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Abstract

We present a model of labor markets that accounts for the social network through which
agents hear about jobs. We show that an improvement in the wage or employment status of
either an agent’s direct or indirect contacts leads to an increase in the agent’s employment
probability and expected wages, in the sense of first order stochastic dominance. A similar
effect results from an increase in the network contacts of an agent. In terms of dynamics and
patterns, we show that both wages and employment are positively associated (a strong form of
correlation) across time and agents. We also analyze the decisions of agents regarding staying
in the labor market or dropping out. If there are costs to staying in the labor market, and we
compare two networks of agents that are identical except that one group starts with a worse
wage status, then that group’s drop-out rate will be higher than the other’s and there will be a

persistent difference in wages between the groups.
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1 Introduction

One of the most extensively studied issues in labor economics is the persistent inequality in wages
between whites and blacks. For instance, the gap between white and black males between the ages
of twenty and fifty ranges from 25% to 40% depending on education level, and this has varied some
over time (see Smith and Welch (1989) for statistics from U.S. census data, broken down across a
variety of dimensions and time).! Tt is clear that part of the gap can be explained by differences in
factors such as the quality of education and skill levels, but nonetheless, there is still a significant
residual that is unexplained (for instance, see Card and Krueger (1992) and Chandra (2000)).
Moreover, once one accounts for the fact that blacks drop out of the labor force at a higher rate
than whites, the true gap in wages actually increases (e.g., see Heckman, Lyons, and Todd (2000)).
The idea is that the wages for drop-outs are ignored when comparing only employed workers. The
fact that participation in the labor force is different across groups such as whites and blacks is also
well-documented. For instance, Card and Krueger (1992) quote drop-out rates for blacks that are
2.5 to 3 times higher for blacks compared to whites (roughly 12 to 13% for blacks compared to 4
to 5% for whites); and Chandra (2000) finds similar sized differences and provides a breakdown of
differences in participation rates by education level and other characteristics.

Even if one believes any inequality in wages between social groups to be entirely explainable by
differences in factors such as education, skills, and drop-out rates; one is then left to explain why
those should differ.?

The purpose of this paper is to provide a comprehensive theory accounting both for the observed
patterns of wages and employment as well as differences in drop-out patterns and their roles in
sustaining inequality. We do this by explicitly modeling how social networks are used in the
transmission of job information. An analysis of social networks provides a basis for observing both
higher drop-out rates in one race versus another and sustained inequality in wages and employment
rates even among those remaining in the labor force.

Our model builds upon a well-known stylized fact: a significant fraction of all jobs are found
through contacts. While estimates of the percentage of jobs found through social contacts vary
across location and profession, they consistently range between 25 and 80% of jobs in a given

3 We take as given that an important source of information about jobs is a social

profession.
network, and we derive the implications for wage dynamics and drop-out decisions.

More precisely, we model the transmission of job information among individuals by a function
that keeps track of who first heard about a job and who (if anyone) eventually ended up getting an

offer for that job. The key condition that we impose on this function is that the expected number

'For a view on other ethnic groups, see Farley (1990), who provides data for 50 racial-ethnic groups in the U.S..
2The extent to which inequality is explainable by such factors is still a point of some debate. See for instance,

Darity and Mason (1998) and Heckman (1998). Independent of whether there is a significant residual gap, one still

needs to explain why any differences should exist and why things like drop-out rates should differ.
3There are many studies relating to this, from early work in labor economics by Rees (1966) to some of the seminal

work in the sociology (“social networks”) literature by Granovetter (1973, 1995). Montgomery (1991) provides a nice

summary of some of the key studies and statistics from that literature.



of offers that a given agent ends up with is nondecreasing in the wage status of other agents. This
embodies several things. First, as the status of other agents improves, they have better access to
information about jobs. Second, as the status of other agents improves, fewer of the new jobs offer
improvements for those agents relative to their current status, and so they are more likely to pass
information on. Third, as the status of other agents improves, our given agent becomes relatively
“needier”. To the extent that agents pay attention to this in passing job information, this would
also make it more likely that the given agent hears about jobs.

We emphasize that the reduced form approach we take here, and the parsimony of the assump-
tions being made, accommodates a large variety of situations, including heterogeneous agents, jobs
and wages, repeated and selective passing of information, competing offers for employment, raises
due to outside offers, decisions as to whether to switch jobs, etc.

Our model takes such an information transmission network and embeds it into a dynamic setting
where we keep track of job turnover. At the beginning of each period, each agent hears of new jobs
according through the information transmission network. This results in new job offers to various
agents, and possibly results in new wage levels through a well-defined process. Next, at the end of
the period, agents randomly lose jobs according to some idiosyncratic breakup probabilities. Wages
thus follows a Markov process, with state transitions depending on the information transmission
network. Given a discrete wage space, we get an irreducible and aperiodic Markov process with a
unique steady-state distribution on wages. We prove that this stationary distribution is strongly
associated, that is, the wages of any path-connected agents are positively correlated under the
steady-state distribution.? We also establish positive correlation of wages for path-connected agents
across arbitrary time periods, meaning that, within a given social group, individual wage dynamics
are (positively) correlated. These results are quite robust to the details of the actual information
transmission protocol being used. The proof is not as easy as one might expect, as there is a
countervailing effect that path-connected agents are sometimes in competition for information about
certain jobs. This entails some within period negative correlation among the status of certain
agents. So we have to prove that in the long run, the long run benefits of improved status of
friends-of-friends outweighs the short run competition that they might represent.

In terms of establishing persistent inequality between wages of different types of agents, we need
to analyze drop-out decisions. This is clear since the ergodicity of the Markov process governing
wages implies that any short-run inequalities may disappear in the long run. However, once we
allow agents to decide whether to enter the labor market or to drop out, inequalities between
agents persist. We model the entry/drop-out decision as a simultaneous-move game. The decision
is made by comparing the discounted expected flow of future wages stemming from entering the
labor force with the corresponding discounted costs (such as education costs, opportunity costs,
skills maintenance, etc.). Given that individual wages are positively associated across agents, entry
decisions in this entry/drop-out game turn out to be strategic complements. Applying the theory

of supermodular games, we deduce that two different social groups with identical job information

4To be more precise, strong association is displayed by the stationary distribution of a Markov process derived

from the original one by shortening the time periods, whenever such period subdivisions are fine enough.



networks but differing in their starting wage and employment profile will have different drop-outs
rates that can be strictly ranked. These differences in drop-out patterns in turn breed persistent
differences in wages between the two groups. This theory thus highlights the role of collective

employment history in persistent wage inequality across social groups.

This paper has a companion paper: Calvé-Armengol and Jackson (2001). In that paper we
examine a specific case of the model considered here. In particular, we examine a situation where
all jobs are identical and there is a single wage level, and job information is passed to at most
one agent and only if that agent is unemployed. There we derive positive correlation between the
employment of path-connected agents and show that differences in starting conditions can result
in different drop-out decisions and persistent inequality in employment. We also provide a number
of simulation results illustrating the model in the context of some simple networks. The main
contributions here relative to the companion paper are twofold. First, we consider a much more
general model both in the passing of job information and in the structure of wages and their relation
to job offers. This is not a simple extension, but broadens things in important directions. In fact,
it is important to see the results in the more general model because most any application would
fit into the broader class examined here rather than the specific case examined in the companion
paper. The added features here allow for things such as heterogeneity in jobs, heterogeneity in
agents (skills, education, etc.), multiple offers, higher wages due to outside offers, switching of jobs,
passing of information to more than one agent, competition between agents for jobs, and repeated
passing of information. Second, we study wage dynamics in addition to employment and drop-out
decisions. It is very important to derive implications for wages as much of the empirical evidence
for inequality relates to wage differences between races, rather than employment. Moreover, we
establish a strong form of association of the wages and employment of path-connected agents
rather than simple correlation. Hopefully, the network-based labor model developed here can serve
as a useful alternative to the competitive models and search models that are traditional to labor

economics.

2 A Model of Networks in Labor Markets

We begin with a formal description of our model.

2.1 Wage and Employment Status

The random variable Wy; keeps track of the wage of agent ¢ at time t. We normalize wages to be 0
if 7 is unemployed, and more generally W;; takes on values in IRy. The vector w; = (w1, ..., Wnt)
represents a realization of the wage levels a time ¢.

From an agent’s wage status we can deduce the agent’s employment status. Yet, for convenience,
we introduce a binary random variable S;; that keeps track of the employment status of agent ¢
at time t. We set s;+ = 1 when i is employed, and s;; = 0 otherwise. So, the vector s; € {0,1}"

represents a realization of the employment status at time ¢. In general (with multiple wage levels),



St is a coarsening of W;.

We follow the convention of representing random variables by capitol letters and realizations by
small letters. Thus, the sequence of random variables {Wy, W7, Wa, ...} comprises the stochastic
process of wage status.

We now discuss how wages and employment evolve over time.

2.2 Labor Market Turnover

The labor market we consider is subject to turnover which proceeds repeatedly through two phases

as follows.

e In one phase, each currently employed worker i is fired with probability b; € (0,1), which is
referred as the breakup rate.

e In the other phase, agents hear about new jobs. If an agent directly hears about a job
vacancy, then he or she either keeps that information or passes the job on to one of their
direct connections in the network. Probabilities p;;(w) (as a function of the last period wage
status w) keep track of the probability that 7 first hears about a job and this job ultimately

results in an offer for agent j. We discuss these p;; functions in more detail below.

As these phases occur repeatedly over time, it is irrelevant whether we index periods so that first
the breakup phase occurs and then the hiring phase occurs, or vice-versa. It turns out to be more
convenient to consider the hiring phase first and then the breakup phase. Thus, our convention
is that S; and W; are the employment and wage status that occurs at the end of period t. So,
in the beginning of period t the status is described by Si—1, W;—1. Next, agents hear about jobs,
possibly transfer that information, and hiring takes place. This results in a new employment and
wage pattern. Then, the breakup phase takes place and the period ends with an employment and
wage status Sy, Wi.

2.3 Specifics of Information Transmission

There are many possible variations to consider regarding how information is transmitted and how
information affects wages. There are at least three important dimensions that we consider.

One dimension to consider is whether or not an already employed agent can make direct use of
information about a new job. In general, jobs have different characteristics and values to different
agents. Whenever the new job constitutes an improvement for an already employed agent, this

5 However, there

agent switches job, and so the information about the new job is not passed on.
may also be a probability that the new information is not valuable to the agent (e.g., the new job is
worse than their current position) and so they wish to pass it on. Generally, the higher the current
wage of the agent, the higher the probability that the new job will not generate an improving offer

and the agent will pass on the information about the job.

5Tt might also be that the new job leads the agent’s current job to raise its wage to retain the agent.



Another dimension for consideration is to whom an employed agent passes job information.
The agent may pass the job information on only to unemployed connections, or may instead select
among all of his or her connections in passing on the job information, depending on the current
status of their connections.

Third, it is also possible that the agent passes the job information to more than one connection,
and even that they indirectly pass it on to others, and that a number of agents end up being
considered for the job.

In order to capture all of these variations on information passing, we model the job transmission
in a general way that allows for a wide range of cases.

The job transmission and offer generation is described by a function p;; : R"} — [0,1]". Here
pij(Wi_1) is the probability that ¢ originally hears about a job and then it is eventually j that ends
up with an offer for that job. The case where j = ¢ (that is, p;(W;_1)) represents the situation
where ¢ hears about a job and is the one who eventually gets an offer for the job.

As emphasized above, the function p;; is a reduced form that can accommodate a very large
variety of situations. All that is important for our analysis is to keep track of who first heard
about a job and who (if anyone) eventually ended up getting an offer for the job. In the interim
it might be that agents keep any job information they hear about or it may be that they pass the
information on. When passing information, agents may pass it to just one connection at a time or
they may tell several connections about the job. These connections might also pass the information
on to others, and it could be that several agents end up in competition for the job. And of course,
all of this can depend on the current state w. Regardless of this process, we simply characterize
the end result through a probability that any given agent j ends up with an offer for a job that
was first heard about by agent 1.

For simplicity, we assume that in a given period a given agent hears about at most one job
directly. This is purely a simplifying assumption, and it is quite clear that it is inconsequential in
any of the proofs. And it is still possible that an agent ends up hearing about several jobs, some

of which are heard of indirectly.
Assumptions on the reduced form

Let p;(w) = >7;pji(w). So, pi(w) represent the expected number of offers that i will get
depending on the wage state in the last period being w. Implicit in this is the assumption that
the realizations under pj;(w) and pg;(w) are independent. Note that this is very different from
the realizations under p;; and p;r, which will generally be negatively correlated. So we are just
assuming that j and k£ do not coordinate on whether they pass ¢ a job. We could allow agents
to coordinate on whom they pass information to. This would complicate the proofs in the paper,
but would not alter the qualitative conclusions. In fact, as we let the periods become small, the
probability that more than one job appears in a given period will go to zero in any case, and so it
will be clear that the results extend readily.

We let p denote the vector of functions across ¢ and j. Let w denote the maximum value in the

range of wages. The functions p;; are assumed to satisfy the following conditions for any w in the



range of wages:
(1) pi(w) is nondecreasing in w_; and nonincreasing in w;, and
(2) pi(w) > 0 for any w and ¢ such that w; < w;
(3) if pi(w) > pi(w_j,w;) for j # ¢, then p; is increasing in w; whenever w; < ;.

(1) imposes two requirements. The first is that the expected number of jobs that ¢ hears about
is weakly increasing in the wages of agents other than i. This encompasses the idea that other
agents are (weakly) more likely to directly or indirectly pass information on that will reach ¢ if
they are more satisfied with their own position, and also that they might have better access to
such information as their situation improves. It also encompasses the idea that other agents are
(weakly) less likely to compete with i for an offer if they are more satisfied with their own position.
The second requirement is similar but keeps track of ¢’s wage. Note that this allows for ¢ to be more
likely to directly hear about a job as i’s situation worsens (allowing for a greater search intensity).6

We remark that (1) is not in contradiction with the fact that some agents might be more
qualified than other agents for a given job. Such qualifications can be completely built into the
agents’ identities 4, j, etc., which are accounted for in the p;;’s. Condition (1) only describes how
changes in agents’ current circumstances affect job transmission.

(2) simply requires that if an agent is not at their highest wage level, then there is some
probability that they will obtain an offer. This is clearly satisfied as long as there is some probability
that they directly obtain an offer, and is a very weak requirement.

(3) is a simplifying assumption. This guarantees that if ¢’s probability of hearing about a job is
sometimes sensitive to j’s status, then it is sensitive to j’s status whenever ¢ is not at the highest
wage level. This simply allows us to make statements about positive correlations that do not need
to be conditioned on particular circumstances. Without this assumption, some strict inequalities

simply become weak ones in some special cases.
Let us briefly describe a few examples that fit into our model.
EXAMPLE 1 Homogeneous jobs and agents connected by a graph.

This is the situation considered in Calv6-Armengol and Jackson (2001).

The network of connections among agents is described by a non-directed graph ¢, which is an
n X n symmetric matrix, that is g;; = gj. If g;; = 1 then 7 is linked to j and g;; = 0 if 7 is not
linked to j. The interpretation is that if g;; = 1, then when 7 hears about a job opening, i may
tell j about the job. The symmetry of the network means that the acquaintance relationship is a
reciprocal one: if ¢ knows j, then j knows i.

In this example jobs are all identical (e.g., unskilled labor) and wages depend only on whether

a worker is employed or not. At the beginning of each period, agent i hears of some available job

6Note that it is possible to have the probability that an employed agent directly hears about a job vacancy be

higher or lower than the same probability for an unemployed agent, and still be consistent with the condition (1).



slot with probability a € (0,1). The passing of information is as follows. When 4 hears of a job
and is unemployed, then 7 takes the job. If ¢ is employed, then he randomly picks an unemployed
(direct) acquaintance and passes the information along. If all direct acquaintances are employed,
then the information is lost.
a if j =14 and s; =0,
pij(s) = m if s; =1, gij = 1 and s; = 0, and
0 otherwise.

EXAMPLE 2 Heterogeneous Agents.

Consider the above example with some variations. The arrival rate a is specific to agents and
so is denoted a;. In addition, the network relationships may be weighted and asymmetric, so that
the g;;’s are not necessarily in {0,1}.

Here p;;(s) is as follows:
a; if j=4and s; =0;

() = § argstier s =1, g3y # 0 and 55 = 0; and
18, =07

0 otherwise.

EXAMPLE 3 Relaying information.

Consider a variation on Example 2 where we now allow agents to relay information in the case
that all of their acquaintances are employed. For instance, if all of i’s direct acquaintances are
employed, then he passes the information randomly to one of them, who then picks an unemployed
direct acquaintance randomly (if one exists) and relays the information to her. Otherwise the job
information is lost.

Here p;;(s) is as follows:

a; if j =17 and s; = 0;
9 e — R —_
a; Zk;sk:ogik if s; =1, gij =1 and s; = 0;

pij(s) =

. ik kj o - , 0
a; Zk;gkj7é0 S0 Zk”:sk,,:o " if s; =1, s, = 1 for all & such that g;; # 0, and s; = 0; and

0 otherwise.

EXAMPLE 4 Heterogeneous jobs

Again, consider Example 2, but now where jobs are heterogeneous and wages may take on
different values. Denote by w; the highest wage attainable by agent i. At the beginning of each
period, agent ¢ hears about a job opening offering a wage w; with probability a;" € (0,1).

If ¢ directly hears about a new job that pays a higher wage than i’s current job position, then

agent i keeps that information.” If the new job does not offer any improvement, then agent i

"A given agent may end up with offers for several jobs, as we discuss next. So holding on to information does not

necessarily imply that an agent takes that job.



randomly passes the information on to one of his direct acquaintances who currently has a wage
lower than that of the new job, with weights reflecting the relative link intensities.

Here p;;(w) is as follows (now needing to be written as a function of the vector of beginning

wages w = (wy,...,w,) rather than just the vector of employment s):
w) P .
Zw§>wi a;’ if J=1;
pij(w) = Do wliw ! >w, <a?iﬁ> if w; > w; and g;; # 0; and
k:wk<wi K
0 otherwise.

These are just a few examples to give some idea of the kinds of things admitted. As should
be clear from the conditions on the p;’s, one can also include things like passing information to
several agents at once (the p;;’s then represent the chance that an agent obtains an offer when
competing with whomever else has also heard about a given job), multiple relays of information,
situations where the weights depend on agents’ current wages, situations where the arrival rates of

job information (e.g., ;" in Example 4) depend on the current state of wages,...

2.4 The Determination of Offers, Wages, and Employment

Determination of Offers

The above described process leads to a number of new job opportunities that each agent ends
up at the end of the hiring process. Let Oj; be the random variable denoting the number of new
opportunities that ¢ has in hand at the end of the hiring process at time t. Given W;_1; = w, the

distribution of Oy is governed by the realizations of the p;;(w)’s.®
Determination of Employment

As before, the labor market we consider is subject to turnover which proceeds repeatedly through
two phases: first, the breakup phase where each agent ¢ loses job with probability b;, then, the hiring
phase where agent ¢ gets offers. The employment status then evolves as follows. If agent ¢ was
employed at the end of time ¢t — 1, so S;;—1 = 1, then the agent remains employed (S; = 1)
with probability (1 — b;) and becomes unemployed (S;; = 0) with probability b;. If agent i was
unemployed at the end of time ¢t —1, so S;;—1 = 0, then the agent becomes employed (S;; = 1) with
probability (1 — b;) conditional on O;; > 0, and otherwise the agent stays unemployed (S;; = 0).

Determination of Wages

The evolution of wages is as follows. The function w; : R4 x {0,1,2,...} — IRy describes the
wage that ¢ obtains as a function of 7’s previous wage and the number of new job opportunities
that 7 ends up with at the end of the hiring phase. This function is increasing in past wages and
satisfies w; (Wi 1—1,04t) > Wi 1.

830 the number of job opportunities that some agent j ends up with, O;;, is the sum of binomial random variables.
These binomial random variables are that some agent i originally heard about a job and that information ended up

in j’s hands, which from our definitions has probability p;;(w:) of occuring.



There may still be a loss of wages, but this occurs during the breakup phase when an agent
becomes unemployed. It is also assumed that w;(W;;—1,0O;) is nondecreasing in the number of
new offers received, Oy, and that w;(0,1) > 0 so that a new job brings a positive wage. In general,
the wage might be effectively increasing in the number of offers an agent for at least two different
reasons. First, the best match of a larger set of offers is likely to be better; second, if an agent has
several potential employers then competition between them will bid the wage up.?

We emphasize that this is not at all in contradiction with the previous assumptions on the p;;’s.
Wages are increasing in the offers that an agent eventually obtains, which can be thought of as
the “viable” offers. An agent might hear about a job that is a poor match for him or her (e.g.,
their current location or position dominates the new job) and would never lead to a viable offer.
It is then perfectly rational for the agent to pass the job information on to other agents, as might
happen under the p;;’s. The important distinction is that the offers (O;’s) that are kept track of
in the model are only the viable ones.

For simplicity in what follows, we assume that w; takes on a finite set of values and that these
fall in simple steps so that if w’ > w are adjacent elements of the range of wj;, then w} = w;(w, 1).
This means that wages are delineated so that an agent may reach the next higher wage level with
one offer. We assume that the highest wage an agent may obtain is above 0, that is w; > 0. We
also assume that w;(w’,0) > w;(w,0+ 1) for any o and w’ and w such that w, > w;. This simply
says that having a higher wage status is at least as good as having one additional offer (at least in
expectations).

The wage of an agent then evolves according to the following
Wit = wi(Wit—1,04i)S;

Multiplying the expression by S;; keeps track of whether ¢ loses his or her job during the breakup
phase.

Networks

In Examples 1 to 4, the network of relationships among individuals is modeled as a graph and
the p function is determined by geometry of the graph. In general, the agents’ interrelationships
may be quite complicated and more easily described by the p function than any graph. Nevertheless
it will still be useful for us to keep track of some “connection” relationships. In particular, it is
helpful to keep track of agents 7 and j for which p;(w) is sensitive to changes in w; for some w.

We will say that ¢ is connected with j if p;(w) # p;(w_;,w;) for some w and .

Let us emphasize that the term “connected” does not necessarily mean that i and j pass
information to each other. It might be that p;j(w) = pji(w) = 0 for all w, and yet still p;(w) is
sensitive to w;. This would happen if py;(w) depended on w;, and hence the connection might be

“indirect”. In words, two agents who are connected need not pass each other information; it is just

?0ne can see the reasoning behind this in search models and, for instance, in Arrow and Borzekowski (2001) where

firms compete for an agent and the best match must pay the value of the second highest match.



that their statuses directly or indirectly affect each other’s probability of hearing about a job.'?
Let
N;(p) ={j | i is connected with j}

It is natural to focus on situations where connection relationships are at least minimally recipro-
cal, so that i € N;(p) if and only if j € N;(p). We maintain this assumption in what follows. In the
absence of such an assumption, some of the statements in the results that follow need to be more
carefully qualified. Generally, all of the nonnegative correlation results will still hold. However, for
strictly positive correlations to ensue, it must be that information can have implications that travel
sufficiently through the network to have one agent’s status affect another, and so the definition of
path connected would need to be carefully modified to account for directed paths.

We can also keep track of further levels of this “connection” relationship. Let

NE(p) = Ni(p) U (Ujen, )N ())-
and inductively define

NE@) = NE ) U (Ui N5 (0)):

N'(p) then captures all of paths generated by the indirect connection relationships of an agent
i. We say that 7 and j are path connected if j € N™(p).

The sets N/*(p) partition the set of agents, so that all the agents in any element of the partition
are path connected to each other. We denote that partition by II(p).

We assume that any 7 € II(p) contains at least two agents. Thus each agent is connected with
at least one other agent. Completely isolated agents have dynamics of wages and employment that
are trivial, and so we restrict our attention to non-isolated agents for whom network relationships

matter.
An Economy

Given an initial distribution over states pg and a specification of N, p;’s, and b;’s, the stochastic
process of employment {S1,S2,...} and wages {W1,Wa,...} is completely specified. We refer to
the specification of (N, p,b) satisfying the properties that we have outlined as an economy. We
discuss the dependence on the initial distributions over states when necessary.

We remark that keeping track of employment status is redundant given wages, but it is still

useful to distinguish these in the discussion below.

3 Useful Observations Regarding Wage and Employment Distri-

butions

We begin our analysis with two straightforward results that present intuitive observations regarding

employment and wage status. These are useful later on.

"Note also that this definition can also have p;; > 0, but 4 and j not be “connected” (if p; does not depend on
w;). This is merely an issue of semantics, as for our results it is important how changes in one agent’s status affect

another, and hence our definition of connected.
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The following lemmas describe the Markov process governing the evolution of employment and
wages as it depends on two features: the current state of the process (w;) and the transition

probabilities (p;;’s).

LEMMA 1 Consider any economy (N,p,b), time t > 0, two wage states w € " and w' € IR
and an agent i who is unemployed in both states (w; = w;, =0). If w;- > wj for all j € N2, then
the distribution of i’s employment, offers, and wages (Sit, Oy, and Wy ) conditional on Wi_1 = w'
first order stochastically dominate the corresponding distributions conditional on Wy 1 = w. If

pi(w') # pi(w), then the first order stochastic dominance is strict.

Lemma 1 says that improving the wage status of any of an agent’s connections leads to an
increase (in the sense of stochastic dominance) in the probability that the agent will be employed
and the agent’s expected wages. The proof of Lemma 1 follows from the fact that for any ¢ and j
the function pj; is nondecreasing in wy, for k # 4 (condition (2)). The proof appears in the appendix.

We offer a parallel result where the state is fixed but the network (p;;’s) improves.

Fix an economy (N, p,b) and consider an alternative social structure p’. We say that p’ one-

period dominates p at w € IR", from i’s perspective if pj (w) > pg;(w) for all k.

We refer to the above as “one-period domination” since i’s perceived status will improve for the
next period under p’ compared to p. However, since p’ and p might differ beyond i’s connections,
the long run comparison between p and p’ might differ from the one period comparison. In Example
4, this one period domination condition is satisfied at w for some ¢ if w; < w; implies that, for each

k, g; > gri and gg; > gfgj for each j # i such that w; < ;.

LEMMA 2 Consider an economy (N,p,b) and an alternative social structure p’ that one-period
dominates p at w € IR from some agent i’s perspective. The distributions of i’s employment,
offers and wages (Sit, Ox and Wi) conditional on Wi_y = w under p’' first order stochastically
dominate the corresponding distributions under p. If pi(w) # pi(w), and w; < W;, then the first

order stochastic dominance is strict.

Lemma 2 states that an agent’s probability of being employed, expected number of offers and
wages all go up (in the sense of stochastic dominance) if the agent’s probability of hearing job infor-
mation through the network improves. Again, the straightforward proof appears in the appendix.

Next, we turn to understanding the dynamics and patterns in both employment and wages, as

we look across agents and/or across time.

4 The Dynamics and Patterns of Wage and Employment

We begin with patterns of wages as the results on employment have an added complication that

we will discuss shortly.
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4.1 'Wage Patterns and Dynamics

Before stating a theorem on wage patterns, let us discuss an issue that arises that we need to

address.

Consider a situation where agents are more likely to pass job information on to direct connections
with lower wages than to direct connections with higher wages, as in Example 4. In such a situation,
an agent who has a low wage, but whose wage is still higher than some other agents who are
competitors for information about a job, might end up with a next period expected wage that is
lower than what they would expect if they quit their job. This can happen because if they were to
quit their job, their direct connections would be more likely to pass information to them, and they
might have a positive probability of obtaining several offers at once.

While this might be an unusual case, it is one that we have not precluded under the assumptions
on p. This difficulty is overcome when we look at fine enough subdivisions of a period, as then
the probability of obtaining more than one offer becomes negligible compared to the probability
of obtaining one offer, provided the probability of obtaining at least one offer is not zero, which is

assured under (3). This is captured in the following definition.

T-period Subvidisions

A natural way to analyze shortened periods is simply by dividing p and b by some T.11

More formally, starting from some economy (N, p, b), the T-period subdivision, denoted (N, pT,bT),
is such that bl = % and p;fg- = % for each 7 and j.

T-period subdivisions are also the natural way to sort out the short run competition from the
longer run benefits of indirect connections. As the periods shorten, the competitive effects become
outweighed by the longer run benefits. Again, this is the natural approximation of the underlying

Poisson arrival process.

Association

While first order stochastic dominance is well suited for capturing distributions over a single
agent’s status, we need a richer tool for discussing interrelationships between a number of agents
at once. There is a generalization of first order stochastic dominance relationships that applies to
random vectors, that was introduced into the statistics literature by Esary, Proschan, and Walkup

(1967) under the definition of association.

A probability measure p describing a random vector (say W defined on IR™) is associated if

Covy (f,9) 20

for all pairs of non-decreasing functions f : IR” — IR and g : IR" — IR, where Cov(f,g) is the
covariance E,[f(W)g(W)] — E,[f(W)]E.[g(W)].

Association tells us that good news about the state (conditioning on g(w) > d) leads us to

higher beliefs about the state in the sense of domination. If Wy, ..., W, are the random variables

111 the limit, this simply approximates a continuous time Poisson arrival process.
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described by an associated measure p, then we say that Wi,..., W, are associated. Note that
independent random variables are associated by definition.

Note that if W is a random vector described by a measure p, then association of y implies that
W; and W; are non-negatively correlated for any ¢ and j. Essentially, association is a way of saying
that all dimensions of W are non-negatively interrelated. If W were just a two dimensional vector
(e.g., there were just two agents), then this would reduce to saying that there was non-negative
correlation between the agents’ wage levels. The definition captures more general interactions
between many agents, and says that good news in the sense of higher values of W;,i € {i1,...,4¢}
about any subset or combinations of agents (here, {i1,...,7,}) is good (not bad) news for any other
set or combinations of agents. This concept is useful in describing clustering and general forms of

positive correlations in employment and wages in what follows.

Strong Association

As we often want to establish strictly positive relationships, and not just non-negative ones,
we also define a strong version of association. Since positive correlations can only hold between
agents who are path connected, we need to define a version of strong association that respects such
a relationship.

Given is a partition II of {1,...,n} that captures which random variables might be positively
related.

A probability measure p describing a random vector on IR™ is strongly associated relative to

the partition IT if it is associated, and for any 7 € IT and nondecreasing functions f and g
Cov, (f,g) >0

whenever there exist ¢ and j such that f is increasing in w; for all w_;, g is increasing in w; for all

w_j, and 7 and j are path connected under II.

Strong association captures the idea that better information about any of the dimensions in 7
leads to unabashedly higher expectations regarding every other dimension in 7. One implication

of this is that W; and W; are positively correlated for any 7 and j in 7.

We are now ready to state our first theorem. Recall that II (p) is the partition of the agents so

that all the agents in any element of the partition are path connected to each other under p.

THEOREM 1 Consider any economy (N,p,b). There exists T' such that for any T > T', the wages
of any path connected agents are positively correlated under the (unique) steady state distribution
on wages corresponding to the T-period subdivision of (N,p,b). Moreover, the limit of the steady

state distributions is strongly associated relative to I1(p).

The theorem states that any path connected agents have positively correlated wage levels, and
in fact exhibit strong association, which is a property that provides for positive interrelationships
between all different subgroups. We provide a detailed definition of strong association in the

appendix.
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We emphasize that the limit of the steady state distributions as T" becomes large is a very
natural thing to consider, as it is a Poisson birth/death process which would naturally describe the
job search. The reason we work with a discrete time approximation is purely for tractability.

The proof of Theorem 1 is long and appears in the appendix. The proof can be broken down
into several steps. The first step shows that for large enough T the steady state distribution is
approximately the same as one for a process where the realizations of p;;(w) across different j’s is
independent. Essentially, the idea is that for large enough 7', the probability that just one job is
heard about overwhelms the probability that more than one job is heard about. This is also true
under independence. The proof then uses a characterization of steady state distributions of Markov
processes by Freidlin and Wentzel (1984) (as adapted to finite processes by Young (1993)). We use
the characterization to verify that one can simply keep track of the probabilities of just a single
job event to get the approximate steady state distribution for large enough 7. Next, note that
under independence of job hearing, there are no short-run negative conditional correlations. So
we can then establish that the conclusions of the theorem are true under the independent process.
Finally, we come back to show that the same still holds under the true (dependent) process, for
large enough T'.

While Theorem 1 provides results on the steady state distribution, we can deduce similar

statements about the relationships between wages at different times.

THEOREM 2 Consider any economy (N, p,b). For fine enough sub-divisions and starting under the
steady state distribution, there is a strictly positive relationship between the wage statuses of any
path connected agents and at any times. That is, for any any times t and t' there exists T such
that for any T > T' and

Cov” [WiW;e] > 0,

where i and j are path connected, where CovT is the covariance associated with the T-period sub-

division of (N, p,b) starting at time 0 under the steady state distribution p’.

Although Theorem 2 is similar to Theorem 1 in its structure, it provides different implications.
Theorem 1 addresses the steady state distribution, or the expected long run behavior of the system.
Theorem 2 addresses any arbitrary dates in the system.!?

It is important in Theorem 2 that we start from the steady state distribution.

4.2 Employment Patterns and Dynamics

One might conjecture (as we initially did) that it would be a simple Corollary to Theorem 1 for
employment to exhibit the same positive correlation structure as wages. It turns out to directly

follow from the positive correlation (in fact the strong association) of wages that employment is

2Theorem 1 almost seems to be a corollary of Theorem 2, since as we let ¢t and t’ become large, the distributions
of W, and W, approach the steady state distribution. However, we cannot deduce Theorem 1 from Theorem 2 since
it is not ruled out that the positive correlation vanishes in the limit under Theorem 2, while we know that this is not

the case from Theorem 1.

14



nonnegatively correlated (in fact, weakly associated) across agents. However, positive correlation
of wages does not always translate into positive correlation of employment status. That is, it is
possible for two agents to have positively correlated wages and yet have their employment status
be independent.

This is illustrated in the following example.
EXAMPLE 5 Positive Correlation of Wages but Independence of Employment.

Let agent i’s wages take on three values {0,1,2} and agent j’s wages take on two values {0, 1}.
Let i and j be path connected (but say not connected).!® Consider a limiting steady state distri-

bution which has the following marginal distribution on W; and W;:

’LUjZO ’LUjZl

9 1 1
Wi 12 1
1 1 1

Wi = 1 12
1 1

w; = 0 s 6

Under this marginal distribution, W; and W; are positively correlated. That is easily checked
from the above table. Note, however, that S; and S; are independent. That is easily seen since the

above distribution reduces to the following distribution on employment:

V)
<l
o
VAl
<
—_

SZ':]_

o= o= ||
D= Wl ||

SZ'ZO

This type of distribution cannot arise if p is a function of S rather than of W. Thus, with this

added condition we can establish positive correlation in employment.
THEOREM 3 Consider any economy (N, p,b).

e There exists T' such that for any T > T’ the employment of any connected agents is positively
correlated under the (unique) steady state distribution on employment corresponding to the
T-period subdivision of (N,p,b).

e The limit (as the subdivisions become finer) of the (unique) steady state distributions on

employment status is associated.'*

3That is, i and j wage statuses do not influence each other, but ¢ and j are connected through a chain of agents

whose wages statuses do influence each other.
“Having fixed an initial state Wy, an economy induces a Markov chain on the state W;. Note that this does not

correspond to a Markov chain on the state S¢, as the probability of transitions from St to Siy1 can still depend on
We (rather than just S¢) and hence on ¢t for a given starting distribution. Nevertheless, as the wage states do form a
Markov chain, there is a steady state distribution induced on the wage state W. As S is a coarsening of W, there is

a corresponding steady state distribution on S.
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e Ifp can be written as a function of S,'® then the limit of the (unique) steady state distributions
on employment is strongly associated relative to TI(p). Thus, exists T' such that for any T > T’
the employment of any path-connected agents is positively correlated under the (unique) steady

state distribution on employment corresponding to the T-period subdivision of (N,p,b).

Theorem 3 establishes the positive interrelationships between the employment of any collections
of path connected agents under the steady state distribution.

The role of the assumption that p is dependent only on S is important in establishing the strong
association of employment of agents who are path connected (rather than connected), as was shown
in Example 5.

We also have an analog of Theorem 2, stating that the positive interrelationships between

employment statuses hold both under the steady distribution and at any time along the dynamics.

THEOREM 4 Consider any economy (N, p,b) such that p is a function of employment status.'6 For
fine enough sub-divisions and starting under the steady state distribution, there is a strictly positive
relationship between the employment statuses of any path connected agents and at any times. That

is, for any times t and t' there exists T' such that for any T > T’
T
Cov [Sitsjt'] >0

for any path connected i and j, where Cov™ is the covariance associated with the T-period subdivi-

sion of (N,p,b) starting at time 0 under the steady state distribution ' .

5 Dropping Out and Long-Run Inequality

Consider the following game endogenizing the network structure. Let d; € {0, 1} denote ¢’s decision
of whether to stay in the labor market. Each agent discounts future wages at a rate 0 < ¢; < 1 and
pays an expected discounted cost ¢; > 0 to stay in. Agents dropping out get a payoff of zero.

An augmented economy is a specification (N, p,b,c, ), where ¢ is a vector of costs and ¢ is a
vector of discount rates.

When an agent ¢ exits the labor force, we reset the p’s so that p;;(w) = pji(w) = 0 for all j and
w, but do not alter the other pg;’s. The agent who drops out has his or her wage set to zero.'”
Therefore, when an agent drops out, it is as if the agent disappeared from the economy.

Fix an augmented economy (N, p,b,c,0) and a starting state Wy = w. A vector of decisions d

is an equilibrium if for each ¢ € {1,...,n}, d; = 1 implies

E Zéztm/Zt|W0:w7d—l zcia
t

15(3) is relaxed to hold relative to S rather than W.

16The result also holds for connected agents without this assumption.
" This choice is not innocuous, as we must make some choice as to how to reset the function Pr; when ¢ drops out,

as this is a function of w;. How we set this has implications for agent j if agent j remains in the economy.

16



and d; = 0 implies the reverse inequality.
The “drop-out” game is supermodular (see Topkis (1979)) which leads to the following lemma.

LEMMA 3 Consider any economy (N,p,b), state Wy = w, and vector of costs ¢ € IR}. There exists
T such that for any T-period subdivision of the economy (T > T'), there is a unique equilibrium
d*(w) such that d*(w) > d for any other equilibrium d.

We refer to the equilibrium d*(w) in Lemma 3 as the maximal equilibrium.

THEOREM 5 Consider any augmented economy (N,p,b,c,8). Consider two starting wages states,
w > w with w # w'. There exists T such that the set of drop-outs under the maximal equi-
librium following w' is a subset of that under w that for any T-period subdivision (T > T');
and for some specifications of the costs and discount rates the inclusion is strict. Moreover, if
d*(w); = d*(w'); = 1, then the distributions of i’s wages and employment Wy and Sy for any t
under the mazimal equilibrium following w' first order stochastic dominate those under the mazximal
equilibrium following w, with strict dominance for large enough t if d*(w); # d*(w'); for any j who

is path connected to i. In fact for any increasing f : IR} — IR and anyt
ET [f(Wy) [Wo = w',d*(w")] > ET [f(W;) [Wo = w,d"(w)],
with strict inequality for some specifications of ¢ and §.

Theorem 5 shows how persistent inequality can arise between two otherwise similar groups with

different initial employment conditions.
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Appendix

Proof of Lemmas 1 and 2: We prove the statements for the distribution of Q. The first order
stochastic dominance statements for W;; and S;; then follow easily, since W;; is simply w(0, Oy)
with probability 1 —b; and 0 with probability b;, and similarly S;; = 1 when O;; > 0 with probability
1 —b;, and is 0 otherwise. We remark on the strict first order stochastic dominance for W;; and S
at the end of the proof.

Fix some w and p. Consider 7 such that w; = 0. Fix any agent k # i and consider any
C C N\ {k}. Let

PE(w) = (xjecpji(w)) (X jen(cur) (1 = pji(w)))-
Thus, Péi(w) is the probability that ¢ hears of job offers from each agent in C' and none of the
agents in N \ (C'Uk). We can then write the probability that i obtains at least h offers as

Prob({Oy > h} | p,Wii=w)= > (1= pri(w))Pi(w) + Y pri(w)PE(w).
CCN\k:|C|>h CCN\k:|C|>h—1

Simplifying, we obtain

Prob({Oy > b} | p,Ws 1 =w)= Y Phw)+ Yoo pk(w)Pi(w). (1)
CCN\k:|C|>h CCN\k:|C|=h—1

To establish first order stochastic dominance of a distribution of O;; conditional on W;_; = w’
over that conditional on W;_; = w (and/or similarly comparing p’ and p), we need only show
that Prob ({O; > h} | p/, Wi—1 = w') is at least as large Prob ({O; > h} | p, Wi_1 = w) for each h.
Strict dominance follows if there is a strict inequality for any h.

Note that from (1) we can write Prob ({O; > h} | p, W:—1 = w) as a function of the py;’s, which
are in turn functions of w. Since P%(w) is independent of py;(w) for any k € N, it follows from
equation (1), that Prob ({O; > h}| p, W;—1 = w), viewed as a function of the py;’s, is non-decreasing
in the pg;’s. Moreover, it is increasing in pg; whenever there is some h such that Pg(w) > ( for
some C C N\ {k}:|C|=h—1.

Thus, if pi;;(w’) > pji(w) for each j € N, then we have first order stochastic dominance, and
that is strict if the inequality is strict for some k such that there is some h such that P&(w) > 0
for some C C N \ {k} : |C] = h — 1. Note that since pj;(w) < 1 for all j € N, it follows that
1 —pji(w) >0 for all j € N. This implies that when h = 1, P%(w) > 0 for C' = (} corresponding to
|C] = h —1=0. Thus, we get strict first order stochastic dominance if we have p’;(w’) > pji(w)
for each j € N with strict inequality for any j. Therefore, any changes which lead all p;;’s to be at
least as large (with some strictly larger), will lead to the desired conclusions regarding (strict) first
order stochastic dominance.

To establish the strict part of first order stochastic dominance for S;; and W, it is sufficient to

conclude first order stochastic dominance and additionally that

Prob ({Oy > 1} | p/, W1 = w') > Prob ({O > 1} | p, W1 = w).
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As argued above (the case of h = 1), this holds whenever p;(w’) > pji(w) for all j with strict

inequality for some j; as in the premise of the results. i

The following definitions and lemmas are useful in the proof of Theorems 3 and 1.
Consider two probability measures p and v on a state space that is a subset of IR"™.

1 dominates v if

Euf1 = By [f]

for every non-decreasing function f : JR® — IR.'® The domination is strict if strict inequality holds

for some non-decreasing f.
Domination captures the idea that “higher” realizations of the state are likely under p than

under v. In the case where n = 1 it reduces to first order stochastic dominance.

LEMMA 4 Consider two measures jv and v on IR™ which have supports that are a subset of a finite
set W C IR™. 1 dominates v if and only if there exists a Markov transition function ¢ : W — P(W)
such that

p(w') = Z Puwr (W),

where ¢ is a dilation (that is ¢y > 0 implies that w' > w). Strict domination holds if ¢y > 0

for some w' # w.

Thus, p is derived from v by a shifting of mass “upwards” under the partial order > over states
wew.
Proof of Lemma 4: This follows from Theorem 18.40 in Aliprantis and Border (2000). |}

Let
E={ECW |weEvw >w=uw € FE}.

£ is the set of subsets of states such that if one state is in the event then all states with at least
as high wages (person by person) are also in. Variations of the following useful lemma appear in
the statistics literature (e.g., see Section 3.3 in Esary, Proschan and Walkup (1967)). We include a

proof of this version for completeness.
LEMMA 5 Consider two measures p and v on W.
u(E) zv(E)

for every E € &, if and only if p dominates v. Strict domination holds if and only if the first

inequality is strict for at least one E € £. The measure [ is associated if and only if

WEE') > y(E)u(E')

8 We can take the probability measures to be Borel measures and E,,[f] simply represents the usual f a1 (@)dp(z).
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for every E and E' € £. The association is strong (relative to 11) if the inequality is strict whenever

E and E' are both sensitive to some w € T1.19

Proof of Lemma 5: First, suppose that for every E € &:

w(E) = v (E). 2)

Consider any non-decreasing f. Let the elements in its range be enumerated ri,...,rg, with
rK > Th_1...>71. Let Ex = f~'(rg). By the non-decreasing assumption on f, it follows that
Ex € €. Inductively, define Ey = Ej,1 U f~1(r_1). It is also clear that Ej € £. Note that

flw) =Y (r, = rp1) I, (w).

k
Thus,
E (f(Wy) = (rk — rh-1)(Ex)

and

Thus, by (2) it follows that E,(f(W;)) > E,(f(W;)) for every non-decreasing f. This implies the
dominance.

Note that if 4(F) > v(E) for some E, then we have E,(Ig(W;)) > E,(Ig(Wy)), and so strict
dominance is implied.

Next let us show the converse. Suppose that p dominates v. For any E € & consider f(w) =
Ip(w) (the indicator function of E). This is a non-decreasing function. Thus, E,(Ig(W;)) >
E,(Ig(W)) and so

W(E) 2 v (E).

To see that strict dominance implies that p (E) > v (E) for some E, note that under strict domi-

nance we have some f for which

Eu(f(Wa)) = > (rk = ri—1) u(Ex) > By (f(Wh)) = D (rk — rp—1)v(Ex).

k k

Since p(Ey) > v(Ey) for each Ej, this implies that we have strict inequality for some Ej.
The proof for association (and strong association) is a straightforward extension of the above
proof that we leave to the reader (or see Esary, Proschan and Walkup (1967)). i

LEMMA 6 Let p be associated and have full (finite) support on values of W. If f is nondecreasing
and is increasing in W for some i, and g is a nondecreasing function which is increasing in W
for some j, and Couv,(W;, W;) > 0, then Cov,(f,g) > 0.

9F is sensitive to 7 if its indicator function is. A nondecreasing function f : IR™ — IR is sensitive to ® € II

(relative to ) if there exist x and Z, such that f(z) # f(x—r,2r) and  and x_, %, are in the support of .
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Proof of Lemma 6: We first prove the following Claim.

CLAIM 1 Let p be associated and have finite support. If f is an increasing function of W;which
depends only on W;, and g is an increasing function of W; which depends only on Wj;, and

Cov, (W;,W;) >0, then Cou, (f (W),g(W)) > 0.
Proof of Claim 1: We write
+o0o +o0o
Cov,, (W;, W;) = / / Covy, (IWi (), Iw, (t)) dsdt,?°

where Iy, (s) = 1 if W; > s, and Iy, (s) = 0, otherwise. By assumption, Cov, (W;, W;) > 0.
Therefore, Cov,, (IWi (3), Iw, (f)) > 0 for a set of 5,’s. Also,

+oo +oo
Cov (£ (W) .9 (W) = [ Covye(I7 (5). Iy (1)) dsdt, 3

— 00 — 00

where I (s) = 1if f(W;) > s, and Iy (s) = 0, otherwise. For each 5 as described above, there
exists some s’ such that Ly, (3) = 1 if and only if Iy (f(s’)) = 1, and similarly for ¢, g, and ¢'.
Therefore, Cov,, (Ir (f(s")),I;(g(t'))) > 0. Given the finite support of W, the sets of such 3, #’s
and corresponding s',#’s are unions of closed intervals with nonempty interiors. By association
also we know that Cov, (Ir (f (3)),14 (g (t))) > 0 for any s,t. Since this expression is positive on a

set with positive measure, and everywhere nonnegative, it follows from (3) that Cov, (f,g) > 0.1

Next consider f that is increasing in W;, but might also depend on W_;. Label the possible wage
levels of i by wf where w} = 0 and wf = W;. Let v = mingsgs1w_, FWFw_;) — fw w_;).
By the increasing property of f it follows that v > 0. Define f'(wf) = f£(0,...,0) + k%. Let
f'(w) = f(w) — f'(w;). Tt is easily checked that f” is non-decreasing. Similarly define ¢’ and ¢”

for g relative to W;. Then

Cov(f,g) = Cov(f",g") + Cov(f",q') + Cov(f',g") + Cov(f',q).

By association, each expression is nonnegative. By Claim 1 the last expression is positive. i

Fix the economy (N, p,b). Let PT denote the matrix of transitions between different w’s under
the T-period subdivision. So P?fw, is the probability that W; = w’ conditional on W;_1 = w.
Lot Py =S 0rep P,

ww’*

LEMMA 7 Consider an economy (N, p,b). Consider w' € W and w € W such that w' > w, and

any t > 1. Then there exists T' such that for all T > T and E € £
Pl >Pl..

w

Moreover, if w' # w, then the inequality is strict for at least one E.

208ee, for instance, Corollary B in Section 3.1 of Szekli (1995). As p has finite support, these integrals trivially

exist.
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Proof of Lemma 7: Let us say that two states w’ and w are adjacent if there exists ¢ such that
w’ , = w_y and w), > wy take on adjacent values in the range of ¢’s wage function.
We show that
Py > Pip

for large enough T and adjacent w and w’, as the statement then follows from a chain of comparisons
across such w’ and w. Let ¢ be such that w), > wy. By definition of two adjacent wage vectors,
w) = w, for all i # £.
We write
Pl = ZProb (W; € E|O; = 0)Prob.,(O; = o)

and similarly

PL. = ZProb (W; € E|O; = 0)ProbL (0O = o),

where Probl is the probability conditional on W;_; = w. Note that by property (1) of p, pg;(w') >
pej(w) for all j # ¢. Also since wj, = wy, for all k& # £ property (1) also implies that p;;(w’') > psj(w)
for all j # ¢ and for all i. These inequalities imply that Probl,(O_,;) dominates ProbL(O ;). It
is only ¢, whose job prospects may have worsened.

Since w) > wy, given our assumption on wages (that w;(w’, 0) > w;(w, o+1) for any o and w’ and
w such that w] > w;), it is enough to show that for any a, Probl,(O_s¢ > a) > Probl(O—ss > a+1).
This holds for large enough T', given the independence of different realizations of p;, and p; for
i # j and property (2) of p, as then the probability of some number of offers is of a higher order
than that of a greater number of offers (regardless of the starting state).?!

To see the strict domination, consider E = {w|w; > w}}. Since (for large enough T') there is a

positive probability that ¢ hears 0 offers under w, the inequality is strict. [l

Given a measure £ on W, let ¢ PT denote the measure induced by multiplying the (1 x n) vector
¢ by the (n x n) transition matrix PT. This is the distribution over states induced by a starting

distribution ¢ multiplied by the transition probabilities P’

LEMMA 8 Consider an economy (N,p,b) and two measures p and v on W. There exists T' such
that for all T > T', if u dominates v, then uPT dominates vPT. Moreover, if p strictly dominates
v, then uP" strictly dominates vPT.

Proof of Lemma 8:
(uPT|(E) — vPT|(E Z — V) -

By Lemma 4 we rewrite this as

(uPT)(E) — [vPT|(E Z <Z V! Pt — w) .

21This holds provided w), < W, but in the other case, the agent is already at the highest wage state and so the

claim is verified.

23



‘We rewrite this as
[wPT)(E) — vPT)(E Z Z Vi Gurw Pz — Z vl .

As the second term depends only on w, we rewrite that sum on w’ so we obtain

[uPT)(E) = [vPT)(E) =) <Z O Vw’Pg;’E>'

’LU,

Since ¢ is a dilation, ¢y, > 0 only if w > w'. So, we can sum over w > w':

[MPT](E) VPT ZVU)’ ( Z ¢w’wP$E - Pg;’E) -
w>w'
Lemma 7 implies that for large enough T, Pg B> P;‘)F, 5 whenever w > w'. Thus since ¢y, > 0 and
Y wsw Puww = 1, the result follows.
Suppose that p strictly dominates v. It follows from Lemma 4 that there exists some w # w’
such that ¢y, > 0. By Lemma 7, there exists some E € £ such that PgE > P;‘)F,E. Then
(uPT](E) > [vPT|(E) for such E, implying (by Lemma 5) that PT strictly dominates vP7. |

We prove Theorem 1 and then Theorem 3, as the latter makes use of the proof of the former.

Proof of Theorem 1: Recall that P” denotes the matrix of transitions between different w’s.
Since PT' is an irreducible and aperiodic Markov chain, it has a unique steady state distribution
that we denote by u!. The steady state distributions x” converge to a unique limit distribution
(see Young (1993)), which we denote p*.

Let P be the transition matrix where the process is modified as follows. Starting in state w,
in the hiring phase each agent i hears about a new job (and at most one) with probability MTE
and this is independent of what happens to other agents, while the breakup phase is as before with
independent probabilities % of losing jobs. Let 77 be the associated (again unique) steady state
distribution, and 7* = limp i’ (which is well-defined as shown in the proof of Claim 2 below).

The following claims establish the theorem.
CLAM 2 1" = p*.
CLAIM 3 T* is strongly associated.

The following lemma is useful in the proof of Claim 2.
Let P be a transition matrix for an aperiodic, irreducible Markov chain on a finite state space
Z.
For any z € Z, let a z-tree be a directed graph on the set of vertices Z, with a unique directed
path leading from each state 2z’ # 2z to z. Denote the set of all z-trees by 7.
Let
pe= 3 [erarer Paar] 4)

TET,
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LEMMA 9 Freidlin and Wentzel (1984)2?2: If P is a transition matriz for an aperiodic, irreducible

Markov chain on a finite state space Z, then its unique steady state distribution p is described by

Pz

1(2) = =——,
A( ) ZZ’EZPZ’

where p, is as in (4) above.

Proof of Claim 2: Given w € W, we consider a special subset of the set of 7,,, which we denote
7. This is the set of w-trees such that if w' is directed to w” under the tree 7, then w’ and
w' are adjacent. As Pg,’w,, goes to 0 at the rate 1/T when w' and w” are adjacent,?® and other
transition probabilities go to 0 at a rate of at least 1/T?2, it follows from Lemma 9 that p”'(w) may

be approximated for large enough 1" by

ZTETu’j [Xw’vWIIETPu’IJ;w”}
Zﬂ)\ ZTETJQ [leywlleTPu’I);w”] .
w

Moreover, note that for large T and adjacent w’ and w”, PL, , is either % +o0(1/T?) (when w} > w/)
or Mj?f)—’l +0(1/T?) (when w! < w!'), where o(1/T?) indicates a term that goes to zero at the rate of
1/T?. For adjacent w' and w”, let PL, , = % when w} > w!, and L:;f/) when w} < w!.?* Tt then

w// - 7
follows that

*( ) 1; ZTETJ {leywﬂeTPg;’w”}
@ (w) = lim

T pT
=% Yo Crers | Xunwrer Pl
w

. (5)
}

By a parallel argument, this is the same as 7i*(w). i

Proof of Claim 3: Equation 5 and Claim 2 imply that

S [rewati)
i (w) = lim

T—oo Z@ ZTETJQ {Xw’,w”ETﬁg;lw//]
Multiplying top and bottom of the fraction on the right hand side by T', we find that

ZTETJ)‘ |: X w’ w GTPw”w”:|

Z@ ZTGTI {Xw’,w”ETPw’w”}
w

7 (w) ) (6)

where PT is set as follows. For adjacent w' and w"” (letting ¢ be the agent for whom w) # w)
/25

PL . =0b; when w} > w!, and p;(w’) when w} < w/,?® and P, , =0 for non-adjacent w’ and w”.

The proof of the claim is then established via the following steps.

228ee Chapter 6, Lemma 3.1; and also see Young (1993) for the adaptation to discrete processes.
**Note that under property (3) of p, since w’ and w” are adjacent, it must be that P, .. # 0.

24We take T high enough such that all coefficients of the transition matrix P are between 0 and 1.
25Tf pi(w') > 1 for some i and w’, we can divide top and bottom through by some fixed constant to adjust, without

changing the steady state distribution.
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Step 1: ©r* is associated.
Step 2: Ti* is strongly associated.

Proof of Step 1: We show that for any T and any associated i, ,uﬁT is associated. From this,
it follows that if we start from an associated pg at time 0 (say an independent distribution), then
,uo(?T)’C is associated for any k. Since il = limy ,uo(?T)’C for any pg (as i’ is the steady-state
distribution), and association is preserved under (weak) convergence,?® this implies that 7' is
associated for all 7. Then again, since association is preserved under (weak) convergence, this
implies that limp il = 7i* is associated.
So, let us now show that for any T and any associated u, v = /L?T is associated. By Lemma 5,
we need to show that
v(EE') —v(E)v(E') >0 (7)

for any F and E’ in £. Write
=T =T
WEE) = v(E)(E) =Y p(w) (Pupp — Pupr(E))

Since W; is independent conditional on W;_; = w, it is associated.?” Hence,
=T =T =T
Pypp 2 PypPyp-

Substituting into the previous expression we find that

UEE) = v(E(E) 2 Y j(w) (Pop P — Pupv(E))

or

WBE') = v(BW(E') 2> plw)Pop (Pup — v(E)) . (8)

Under the properties of the p;;’s, both ?5]5 and (?SE, — V(E’)) are non-decreasing functions of

w. Thus, since p is associated, it follows from (8) that

Zu(w)ﬁﬁE] [2 plw) (Pupr - u(E’))] .

Then since },, p(w) (PgE, - V(E/)> = ( (by the definition of v/), the above inequality implies (7). |

v(EE") —v(E)v(E") >

Proof of Step 2: We have already established association. Thus, we need to establish that for

any f and g that are increasing in some w; and w; respectively, where ¢ and j are path connected,
Covg=(f,9) > 0.
By Lemma 6 it suffices to verify that

Covg (Wi, W) > 0

26See, for instance, P5 in Section 3.1 of Szekli (1995).
27See, for instance, P2 in Section 3.1 of Szekli (1995).
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For any transition matrix P, let Pyi; =), P, w/wlw], and similarly Py = >, Pyww}. Thus
these are the expected values of the product W;W; and the wage Wj; conditional on starting at w
in the previous period, respectively.

Let

CoviTj = Z P Z F ﬁT(w’)?glj.
w w

It suffices to show that for each i, j for all large enough T
C’ov;‘g > 0.

The matrix P’ has diagonal entries ?5“} which tend to 1 as T" — oo while other entries tend
to 0. Thus, we use a closely associated matrix, which has the same steady state distribution, but
for which some other entries do not tend to 0.
Let .
pr o _ TP if w#£w
—ww’ — 1 . ’
1-— Zw”;ﬁw pr,w// if w =w.

One can directly check that the unique steady state distribution of P is the same as that of ?T,
and thus also that

Conl} = S ()L, — Y (w) Ly Y- (') X

w w w!

Note also that transitions are still independent under PT. This implies that starting from any w,

the distribution P is associated and so

pL,;>pLpPL.
Therefore,
COUZ] > Z PT PT - Z/’L ( )Egz ZﬁT(w/)Bg’]
w w!

Note that sz converges to Pm-, where f’wi is the rescaled version of P (defined in the proof of
Claim 2),

~ TPy if w#£w'
W 1 — Zw//#w Tﬁww” 1f UJ/ = w.
It follows that
fim, Coviy 2 3 T (w w) Py Py — 2T ()P gn* (') Py

Thus, to complete the proof, it suffices to show that
Z wz wj > ZM )ﬁwz Zﬁ*(w/)ﬁw’j- (9)
wl

Viewing f’wi as a function of w, this is equivalent to showing that Cov(ﬁ‘wi,f’wj) > (. From Step 1
we know that * is associated. We also know that }Bwi and }Af‘wj are both non-decreasing functions

of w.
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First let us consider the case where j € N;(p).?® We know that Py is increasing in w;, and also,
given the assumptions on p, that Py is increasing ni w; for j € N;(p). Similarly, ]Swj is increasing
in w;. (9) then follows from Lemma 6 (where we apply it to the case where W; = W;), as both Py,
and ISwj are increasing in w;.

Next, consider any k € N;(p). Repeating the argument above, since ]Swj is increasing w; we
apply Lemma 6 again to find that W; and Wy are positively correlated. Repeating this argument
inductively leads to the conclusion that W; and Wy are positively correlated for any ¢ and %k that

are path connected. Il

The Theorem 1 now follows from Claim 3 since u! — 7*. |

Proof of Theorem 3: For the case where p depends only on S, the proof is an analog of the
proof of Theorem 1. For the more general case, the association of the limiting distribution follows
directly from the proof of Theorem 1. The remaining item is to show that in the general case,
there is a large enough 7" so that any two indirectly connected agents have positively correlated
employment under the steady state.
Consider 7 and j € N;(p). We can write S as a function of W. For i* defined on W, let
)= Y ).
w:S;(w)=s;
Note that 77* viewed as a measure on S; is associated since i* viewed as a measure on W is

associated, and since S;(w) is non-decreasing (see Esary, Proschan and Walkup (1967)).
Next, let

BPyy = Y (wls) Y- PuwS;(w) (10)

So, (recalling that S; takes on values in {0,1}) this is the expected value of S; conditional on the
last period S;; 1 = s;, under the distribution 77*. Note that under the steady state distribution 7*,
for any k

E[Sk] =Y 7" (si) EPy .

8
Then, following steps similar to those in Step 2 we can write?

C’ovﬁ* (SZ, S]) > Zﬁ*(SZ)EﬁsﬂEﬁs” — Zﬁ*(SZ)Eﬁsz Zﬁ*(S;)Eﬁsij
Si st

Si

The remainder of the proof then follows the same lines as that of Theorem 1. E]SSZ,Z- is clearly

increasing in s;.3° There we need to employ (10). We note that under association 7i*(w|s;) is

281f 4 is such that N; (p) = 0, then strong association is trivial. So we treat the case where at least two agents are

path connected.
29We remark that this still holds even though S does not follow a Markov process (past information about W

matters and is not fully coded in the current value of S), provided we start from the steady state distribution and

given that our definition of EP allows us to transition once.
30Tt is essentially 1 — b; when s; = 1 and is pi(s) otherwise. Without loss of generality, starting with a large enough

T this is increasing.
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nondecreasing in s; (write s; = 1 as the indicator function which is nondecreasing). Finally, since

j € Ni(p) we know that Eﬁ‘sij is increasing in s;.

Proof of Theorems 2 and 4: We show Theorem 2, as the other then follows from a similar
argument. We know from Claim 3 that 77* is strongly
associated. The result then follows by induction using Lemma 8,3! and then taking a large

enough T so that p” is close enough to 7i* for the desired strict inequalities to hold. [

Proof of Lemma 3: Consider what happens when an agent ¢ drops out. The resulting w’ is
dominated by the w if that agent does not drop out. Furthermore, from Lemma 8 for large enough
T, the next period wage distribution over other agents when the agent drops out is dominated
by that when the agent stays in, if one were to assume that the agent were still able to pass
job information on. This domination then easily extends to the case where the agent does not
pass any job information on. Iteratively applying this, the future stream of wages of other agents
is dominated when the agent drops out relative to that where the agent stays in. This directly
implies that the drop-out game is supermodular. The lemma then follows from the theorem by
Topkis (1979). 11

Proof of Theorem 5: Let w > w' and d € {0,1}". We first show that for large enough T
ET[f(W) [Wo =w',d] = ET [f(W) [Wo = w,d].

Lemma 7 implies that for a fine enough T-period subdivision and for every non-decreasing f,
ET [f(Wh) [Wo = w',d] > BT [f(W) [Wo = w,d].

Lemma 8 and a simple induction argument then establish the inequality for all ¢ > 1. The inequality
is strict whenever f is increasing and w’ > w.
Next, let d > d'. For a fine enough T-period subdivision and for every non-decreasing f, given

that drop-outs have wages set to the lowest level it follows that
ET [f(W1) [Wo = w,d'] > BT [f(W3) [Wo = w,d]

As before, the inequality extends to all ¢ > 1 by induction. Again, f increasing and d’ > d imply a
strict inequality.

Combining these observations, we find that for large enough T when w’ > w and d’ > d
ET[f(We) [Wo = w',d'] > ET [f(W;) [Wo = w, d] (11)
Consider the maximal equilibrium d*(w). By (11), for large enough 7" and all ¢

ET [Wi |[Wo =o', d*(w)] > ET [Wy [Wo = w,d*(w)]

31While Lemma 8 does not state that the strict inequalities are preserved on given elements of the partition II(p),

it is easy extension of the proof to see that this is true.
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Thus,
D OGET Wi [Wo =o', d*(w)] 2> SEET Wit [Wo = w, d*(w)]
t t
If d*(w); = 1, then

ZéfET (Wit [Wo =, d*(w)] > Z&fET (Wit [Wo = w,d*(w)] > ¢
t t
and so also for all d’ > d*(w), if 7 is such that d*(w); = 1, then
S SET Wy [Wo =w',d'] > ;. (12)
¢
Set d} = d*(w); for any ¢ such that d*(w); = 1. Fixing d’ for such ¢’s, find a maximal equilibrium at
w’ for the remaining ¢’s, and set d’ accordingly. By (12), it follows that d’' is an equilibrium when

considering all agents. It follows that d’ > d*(w). Given the definition of maximal equilibrium, it

then follows that d*(w') > d' > d*(w). 1l
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