and m4], and [w3 and w4] in the proof of Case a we can show that in Case b
2640 sequences (i1, . . . , m2) induce µ9 and 2400 sequences (i1, . . . ,m2) induce µ10.

Case c: m3 enters last; i.e., the sequence is (i1, . . . ,m3). There are only two stable match-
ings µ̂′ and µ̂′′ when the set of agents consists of all women W and the remaining three men
{m1,m2,m4}:
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m1 m2 w3 m4

| | | |
w1 w2 w3 w4

(µ̂′)

m1 m2 w3 m4

| | | |
w2 w1 w3 w4

(µ̂′′)

When m3 enters last, he proposes to the single woman w3, who accepts. So, matching µ̂′ implies
matching µ10 and matching µ̂′′ implies µ8.

In order to determine which sequences induce matchings µ10 and µ8, we change the roles of
agents [m1 and m3], [w1 and w3], [m2 and m4], and [w2 and w4] in the proof of Case a. Note
that after this change, matching µ̂′ corresponds to µ′ in the proof of Case a and matching µ̂′′

corresponds to µ′′ in the proof of Case a. Similarly, matching µ8 corresponds to µ9 in the proof
of Case a and µ10 corresponds to µ10 in the proof of Case a.

Thus, changing the roles of the agents as specified above in the proof of Case a implies that
in Case c 2640 sequences (i1, . . . , m3) induce µ8 and 2400 sequences (i1, . . . , m3) induce µ10.

Case d: m4 enters last; i.e., the sequence is (i1, . . . ,m4).
Because of the symmetry of the preferences, by changing the roles of agents [m3 and m4],

[w3 and w4], [m1 and m2], and [w1 and w2] in the proof of Case c we can show that in Case d
2640 sequences (i1, . . . , m4) induce µ8 and 2400 sequences (i1, . . . ,m4) induce µ10.

Summary Cases a to d: Let m ∈ M . Then, 5280 sequences (i1, . . . , m) induce µ8, 5280
sequences (i1, . . . , m) induce µ9, and 9600 sequences (i1, . . . , m) induce µ10.

Let w ∈ W . Similarly to Cases a to d, 5280 sequences (i1, . . . , w) induce µ2, 5280 sequences
(i1, . . . , w) induce µ3, and 9600 sequences (i1, . . . , w) induce µ1.

Finally, the probability distribution induced by the random order mechanism equals:

(p∗µ1
, p∗µ2

, p∗µ3
, p∗µ4

, p∗µ5
, p∗µ6

, p∗µ7
, p∗µ8

, p∗µ9
, p∗µ10

) =

( 9600
40320 , 5280

40320 , 5280
40320 , 0, 0, 0, 0, 5280

40320 , 5280
40320 , 9600

40320) =

(0.238, 0.131, 0.131, 0, 0, 0, 0, 0.131, 0.131, 0.238) 6=

(0.25, 0.125, 0.125, 0, 0, 0, 0, 0.125, 0.125, 0.25) =

(1
4 , 1

8 , 1
8 , 0, 0, 0, 0, 1

8 , 1
8 , 1

4) =

(pµ1 , pµ2 , pµ3 , pµ4 , pµ5 , pµ6 , pµ7 , pµ8 , pµ9 , pµ10). 2
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of Mathematics, P.J. Šafárik University, Slovakia.

Gale, D. and Shapley, L.S. (1962) “College Admissions and the Stability of Marriage,”
American Mathematical Monthly 69, 9-15.

Irving, R.W. and Leather, P. (1986) “The Complexity of Counting Stable Marriages,”
SIAM Journal of Computing 15, 655-667.

Knuth, D.E. (1976) Marriages Stables. Montreal: Les Presses de l’Universite Montreal.

Ma, J. (1996) “On Randomized Matching Mechanisms,” Economic Theory 8, 377-381.

Masarani, F. and Gokturk, S.S. (1989) “On the Existence of Fair Matching Algorithms,”
Theory and Decision 26, 305-322.

McVitie, D.G. and Wilson, L.B. (1970) “Stable Marriage Assignments for Unequal Sets,” BIT
10, 295-309.

Moulin, H. (1997) “Procedural cum End State Justice: An Implementation Viewpoint,”
Justice, Political Liberalism and Utilitarianism, editors, Maurice Salles and John Weymark.
Proceedings of a conference in honor of John Harsanyi and John Rawls, Cambridge University
Press, (forthcoming).

Moulin, H. (2003) Fair Division and Collective Welfare. Cambridge, Massachusetts: MIT Press.

Romero-Medina, A. (2002) “Equitable Selection in Bilateral Matching Markets,” mimeo,
Universidad Carlos III de Madrid.

Roth, A.E. (1982) “The Economics of Matching: Stability and Incentives,” Mathematics
of Operations Research 7, 617-628.

Roth, A.E. and Sotomayor, M.A.O. (1990) Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monograph Series. New York: Cambridge
University Press.

Roth, A.E. and Vande Vate, J.H. (1990) “Random Paths to Stability in Two-Sided Matching,”
Econometrica 58, 1475-1480.

25


