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Abstract

Pérez-Castrillo and Wettstein (2002) and Veszteg (2004) propose the use of

a multibidding mechanism for situations where agents have to choose a common

project. Examples are decisions involving public goods (or public “bads”). We re-

port experimental results to test the practical tractability and effectiveness of the

multibidding mechanisms in environments where agents hold private information

concerning their valuation of the projects. The mechanism performed quite well in

the laboratory: it provided the ex post efficient outcome in roughly three quarters

of the cases across the treatments; moreover, the largest part of the subject pool

formed their bids according to the theoretical bidding behavior.
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1 Introduction

Economic agents often have to make a common decision, or choose a joint project, in

situations where their preferences may be very different from one another. Decisions

involving public goods (or public “bads”) belong to this class of situations. We can

consider the examples of several municipalities deciding on the location and quality of a

common hospital, several states deciding on the location of a nuclear reactor, or several

countries choosing the identity of the leader for an international organization. In these

situations the natural tendency for the agents is to try to free ride on the others by

exaggerating the benefits and/or losses of a particular decision while, at the same time,

minimizing their willingness to pay.

Pérez-Castrillo and Wettstein (2002) address the problem of making this type of de-

cision in environments where the agents have symmetric information about everybody’s

preferences. They propose a simple one-stagemultibidding mechanism in which each agent

submits a bid for each project with the restriction that bids must sum up to zero for each

participant. Hence, agents are asked to report on their relative valuations among the

projects. The mechanism determines both the project that will be implemented (the one

that most bids receives) and a system of (budget-balanced) transfer payments to possi-

bly compensate those agents who are not pleased with the chosen project. Pérez-Castrillo

and Wettstein (2002) show that the multibidding mechanism always generates an efficient

decision in Nash (and strong Nash) equilibrium.

Veszteg (2004) analyzes the working of the multibidding mechanism in environments

where agents hold private information regarding their valuation of the projects. He char-

acterizes the symmetric Bayes-Nash equilibrium strategies for the agents, when they have

to choose between two projects. He shows that the equilibrium outcomes are always in-

dividually rational (i.e. agents have incentives to participate in the mechanism). Veszteg

(2004) further proves that, when the decision only concerns two agents, the project chosen

at equilibrium is always efficient. Moreover, the number of inefficient decisions diminishes

and it approaches zero as the number of agents or uncertainty gets large.

The multibidding mechanism is very simple: its rules are easy to explain, the action

that each agent must take is simple, and the outcome is a straightforward function of

the actions taken by the agents. Moreover, as we have pointed out, it induces the agents

to make, at equilibrium, efficient decisions in a variety of environments. Therefore, we

could advocate its use in real economic situations.1 In this paper, we want to further

1In environments with private information, we could also use the (more complex) mechanism proposed
by d’Aspremont and Gérard-Varet (1979), that is inspired by the Vickrey-Clarke-Groves schemes. The
Bayesian equilibrium outcomes of their mechanism are budget-balanced and efficient. However, it is not
necessarily individually rational, some agents may prefer to stay outside of the game. Moreover, if we
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support the use of the multibidding mechanism by providing and analyzing evidence of

its functioning in laboratory experiments.2

We report the results of four sessions of experiments which have been designed to

test the practical tractability and effectiveness of the multibidding mechanism in environ-

ments where agents hold private information concerning their valuation of the projects.

We implemented two treatments in each session. The first treatment involved decisions

by groups of two agents, while we arranged the agents in larger groups for the second

treatment. In both treatments, the agents had to choose between two projects. We test

the theoretical predictions of the paper by Veszteg (2004).

The first property that we check is to what extend the agents’ bids reflect their relative

valuations of the projects. According to the rules of the multibidding mechanism, agents

are asked to report their relative valuations, and any agent’s Bayesian equilibrium bids

do indeed only depend on the difference between her valuation for the first and second

project. The bids submitted by the individuals in the experiments also follow this pattern.

Hence, the mechanism does a good job at extracting the information concerning agents’

relative valuation.

Second, the analysis of the joint results also indicates that agents’ bidding behavior

is close to the theoretical equilibrium prediction. The individual analysis of bidding

allows however to identify four types of players. Almost half (47%) of the individuals

were bidding according to the equilibrium. Also, another 17% of them bid in a similar

manner, although in a less aggressive way. A third group of individuals (identified in

three sessions, it accounts for another 17% of the people) followed a very safe strategy,

by bidding according to maximin strategies. Finally, we could not explain the bidding of

around 20% of the individuals participating in the experiments.

In terms of efficiency, the multibidding game picked out the ex post efficient project in

roughly three quarter of the cases across the eight experimental treatments. In line with

the theoretical predictions, efficiency was larger when the individuals were paired than

when they formed groups of larger size.

were to design a mechanism that is Bayesian incentive compatible, (ex post) efficient and balanced we
would end up with a mechanism of the d’Aspremont and Gérard-Varet type that is not individually
rational in general. For more on this literature check the survey by Jackson (2001). It is worth noting
that in this paper we use voluntary participation conditional on the impossibility of avoiding external
effects. Even with this definition, it is easy to show that some agents may prefer not to participate in the
d’Aspremont and Gérard-Varet mechanisms.

2As Ledyard (1995) points out when he discusses the behavior of individuals in public goods environ-
ments: “We need not rely on voluntary contribution approaches but can instead use new organizations...
Experiments will provide the basic empirical description of behavior which must be understood by the
mechanism designer, and experiments will provide the test-bed in which the new organizations will be
tested before implementation.”
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Our work follows the line of research that includes papers as, for example, Smith

(1979 and 1980), and Falkinger et al. (2000), that advocate for the use of experiments to

provide evidence on the empirical properties of mechanisms in public good environments.

The characteristics of the multibidding mechanism, and the fact that the experiments

were conducted in an environment where individuals hold private information, place our

paper in close relationship with the extensive literature about experiments in auctions;

in particular, with experimental papers on independent private-values auctions (see, for

example, the early work of Coppinger et al., 1980, and Cox et al., 1982). This literature

shows that equilibrium bidding theory correctly predicts the directional relationships be-

tween bids and valuations (see Kagel, 1995). Our results show that when a (multi)bidding

mechanism is used to make a joint decision (and not to sell an object), theory is still a

good predictor of the individuals’ behavior.

The paper proceeds as follows: Section 2 introduces the environment and the mecha-

nism to be studied empirically. Section 3 presents the experimental design and Section 4

the empirical results. Finally, Section 5 concludes and offers further directions of research.

2 The environment and the mechanism

Consider an economy where a set of agents N = {1, ..., n} has to choose between two
public projects, the set of projects is denoted K = {1, 2}. The agents are risk neutral and
their utilities depend on the alternative carried out. We shall denote by xqi ∈ X ⊂ R the
utility that player i ∈ N enjoys when project q ∈ K is chosen. These values are private
information and are treated as random draws from some underlying common distribution.

The latter, that characterizes uncertainty, is common knowledge.

The socially desirable outcome is the one that maximizes social welfare. We shall call

project q efficient if: X
i∈N

xqi = max

(X
i∈N

x1i ,
X
i∈N

x2i

)
.

The presence of external effects in the economy makes the market mechanism unre-

liable for taking the public decision efficiently. For these environments, Veszteg (2004)

proposes the use of a multibidding mechanism, previously suggested by Pérez-Castrillo

and Wettstein (2002), to provide a simple incentive scheme for the agents to reveal their

private information. The multibidding mechanism is a one-stage game and it can be

formally defined as follows:

Each agent i ∈ N submits a vector of two real numbers that sum up to zero.3 That

3Two is the number of available projects in the experiment.
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is, agent i announces B1
i and B2

i , such that B
2
i = −B1

i . Agents submit their bids simul-

taneously.

The project with the highest aggregated bid will be carried out, where the aggregated

bid Bq
N for project q is defined as:

Bq
N =

X
i∈N

Bq
i .

In case of a tie, the winning project is randomly chosen from the available ones in the tie.

Once the winning project is determined, players enjoy the utility that it delivers, they

pay the bids submitted for this project, and they are returned the aggregated winning

bid in equal shares.4 That is, if project q has obtained the largest aggregated bid, then

player i receives the payoff V q
i , where

V q
i = xqi −Bq

i +
1

n
Bq
N .

A key property of the multibidding mechanism is that it can be operated without any

positive or negative amount of money by the social planner, i.e., it is safe for the central

government or for the authority entitled to carry out a social project. Budget-balance is

achieved by construction since funds raised through the bidding process are entirely given

back to participants in equal shares.

Moreover, the multibidding mechanism is safe for bidders, too. Once we suppose that

members of the economy may abstain from participating in the bidding, but cannot avoid

external effects, the mechanism assures that agents cannot do better by staying out of

the decision-making process. Bidding exactly half of the difference between her private

valuations, any agent can secure for herself a final payoff that is never less than the average

of the private valuations. That is, if agent i takes the decisions of bidding:

B1
i =

x2i − x1i
2

and B2
i = −B1

i ,

then her payoff Vi is at least
x2i + x1i
2

,

independently on whether project 1 or 2 is chosen. We shall refer to this bidding behavior

as bidding according to maximin strategies.

Maximin strategies are not equilibrium strategies, an agent can typically obtain a

higher expected payoff if she follows a different strategy. Hence, it is more interesting

to consider the Bayes-Nash equilibria of the multibidding game. In particular, we con-

centrate on symmetric Bayes-Nash equilibria. The bidding behavior in these equilibria

4The aggregate bid for the winning project is always non-negative, since bids of each agent sum up to

zero.
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is substantially different for different types/degrees of uncertainty that individuals face

in their decision making. That means that the optimal bidding function depends both

on the underlying probability distribution and the number of agents in the economy. We

offer a brief summary of the theoretical results related to the empirical problem studied in

the experimental sessions. For more general results and formal proofs, we refer to Veszteg

(2004).

We denote by Bi (x
1
i , x

2
i ) the equilibrium bid by agent i on project 1, when the utility

levels that this agent enjoys for the two projects are x1i and x2i . Given the restriction on

the bids, agent i shall bid −Bi (x
1
i , x

2
i ) on project 2.

In the multibidding game, players must submit bids that add up to zero, that is,

they are asked to report their relative preferences over the alternative projects. The

first important result we highlight is that the optimal bidding behavior also reflects only

relative preferences:

Proposition 1 The bidding function in symmetric Bayes-Nash equilibria depends only
on the difference between the true private valuations. That is, Bi (x

1
i , x

2
i ) = Bi (bx1i , bx2i )

whenever x1i − x2i = bx1i − bx2i .
This result allows for an important simplification in the notation and in the numerical

analysis of the problem. Let the difference between player i’s private valuations be di with

the following definition: di = x1i − x2i . We denote by f (d) the density and by F (d) the

cumulative distribution functions of the difference d for both agents. Also, we denote dM
the median of the distribution. The next proposition states the optimal bidding function

when there are two agents:

Proposition 2 In the case of two agents and symmetric distributions, the symmetric
Bayes-Nash bidding function is given by the following expression:

Bi (di) =

⎧⎪⎨⎪⎩
1
2
di +

1
2
[1− 2F (di)]−2 ·

R dM
di
[1− 2F (t)]2 dt if di < dM

1
2
di if di = dM

1
2
di − 1

2
[1− 2F (di)]−2 ·

R di
dM
[1− 2F (t)]2 dt if di > dM

⎫⎪⎬⎪⎭ (1)

The optimal bidding behavior coincides with the maximin strategy at the median, dM .

Due to the strategic behavior that takes into account the distribution of valuations in the

economy, below this value agents submit higher bids, while under the median they bid

less aggressively.

In the experiments, we used the uniform distribution from the interval [0; 300] to assign

private valuations to each subject and for each project. With this choice, the variable

of the difference between private valuations follows a symmetric triangular distribution

over the interval [−300; 300]. By the continuity of the underlying distribution and the
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rules of the multibidding game, the optimal bidding function is continuous and strictly

increasing in di. Graph 1 plots the optimal bidding function according to Bayes-Nash

(thick line) and to maximin strategies (thin line) for the triangular distribution over the

interval [−300; 300]. Calculations are to be found in Appendix A.
The explicit formula of the optimal bidding function for economies with more than

two players is not available. Veszteg (2004) shows that it can be approximated with a

proportional function, the slope of which depends on the number of bidders, n:

Proposition 3 If the number of agents is large, the symmetric Bayes-Nash bidding func-
tion is close to a proportional function:

Bi (di) ≈
n

4n− 2di. (2)

According to the rules of the multibidding game, the project to be carried out is the

one that receives the highest aggregate bid. Taking into account our experimental setup,

i.e., uncertainty is characterized by a symmetric triangular distribution, theory predicts

ex post efficient public decisions in case of two bidders. If there are more than two

participants, inefficiencies may appear. Although we do not have analytical results for

the latter case, simulation shows that one can expect around 99% of the public decisions

taken to be ex post efficient when the number of agents is larger than 5.

3 Experimental design

To investigate the empirical properties of the multibidding game, computerized sessions

were conducted at Universitat Jaume I in Castellón (one session), and in Barcelona at

Universitat Pompeu Fabra (one session) and Universitat Autònoma de Barcelona (two

sessions).5 We have invited 20, 16, 20 and 20 participants, respectively, to take part in

the experiment. Sessions lasted less than two hours and the average net pay, including

EUR 3 show-up fee, was about EUR 20 per subject and session.

The experiment was programmed and conducted with the software z-Tree (Fischbacher,

1999). We implemented two treatments in each session. At the beginning of each treat-

ment, printed instructions were given to subjects and were read aloud to the entire room.

Instructions explained all rules to determine the resulting payoff for each participant.

They were written is Spanish, contained a numerical example to illustrate how the pro-

gram works, and presented pictures of each screen to show up. The English translation

of the instructions, without pictures, can be found in Appendix C.

5The session in Castellón took place in LEE (Laboratori d’Economia Experimental) at the Universitat
Jaume I of Castellón.
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At the start of each round the computer randomly assigned subjects to groups. We

applied stranger treatment, that is participants were not informed about who the other

members of their group were. Also, the assignment was done every period, hence partici-

pants knew that the groups were typically different from period to period. Subjects were

not allowed to communicate among themselves, the only information given to them in

this respect was the size of the group. In the first treatment of each session groups of two

were formed, while in the second treatment groups of ten (at Universitat Jaume I and

at Universitat Autònoma de Barcelona) and eight (at Universitat Pompeu Fabra) were

constituted. For simplicity, in what follows we shall use the following abbrevations when

referring to the experimental sessions: C, UPF , UAB1, UAB2. The numbers 1 and 2

attached to them refer to the treatments. Therefore UPF1 stands for the first treatment

in our session at Universitat Pompeu Fabra, UAB12 for the second treatment in our first

session at Universitat Autònoma de Barcelona, etc.

Private valuations for the two projects at each round were assigned to subjects by

the computer in a random manner. We used the built-in function of z-Tree to generate

random draws from the U [0; 300] uniform distribution. For this reason, valuations for

the alternatives were typically different in each round and for each subject. Treatments

consisted in 3 practice and 20 paying rounds. Table 1 summarizes the features of the

eight treatments.

For computational convenience, numbers (valuations, bids, and gains) used in the

experiment were rounded to integers. Since our objective had been to verify theoretical

results on the multibidding game in an environment where agents hold private information

and common prior beliefs, we dedicated a paragraph in the instructions to explain the

nature of the uniform distribution.6

In each round, participants were asked to enter their bids over the two projects. Taking

into account the rules of the multibidding game, the winning project was determined

and payoffs were calculated automatically by the computer.7 At the end of each round,

subjects received on-screen information about the aggregated bid of other players in the

same group; and also detailed information about the determining components of the

personal final payoff. The history of personal earnings was always visible on screen during

the experiment.

At the end of each session participants were paid individually and privately. Final

6Although theoretical results are provided for a wide range of probability distributions, we had chosen
the uniform. We thought that this one would be the most intuitive and simplest to explain to subjects
who are not familiar with probability theory. We followed the example of Binmore et al. (2002) in the
instructions.

7In case of a tie, the program breaks the tie choosing the project randomly assigning equal probability
to the alternatives.
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profits were computed according to a simple conversion rule, based on the personal gains

in experimental monetary units during the whole session.

4 Results

4.1 Efficiency

The multibidding game achieved efficiency in the large majority of decision problems,

as it picked out the ex post efficient public projects roughly in 3/4 of the cases across

the four experimental treatments. Tables 2a through 2c contain detailed information on

efficiency for each treatment and also presents the 90% confidence intervals around the

data. Theoretical result on the multibidding game refer to the number (or proportion) of

ex post efficient public decisions when talking about efficiency. Nevertheless, a different

measure can be constructed to capture the empirical efficiency of the mechanism that

also takes into account the magnitude of the efficiency loss when an inefficient project is

chosen. We call it realized efficiency (RE) and define it as

RE =

P
i∈N xwinning project

i

max
©P

i∈N x1i ,
P

i∈N x2i
ª · 100 percent.

Table 2c reports the realized efficiency with the 90% confidence interval. The point

estimates are above 90% in all of our treatments.

In order to extend the efficiency analysis we estimated a Logit model for each treat-

ment, trying to establish some empirical relation between the probability of an efficient

decision and the absolute difference between the two projects. Table 2d contains the esti-

mation results, and shows that the larger the difference between the projects, the higher

the probability of an efficient decisions in treatments with groups of two. That is, ob-

served inefficiencies tended to occur in cases in which the projects were similar, causing

a relatively small drop in realized efficiency. In the treatments with larger groups we can

not identify any significant relationship of the above type.

Due to the small number of experimental sessions, we can not establish the empirical

ranking of group sizes according to efficiency. Nevertheless, it is worth noting that the first

treatment delivered higher efficiency than the second in each session.8 Our treatments

with groups of two give statistically different results on efficiency: efficiency in UPF1 and

UAB11 is higher than in C1 and UAB21. Operating with groups of eight, in treatment

UPF2, the multibidding game performed significantly better than with groups of ten in

C2, UAB12 or UAB22. Simulation results suggest that the efficiency change caused by

8According to one-sided tests that compare these positive differences to zero, except for UPF the

differences are significant at 5% significance level, while at UPF they become significant at 8%.
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an increase of group size from eight to ten is minimal in theory. And according to theory

we would expect this minimal change to be a gain, in spite of the loss we observed in

the experiments. We explain this observed feature with differences in the subject pool

and attribute it to different individual bidding behavior from one session to the other.

Before starting with the empirical analysis of the bidding function, let us point out that

we could not identify any significant linear time trend in the evolution of efficiency over

the 20 paying periods.

4.2 Bidding behavior

We have used experimental data from two sessions and a simple linear model to estimate

the empirical bidding function. The linear approximation is the strongest available theo-

retical result for the bidding behavior with decision problems that involve more than two

agents. In case of groups of two, the optimal bidding function shows pronounced curva-

ture at the extremes of the support. Since we generated private valuation according to a

uniform distribution in the experiments, i.e., the theoretical distribution of the difference

was triangular, we do not have many observations on the positive and negative ends of the

support and could not give significant estimates for the curvature. Moreover, the linear

specification allows for a single expression that approximates optimal bids as a function

of group size and the difference between private valuations. In Appendix A we show that

the first-order Taylor-approximation - around zero - of the optimal bidding function has

slope 1/3. For this reason, in this analysis we shall treat Expression (2) as the theoretical

optimal bidding function in all of our treatments. The maximin bidding behavior can also

be characterized by a linear function in the multibidding game. That function has slope

1/2 independently from the group size.

We have estimated two linear specifications of the bidding function:

bBi = bα1 + bβ1x1i + bβ2x2i , (3)bBi = bα2 + bβdi. (4)

Equation (3) represents a linear bidding function that does not force bids to depend

solely on the difference between private valuations, while equation (4) does. The depen-

dent variable in both specification is the bid submitted for project 2. Recall that in the

original theoretical model the function B stands for bids for project 1. This switch is due

to the following: theoretical models deal with positive bids as amounts that agents are

willing to pay; nevertheless in the experiments we asked subjects to type in a negative

number in case they were willing to pay for a given project and a positive one in the

opposite case. Since the multibidding game operates both with positive and negative bids
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we thought that in this way concepts might be more intuitive for people participating in

the sessions.

Tables 4a through 12a contain the OLS estimates (with indexes for significance of the

results) of the empirical bidding functions both individually for each subject and jointly

for the subject pool across different treatments.

When considering treatments globally, at 5% significance level we can not reject the

hypothesis that subjects decide their bids taking into consideration only the difference

between their private valuations for the two public projects. Treatment UAB21 seems to

be an exemption with a p-value of 4%. That is, the empirical results are in accordance

with Proposition 1, in the sense that individuals seem to “report” (through the bids) their

relative valuations of the two projects. Moreover, this is a robust result, since it holds in

each of the four treatments that we implemented.

We now turn our attention to the fit between the experimental data and Propositions

2 and 3, which state the expressions for the equilibrium bids as function of the distance

between the valuations. Table 4a provides the estimated bidding functions. For treat-

ments in Castellón (C1 and C2) and at Universitat Autònoma de Barcelona (UAB11 -

UAB22), these functions are not different statistically from the theoretical ones, i.e. they

are proportional with slopes (statistically) equal to 1/3 and 0.26 respectively. For UAB12

and UPF2 the constant term turns out to be significantly different from zero at 5%, but

its estimated absolute value, −4.36 and 1.45, is very small compared to the magnitude of
the private valuations, [0; 300], used in the experiment. Estimates for the two treatments

at Universitat Pompeu Fabra (UPF1 and UPF2) are more precise in that we obtained

a better fit with smaller variance of the estimates. In the latter two treatments, sub-

jects seem to have bid according to a linear function, though more conservatively than

predicted by theory: the small variance of the estimates confirms that bidding behavior

can be approximated by a simple linear function with slopes 0.22 for UPF1 and 0.20 for

UPF2, significantly less than 1/3 and 0.27, respectively.

The individual analysis of bidding offers a deeper insight into the above pooled results

and their consequences on the number of ex post efficient public decisions. We have

estimated the two linear models in Equation (3) and (4) for each subject separately, and

performed the same tests that we have done for the subject pools. Detailed estimation

results are to be found in Appendix B. In order to have a structured summary of the

subject pool we have grouped agents into three groups based on the estimated slope

coefficient of the empirical bidding function. Table 13 shows that the largest part of our

subjects falls into the two strategy groups studied by theory, i.e. maximin with slope 1/2

and Bayes-Nash with slope either 1/3 or n/(4n− 2).
Bidding in treatment UPF1, in spite of being the most efficient among the four, seems
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to be difficult to explain at first sight with the latter two types of strategies. As mentioned

before, in UPF1 subject formed their bids linearly, but less aggressively than predicted

by theory in Bayes-Nash equilibrium. This is why we split the residual category of Other

in Table 13 into two: linear bidding behavior based on the difference between private

valuations and other kind of behavior we can not account for.9 The distinction clearly

improves statistics presented in Table 14a for our UPF1 session (but also UAB11 and

UAB12), and leaves at most 30% of the subjects as irrational.

Different reasons may explain why a sensible share of the subjects bid less aggressively

than predicted by the Bayes-Nash equilibrium. Agents, for example, may form their

bids according to the symmetric Bayes-Nash equilibria of the multibidding game, but

perceive uncertainty in a biased way. Therefore, the bidding function B (di) = 0.2 · di
may be optimal. It turns out that this is the case under uncertainty characterized by

the distribution function eF (di) = 1
2
·
h
1 +

¡
di
300

¢ 1
3

i
over the interval [−300; 300].10 The

comparison of this and the underlying true triangular distribution, presented numerically

in Table 16, shows that participants possibly overweighted high-probability events and

underweighted the low-probability ones. The distribution defined by eF (di) is symmetric
around zero, has a smaller standard deviation than the triangular and it is more peaked

around zero.11

Interestingly, these subjects who bid in a linear way, but did not follow the Bayes-Nash

strategy, did very well in terms of (ex post) profits in every treatment. Table 14c shows

the mean payments in four bidding categories. Subjects in the Other category were the

ones who gained less, even though the difference between the first three and the fourth

category is not significant statistically in UPF session, at any usual significance level.

Bidding less aggressively is also self-consistent in the following sense: if players, in

groups of two, are applying linear bidding functions and believe that their opponents bid

according to B (di) = 0.2·di, they maximize their expected payoff by bidding slightly more
9The latter category includes some subject that handed in their bids independently from the difference

between their private valuations, and some that we have estimated negative slope coefficient for. Table
13 has been built at 1% significance level, but results do not change in the Other category if we move to
5%, either.
10We do not provide the proof of this result here, but it is available upon request.
11This finding is in line with those presented by Harbaugh et al. (2002) who examine how risk attitudes

change with age. The ages of participant in their experiments range from 5 to 64. They observe that young
people’s choices are consistent with the underweighting of low-probability events and the overweighting
of high-probability ones, and that this tendency diminishes with age. Participants in our sessions were
university student with approximately 20 years of age.
Barron and Erev (2003) give an alternative explanation for underweighting rare outcomes. They argue

that small feedback-based decisions, like the ones that subjects faced in our treatments, lead to this

phenomenon.
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for any given di. The best response in this example is B (di) ≈ 0.222 ·di and very well may
explain the observed behavior.12 In order to understand and provide further support for

a more conservative empirical bidding function in UPF1 and UPF2, we have also studied

whether subjects could have been better off applying the Bayes-Nash bidding function

against the others’ observed behavior. Taking into account those who bid in a linear way,

but significantly different from the predicted one by theory, we get that the Bayes-Nash

bidding function (ceteris paribus) could have improved their gains only moderately: by

1.23% in UPF1 and 2.56% in UPF2. That is, facing the others’ bids these participants

did not have enough incentives to abandon their bidding function and play Bayes-Nash

instead.

It is important to point out that in Castellón and at Universitat Autònoma de Barcelona

we encountered subjects bidding safe according to maximin strategies. This feature of the

observed behavior, along with more conservative bidding in UPF1 and UPF2, gives partial

explanation for the reported efficiency rates, too. The available theoretical results deal

with symmetric equilibria. An important part of the ex post efficiency of the multibidding

game is due to the fact that agents bids according to the same theoretical function. The

heterogeneity of the subject pool in C1, C2, and UAB12 through UAB22 appears also in

the observed efficiency loss. In treatments UPF1 and UPF2, even though subjects do not

play strictly Bayes-Nash, the number of ex post efficient decisions is larger because the

subject pool was more homogeneous.13

We have discussed above that the available data set is not large enough to deliver

empirical evidence for the curvature of the bidding function. This curvature is responsible,

as theory predicts, for the occurrence of ex post inefficient decisions once the group size

is larger than two. Unfortunately we can not present empirical proofs for this feature,

nevertheless we can explore statistically how bidding behavior changes when the group

size (and with it uncertainty) increases. As a response to this, according to theory, the

slope of the Bayes-Nash bidding function should decrease. We can verify a change in this

direction looking at the estimated bidding function for the whole subject pool both in

Barcelona and Castellón. This drop is significant at 5% in Castellón and at Universitat

Autònoma de Barcelona, while it is not at Universitat Pompeu Fabra.

Table 15 offers a summary of the individual data in this respect. The estimated slope

coefficient of the individual bidding function decreases in 45% of the cases in Castellón,

12This numerical result follows directly from the expected utility maximization problem with the tri-
angular distribution.
13A measure for homogeneity could be the (length of the) range of our estimates for the slope coefficient

of the bidding function according to Equation 4: C1 - [−0.43; 1.82]; C2 - [−0.85; 1.18]; UPF1 - [0.05; 0.036];
UPF2 - [0.02; 0.35] ; UAB11 - [−0.05; 1.26]; UAB12 - [−0.23; 0.74]; UAB21 - [−0.38; 1.21]; UAB22 -
[−0.48; 0.66].
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in 63% at UPF, and in 70% in both sessions at UAB. Though, the vast majority of these

estimated changes is not significant individually at 5% or 10%.14

Subjects were asked to decide over public projects and their alternative in 20 paying

rounds. Even though private valuations were different from round to round, according to

the underlying uniform probability distribution, one might expect that participants get

trained and gain experience in each treatment. In order to show possible learning effects

we have split every data set into two, and estimated the individual bidding function

(according to Equation 4) separately for the subsamples.15 Tables 4b through 12b offer

the estimation results in which we could not identify clear learning effects. For a quick

view consider Table 14b in which we repeated the categorization of bidding behavior

taking into account four groups. Unexpected bidding behavior, i.e., frequencies in the

Other category, barely or do not change from the first to the last 10 playing rounds.

5 Conclusion

In this paper we have studied the empirical properties of the multibidding game under

uncertainty described by Veszteg (2004). The results of our four treatments, with two

projects to choose between, show that the mechanism performs well in the laboratory.

We find that the one-shot multibidding game with its simple rules succeeds in extracting

private information from agents, as the observed bids were formed taking into account

relative private valuations between two projects.

Though not all participants followed the Bayes-Nash equilibrium predicted by theory,

the mechanism gave rise to ex post efficient outcomes in almost 3/4 of the cases across

the treatments. Apart from the expected utility maximizing Bayes-Nash behavior we

could identify bidding behavior according to the safe maximin strategies in one of our

sessions. Unfortunately our sample size, due to feasibility constraints in the laboratory,

does not allow for verifying theoretical predictions for large groups in a significant way.

More subjects and more repetitions are needed to possibly reduce the observed variance

of the data and study those effects.

Our data set does not contain any significant linear trend in time. Neither if we

consider global efficiency or in the case of individual bidding behavior. A longer time

series would also be able to show whether the rules of the multibidding game are simple

enough to understand, or learning indeed plays an important role in the performance of

the mechanism.
14When fixing the significance level at 15% the only change in Table 15 is that a difference into the

unexpected direction becomes significant for one subject in Castellón and for four in UAB1.
15We wanted to form two independent data set for each subject and treatment. Taking into account

our relatively small sample size we decided no to eliminate any observation from the analysis.
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It is important to point out that a considerable fraction of participants (especially in

the UPF and UAB treatments) applied linear bidding function based on their relative

valuations, though they bid less aggressively than expected in theory. Since they did

well in monetary term among all the participants and did not harm ex post efficiency,

we suggest to obtain theoretical results for economies in which there are several groups

(types) of agents: some play maximin strategies, some Bayes-Nash. Beside the expansion

of theoretical work on the multibidding game, undoubtedly also more empirical research

is needed to explore its empirical performance. We think that further experiments can

help to identify features that allow for designing successful practical mechanisms.

6 Appendix A. Optimal bidding behavior

The triangular distribution over the interval [−300; 300] of our experimental design can
be characterized by the following density function:

f (x) =

⎧⎪⎨⎪⎩
0 x /∈ [−300; 300]

1
90000

x+ 1
300

x ∈ [−300; 0]
− 1
90000

x+ 1
300

x ∈ [0; 300]

⎫⎪⎬⎪⎭ ,
and cumulative density function:

F (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x ∈ (−∞;−300)

1
180000

x2 + 1
300

x+ 1
2

x ∈ [−300; 0]
− 1
180000

x2 + 1
300

x+ 1
2

x ∈ [0; 300]
1 x ∈ (300;∞)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
It is symmetric to the origin and for this reason its median is zero. By substituting

the above function into equation (1), we have that the optimal bidding function in our

example can be written as:

Bi (di) =

⎧⎪⎪⎨⎪⎪⎩
1
2
di +

−600 000di−1500d2i−d3i
12 000di+10d2i+3600 000

if di < 0

0 if di = 0
1
2
di +

−600 000di+1500d2i−d3i
10d2i−12 000di+3600 000

if di > 0

⎫⎪⎪⎬⎪⎪⎭ .
If we consider the first-order Taylor-approximation of this resulting bidding function

around zero, we have BT (di) =
1
3
di.
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7 Appendix B. Results

Treatment Number of groups Group size Uncertainty Practice periods Paying periods

C1 10 2 U [0; 300] 3 20

C2 2 10 U [0; 300] 3 20

UPF1 8 2 U [0; 300] 3 20

UPF2 2 8 U [0; 300] 3 20

UAB11 10 2 U [0; 300] 3 20

UAB12 2 10 U [0; 300] 3 20

UAB21 10 2 U [0; 300] 3 20

UAB22 2 10 U [0; 300] 3 20

Table 1. Treatment summary.

Treatment C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Efficient decisions 72% 58% 81% 70% 82% 58% 70% 55%

Upper bound 77% 71% 86% 82% 86% 71% 75% 68%

Lower bound 67% 44% 76% 58% 77% 44% 65% 42%

Table 2a. Proportion of efficient decisions with 90% confidence interval.

Treatment C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

First 10 - Efficient decisions 73% 45% 84% 75% 77% 65% 69% 50%

First 10 - Upper bound 80% 64% 91% 91% 84% 83% 77% 69%

First 10 - Lower bound 66% 26% 77% 59% 70% 47% 61% 31%

Last 10 - Efficient decisions 71% 70% 79% 65% 86% 50% 71% 60%

Last 10 - Upper bound 79% 87% 86% 83% 92% 69% 79% 78%

Last 10 - Lower bound 63% 53% 71% 47% 91% 67% 78% 76%

Table 2b. Proportion of efficient decisions with 90% confidence interval

for the first and last 10 rounds.
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Treatment C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Realized efficiency 91% 94% 96% 95% 96% 92% 91% 92%

Upper bound 94% 100% 98% 100% 98% 99% 94% 99%

Lower bound 88% 87% 93% 89% 93% 85% 88% 84%

Table 2c. Realized efficiency with 90% confidence interval.

Treatment C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Constant term 0.30 0.57∗ 0.23 0.99∗∗ 0.34 0.34 0.20 0.05

|di| 0.005∗ 0.00 0.01∗ 0.00 0.01∗ 0.00 0.005∗ 0.00

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 2d. Estimated coefficients of the impact of the absolute difference between private valuation

on the probability of an efficient decision (Logit)
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Treatment

Round C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

1 60% 50% 88% 100% 80% 100% 50% 50%

2 60% 50% 100% 0% 90% 0% 70% 100%

3 70% 50% 75% 100% 70% 100% 50% 100%

4 80% 50% 88% 100% 70% 50% 80% 50%

5 80% 100% 63% 50% 80% 50% 70% 0%

6 80% 0% 75% 100% 60% 50% 80% 50%

7 70% 50% 75% 50% 70% 100% 80% 0%

8 70% 100% 100% 100% 80% 100% 80% 100%

9 70% 0% 88% 50% 80% 0% 40% 0%

10 90% 0% 88% 100% 90% 100% 90% 50%

11 60% 50% 88% 0% 80% 50% 70% 100%

12 70% 100% 88% 0% 90% 50% 80% 50%

13 90% 50% 75% 50% 70% 0% 50% 100%

14 60% 100% 63% 100% 90% 50% 90% 50%

15 50% 0% 88% 100% 90% 50% 50% 50%

16 70% 50% 75% 100% 90% 100% 80% 100%

17 70% 100% 63% 50% 90% 50% 80% 50%

18 80% 50% 75% 100% 90% 50% 80% 50%

19 80% 100% 100% 50% 100% 50% 60% 0%

20 80% 100% 75% 100% 70% 50% 70% 50%

Table 3. Proportion of efficient decisions per round.
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Treatment† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

C1 -2.22 0.37∗ -0.36∗ -0.84 0.37∗

C2∗∗ -22.80∗ 0.30∗ -0.18∗ -5.95∗∗∗ 0.24∗

UPF1 -0.32 0.21∗ -0.22∗ -0.80 0.22∗

UPF2 1.12 0.20∗ -0.20∗ 1.45∗ 0.20∗

UAB11 -1.00 0.38∗ -0.36∗ 1.25 0.37∗

UAB12 -1.86 0.26∗ -0.27∗ -4.36∗ 0.26∗

UAB21∗ 23.06∗ 0.31∗ -0.46∗ 0.69 0.39∗

UAB22 -2.25 0.21∗ -0.22∗ -4.17 0.21∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 4a. Bidding functions (OLS).

First 10 First 10 Last 10 Last 10

Treatment Constant term Slope coefficient Constant term Slope coefficient

C1 -7.94 0.37∗ 6.29 0.36∗

C2 -7.63 0.22∗ -4.11 0.27∗

UPF1 0.18 0.22∗ -1.79 0.21∗

UPF2 -0.15 0.19∗ 3.31∗∗ 0.21∗

UAB11 2.07 0.46∗ 0.51 0.30∗

UAB12 -5.86∗∗ 0.26∗ -2.90 0.27∗

UAB21 -3.40 0.35∗ 3.75 0.42∗

UAB22 -0.07 0.23∗ -8.42∗∗∗ 0.19∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 4b. Bidding functions for the first and last 10 rounds (OLS).
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Treatment C1

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 -5.53 0.08 -0.28 -32.68∗∗ 0.22

2∗∗∗ -48.14∗∗∗ 0.57∗ -0.27∗ -3.37 0.40∗

3 15.72 0.03 -0.22 -9.97 0.12

4 21.05 0.05 -0.21∗∗∗ -1.39 0.14∗∗∗

5 -6.85 0.62∗ -0.54∗ 1.79 0.57∗

6 -16.78 -0.39∗ 0.48∗ -3.25 -0.43∗

7 37.67 0.62∗ -0.66∗ 31.57∗ 0.64∗

8 -35.39 0.47∗ -0.20∗∗∗ 3.71 0.31∗

9 34.36 1.19∗ -1.31∗ 15.39 1.26∗

10 9.10 -0.06 -0.01 -0.37 -0.02

11 12.00 -0.41 0.19 -17.47 -0.31∗∗

12 -7.50 0.38∗ -0.39∗ -8.58 0.39∗

13∗∗ -92.31∗∗ 0.13 0.40∗ -7.14 -0.20

14 4.98 0.16∗ -0.22∗ -4.79 0.19∗

15 127.87 1.41∗ -2.24∗ -10.73 1.82∗

16 4.72 0.13∗∗ -0.15∗∗ 1.50 0.14∗

17 -35.71 0.50∗ -0.05 31.22∗∗∗ 0.28∗∗∗

18 -13.7 0.25∗∗∗ -0.24∗∗∗ -11.29 0.24∗

19 10.84 0.19∗∗∗ -0.24∗∗ 3.28 0.22∗

20 -6.14 0.17 -0.08 5.87 0.12

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 5a. Individual bidding functions (OLS).

20



Treatment C1

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -13.12 0.00 -29.26 0.48∗∗

2 -16.96 0.43∗ 14.37 0.33∗

3 -22.88 0.04 3.06 0.24∗∗

4 8.60 0.08 -18.98 0.30∗∗

5 4.80 0.60∗ 2.44 0.55∗

6 6.85 -0.55∗ -10.25 -0.40∗

7 43.76∗∗∗ 0.80∗ 31.56∗∗∗ 0.53∗

8 -0.97 0.32∗∗∗ 8.55 0.31∗

9 -9.98 1.18∗ 42.04 1.23∗

10 0.22 -0.21∗∗ 0.67 0.21∗∗

11 -23.09 -0.36∗∗∗ -13.93 -0.26

12 -11.83 0.42∗ 0.26 0.25∗

13 19.45 -0.06 -36.91 -0.28

14 -6.20 0.21∗ -3.36 0.15∗∗∗

15 40.11 1.78∗ -66.13 2.15∗

16 9.75 0.10 -5.41 0.15∗

17 -0.46 0.21∗ 52.00 0.57

18 -46.61∗ -0.06 26.98∗∗ 0.46∗

19 -13.69 0.16 19.63 0.25∗∗

20 30.48∗∗∗ 0.52∗ -0.25 0.03

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 5b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment C2

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 20.01 0.07 -0.21 -1.40 0.12

2∗ -43.94∗∗ 0.71∗ -0.38∗ 5.30 0.55∗

3∗∗∗ 34.48 0.43∗ -0.72∗ -8.46 0.60∗

4 -29.39 -0.68∗∗ 0.98∗ 12.95 -0.85∗

5 24.00 0.40∗ -0.67∗ -20.14∗∗∗ 0.52∗

6 -11.13 0.19∗ -0.04 12.91∗∗∗ 0.12∗

7 40.86 0.23∗ -0.47∗ -0.73 0.36∗

8∗ -100.79∗ 0.79∗ -0.22∗∗∗ -1.01 0.52∗

9 0.79 0.13∗∗ -0.14∗∗ -0.79 0.14∗

10∗ 36.20∗∗∗ 0.16∗∗ -0.49∗ -12.42 0.28∗

11∗ -39.60 0.38∗ -0.13∗∗ -2.50 0.28∗

12 2.33 0.18∗∗ -0.17∗∗ 4.04 0.18∗

13 -22.9∗∗ 0.13∗ -0.02 -7.46 0.07

14∗ -121.01∗∗ 1.51∗ -0.70∗ -5.48 1.18∗

15 -84.13∗∗ 0.40∗ 0.01 -30.58∗∗∗ 0.28∗∗

16 -0.14 0.22∗ -0.23∗ -2.23 0.22∗

17∗ 84.87 -0.19 -0.76∗ -51.86∗ 0.36

18 -30.75 0.45∗∗ -0.26 -1.26 0.35∗∗

19 -67.73 0.03 0.50∗ 7.87 -0.27∗

20 2.00 0.21∗ -0.25∗ -3.23 0.23∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 6a. Individual bidding functions (OLS).
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Treatment C2

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -5.74 -0.11 -5.40 0.46

2 3.21 0.37∗∗∗ 21.09∗∗ 0.72∗

3 -12.47 0.64∗ -6.49∗∗∗ 0.57∗

4 21.44 -1.07∗ -3.05 -0.66∗

5 -20.93 0.55∗ -20.54 0.50∗

6 20.18 0.13 4.51 0.08∗∗

7 -7.63 0.50∗ 8.55 0.24∗

8 0.02 0.52∗ -2.12 0.51∗

9 3.00 0.17∗∗ -5.56 0.10∗

10 -14.11 0.35∗ -8.96 0.22∗∗∗

11 2.17 0.28∗ -7.06 0.27∗

12 0.26 0.01 1.94 0.28∗

13 -7.27 0.14 -9.93 0.02

14 -49.76 0.97∗ 32.22 1.15∗

15 -64.64∗ 0.37∗∗ 3.89 0.39∗∗∗

16 2.36 0.23∗ -7.01 0.21∗

17 -104.40∗ 0.13 -8.45 0.37

18 27.09 0.43∗∗ -37.06 0.42

19 6.91 -0.38∗∗ -0.49 -0.09

20 -2.09 0.22∗ -5.38 0.25∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 6b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UPF1

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 1.53 0.11 -0.14∗∗ -3.60 0.13∗

2 9.29 0.20∗ -0.23∗ 5.44 0.22∗

3 -10.76 0.07 -0.04 -6.25 0.05

4 1.78 0.26∗ -0.26∗ 2.09 0.26∗

5 2.79 0.17∗ -0.17∗ 1.74 0.17∗

6 6.52 0.22∗ -0.25∗ 1.00 0.23∗

7 -1.48 0.25∗ -0.22∗ 0.59 0.23∗

8 2.02 0.35∗ -0.37∗ -1.71 0.36∗

9 3.97 0.20∗ -0.19∗ 4.58 0.19∗

10∗∗∗ -24.41 0.36∗ -0.22∗ -3.57 0.29∗

11 -4.82 0.24∗ -0.22∗ -2.39 0.22∗

12 8.46 0.23∗ -0.36∗ -11.00∗∗∗ 0.31∗

13 10.42 0.10 -0.11 8.58 0.10∗∗∗

14 10.67 0.17∗∗ -0.28∗ -3.61 0.23∗

15 -14.14 0.31∗ -0.31∗ -14.82 0.31∗

16 3.03 0.07 -0.07 3.18 0.07

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 7a. Individual bidding functions (OLS).
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Treatment UPF1

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -13.66 0.22∗ 3.45 0.08

2 10.52 0.15∗ 2.92 0.35∗

3 -5.01 0.00 -6.40 0.11∗∗∗

4 2.80 0.25∗ -1.33 0.29∗

5 -0.04 0.16∗ 3.93 0.21∗

6 2.52 0.22∗ 0.47 0.23∗

7 7.14 0.22∗ -5.16 0.28∗

8 2.01 0.38∗ -5.58∗∗ 0.36∗

9 -0.21 0.29∗ 4.65∗∗∗ 0.13∗

10 -5.28 0.31∗ -0.26 0.25∗

11 -0.56 0.20∗ -4.16 0.23∗

12 3.95 0.32∗ -27.36∗ 0.36∗

13 10.37 0.27∗∗ 3.08∗ 0.02∗

14 -0.84 0.23∗ -6.57 0.24∗

15 -4.16 0.26∗ -26.86 0.30∗∗∗

16 -2.43 0.15∗ 8.28 0.01

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 7b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UPF2

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 3.90 0.21∗ -0.20∗ 6.46 0.21∗

2 0.24 0.19∗ -0.19∗ 0.99 0.19∗

3 5.98 0.03 -0.05 1.17 0.04∗∗∗

4 2.07 0.25∗ -0.26∗ -0.52 0.26∗

5 -0.99 0.26∗ -0.24∗ 1.65 0.25∗

6 -0.40 0.14∗ -0.14∗ 0.58 0.14∗

7 -16.10 0.30∗ -0.19∗ -0.77 0.25∗

8 0.53 0.36∗ -0.35∗ 2.51 0.35∗

9 -4.85 0.30∗ -0.23∗ 4.21 0.27∗

10 19.06 0.16∗ -0.26∗ 3.87 0.21∗

11∗ 18.53 0.12 -0.35∗ -17.90∗ 0.28∗

12 -7.61 0.25∗ -0.21∗ -1.47 0.23∗

13 8.34 0.03∗∗∗ -0.07∗ 2.12 0.05∗

14 -25.17∗∗ 0.33∗ -0.19∗ -3.41 0.25∗

15 -10.25 0.25∗ -0.13∗∗ 8.70∗∗∗ 0.21∗

16∗∗∗ -9.24 0.05∗∗ 0.00 -2.31 0.02

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 8a. Individual bidding functions (OLS).
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Treatment UPF2

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -0.22 0.18∗∗ 13.15 0.23∗

2 -0.67 0.25∗ 1.17 0.18∗

3 -0.33 0.04∗∗∗ 2.63 0.03

4 7.74 0.30∗ -7.53 0.22∗

5 2.32 0.24∗ -1.29 0.28∗

6 -0.50 0.15∗ -1.59 0.13∗

7 -0.41 0.24∗ -0.87 0.26∗

8 1.11 0.39∗ 2.63 0.33∗

9 -1.19 0.21∗ 10.02 0.32∗

10 -4.37 0.15∗ 11.47 0.29∗

11 -8.15 0.17 -25.99∗∗ 0.38∗

12 0.93 0.30∗ -2.70 0.19∗

13 1.77 0.05∗ 2.50 0.05∗∗

14 -18.41∗∗ 0.28∗ 10.56∗∗∗ 0.27∗

15 17.84∗∗ 0.16∗∗ 1.07 0.21∗

16 -4.79 0.01 1.77 0.06∗∗∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 8b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UAB11

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1∗∗∗ -64.03 0.95∗ -0.51∗ 18.15 0.76∗

2 16.40 0.18∗ -0.28∗ -0.21 0.21∗

3 25.02 -0.11 0.00 10.58 -0.05

4 -4.97 0.53∗ -0.45∗ 5.72 0.50∗

5 -9.37 0.37∗ -0.35∗ -7.12∗ 0.36∗

6 -9.22 0.24∗ -0.18∗ -1.68 0.21∗

7 26.77 -0.11 -0.06 3.47 -0.01

8 2.44 0.50∗ -0.49∗ 4.17 0.49∗

9 16.37 0.05 -0.23 -6.75 0.13∗

10 2.08 0.24∗ -0.23∗ 3.15 0.24∗

11 -0.13 0.41∗ -0.35∗ 10.05 0.38∗

12 15.60 0.32∗ -0.43∗ -2.70 0.37∗

13 -26.93 1.27∗ -1.24 -21.91 1.26∗

14 56.20 0.20 -0.42∗ 14.52 0.32∗

15 -16.64 0.59∗ -0.54∗ -7.62 0.56∗

16 -31.20 1.16∗ -0.97∗ -5.41 1.06∗

17 21.69 0.34∗ -0.45∗ 4.18 0.39∗

18 7.00 0.22∗ -0.27∗ 0.34 0.24∗

19 -80.00 0.43 0.04 -5.02 0.19

20 8.21 0.28∗ -0.30∗ 4.82 0.29∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 9a. Individual bidding functions (OLS).
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Treatment UAB11

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 43.40∗∗∗ 0.66∗ -5.47 0.83∗

2 -5.91 0.16∗ 4.53∗∗∗ 0.26∗

3 28.72∗∗∗ -0.33∗∗ 5.13 0.05

4 11.99 0.46∗ -1.35 0.59∗

5 -5.11 0.45∗ -4.90 0.32∗

6 -5.80 0.20∗ 2.89 0.25∗

7 4.86 -0.15 -2.31 0.13∗

8 11.30∗∗∗ 0.47∗ -2.95 0.48∗

9 -0.52 0.16∗ -11.71 0.11

10 2.88 0.25∗ 3.84 0.23∗

11 0.13 0.50∗ 13.76 0.34∗

12 3.28 0.43∗ -6.79 0.35∗

13 -49.15 1.96∗ -7.95 0.58∗

14 1.32 1.06∗ 10.31∗∗ 0.06

15 -9.55 1.13∗ 24.84 0.00

16 -46.77 1.90∗ -25.01 0.49∗∗

17 -19.59 0.27∗ 24.97 0.53∗

18 3.13 0.21∗ -2.73 0.27∗

19 -24.90 0.18 17.05 0.25

20 -3.08 0.22∗ 6.64 0.31∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 9b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UAB12

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 9.42 -0.28∗ 0.15 -9.66 -0.23∗

2 5.14 0.14∗ -0.18 -0.06 0.16∗

3 -9.40 0.13∗∗ 0.06 -1.12 0.09∗∗

4 -6.00 0.36∗ -0.31∗ 2.57 0.34∗

5 2.56 0.27∗ -0.29∗ -0.67 0.28∗

6 -3.79 0.21∗ -0.19∗ -0.89 0.20∗

7 -26.94 0.37∗ -0.21∗∗ -5.27 0.28∗

8 3.45 0.35∗ -0.37∗ 0.87 0.36∗

9 -9.65 0.10∗ -0.03 1.61 0.07∗

10 -22.79 0.35∗ -0.26∗ -9.96∗∗∗ 0.31∗

11 0.53 0.44∗ -0.44∗ 0.77 0.44∗

12 -0.277 0.07∗ -0.05∗ 1.95 0.07∗

13 20.27 0.66∗ -0.79∗ 1.20 0.74∗

14 7.31 0.16∗ -0.16∗ 8.10∗∗ 0.16∗

15 -5.46 0.29∗ -0.19 2.94 0.26∗

16 -30.22 0.64∗ -0.63∗ -28.49 0.64∗

17 -10.18 0.09∗∗ -0.10∗∗ -10.72∗ 0.09∗

18∗∗ -18.30 0.40∗ -0.26∗ 4.45 0.34∗

19 -5.56 0.65∗ -0.70∗ -14.33∗∗ 0.67∗

20 3.51 0.11∗ -0.11∗ 3.24∗∗ 0.11∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 10a. Individual bidding functions (OLS).

30



Treatment UAB12

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -12.90 -0.24∗∗ -6.28 -0.21∗∗

2 -3.52 0.18∗ 2.58 0.15∗

3 4.94 0.07 -7.96 0.04

4 -2.36 0.30∗ 5.22 0.37∗

5 0.31 0.27∗ -2.34∗∗ 0.31∗

6 -3.10 0.21∗ 2.13 0.18∗

7 -16.74 0.35∗∗ 5.07 0.23∗

8 2.72 0.36∗ -0.92 0.36∗

9 -2.34 0.08∗ 6.47∗ 0.05∗

10 -5.12 0.29∗ -17.17 0.34∗

11 1.79 0.43∗ 0.12 0.45∗

12 -0.16 0.03∗∗ 2.83 0.08∗

13 0.97 0.67∗ 4.50 0.80∗

14 10.59 0.17∗ 6.04∗∗∗ 0.15∗

15 2.87 0.37∗∗ 2.52 0.09

16 -29.11 0.70∗ -27.82 0.60∗

17 -19.28∗ 0.10∗∗∗ -0.85 0.07∗

18 1.14 0.35∗ 8.41∗∗∗ 0.32∗

19 -14.25 0.70∗ -13.53∗∗∗ 0.67∗

20 1.37 0.12∗ 4.39∗ 0.10∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 10b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UAB21

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 -17.95 0.30∗ -0.38∗ -29.53∗ 0.33∗

2 -7.89 0.03 -0.08 -15.94∗ 0.05

3 11.38 0.31∗ -0.39∗ -0.64 0.35∗

4 -42.66∗∗∗ 0.11 0.02 -23.70∗ 0.05

5 12.39 0.27∗∗ -0.27∗∗ 11.84 0.27∗

6 -35.26 1.07∗ -0.59∗ 30.34∗∗ 0.84∗

7 92.93∗∗ 0.82∗ -1.15∗ 50.39∗ 0.95∗

8 -30.87 0.37 -0.20 -4.07 0.27

9 41.01 -0.67∗∗∗ 0.06 -54.62 -0.38

10 -12.31 0.27∗∗ -0.31∗∗∗ -19.28∗∗∗ 0.28∗

11 -28.88 -0.28 0.33 -21.04 -0.31∗∗

12 53.54 0.20 0.41∗∗ 22.74 0.31∗∗

13 7.96 0.65∗ -0.67∗ 5.49 0.66∗

14 -1.94 0.52∗ -0.44 8.96 0.47∗

15 12.34 0.21 -0.36∗∗ -7.93 0.29∗∗

16 -6.23 0.31∗ -0.23∗∗∗ 8.38 0.27∗

17∗∗ 96.05∗ 0.40∗∗ -1.00∗ 20.17 0.73∗

18∗∗∗ 119.47∗∗∗ 0.79∗ -1.56∗ 5.22 1.21∗

19 12.66 0.43∗ -0.50∗ 2.64 0.47∗

20 -3.12 0.46∗ -0.47 -4.18∗∗∗ 0.47∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 11a. Individual bidding functions (OLS).
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Treatment UAB21

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -38.43∗ 0.21∗∗ -21.81∗∗∗ 0.43∗

2 -14.42 0.17∗∗∗ -25.91∗ -0.08

3 -2.59∗∗ 0.26∗ -5.16∗∗ 0.46∗

4 -30.12∗∗ -0.07 -15.26 0.17∗∗

5 8.72 0.17 -7.41 0.47∗∗

6 15.90 0.63∗ 41.71∗∗∗ 1.04∗

7 75.38∗∗ 0.90∗ 14.03 1.16∗

8 -7.81 -0.13 -24.53 0.57∗∗∗

9 -87.30 -0.11 -16.13 -0.61

10 -48.72∗ 0.36∗∗ 9.84 0.18

11 -12.86∗∗∗ -0.13∗ -11.53 -0.78∗∗

12 -22.50 -0.27 -15.03 0.73∗

13 6.24 0.69∗ 3.40 0.59∗

14 1.38 0.90∗ 8.95 0.41∗

15 -13.24 0.10 5.62 0.38∗∗

16 1.47 0.40∗ 7.38 0.06

17 12.01 0.51∗ 20.10 1.09∗

18 13.38 1.07∗ -27.89 1.91∗

19 1.46 0.41∗ 3.64 0.55∗

20 -5.81∗∗ 0.43∗ -8.09∗∗ 0.56∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 11b. Individual bidding functions for the first and last 10 rounds (OLS).
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Treatment UAB22

Subject† Constant term Slope coefficient Constant term Slope coefficient

Project 1 Project 2

1 -12.07 -0.15 0.12 -15.79 -0.13

2 20.70 -0.08 0.09 8.13 -0.04

3 -93.84 0.22 0.21 -28.02 -0.03

4 -30.20 -0.32 0.44∗ -10.66 -0.41∗

5 -6.63 0.34∗ -0.42∗ -18.76∗∗ 0.38∗

6 48.08 0.40∗ -0.74∗ -2.69 0.55∗

7 -13.38 0.35∗∗∗ -0.22 5.23 0.27∗

8 13.84 0.48 -0.81∗∗ -34.86 0.66∗∗

9∗ 158.71∗ -0.33 -0.60∗∗ 17.24 0.09

10 6.30 0.16∗ -0.21∗ -2.07 0.19∗

11 -43.71∗∗∗ -0.43∗ 0.50∗ -33.83∗ -0.48∗

12 58.15 -0.14 -0.08 24.93 -0.08

13 6.14 0.26∗ -0.27 5.50∗∗ 0.27∗

14 3.25 0.25∗ -0.26∗ 1.09 0.25∗

15 -16.35 0.04 0.06 -1.07 -0.03

16 2.03 0.27∗ -0.28∗ -0.02 0.28∗

17 55.44 0.54∗ -0.76∗ 0.24 0.64∗

18∗∗∗ -83.92 0.85∗ -0.09 29.84 0.48∗

19∗ 27.71 0.25∗ -0.52∗ -10.94 0.39∗

20 -14.91∗∗∗ 0.52∗ -0.44∗ -2.61 0.48∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.
†Diff. between the absolute value of slope coefficients for the two projects stat. significant.

Table 12a. Individual bidding functions (OLS).
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Treatment UAB22

First 10 First 10 Last 10 Last 10

Subject Constant term Slope coefficient Constant term Slope coefficient

1 -26.15 -0.23 -13.62 -0.06

2 -3.20 0.04 15.45 -0.03

3 -60.30 -0.14 7.92∗∗ 0.29∗

4 14.81 -0.29∗ -33.22 -0.48∗∗∗

5 -11.62 0.40∗ -25.42∗∗∗ 0.37∗

6 -26.16 0.48∗ 22.80 0.66∗

7 15.65 0.28∗∗ -7.31 0.19

8 -19.71 0.63 -51.30 0.80

9 -40.37 0.64 28.22 -0.04

10 -4.19 0.22∗∗ -0.25 0.19∗

11 -26.86∗∗ -0.36∗ -39.03∗∗ -0.57∗

12 42.94∗∗∗ 0.21 5.29 -0.37∗∗

13 8.50∗ 0.24∗ 2.34 0.28∗

14 -3.72 0.36∗ 2.59 0.13∗∗∗

15 17.76 -0.22 -23.30 0.10

16 2.13 0.25∗ -4.53 0.33∗

17 18.23 0.66∗ 16.17 0.62∗

18 91.82 -0.12 -10.26 0.55∗

19 -5.56 0.37∗ -16.09 0.40∗

20 -3.52 0.61∗ -5.60∗∗∗ 0.43∗

∗Stat. significant at 5%; ∗∗Stat. significant at 10%; ∗∗∗Stat. significant at 15%.

Table 12b. Individual bidding functions for the first and last 10 rounds (OLS).

C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Maximin 10% 20% 0% 0% 30% 10% 30% 30%

Bayes-Nash 50% 55% 50% 63% 45% 35% 40% 40%

Other 40% 25% 50% 37% 25% 55% 30% 30%

Total 100% 100% 100% 100% 100% 100% 100% 100%

Table 13. Observed strategies grouped into theoretical categories at 1% significance level.
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C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Maximin 10% 20% 0% 0% 30% 10% 30% 30%

Bayes-Nash 50% 55% 50% 63% 45% 35% 40% 40%

Other linear bidding 10% 5% 38% 19% 20% 40% 10% 0%

Other 30% 20% 13% 19% 5% 15% 20% 30%

Total 100% 100% 100% 100% 100% 100% 100% 100%

Table 14a. Observed strategies grouped into four theoretical categories at 1% significance level.

C1 C2 UPF1 UPF2

First 10 Last 10 First 10 Last 10 First 10 Last 10 First 10 Last 10

Maximin 25% 25% 30% 35% 0% 0% 0% 0%

Bayes-Nash 35% 50% 50% 35% 69% 56% 69% 69%

Other linear bidding 5% 5% 5% 10% 31% 38% 13% 13%

Other 35% 20% 15% 20% 0% 6% 19% 19%

Total 100% 100% 100% 100% 100% 100% 100% 100%

UAB11 UAB12 UAB21 UAB22

First 10 Last 10 First 10 Last 10 First 10 Last 10 First 10 Last 10

Maximin 40% 30% 20% 20% 35% 50% 30% 30%

Bayes-Nash 45% 60% 45% 35% 35% 30% 45% 45%

Other linear bidding 0% 5% 25% 30% 5% 5% 0% 0%

Other 15% 5% 10% 15% 25% 15% 25% 25%

Total 100% 100% 100% 100% 100% 100% 100% 100%

Table 14b. Observed strategies grouped into four theoretical categories at 1% significance level

for the first and last 10 rounds.

C1 C2 UPF1 UPF2 UAB11 UAB12 UAB21 UAB22

Maximin 8.89 8.93 * * 8.58 3.41 4.01 1.90

Bayes-Nash 8.87 7.99 8.38 8.17 6.41 6.87 8.86 7.98

Other linear bidding 10.28 8.73 9.42 9.02 7.80 7.11 3.53 *

Other 6.92 4.90 7.94 8.02 9.45 5.36 8.19 8.14

Table 14c. Mean payment (without show-up fee in EUR)

according to the four theoretical equilibrium categories.
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Change in Direction of significant∗ change Not significant∗

expected direction expected unexpected change

Castellón 45% 25% 20% 55%

UPF 63% 6% 6% 88%

UAB1 70% 30% 10% 60%

UAB2 70% 15% 5% 80%
∗Significance at 5%.

Table 15. Change in the slope of the empirical bidding function due to group size.

Distribution Mean St.deviation Kurtosis SkewnesseF 0 113.39 3.78 0

Triangular [−300; 300] 0 212.13 0.27 0

Table 16. Comparison between the triangular distribution and eF
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Graph 1. Optimal Bayes-Nash and maximin bidding function for groups of two.

8 Appendix C. Instructions

8.1 First treatment

Thank you for participating in the experiment.
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This session has 3 practice periods and other 20 that will determine a part of the

amount of money that you will receive by the end of the experiment.

In each game groups of two will be formed in a random manner. Your task is to make

decisions on your own and for this reason you are not allowed to talk to other participants.

Games have a unique stage in which you will have to choose between two projects (project

1 and project 2). The resulting choice will influence the benefit you obtain in each period.

The first screen will inform you about the value each project has for you. The table

on the left, in this example, shows that if project 1 is chosen you receive 33 monetary

units; while if project 2 is chosen you receive 128 monetary units. These values are integer

numbers between 0 and 300, and are assigned randomly in each game, such that every

number has the same probability to be picked out. For this reason, these values are

typically different for each player and for each project.

The other player in your group receives similar information on the values that each

project has for him/her. You do not know the value of the projects for the other player,

not even which project he/she prefers. He/she does not know the value of the project for

you either. The only information in this aspect is the following:

The value of each project is an integer number between 0 and 300 (including limits)

for each player. Each value within the limits occurs with the same probability. A common

question is: what does it mean that each value occurs with the same probability? Suppose

that we have a roulette wheel with 301 slots of equal size, numbered from 0 to 300. The

ball in this case will stop with equal probability at each slot. In the experiment, the four

values — for project 1 and project 2 for both players — are assigned using a similar method,

with the help of the computer.

In our example, chance has assigned the values 250 and 102 for projects 1 and 2,

respectively, for the other player.

The project is chosen through an auction especially designed for this occasion, ac-

cording to which you have to decide how many monetary units you are willing to pay

for project 1, for example, to be chosen. It is also possible that you prefer project 2 and

for this reason if project 1 is chosen you wish to receive some amount of compensation.

In the auction you have to choose two bids (one for each project) that must sum up to

zero. Negative numbers will indicate the amounts you are willing to pay, while positive

numbers the amounts that you wish to receive. Suppose that you are willing to pay 10

units if project 1 is chosen and you would like to receive 10 if project 2 is chosen. In this

case you have to type the number −10 and 10 in the purple cells of the table on the right
hand side; and after that click on the “OK” button to continue.

Let us suppose that the other player decides to bid −25 for project 1 and 25 for project
2. With this project 1 receives a total of −35 bids, while project 2 gets 35.
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The project with more negative bids is chosen to carry out. In case of a tie the result

is determined randomly. Bids for the chosen project will be paid / received and the

aggregated bid will be given back to the members of the group in equal shares. When all

of you have chosen your bids, a screen appears with the results.

The right side of the screen with the results informs you about the other player’s bids.

In our example project 1 has received (−10) + (−25) = (−35) bids, while project 2 has
received 10 + 25 = 35. Project 1 is chosen. Your profit in the game appears on the left

part of the results screen. In this case it is computed as follows:

• you receive 33 units, because project 1 has been chosen,

• you have to pay your bid for this project, that is 10 units, and

• you receive half of the aggregated bid, 17.5 units

Summing up: 33− 10 + 17.5 = 40.5 monetary units. The other player in the example
earns 250− 25 + 17.5 = 242.5 units.
If you click on the “OK” button of the results screen, the game ends.

A table down on the left hand side keeps you informed about your profit obtained

during the whole session. 400 monetary units are equal to 1 euro. For any computation

you might want to perform, you may use the Windows calculator by clicking on its icon

next to the “OK” button.

8.2 Second treatment

In this session, we will use the game from the previous session, but with one modification.

The groups that form randomly in each game will have 10 members (not 2 as in the first

session). Each group of 10 will choose a common project.

The auction to be used is the same. Your task is to make decisions on your own and

for this reason you are not allowed to talk to other participants. Your principal task is

to choose a project between two alternatives. The value of each project for each player is

assigned in a random manner, therefore these values can be equal to any integer number

between 0 and 300 (including limits), and each occurs with the same probability.

There will be 3 practice periods and other 20 that will determine a part of the amount

of money that you will receive by the end of the experiment

The computer screens you will see are identical to the ones you have seen before except

for one detail. On the results screen the aggregated bid of the other players in your group

will appear.

The table on the left informs you about bids in the auction. Following the example in

the instructions, let us suppose that you are willing to pay 10 monetary units if project
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1 is chosen, and wish to receive 10 units if project 2 is chosen. The column of the other

players’ bid in this example indicates that the bids of the other 9 members of your group

or project 1 sum up to −135 monetary units. The nine bids for project 2 sum up to 135.
Taking into account your bids, the aggregated bid for the projects are −145 and 145,

respectively. For this reason, project 1 is chosen and you earn 37.5 monetary units: 33

(the value of project 1 for you) −10 (your bid for project 1) +14.5 (your share from the

aggregated bid).

400 monetary units are equal to 1 euro. For any computation you might want to

perform you may use the Windows calculator by clicking on its icon next to the “OK”

button.
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