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Abstract

We build a model where investments in human capital depend on the state of an individual’s
social network. We show that correlation patterns between parents’ and children’s human
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1 Introduction

Wages and social class are strongly correlated across parents and their children. Moreover, such in-
tergenerational mobility patterns are similar across countries and persistent over time. Economists’
evidence for this is based on parent-child correlation of (log) earnings or income. For instance, re-
cent estimates of the intergenerational correlation of long-run log earnings lie in the range [.4, .6] for
the U.S. and the U.K., and [.2, .4] for Germany and Sweden.1 Sociologists’ analyses of this focus on
mobility tables. Given a hierarchy of occupational classes, mobility tables relate the children-class
destination to the parents-class origin. Odds ratios then compute the relative likelihood of iden-
tical versus different parent-child class, for any pair of classes in the mobility table. Odds-ratios
vary from 1 and 15 depending on the occupational class and have been studied for a large set of
countries.2 It is also important to note that the strong similarities in mobility patterns are observed
for countries that differ drastically in their labor market regulations, development, education poli-
cies, and other characteristics.3 This suggests that the dynastic correlation of earnings does not
fully stem from national idiosyncrasies.

In this paper, we propose a simple model based on social structure that exhibits strong per-
sistence of family investment in human capital and in resulting earnings across generations.4 In
our model, skills are agent-specific, and the intergenerational correlation in human capital levels is
solely governed by the influence of the social setting. In particular, we suppose that the marginal
returns from higher educational achievements increase with the human capital composition of any
given agent’s social network. Economists and sociologists propose different channels for this social
externality, among which are role-model theories, peer-pressure for conformism, and heredity of
cultural traits or skills. Social networks, which are pervasively used in most labor markets to dis-
seminate job information, also lead to complementarities in human capital investment decisions.5

We show that this social externality correlates human capital investments across generations, which
1See Björklund and Jännti (1999), Solon (2002), Piketty (2000) and references therein, in particular, Solon (1992),

Zimmerman (1992), Björklund and Jännti (1997), Dearden et al. (1997), and Mulligan (1997). Note that the data

sets used for the different national studies differ in some important statistics (such as the average age of children and

parents, etc.) that may introduce some national biases in the estimates. The income correlation is even higher and

lies in the [.7, .8] range for the U.S. (Mulligan 1997). Also, most of the data analysed concerns only fathers and sons,

which introduces some (gender) bias in the estimates. In particular, when daughters are included in the data set, the

observed intergenerational correlation of income is higher.
2See Gazenboom and Treiman (1989) and Erikson and Goldthorpe (1992, 2002). Björklund and Jännti (1999)

describe an alternative measure of social mobilit based on the intergenerational correlation of an index of occupational

status.
3The time-series persistence also suggests some resilience of mobility patterns to school reforms and labor market

policies.
4Parent-offspring correlation in labor earnings explains much of the income correlation: “the main component (at

least 70%) of the intergenerational correlation of welfare is due to the persistent inequality of labor earnings” Piketty

(2000), p. 446.
5See Calvó-Armengol and Jackson (2004a,b) for detailed analyses.
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further translates into correlation of parent-child earnings. We also establish a monotonicity of the
intergenerational persistence as a function of the strength of the social externality. Higher sensi-
tivity of investment decisions to social circumstance leads to high correlation across generations.
Lastly, we show that higher sensitivity of investment decisions to social circumstance leads to less
efficient investment decisions.

Of course, there are several other well-studied theories of social immobility. Ours is com-
plementary to those theories. In particular, standard economic theories of social mobility resort
to the family transmission of economically relevant traits, to capital market imperfections, or to
community-wide effects. First, wealth transfers in the form of bequests by altruistic parents are a
clear source of dynastic correlation of income, while the genetic inheritance of productive abilities
correlates human capital levels and labor earnings across generations (Becker and Tomes 1979).
Second, imperfect credit markets impose borrowing constraints at the bottom of the earnings dis-
tributions. As a result, able children of poor parents under-invest in human capital, and initial
inequalities persist across generations (Loury 1981). Finally, segregation of individuals into ho-
mogeneous communities spurs local public good externalities (e.g., peer effects in education and
other local public goods) that homogeneize economic outcomes across community members and
generations (Bénabou 1993, 1996 and Durlauf 1996).

Empirically, the family transmission of innate abilities has been estimated to account for around
1/4 of the observed persistence in intergenerational earnings (Bowles and Gintis 2002). Also, bor-
rowing constraints do not seem to explain more than 8% of the observed differences in returns to
human capital investment for otherwise identical agents, and more generally, non-cognitive skills
play a prominent role in explaining labor outcomes (Carneiro and Heckman 2002, Heckman and
Krueger 2004). Altogether, the available empirical evidence does not identify credit market imper-
fections nor genetic inheritance as powerful enough mechanisms to explain adequately the observed
mobility patterns. In contrast, parental community traits and, more generally, social background
characteristics, seem to have a higher incidence on children individual economic success. For in-
stance, Borjas (1992) finds that the correlation between the average skill in parents’ cohort and
skills of a given family’s children is twice as big as the purely dynastic parents-children correlation.
Besides these disparities in human capital investment levels, the parental social background also af-
fects short and long-run labor market outcomes of the children. In France, for identical educational
achievements, higher social origin leads to better paid jobs when entering the job market, and the
difference widens along the professional career (Goux and Maurin, 1997). In the U.S., the con-
vergence of the college enrollment rates per race, together with the persistence in the white-black
wage differential, provides indirect evidence of the (long-standing) labor market value of the social
background.6 More generally, Cooper et al. (1994) find that the strength of the parents-children

6See Kane (1994), who documents the role of family background for the rise of black’s college enrollment rates

since the 1980’s, and Card and Krueger (1992), Chandra (2000) and Heckman et al. (2000) for evidence on the

white-black wage gap.
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income relationship varies non-linearly with the parental neighborhood income levels, with a higher
persistence at the two tails of the distribution (that is, affluent and poor areas).7

Our model highlights the role of the social environment as a driver for social immobility, and
relates the sensitivity of investment decisions to social circumstances to the level of intergenerational
correlation, thus providing a different mechanism for intergenerational correlation.

We should emphasize that the social interaction that we describe is consistent with different
social influences on investment decisions. We can crudely distinguish between three types of so-
cial processes. First, offspring from can passively inherit preferences as a function of their social
surroundings. For instance, Boudon (1973) argues that low-class children display a much shorter
time-horizon than others,8 whereas Bourdieu and Passeron (1964) claim that high-class children
inherit better suited attitudes and aptitudes for culture and education.9 Second, the social back-
ground can influence educational outcomes through the reaction of the offspring to the behavior
of those in their social network. For instance, children may learn how to behave by observing the
adults in their social network;10 norm-enforcing mechanisms can also induce conformism among
peers.11 Finally, the influence of the social setting can also result from the combination of passive
inheritance and active reaction. For instance, the inherited social connections affect employment
outcomes which, in turn, influence human capital acquisition.12

2 The model

2.1 Dynasties and (Random) Over-lapping Generations

There are n dynasties indexed by i = 1, ..., n. Time evolves in discrete periods indexed by t =
1, 2, . . .. Each generation of a given dynasty consists of only one member. When there is no

7See also Datcher (1982), and Bjerve and Doksum (1993) for a description of correlation curves, best fitted to the

analysis of non-linear relationships. Wilson (1987) popularizes the concept of underclass to identify the chronically

poor, both socially and spatially isolated in urban ghettos.
8Given that they discount future payoffs more than children from wealthier parents, they invest less in human

capital.
9Bourdieu and Passeron refer to this stock of attitudes and aptitudes for cultural activities as cultural capital.

Cultural capital reduces the cost of acquisition of human capital. Sobel (XXX) offers an exhaustive and critical

survey of the economic value of social capital.
10In this case, adults act as role models for children. See, for instance, Jencks and Mayer (1990) for a description

of this theory.
11See Coleman (1990). Crane (1991) and Harding (2003) provide empirical evidence consistent both with role

models and peer-pressure mechanisms.
12See Calvó-Armengol and Jackson (2004ab) for a dynamic model of labor market networks. That model also

provides a rationale for conformity effects on school drop-outs within social groups. There, preferences from conformity

arise endogenously from the use of social connections in the labor market, which correlate individual outcomes both

within groups and across periods. Using census track data from Chicago, Topa (2001) shows that the impact on the

individual employment probability of a one-standard deviation change in the average unemployment of neighbors is

1.5 times higher than a one-standard deviation on human capital (1.2% versus 0.8%).
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confusion, we identify current generation members by their dynasty index.
At the beginning of each period, one dynasty is randomly chosen and its member replaced by

his or her offspring. This happens with equal probability across dynasties.13

2.2 Social Networks and Human Capital Investment

When they are born, offspring invest in human capital. This is a once-and-for-all decision.
For simplicity we assume that human capital can only take two values, high and low (and the

analysis has an obvious extension to any finite set of values). Letting ht
i denote the human capital

of the agent in dynasty i at time t, we set ht
i = 1 for the high level, and ht

i = 0 for the low level.
Let wi(h) denote i’s expected discounted stream of wages conditional on the vector of current

human capital levels being h.14

We normalize wi(0, h−i) = 0 for all h−i, so that if i does not invest in human capital then his
or her wage is 0. We let wi(1, h−i) > 0 for all h−i so that high human capital leads to higher wages
than low human capital. More importantly, we assume that wi(1, h−i) is non-decreasing in hj for
all j �= i. As we argue below, this monotonicity arises endogenously when social contacts convey
job information, a fact largely documented in many labor markets.15

Agents are also born with a randomly drawn cost c of investing in the high human capital level,
which is described by a cumulative distribution function F (c). We assume that at birth each agent
gets an individual draw from F . An agent’s human capital level is 0 unless the agent decides to
invest.

This cost encompasses innate skills and abilities, as well as direct costs of education. Note that
we completely abstract from any correlation in costs of education across generations. We do not do

this because we believe that costs are independent across generations, but rather because we wish

to isolate the social setting as a driver of social immobility.16

Thus, agent i can be completely characterized by a function pi(h−i) = Pr{ci < wi(1, h−i)}
which gives the probability that he invests in a high human capital level when the human capital
level of others is h−i.

If ci has a full support on the range from wi(1, 0−i) to wi(1, 1−i) this implies that pi(h−i) is
also non-decreasing in h−i. In words, the human capital composition of the social setting positively
affects individual human capital investment decisions, as it increases the marginal returns from
education.

13Therefore, the expected life span of any generation in dynasty i is:
∑+∞

τ=1
τ 1

n
(1 − 1

n
)τ = n − 1.

14Given the stationary random way that offspring are born, this is the same in any period, conditional on h.
15See, for instance, the recent evidence reported in Santamaŕia-Garćia (2003), as well as the discussion and refer-

ences in Calvo-Armengol and Jackson (2004a).
16In fact, intergenerational correlation in costs of education has been extensively studied as a driver of social

immobility, both theoretically and empirically. See Bowles and Gintis (2002) and references therein.
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Economists and sociologists propose different channels for this social positive externality, in-
cluding role-model theory, peer-pressure for conformism, heredity of cultural traits or skills, some
of which receive empirical support. When the monotonicity of pi(h−i) in h−i is formulated as an
assumption, our model encompasses all of them. Our model is also compatible with the prevalent
use of social networks in many labor markets, and its effect on the individual and aggregate dynam-
ics of labor market outcomes. In this case, the monotonicity of pi(h−i) in h−i arises endogenously,
and derives from the (endogenous) monotonicity of the wage function wi(1, h−i) in h−i.

While our results extend to this general setting, we specialize the exposition to the case where
agents have the same investment function, pi(·) = p(·) for all i, and where p(·) can be written as a
function of

∑
j �=i hj .

We let kt =
∑

i h
t
i and kt−i =

∑
j �=i h

t
j .

2.3 An Example: Labor Market Networks

The critical assumption for our results is that p(·) is a non-decreasing function.
We show that one (among many) justifications for this assumption is having social connections

diffuse job information. Such a formal model is fully developed in Calvó-Armengol and Jackson
(2004a,b), so we simply describe the results informally, and refer the reader to that work for the
details.

Assume that individuals are connected by a social network, where network links represent
direct communication channels between pairs of agents that know each other. The labor market is
subject to a turnover, with some agents losing their job and others hearing of available job slots
at every time period. When a currently employed worker cannot obtain a wage raise with one of
these outside offers, he or she relays this information to his or her friends or acquaintances in the
social network. When information about job opportunities is disseminated in this way, wages and
employment are positively correlated across agents in both the short and long run.17

Let individual payoffs be the expected discounted stream of wages conditional on a given net-
work. The correlation in wages implies that individual payoffs depend positively on the whole
network status. Therefore, the payoff to every agent in the market is non-decreasing in the human
capital level of every other agent. Formally, wi(1, h−i) is non-decreasing in hj for all j �= i. In
such a model, wi is strictly increasing in hj whenever agents i and j are path-connected. Here,
the assumption that pi(·) = pj(·) for all i, j, is equivalent to all dynasties holding interchangeable
locations in the social network.

For the purpose of illustration, let us explore a simple example. Suppose that n agents are
17See Propositions 1 and 2 in Calvó-Armengol and Jackson (2004a) for the case of constant wages, a fixed network

and uniform information transmission to direct connections, and Propositions 1 and 2 in Calvó-Armengol and Jackson

(2004b) for the general case with heterogeneous wages, general networks (random, weighted, directed, etc.) and

general information diffusion (relayed information, preferential passing, etc.).
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connected through a complete network (they all know each other directly). In each period, a
currently employed worker loses his or her job with a probability b = .015, and all workers (both
employed an unemployed) independently hear of a new job opportunity with probability a = .100.
If a worker is currently at the highest wage level, the worker passes any job information on to
an unemployed neighbor. If the worker is not currently at the highest wage level, then he or she
keeps the information. A low human capital level h = 0 pays w = 0. A high human capital level
h = 1 pays either w = 1 when the agent has heard of one job offer since their last unemployment
spell, and w = 2 when the agent has heard about more than one job opportunity since their last
unemployment spell.18

Number of agents n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n → ∞
Et[wt

i ] 0.10 0.19 0.38 0.73 1.26 1.77 1.97
Pr{w = 2}/ Pr{w = 1} 0 .05 .17 .47 1.4 6.6 ∞

This table simply indicates how a given agent’s wage prospects improve in a given period as the
number of neighbors is increased. This calculation presumes all other agents are employed at the
high wage level, and that the given agent starts unemployed. One can also easily do steady-state
calculations, and for various network configurations, as reported in Calvo-Armengol and Jackson
(2004ab).

2.4 A Markov Process

The random overlapping generations model, together with the human capital investment decision
with idiosyncratic costs generates a Markov process. The state is the number of agents kt at the
high human capital level at the end of a period t, and transitions probabilities depend on the social
setting according to the function p(·). We denote this Markov process by M(p).

This is a finite-state irreducible and aperiodic Markov process on dynastic human capital sta-
tuses. We characterize the long-run steady-state distribution of this process.19 Given the symmetry
in the model, we need only to keep track of how many agents are of the high type in any period.
Thus, the steady-state of the Markov process can be described by µ = (µ0, ..., µn), where µk is the
probability that k agents are of the high type.

We also use the notation µ−i
k to denote the probability that k agents other than i are of the

high type.
We examine the parent-offspring correlation in human capital levels under this steady-state

distribution.
18The higher wage could represent an expected improved match, or improved bargaining power during the wage-

setting negotiation.
19For such a Markov process, the steady-state distribution has several nice features. First, it represents the relative

frequencies spent in each state over long time horizons, second, starting with a random draw from that distribution,

the distribution over next period states is governed by the same distribution, and third, starting from any state, given

a long enough horizon, the probability that one will end up in any give state is given by that distribution.
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3 Correlation in Parent-Child Human Capital and Earnings

Given the structure of the setting, correlation in parent-child earnings are largely due to the corre-
lation in human capital decisions. We focus our attention on the human capital decisions.

Dynastic correlation in earnings, though, goes beyond correlation in human capital decisions.
We know that wages of networked agents are correlated both within and across periods. High
parental wages thus lead to higher wages for the offspring network neighbors (recall that only one
dynasty member is replaced every period) which, in turn, feeds back into higher wages for the
offspring.

3.1 An Example with Dyads

Consider a simple case where n = 2 and the two agents are connected with each other and form a
dyad. Let p0 = p(0) and p1 = p(1), where p1 ≥ p0. We analyze the Markov process M(p0, p1).

The following figure summarizes the transition probabilities between the states of the dyad. A
darkened node represents an agent with high human capital, while agents with low human capital
are represented by empty nodes. The line between two nodes indicates the social interaction between
agents. Arrows represent state transitions with their corresponding probabilities. The probability
with which the dyad state does not change is indicated by the expression near the dyad.

� �

� ◦ ◦ �

◦ ◦
�������� �������� ����������������

�������� �������� ����������������
1−p1

2
p1

2
1−p1

2
p1

2

p0

2
1−p0

2
p0

2
1−p0

2

p1

1 − p0

1−p1+p0

2
1−p1+p0

2

The spread p1 − p0 is a measure of the sensitivity of human capital decisions to the social
network. If p0 is close to p1, then one agent’s wages and human capital investment decisions are
largely independent of the status of the other agent.

Let µ = (µ0, µ1, µ2) be the steady-state distribution of M(p0, p1), where µk is the probability
that k agents have high human capital level. It follows that⎡

⎢⎢⎣
µ2

µ1

µ0

⎤
⎥⎥⎦ =

1
1 + p0 − p1

⎡
⎢⎢⎣

p0p1

2p0(1 − p1)
(1 − p0)(1 − p1)

⎤
⎥⎥⎦ .

In particular, both dyad members invest in the high human capital level with a long-run probability
µ2 that increases in both p0 and p1. In contrast, the probability of the joint low investment µ0
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decreases in both p0 and p1. Finally, the probability that dyad members display different human
capital levels µ1 increases in p0 but decreases in p1.

We can easily compute the parent-offspring correlation in human capital levels under the steady-
state distribution µ, denoted ρ. It follows that20

ρ = (p1 − p0)2.

This correlation increases with the square of the sensitivity, p1 − p0, of the human capital
investment decision to the state of the other agent’s status.21 The more important the network
influence on one’s decisions, the larger the correlation in human capital decisions across generations
of a same family.

3.2 A Simple Monotonicity Lemma

We begin with an obvious result that establishes monotonicity of the steady-state distribution
of human capital decisions (in the sense of first-order stochastic dominance) with respect to the
investment probability function p(·).

We write p′ ≥ p if p′(k) ≥ p(k), for all k, and p′ > p if p′(k) > p(k), for all k. This could
represent an increase in wages, a decrease in the cost distributions, or some other reason for
increased investment as a function of the state of the network.

Lemma 1 Let µ and µ′ denote the steady-state distribution of M(p) and M(p′), respectively. If
p′ ≥ p, then µ′ first-order stochastically dominates µ. When p′ > p, the first-order stochastic
dominance is strict.

3.3 Correlation in Parent-Child Human Capital

We now explore the relationship between the social structure, as captured through p(·), and the
intergenerational correlation in human capital decision.

Let p(p) be the average steady-state probability that any given agent is of a high type. Thus,

p(p)=
n∑

k=1

µk
k

n
.

Let p̂k = pk − p be the deviation of the investment probability from the mean.
We say that p′ is more sensitive than p if

20The joint probability with which two consecutive generation members of the same dynasty have high human

capital level is η11 = p1µ2 + 1
2
p0µ1. The expression follows from simple algebra.

21It is important to note that the correct measure of sensitivity is the difference between p1 and p0. If we simply

have high levels of both p1 and p0, then the state of the network has no influence and the correlation disappears.

9



(i) there exists K such that p′k ≤ pk for all k ≤ K and p′k ≥ pk for all k > K, and22

∑
k≥0

µ−i
k

(
p′k − pk

) ≥ 0, (1)

(ii) ∑
k≥K

µ′,−i
k p̂′k ≥

∑
k≥K

µ−i
k p̂k (2)

for all K, with strict inequality for some K.

The first part of condition (i) is straightforward: if p′ is more sensitive than p, then the prob-
ability of investment is higher for in high social states and lower for low social states. The second
part of (i) is a condition that makes sure that ensures that the overall mean investment has not
dropped too much. As for (ii), note that (2) is equivalent to requiring that

∑
k≤K

µ′,−i
k p̂′k ≤

∑
k≤K

µ−i
k p̂k

for all K, with strict inequality for some K. Thus, part (ii) is similar to a stochastic dominance
condition. Noting that Probp(kt−i = k | i invests at time t) = µ−i

k
pk
p , (ii) is a non- normalized ver-

sion of stochastic dominance regarding the distribution of the state conditional on having invested.
Thus, the individual investment decision is more closely tied to state of the social network (the
status of i’s connections) under p′ than under p.

As we saw in the dyad case, when p′ is more sensitive than p, the parent-offspring correlation
in human capital is equal to the square of this sensitivity. Therefore, in the dyad case, the inter-
generational correlation of human capital decisions is greater under p′ than under p. Theorem 1
generalizes this result.

Theorem 1 If p′ is more sensitive than p, then the intergenerational correlation in human capital
investments in any dynasty under the steady state is higher under p′ than under p.

Note that Theorem 1 also implies that any p′ that is more sensitive than a completely constant
p must have positive intergenerational correlation.

The intuition behind Theorem 1 is that as the correlation of the human capital investment with
the state of the network increases, this leads to increased intergenerational correlation due to the
fact that there is likely to be some overlap in the state of the rest of the network between the parent
and the child. The challenge in the proof is due to the fact that a change from p to p′ has both
a direct and an indirect effect. It directly increases correlation between decisions and the state of
the network. However, it also changes the steady state distribution, which has indirect effects. The
change in the steady state distribution is not necessarily a uniform one, some states get increased

22Inequality (1) can also be stated with µ′,−i
k in place of µ−i

k .

10



probability while others get lower probability, and not in some well-ordered manner. We need to
show that the combination of these effects on the correlation is always positive. Part (ii) of the
condition handles the indirect effect, while part (i) deals with the direct effect.

So far, we have assumed that the offspring social background is the same as that of his parent
when the parent dies. Suppose, instead, that this inheritance is only partial. The child’s social
universe is now mixed. He evolves in the same social universe as his parent with probability q,
but belongs to a completely different social circle with probability 1 − q. More precisely, the child
accesses the same network as his or her parent with probability q, and otherwise gets an entirely
new network (with kt−i determined by a fresh draw from the steady state distribution). We model
this process as if with probability q the child’s investment decision is governed by pk, and with
probability (1 − q) it is given by p. The influence of the social setting now depends on q, and we
denote by pq the resulting function. A variation on the proof of Theorem 1 provides the following
result.

Corollary 1 The steady-state intergenerational correlation in human capital investments in-
creases with q.

To the extent that the overlap of the social universe across generations is higher for the two-tails
of the income distribution, this finding is consistent with the U−shaped intergenerational income
correlation curve as a function of income levels documented by Cooper et al. (1994).23

3.4 Wage Correlation

The relation between sensitivity and intergenerational correlation in human capital investment
suggests that we ought to see a similar relationship between social sensitivity and intergenerational
correlation in wages. There are some situations where results for wages follow along similar lines
as Theorem 1.

Proposition 1 If expected wages conditional on investment are linear in pk or linear in k, then
the steady-state intergenerational correlation under p′ is larger than under p whenever p′ is more
sensitive than p.

More generally, additional nonlinearities in the wage function require conditions similar to
being more sensitive applying directly to expected wages (conditional on investment) rather than
probability of investment. Another situation where we can deduce results for wages is in the pq

model.
23See Wright Mills (1945) for a seminal analysis of the social endogamy of the business elite in the U.S. and Wilson

(1987) and Jencks and Mayer (1990) for an analysis of the social and economic consequences of living in the inner

city in the U.S. Santamaŕia-Garćia (2003) provides a model predicting a more extensive use of social contacts for job

search among less-educated workers, consistent with empirical findings in many European countries and reported in

the paper.
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Proposition 2 If expected wages conditional on investment are increasing in k, then the steady-
state intergenerational correlation in wages increases with q.

3.5 Cost Efficiency

Let us now explore what we can conclude regarding efficiency. Given that p encompasses many
things, we focus on the one aspect of efficiency that we can still draw conclusions regarding: costs
of investment. That is, suppose that one agent invests in human capital with a high cost due to
the fact that his or her social network is in good shape, while another agent does not invest despite
a much lower cost due to the fact that his or her network is in bad shape. If we could exchange
these two agents (and perhaps make some transfers) we would have an improvement. In particular,
for two processes p and p′ that have the same overall percentage of investment (p), we expect that
the one with the higher spread will have a higher overall cost associated with it, and thus is less
efficient in terms of the costs of investment for the same average level of investment. We formalize
this as follows.

Define

Spread(p) =
n−1∑
k=0

µ−i
k |pk − p|

This is not quite a direct measure of cost inefficiency because it is not weighted by the sizes of
the inefficiencies. For some circumstances (that we explore below) this spread is directly related to
cost efficiency.

Theorem 2 If p′ is more sensitive than p, then Spread(p′) > Spread(p).

Let Cost(p) be the average cost per capita of those investing in high human capital. Under a
uniform distribution on costs, from [0, C], this can be written as

Cost(p) =
n−1∑
k=0

µ−i
k pk

p

C

2
pk,

where µ−i
k pk/p is the conditional probability that there were k other agents with high human

capital at the time that i invested, conditional on i investing; and Cpk/2 is expected cost given
that i invested when there were k other agents with high human capital.

Theorem 3 If p′ is more sensitive than p, p(p′) = p(p), and costs are uniformly distributed on
[0, C], then Cost(p′) > Cost(p).
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Appendix

We can relate states according to,24

µ−i
k =

k + 1
n

µk+1 +
n − k

n
µk. (3)

The following lemma is useful.

Lemma 2 For all 0 ≤ k ≤ n − 1, µk+1 = akµk, where

ak =
n − k

k + 1
pk

1 − pk
,

and thus µk = ajaj+1 · · · ak−1µj for all k > j.

Proof of Lemma 2: Consider a state where exactly k agents are of high type. At steady-state,
the inflow to and the outflow from this state exactly balance each other. This is written as

µ0p0 = µ1
1
n

(1 − p0), for k = 0

µk−1
n − (k − 1)

n
pk−1 + µk+1

k + 1
n

(1 − pk) = µk
k

n
(1 − pk−1) + µk

n − k

n
pk, for 1 ≤ k ≤ n − 1

µn−1
1
n

pn−1 = µn(1 − pn−1), for k = n,

and the result follows.

Proof of Lemma 1: By Lemma 2, whenever i > j we can write

µi/µj = ajaj+1 · · · ai−1.

Noting that p′k ≥ pk implies a′k ≥ ak (with corresponding strict inequalities), it follows that

µ′
i/µ′

j ≥ µi/µj

for all i > j, with strict inequality for some pairs when p′ �= p. Given that
∑n

k=0 µ′
k = 1 =

∑n
k=0 µk,

the result follows directly.

Proof of Theorem 1: For a given dynasty i, we can write the covariance as

Cov(p) =
n−1∑
k=0

µk+1
k + 1

n
(pk − p) =

n−1∑
k=0

µk+1
k + 1

n
p̂k, (4)

24The number of states with k high types, not counting i, is
(

n−1
k

)
. There are exactly

(
n

k+1

)
states with k + 1 high

types. Therefore, the fraction of such states for which i is of high type is
(

n−1
k

)
/
(

n
k+1

)
= (k + 1)/n. Also, there are(

n
k

)
states with k high types, and the fraction of such states for which i is of low type is

(
n−1

k

)
/
(

n
k

)
= (n − k)/n.
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noting that µk+1
k+1
n is the probability that the parent is high human capital and there are k others

of high human capital. We need to show that if p′ is more sensitive than p, then Cov(p′) > Cov(p).
First note that by Lemma 2

∑
k≥K

µk+1
k + 1

n
p̂k =

∑
k≥K

µk+1
k + 1

n

(
1 +

1 − pk

pk

)
pkp̂k (5)

=
∑
k≥K

µk+1
k + 1

n

(
1 +

µk

µk+1

n − k

k + 1

)
pkp̂k (6)

=
∑
k≥K

(
µk+1

k + 1
n

+ µk
n − k

n

)
pkp̂k =

∑
k≥K

µ−i
k p̂kpk, (7)

for all 0 ≤ K ≤ n − 1. Thus, by (5), we write

Cov(p′) =
∑
k≥0

µ−i,′
k p̂kp

′
0 +

∑
k≥1

µ−i,′
k p̂k(p′1 − p′0) +

∑
k≥2

µ−i,′
k p̂k(p′2 − p′1) + . . .

By (2) than we know that this is greater than∑
k≥0

µ−i
k p̂kp

′
0 +

∑
k≥1

µ−i
k p̂k(p′1 − p′0) +

∑
k≥2

µ−i
k p̂k(p′2 − p′1) + . . . ,

with the strict inequality following from the fact that p′k is nondecreasing and not constant in k.
Thus,

Cov(p′)−Cov(p) >
∑
k≥0

µ−i
k p̂k(p′0−p0)+

∑
k≥1

µ−i
k p̂k(p′1−p′0−p1+p0)+

∑
k≥2

µ−i
k p̂k(p′2−p′1−p2−p1)+. . .

or
Cov(p′) − Cov(p) >

∑
k

µ−i
k p̂k(p′k − pk).

We can then deduce that the right hand side is nonnegative from (i) of the definition of more
sensitive than. This is derived as follows. Let K be the min k such that both p̂K ≥ 0 and
(p′K − pK) ≥ 0. First, suppose it is the case that (p′K+1 − pK−1) < 0. Then∑

k≥K

µ−i
k p̂k(p′k − pk) ≥ p̂K

∑
k≥K

µ−i
k (p′k − pk),

and ∑
k<K

µ−i
k p̂k(p′k − pk) ≥ p̂K

∑
k<K

µ−i
k (p′k − pk).

Thus, ∑
k

µ−i
k p̂k(p′k − pk) ≥ p̂K

∑
k

µ−i
k (p′k − pk),

and the right hand side is nonnegative by (1). By analogous reasoning, in the case where p̂K−1 < 0,
we deduce that ∑

k

µ−i
k p̂k(p′k − pk) ≥ (p′k′ − pk′)

∑
k

µ−i
k p̂k,
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where k′ minimizes (p′k′ − pk′) subject to k′ ≥ K. Since
∑

k µ−i
k p̂k = 0, the result again follows.

Proof of Theorem 2: For all m < m′ let

Sm′
m (p) =

m′∑
k=m

µ−i
k |pk − p| ≥ 0.

Let m(p) be such that pm(p)−1 ≤ p and pm(p) > p. Then,
∑
k≥0

µ−i
k (pk − p) = Sn−1

m(p)(p) − S
m(p)−1
0 (p).

First, consider a case where m(p′) < m(p). Then, (2) and p′ is more sensitive than p for K = m(p)
imply that

Sn−1
m(p)(p

′) ≥ Sn−1
m(p)(p).

But, recall that

Sn−1
m(p)(p

′) + S
m(p)−1
m(p′) (p′) − S

m(p′)−1
0 (p′) = Sn−1

m(p)(p) − S
m(p)−1
0 (p) = 0.

Thus,
−S

m(p)−1
m(p′) (p′) + S

m(p′)
0 (p′) ≥ S

m(p)−1
0 (p).

Therefore,

Spread(p′) = Sn−1
m(p)(p

′) + S
m(p)−1
m(p′) (p′) + S

m(p′)−1
0 (p′)

≥ Sn−1
m(p)(p

′) − S
m(p)−1
m(p′) (p′) + S

m(p′)−1
0 (p′)

≥ Sn−1
m(p)(p) + S

m(p)−1
0 (p) = Spread(p).

Next, consider the case where m(p′) ≥ m(p). Then, p′ is more sensitive than p for K = m(p)
implies that

Sn−1
m(p′)(p

′) − S
m(p′)−1
m(p) (p′) ≥ Sn−1

m(p)(p).

But, recall that

Sn−1
m(p′)(p

′) − S
m(p′)−1
m(p) (p′) − S

m(p)−1
0 (p′) = Sn−1

m(p)(p) − S
m(p)−1
0 (p) = 0.

Thus,
S

m(p)−1
0 (p′) ≥ S

m(p)−1
0 (p).

Therefore,

Spread(p′) = Sn−1
m(p′)(p

′) + S
m(p′)−1
m(p) (p′) + S

m(p)−1
0 (p′)

≥ Sn−1
m(p′)(p

′) − S
m(p′)−1
m(p) (p′) + S

m(p)−1
0 (p′)

≥ Sn−1
m(p)(p) + S

m(p)−1
0 (p) = Spread(p).
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Proof of Theorem 3: We write

Cost(p) =
n−1∑
k=0

µ−i
k pk

p

C

2
pk. (8)

Thus,

Cost(p) =
C

2p

[
Cov(p) + p2

]
.

The result then follows from Theorem 1 and the fact that p(p′) = p(p).
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