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Abstract

This paper points out an empirical puzzle that arises when an RBC economy with

a job matching function is used to model unemployment. The standard model can

generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small

response of unemployment to labor market policies, but it cannot do both. Variable

search and separation, finite UI benefit duration, efficiency wages, and capital all fail to

resolve this puzzle. However, both sticky wages and match-specific productivity shocks

help the model reproduce the stylized facts: both make the firm’s flow of surplus more

procyclical, thus making hiring more procyclical too.

JEL classification: C78, E24, E32, I38, J64
Keywords: Real business cycles, matching function, unemployment insurance



1 Introduction

A model of real business cycles with matching (RBCM) is a natural candidate for ex-

ploring many dynamic policy issues. Postulating a job matching function helps us give a

coherent analysis of unemployment and its response to labor market policies. Moreover,

several authors, starting with Merz (1995) and Andolfatto (1996), have claimed that

endogenizing unemployment by means of a matching function improves the fit of real

business cycle models. Thus it is tempting to use the RBCM framework to measure

the costs of business cycles, to measure the purported benefits of output stabilization,

to ask whether unemployment benefits should be constant over time, or to ask whether

the government should attempt to limit job loss during recessions.

These questions interest us. But when we tried to build an RBCM model to address

them, we quickly encountered problems with the RBCM framework which previous

literature has not pointed out. For our purposes, we hoped to calibrate our model to be

consistent both with business cycle facts and with the effects of labor market policies.

We found it easy to choose parameters to make the cyclical fluctuation in unemployment

as large in the model as it is in the data, or to make the response of unemployment to a

change in the unemployment insurance (UI) benefit as small in the model as it is in the

data. But no parameterization permits the standard RBCM model to reproduce both

these features of the data; improving the fit over the business cycle makes the fit worse

with respect to labor market policies, and vice versa. Similar conclusions hold for the

volatilities of employment, vacancies, and the probability of job finding.

Productivity shocks and unemployment benefits both act on the unemployment rate

through their effect on the surplus associated with employment. Therefore, as we demon-

strate analytically in a simple benchmark RBCM model, there is a close relationship

between the volatility of unemployment over the cycle, and the responsiveness of unem-

ployment to UI benefits. We show that the model’s predictions for these two aspects

of unemployment variability are seriously inconsistent with the data. We then go on

to show numerically that the problem remains even in more complicated and realistic

versions of the model, and is also present but undiagnosed in previous papers.

However, we also propose two possible solutions to the problem: sticky wages, or

embodied technological progress. As in Shimer (2004) and Hall (2004, 2005), we find that

sticky wages help because they make firms’ share of surplus more procyclical, allowing

hiring to vary more at business cycle frequencies without greatly changing the long run

effects of policies. We show that embodied (that is, match-specific) technological change

also increases the cyclicality of the match surplus, especially for the firm, so that we can

get a similar effect without arbitrarily imposing wage rigidities.
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1.1 Stylized facts

We begin by discussing the empirical evidence about the two aspects of unemployment

variation our paper addresses: the cyclical volatility of unemployment, and the response

of unemployment to labor market policy.

Unemployment over the business cycle

Employment varies less than output over the business cycle, but unemployment, by the

same token, is highly volatile relative to its low mean. In seasonally-adjusted US quar-

terly data from 1951:1 to 2003:1, the mean unemployment rate is 0.0567.1 Detrending

with the HP filter (using λ = 1600), we find that the standard deviation of the unem-

ployment rate is 0.00743; that is, the standard deviation is 0.00743
0.0567

= 13.1% of the mean.

By contrast, using the same numbers, the standard deviation of the employment rate is

only 0.00743
1−0.0567

= 0.787% of its mean.

Similarly, if we consider the log of the unemployment rate, we find that its standard

deviation after HP filtering is σU = 0.135. The standard deviation of HP-filtered log

GDP in our data is σQ = 0.0165, so by this measure, unemployment fluctuates much

more than output: the ratio σU/σQ equals 8.18. Other authors roughly agree; Merz

(1995) finds that σU/σQ = 6.11,2 while Greenwood, Gomes, and Rebelo (2002) find

σU/σQ = 7.68.3 Moreover, HP filtering with λ = 1600 removes much of the variation

in unemployment that might usually be considered cyclical. Before HP filtering, the

standard deviation of the log of the (seasonally adjusted) unemployment rate is 0.282

(more than twice the value after HP filtering). Thus by looking at HP-filtered data we

are being conservative in our analysis of the cyclicality of unemployment.

Several related series also show high cyclical volatility. We find that the log of median

unemployment spell duration has a standard deviation of 0.128 after HP filtering, which

is 7.77 times the variability of output; likewise, Greenwood et. al. (2002) state that

duration is 6.87 times as variable as output. In our data, the HP-filtered log of vacancies

(help-wanted advertising) has standard deviation σV = 0.140, so that σV /σQ = 8.49;

Merz (1995) reports σV /σQ = 7.31, while Andolfatto (1996) states that this ratio is

1We use quarterly US data, or monthly US data aggregated to quarterly frequency, from the St.
Louis Fed’s FRED database. We use the series GDPC1 for our measure of real output, UNRATE for
the unemployment rate, HELPWANT for vacancies, UEMPMED for median unemployment duration.
When HP filtering, we always set λ = 1600 for comparability with most related papers.

2Merz uses US quarterly data, 1959:1-1988:2, in logs, HP filtered with λ = 1600.

3Greenwood et. al. use US quarterly data, 1954:1-1991:2, seasonally adjusted, logged, and HP-filtered
with λ = 1600.
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greater than 9. The variability of workers’ probability of job finding is also similar;

Shimer (2005) shows that the coefficients of variation of unemployment, vacancies, and

workers’ probability of job finding are 0.188, 0.183, and 0.17, respectively.4

In our effort to model the cyclical fluctuations of the labor market, we have found

that two other stylized facts help to distinguish between competing models. Cole and

Rogerson (1999) report that job creation is four times as volatile as employment, and job

destruction is six times as volatile as employment.5 The negative correlation between

vacancies and unemployment (the “Beveridge curve”) is also a decisive feature of the

data. After HP filtering, we find that the correlation between the log unemployment

rate and log vacancies is -0.933. Merz (1995) finds that this correlation is -0.95, while

Shimer (2005) reports -0.90.

Labor market policy and unemployment

A large literature has documented the negative effect of unemployment benefits on

employment. Many microeconomic studies have regressed reemployment probabilities

or unemployment durations on the UI benefit replacement ratio. Layard, Nickell, and

Jackman (1991) review this literature and conclude that the consensus range of estimates

for the elasticity of unemployment duration with respect to the unemployment benefit

is from 0.2 to 0.9. Atkinson and Micklewright (1991) come to similar conclusions.

While we simplify the discussion by focusing on the effects of the replacement ratio,

similar quantitative results come from studies of other labor market policies. Meyer

(1990) measures the rise in workers’ probability of job finding as UI benefits expire.

Meyer (1995) summarizes policy experiments in which quick job finding was rewarded

with a lump sum payment. These papers’ estimates indirectly shed light on the effects

of the benefit level too. Costain (1997) argues that Meyer’s (1995) results imply that a

one percentage point rise in the replacement rate should cause a 0.023 percentage point

rise in unemployment, which is an elasticity of 0.17 (assuming an initial unemployment

rate of 6% and a replacement ratio of 45%).

For our purposes, though, what is really interesting is the general equilibrium effect

of UI. Layard, Nickell, and Jackman (1991), in a cross-country regression for the OECD,

report that a one percentage point rise in the UI replacement ratio results in a highly

4US data, 1951-2001, quarterly averages of seasonally adjusted monthly data, expressed as ratio to
HP trend. Shimer includes more of the cyclical variation of unemployment by setting the HP parameter
at λ = 100000.

5US quarterly manufacturing data, from LRD database, 1972:2-1988:4, in logs, seasonally adjusted,
and HP filtered with λ = 1600.
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significant 0.17 percentage point rise in unemployment. Given the median unemploy-

ment rate of 8% and median replacement ratio of 60% in their sample, this works out

to a semielasticity of 2.1 or an elasticity of 1.3. Similarly, Scarpetta (1996) finds a rise

of 0.13 percentage points. More recently, with more data, Layard and Nickell (1999,

henceforth LN99) find that the semielasticity of unemployment with respect to the un-

employment insurance replacement ratio is 1.3, with a standard error of 0.5.6 That is,

a rise in the replacement ratio by one percentage point increases the log of the unem-

ployment rate by 0.013, an elasticity of 0.78. The literature review of Disney (2000)

reports similar numbers. Thus, as we should expect, the general equilibrium effects of

UI on unemployment appear moderately larger than the partial equilibrium effects on

workers’ unemployment durations. We will take the LN99 semielasticity estimate as our

main point of reference.

In general equilibrium as in partial equilibrium, evidence about other policy instru-

ments reinforces the claim that the effects of unemployment benefits are significant but

not very big. Solon (1985) documents the fall in unemployment duration after the im-

position of a tax on UI benefits in the US. Roughly summarizing his results, imposing a

25% tax on a 50% UI benefit decreased unemployment durations of one quarter by 1.2

weeks, implying an elasticity of unemployment to benefits of approximately 0.4. LN99

also studies the effects of changing the duration of UI benefits, and reports that the

semielasticity of the unemployment rate with respect to benefit duration is 0.1. We

will see below that we can test the matching model using this variable too. Regardless

of whether we consider the benefit level or the benefit duration, we run into the same

problem: the RBCM framework can reproduce the effects of labor market policy on

unemployment only if it understates the cyclical variability of unemployment. Quanti-

tatively, the mismatch between policy effects and cyclical variability is similar with both

policy variables.

1.2 Related literature

Two influential studies, Merz (1995) and Andolfatto (1996), showed that including a

matching function improves the fit of RBC models by increasing the persistence of fluc-

tations. Obviously, it also allows them to compare the model to a wider variety of

labor market data. Andolfatto claims success in matching the volatility of employment,

though he does not address the volatility of unemployment and underpredicts the volatil-

ity of vacancies. Merz is fairly successful with all three variables; her model generates

6Regression of log unemployment on replacement ratio and other labor market policy variables, for
20 OECD countries, treating averages for 1983-88 and 1989-94 as separate observations.
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about 80% of the observed standard deviation of US employment and unemployment

(relative to output), and about 60% of that of vacancies.

However, other studies report difficulties with the model. Cole and Rogerson (1999)

show that it is hard to reproduce the negative correlation and persistence of job creation

and job destruction observed in the data, though they do better if they assume a high

baseline unemployment rate (around 15%). Millard, Scott, and Sensier (1997) find

that the fluctuations of employment and unemployment in their RBCM model are too

small and insufficiently persistent. Shimer (2005) documents in detail the difficulty

of obtaining sufficiently volatile unemployment, vacancies, and especially labor market

tightness in the RBCM model. Shimer (2004) and Hall (2004, 2005) argue that sticky

wages are the key to unemployment volatility.

Like those of Shimer and Hall, our paper argues that there is a serious inconsistency

between the standard RBCM model and the data. However, we feel that an important

element is missing in their argument, because their claim that unemployment is insuf-

ficiently variable in the RBCM model is not true in general: in fact, it is specific to

the particular calibration they choose. Shimer and Hall both assume that workers’ cost

of working is low compared to their productivity, so that the match surplus is large.

We point out that when this restriction is removed, it is easy to make unemployment

volatile. If the surplus is small on average, then a small fall in labor productivity may

eat up a large proportion of the surplus, so that realistic productivity fluctuations gen-

erate substantial volatility in vacancies, unemployment, and tightness. In fact, this is

how Merz (1995) succeeded in making these series volatile in her simulations.

Some macroeconomists will agree with Shimer and Hall’s assumption that the match

surplus is large. But undoubtedly others, accustomed to frictionless models where work-

ers’ marginal product equals the marginal cost of working, will be more skeptical. There-

fore we feel it is important to test the model in a more general way that is independent

of any particular calibration. This test is possible because the RBCM model has si-

multaneous implications for business cycle variability and the effects of policies. This

is where we locate the real problem with the standard model: if the match surplus is

small enough to reproduce business cycle effects, then the model greatly exaggerates

the effects of policy. Moreover, we also consider factors absent in the papers of Shimer

and Hall, such as variable search intensity, that might be expected to help the model fit

data. And in the end, we do find a way of resolving the model’s failure without resorting

to nominal rigidities. A flexible-price, optimal RBCM model can fit the unemployment

data well if technology shocks include a match-specific or cohort-specific component, as

they would in the case of embodied technological progress.
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With respect to the impact of policies, many authors have used matching models to

examine the effects of UI benefits; Pissarides (2000), p. 233, lists some of these papers.

Two studies that use matching models to explain cross-country differences in unem-

ployment are Millard and Mortensen (1996) and Ljungqvist and Sargent (1998). One

of the few studies that attempts to model both the cyclical volatility of unemployment

and the response of unemployment to unemployment benefits is Greenwood, Gomes,

and Rebelo (2002). Their model does not fall into the class considered here, because

it has no matching function. Interestingly, though, it suffers from the same failing as

the RBCM models we analyze. It does well at business cycle frequencies, but reports a

much larger response of unemployment to UI benefits than that found in the data.

2 The model

Our general model is a version of the standard RBCM model, as spelled out in Pissarides

(2000) and elsewhere. We simplify by leaving out capital; including it would be likely

to reinforce our result that RBCM models exaggerate policy effects relative to cyclical

volatility, since capital can more easily adjust to long term policy changes than to short

term business cycle fluctuations.7 In hopes of finding a successful version of the model,

we generalize in several ways: we allow productivity to vary across matches, and we

allow separation rates and bargaining power to vary too.

2.1 Values and surpluses

Let Z be a random shock to the productivity of the economy, and let z be the value

of this shock at the time when a given job was formed. We consider a process for the

marginal product of labor y that allows the output of a match to depend on its vintage:

y(z, Z) = 1 + αZZ + ζ(1 − αZ)z (1)

In the usual RBC specification (αZ = 1), aggregate productivity fluctuates because tec-

nology shocks immediately affect all matches. But alternatively, technological progress

could require the creation of new jobs. In that case, productivity would have a match-

specific or cohort-specific component, which would be consistent with Devereux’s (2003)

7We also simplify by ignoring two other generalizations that are unlikely to resolve the dilemma
that interests us. One might want to consider procyclical unemployment benefits (since benefits are
usually computed as a fraction of the wage) or procyclical hiring costs (since the cost of hiring may
consist mostly of labor time). However, these factors would only make firms’ hiring expenditure less

procyclical, so they are not likely to help resolve the puzzle that concerns us.
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evidence that workers tend to find persistently better matches in booms than in re-

cessions. Setting αZ = 0 attributes all fluctuations in aggregate productivity to this

cohort-specific component. The parameter ζ allows us to adjust the impact of the

cohort-specific shock z relative to the aggregate shock Z.

It is well known that in matching models without a capital stock, surpluses and

most decision variables are independent of the unemployment rate. Without mentioning

unemployment, we can write transition probabilities in terms of labor market tightness,

which in turn depends on productivity. To save on notation, we immediately impose

these restrictions by writing the value and policy functions in terms of their appropriate

state variables. Later we point out why these restrictions are valid.

The value for a employed worker, W E(z, Z), satisfies

W E(z, Z) = w(z, Z) + βEZ′|Z

[

(1 − δ(z, Z))W E(z, Z ′) + δ(z, Z)W U(Z ′)
]

(2)

Note that we generalize to allow the separation rate δ to depend on productivity. We

will see that the probability of finding a job can be written as p(S, θ), where S is search

effort and θ is labor market tightness. The value W U(Z) of unemployment is:

W U(Z) = max
S

{

b − h(S) + βEZ′|Z

[

p(S, θ(Z))W E(Z ′, Z ′) + (1 − p(S, θ(Z)))W U(Z ′)
]}

(3)

Here b represents the unemployment benefit, though in general it should also be under-

stood to capture other costs of working, such as disutility costs. S is the intensity of

job search and h(S) are the costs of searching. Most of the time we will fix S = 1 and

h(S) = 0, but we will also investigate the effect of varying search intensity.

The workers’ surplus is defined as the difference between the values of employment

and unemployment; it satisfies

ΣW (z, Z) = W E(z, Z) − W U(Z)

= w(z, Z)−b+h(S(Z))+βEZ′|Z

[

(1 − δ(z, Z))ΣW (z, Z ′) − p(S(Z), θ(Z))ΣW (Z ′, Z ′)
]

(4)

where S(Z) denotes the optimal search at Z. If search is endogenous, then it obeys the

first-order condition

h′(S(Z)) = β
∂p(S(Z), θ(Z))

∂S
EZ′|ZΣW (Z ′, Z ′) (5)

The value to the firm of a filled job, J(z, Z), satisfies the recursive equation

J(z, Z) = ΣF (z, Z) = y(z, Z) − w(z, Z) + β(1 − δ(z, Z))EZ′|ZJ(z, Z ′) (6)

7



Unlike a worker’s job acceptance decision, filling a job is assumed (as usual) to have

no opportunity cost in terms of lost hiring opportunities. Therefore (6) shows that the

surplus ΣF (z, Z) associated with a filled job is the same as the value of that job. Firms

offer new jobs until the expected profits associated with a vacancy are zero. If the

probability of a filling a job is pF (S, θ), then the zero profits condition is:

κ = pF (S(Z), θ(Z))EZ′|ZΣF (Z ′, Z ′) (7)

where κ is the flow cost of maintaining a vacancy.

The wage is determined by the Nash bargaining condition

ΣW (z, Z)

ΣF (z, Z)
=

µ(z, Z)

1 − µ(z, Z)
(8)

Here we generalize again, by letting bargaining power µ vary with the aggregate state.

2.2 The labor market

We assume that total matches M are given by

M = γV 1−λUλS (9)

where V is total vacancies, and U is unemployment. Tightness is defined as θ ≡ V/U

so that it depends on unemployment U rather than effective search US, which is unob-

servable. Matching probabilities are thus functions of tightness and search:

p(S, θ) =
M

U
= γθ1−λS (10)

and

pF (S, θ) =
M

V
=

p(S, θ)

θ
(11)

Equ. (10) implicitly provides a metric for search effort, saying that the individual prob-

ability of finding a job is proportional to search.

Note that equations (4), (5), (6), (7), (8), (10), and (11) are seven equations that

determine the seven functions ΣW (z, Z), S(Z), ΣF (z, Z), θ(Z), w(z, Z), p(S, θ), and

pF (S, θ), without reference to unemployment U . Thus it is reasonable to look for a

solution of these equations that is independent of U .

When we incorporate the dynamics of employment and unemployment in our model,

we must note that αZ < 1 implies a distribution of matches with different productivities.

To deal with this effect in the simplest possible way, in Section 4 where we allow αZ < 1

we will assume that productivity follows a two-state Markov process, taking a low value
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ZLO or a high value ZHI . We then distinguish between the fraction of the labor force in

matches with low productivity, NLO
t , and the fraction matched with high productivity,

NHI
t . Total employment plus unemployment must sum to one:

Nt + Ut ≡ NHI
t + NLO

t + Ut = 1 (12)

If we write total matches at time t as Mt ≡ γθ(Zt)
1−λS(Zt)Ut, then the three labor

market state variables follow the dynamics

NHI
t+1 = (1 − δ(ZHI , Zt))N

HI
t + Mt1(Zt+1 = ZHI) (13)

NLO
t+1 = (1 − δ(ZLO, Zt))N

LO
t + Mt1(Zt+1 = ZLO) (14)

Ut+1 = δ(ZLO, Zt)N
LO
t + δ(ZHI , Zt)N

HI
t − Mt + Ut (15)

where 1(x) is an indicator function equalling 1 if statement x is true, and 0 if x is false.

Here we see that total job destruction is Dt = δ(ZHI , Zt)N
HI
t + δ(ZLO, Zt)N

LO
t .

Finally, given that there is no capital stock, aggregate output Qt is:

Qt = (1 − Ut)(1 + αZZt) + ζ(1 − αZ)(NHI
t ZHI + NLO

t ZLO) (16)

3 Unemployment volatility: cycles and policies

We now consider the simplest and most standard version of this model, in which labor

productivity is just y = 1 + Z, and the separation rate δ and bargaining power µ are

constants.8 For this case, we can characterize the dynamics explicitly, and demonstrate

how the variability of labor market variables over the business cycle is related to their

variability in response to UI policy changes.

Define total surplus as Σt ≡ ΣF
t + ΣW

t . Summing equations (4) and (6), and using

the fact that the worker’s share of surplus is µ, we see that Σ must satisfy

Σt = yt − b + h(St) + β(1 − δ)EtΣ
F
t+1 + β(1 − δ − pt)EtΣ

W
t+1

= yt − b + h(St) + β(1 − δ − µpt)EtΣt+1 (17)

where h(S) = 0 if search is exogenous. In addition, we have the zero profit condition

κ = pF
t EtJt+1 = pF

t (1 − µ)EtΣt+1 (18)

8To simplify notation, we now use the time subscript t to denote dependence on the aggregate state
Zt (and also on Ut where appropriate).
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In equations (17) and (18), pt = γStθ
1−λ
t and pF

t = γStθ
−λ
t depend only on tightness θt

and search effort St. Thus when search is exogenous, (17) and (18) suffice to determine

total surplus Σt and tightness θt.

In the endogenous search case, the first-order condition (5) plus the zero profit con-

dition (18) allow us to eliminate search in favor of tightness:

κθt

γ(1 − µ)
=

h′(St)St

βγµ
(19)

Since h(S) is convex, (18) says that search and tightness are positively related: people

search harder when job market conditions are good. We call the relation S(θ), with

elasticity ηS
θ (θ) ≡ (1 + h′′(S(θ))S(θ)/h′(S(θ)))−1. In what follows, we will assume that

search costs are small on average, but that h(S) is very convex, so that job finding is

relatively inelastic in response to θ. These restrictions suffice for existence of a unique

equilibrium, and as we will see below, large search costs or highly elastic search effort

would have counterfactual implications.

Steady state

In the nonstochastic steady state (indicated by dropping the subscript t), equations (17)

and (18) give two different expressions for Σ. Substituting for p and pF , we have:

Σ =
κθλ

γS(1 − µ)
=

y − b + h(S)

1 − β(1 − δ − µγSθ1−λ)
(20)

If S is exogenous, then the left-hand side is increasing in θ, and the right-hand side is

decreasing in θ, so there exists a unique steady state for θ and Σ.

In the case of endogenous search, we assume S is sufficiently inelastic so that

λ∗
≡ λ − ηS

θ (θ) > 0 (21)

This suffices to make the left-hand side of (20) increasing in θ. Furthermore, the right-

hand side is decreasing if h is sufficiently small but S is sufficiently inelastic; this then

suffices for a unique steady state equilibrium.

We can now use (20) to derive comparative statics for θ in terms of b. Let hats

represent changes in the log of the steady state. Then we have:

λθ̂− Ŝ = −
b

y − b + h(S)
b̂−

(

βµp

1 − β(1 − δ − µp)

)

[(1−λ)θ̂+ Ŝ]+
h(S)

y − b + h(S)
ηh

S(S)Ŝ

(22)
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where ηh
S(S) ≡ h′(S)S/h(S). We now simplify, using the formula (20) for steady state

surplus Σ, and we write the equations in terms of p̂ = (1 − λ∗)θ̂. We obtain:

ηp
b ≡

p̂

b̂
= −

1 − λ∗

λ∗

(

b

y − b + h

)(

1 − β + βδ + βµp

1 − β + βδ + βµp/λ∗ − hηh
SηS

θ /(λ∗Σ)

)

< 0

(23)

The steady state effect of b on unemployment is approximately the opposite of the

effect on the job finding probability p. In steady state,

δ(1 − U) = pU (24)

which implies

ηU
b ≡

Û

b̂
= − (1 − U)

p̂

b̂
> 0 (25)

Equations (23) and (25) show that λ∗ > 0 is necessary for the negative effect of UI on

unemployment that is observed in the data; this justifies assumption (21).

Dynamics

Now consider the dynamics. Suppose that yt = 1 + Zt is AR1 in logs:

ỹt+1 = ρỹt + εt+1 (26)

where ε is i.i.d. with Etεt+1 = 0, and ρ ∈ (0, 1). (All variables with tildes signify

log deviations from steady state, and unadorned variables are steady state values or

constants.) If we linearize the surplus dynamics (17) and the zero profit condition (18)

and impose saddle path stability, we find an explicit formula for the dynamics of the

job-finding probability, in terms of the productivity shock:

p̃t

ỹt

=
1 − λ∗

λ∗

(

y

y − b + h

)(

1 − β + βδ + βµp

1/ρ − β + βδ + βµp/λ∗ − hηh
SηS

θ /(λ∗Σ)

)

(27)

It is the close resemblance between (23) and (27) that enables us to test the model.

Intuitively, the effects of changes in y and b are similar (though of opposite sign) since

they both act on vacancy formation through their effects on the size of surplus. For

comparability with LN99, we state the implications of the model in terms of semielas-

ticities instead of elasticities.9 To keep our results unit-free, we calculate semielasticities

with respect to the unitless variable ξ ≡ b/y, the steady state ratio of the unemployment

9The other crucial reason to state our results in terms of the semielasticity is that it is invariant to
any unobserved disutility component in b. In contrast, an estimate of the elasticity with respect to b or
ξ changes depending on what portion of b we assume consists of UI benefits rather than work disutility.
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benefit to the marginal product of labor. For ease of expression, we call ξ the “replace-

ment ratio”, even though the correct definition is b/w. In steady state, the difference

is small, and we have verified numerically that the quantitative impact of working with

b/y instead of b/w is trivial. Thus we define εp
ξ ≡ ηp

ξ/ξ ≡ ηp
b/ξ, which we call the

semielasticity of job finding with respect to the replacement ratio. Using (23) and (27),

we obtain:

Proposition 1. The dynamic elasticity of the probability of job finding with
respect to productivity, and the long-run semielasticity of the probability
of job finding with respect to the replacement ratio ξ, have the following
ratio in absolute value:
∣

∣

∣

∣

∣

p̃t/ỹt

εp
ξ

∣

∣

∣

∣

∣

=

(

1 − β + βδ + βµp/λ∗ − hηh
SηS

θ /(λ∗Σ)

1/ρ − β + βδ + βµp/λ∗ − hηh
SηS

θ /(λ∗Σ)

)

≤ 1 (28)

This ratio equals one if and only if ρ = 1, that is, if productivity shocks are perma-

nent. This makes sense, because it says that a permanent 1% change in labor produc-

tivity has the same effect on hiring (with opposite sign) as a permanent change of the

unemployment benefit by an amount equal to 1% of labor productivity. For any ρ < 1,

the ratio is strictly less than one. Endogenous search does not alter this ratio if ρ = 1,

and it makes the ratio smaller if ρ < 1, because the search term hηh
SηS

θ /(λ∗Σ) decreases

the numerator proportionally more than the denominator.

The simplicity of Proposition 1 is helpful, but to address familiar data it will be

better to focus on the unemployment rate U instead of the job-finding probability p.

Turning to the dynamics of U , we have:

Ut+1 = Ut + δ(1 − Ut) − γStθ
1−λ
t Ut (29)

In the appendix we calculate the ratio of the standard deviations of the logs (the usual

business cycle volatility measure) of unemployment and the technology shock, which we

can then compare to the semielasticity εU
ξ ≡ ∂ log U/∂ξ of unemployment with respect

to the replacement ratio. Using the notation σx ≡
√

Var(x̃t), we obtain:

Proposition 2. The relative standard deviation of log unemployment to log
output, and the long-run semielasticity of unemployment with respect to
the replacement ratio ξ, have the following ratio:

σU/σQ

εU
ξ

=
(σy/σQ)(σU/σy)

εU
ξ

=

∣

∣

∣

∣

∣

p̃t/ỹt

εp
ξ

∣

∣

∣

∣

∣

(

δ(U + ρ(U − δ))

(2U − δ)(U + ρ(δ − U))

)
1

2 σy

σQ

(30)
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We have seen that the first term is strictly less than one unless technology shocks are

permanent. The second term is less than or equal to one if U > δ, which is true if and

only if δ + p < 1. Thus this restriction is satisfied unless we choose an inappropriately

long period (a Cobb-Douglas matching model like this is not well behaved if periods

are so long that transition probabilities are near one). The last term is less than one in

the data, and it cannot exceed one in our model except in the irrelevant case of a large

positive correlation between y and U . Thus for any sensible parameters, all three terms

in Proposition 2 are weakly less than one, strictly so in the case of the last term.

Returning to the data, we have seen estimates of the ratio of standard deviations of

log unemployment and log output ranging from 6.11 (Merz 1995) to 8.18 (our calcula-

tions from the FRED database). LN99’s estimate of the semielasticity of unemployment

with respect to the replacement ratio is 1.3, with standard error 0.5. Thus the ratio

in Proposition 2 is around six in the data, while the model implies that it should be

substantially less than one. Even if we interpret LN99’s results more generously, by

considering the whole 95% confidence interval for their semielasticity estimate, the ratio

is still off by at least a factor of three.

We must emphasize that this rejection of the model is independent of the mean

level of unemployment U , since both the numerator and denominator of the ratio in

Proposition 2 state the variability of unemployment as a proportion of its mean. In the

numerator, σU is approximately the standard deviation of unemployment divided by U .

In the denominator, εU
ξ is approximately U−1∂U/∂ξ. Hence U−1 cancels. Thus we need

not be concerned (as in Cole and Rogerson 1999) that the success of our model depends

on how we calibrate mean U .10

4 Numerical extensions

We have seen that our simplified model exaggerates UI policy effects relative to the

cyclical variation in unemployment. This cannot be resolved by tinkering with param-

eters, since the upper bound in Proposition 2 is independent of calibration. However,

we must still ask whether some generalization of the model might fit better. Therefore

we now turn to numerical simulations of the general model from Section 2.

For concreteness, we start by calibrating the model in terms of a conservative inter-

pretation of LN99’s results. Our first calibration is chosen to produce a semielasticity

10Equivalently, this says the model would still be rejected if we studied levels of unemployment,
instead of logs of unemployment, since when we cancel out U−1 Proposition 2 becomes a statement
about the variability of unemployment in levels.
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of unemployment with respect to the unemployment benefit of 2, which is in the upper

range of their confidence interval, and roughly equals the largest point estimate we have

seen (that of Layard et. al., 1991).

4.1 Benchmark parameters

The productivity shock Z follows a two-state Markov process, taking the values ZLO =

−0.018 and ZHI = 0.018. The benchmark parameterization assumes that all matches

have equal productivity (αZ = 1). The probability that Z remains unchanged from

one period to the next is denoted ρZ . We simulate the model at weekly frequency, but

report results aggregated to quarterly frequency. In our benchmark parameterization,

we impose an approximate yearly persistence of ρ̄Z ≡ 2/3, implying business cycles

lasting roughly six years, by assuming that Z remains unchanged from one week to the

next with probability ρZ ≡ ρ̄
1/52

Z ≈ 0.9922.11

The elasticity of total matches to unemployment is set to λ = 0.5, consistent with

Blanchard and Diamond (1989). We assume an efficient benchmark equilibrium, setting

µ = 0.5 (Hosios 1990). We calibrate an annual job loss rate of approximately δ̄ ≡ 25%

by setting the weekly probability of job loss to δ ≡ δ̄/52. This is reasonable for the US,

though separation rates are higher for the most unstable classes of jobs and workers. To

get a discount factor of β̄ ≡ 95% annually, we set the weekly discount factor to β ≡ β̄1/52.

The matching efficiency and vacancy cost parameters γ and κ are reset in each simulation

so that steady state unemployment is always U = 0.06 (again, a US calibration) and so

that a vacancy lasts two weeks on average. Vacancy duration is just a normalization:

doubling it would mean doubling vacancies, reducing κ by half, and adjusting γ to keep

total matches, total vacancy costs, and job finding probabilities unchanged. In addition

to constant δ and µ, the benchmark specification assumes exogenous search intensity

(h = 0 and ηh
S = ∞).

On average, the Markov process spends equal time in good and bad states, so mean

productivity y is 1. We set b = 0.745 for the benchmark parameterization; that is, the

cost of working is 74.5% of the mean marginal product of labor. This parameter is cru-

cial, because a larger b implies a smaller match surplus, which makes unemployment and

vacancies more volatile. Intuitively, if b is large, then firms own a highly leveraged claim

on the productivity process y, so that small variations in y or b motivate big changes in

hiring. In fact, (27) shows that as b approaches y + h, the variance of job finding goes

11Although this is less persistence than many business cycle models assume, we prefer this calibration
because longer cycles would make our results more sensitive to the HP filter.
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to infinity: so clearly, the RBCM model cannot be rejected on grounds of insufficient

unemployment volatility alone. Our choice of b = 0.745 sets the semielasticity εU
b to

two (our conservative interpretation of the LN99 results). This b may seem high, and is

much larger than Shimer (2005) assumes. But in the structure of our model, b includes

more than unemployment benefits; it also includes any utility costs (or any other costs)

of working.12 These costs are presumably nontrivial. Table 1 shows the results for this

parameterization, together with the rest of our simulations.

Benchmark results: importance of the size of the of surplus

The first line of Table 1 shows the benchmark results. All relative standard deviations

and correlations refer to data aggregated to quarterly frequency, and results are HP-

filtered with parameter λ = 1600.13

In line 1, the long run semielasticity of unemployment with respect to the unemploy-

ment benefit is εU
ξ = 2.00 by construction. But this parameterization yields insufficient

variability of log unemployment over the business cycle, with σU/σQ = 1.40, when this

ratio is over six in the data. The punchline is that (σU/σQ)/εU
ξ equals 0.70, far too low

for consistency with the data, and also well below our analytical upper bound of one.

Similar results hold for the probability of job finding p: the business cycle variability is

σp/σQ = 1.61 (too low), while the semielasticity εp
ξ is −2.13 (approximately correct; not

shown in table). The cyclical variability of vacancies σV /σQ = 3.23 is also too low.

As we mentioned above, the way to make unemployment more variable is to impose

a larger b, so that the surplus is smaller and more volatile. With the benchmark value

b = 0.745, the total surplus Σ equals 45.2% of the mean quarterly marginal product of

labor. In line 2 we raise the cost of working to 90% of the mean marginal product of

labor (b = 0.90), which shrinks the joint surplus Σ to just 17.7% of the mean quarterly

marginal product of labor. This raises σU/σQ to 3.16, an improvement but still less than

in US data (to actually match the data we need b = 0.95). However, unemployment

also becomes more responsive to the UI benefit, so that εU
ξ = 5.41 now far exceeds the

estimates in the literature. In fact, the key ratio (σU/σQ)/εU
ξ gets worse, falling to 0.58.

Thus we see the main tradeoff: we can make the model more volatile to better match

cyclical data, or less volatile to better match labor market data, but the two goals are

at odds with each other; and in relative terms the tradeoff is worse when b is large.

12In the US, benefits average 44% of the wage for newly unemployed workers, according to Engen
and Gruber (1994).

13The filter has little effect. Without filtering, σQ rises from 1.62 to 1.86, but the ratio σU/σQ, which
is more important, only changes from 1.40 to 1.42.
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In line 3, we go in the opposite direction and decrease b to 0.4, which is Shimer’s

(2005) calibration, and amounts to assuming that the only cost of working is the loss

of the unemployment benefit.14 Total surplus Σ is now 106.3% of the mean quarterly

marginal product of labor. The unemployment semielasticity εU
ξ falls to 0.82, and the

cyclical volatility of unemployment falls to σU/σQ = 0.62. Thus this parameterization

not only produces insufficient cyclical volatility: it is slightly too inelastic to match even

the (small) observed effects of the UI benefit.

Before moving to other versions of the model, we try several parameter changes. In

line 4, we set ρ̄Z = 75%, so that cycles are more persistent, lasting roughly eight years.

In line 5, we increase the separation rate to δ̄ = 40% annually; this would be a reasonable

calibration for the US if we chose to focus on relatively unstable jobs and workers. In

line 6, we lower the elasticity of matching with respect to unemployment to λ = 0.3,

with worker bargaining power µ = 0.5, while in line 7 we lower µ to 0.3, with λ = 0.5.

Though there are mild changes in some statistics, the ratio (σU/σQ)/εU
ξ is robust to a

wide range of parameter changes, staying close to 0.7 in all these experiments.

4.2 Variable separation and variable search

Davis, Haltiwanger, and Schuh (1996) offer evidence that job destruction is strongly

countercyclical. Therefore, it is important to ask whether variation in separation rates

would change our results. The usual model of variable separation (Mortensen and Pis-

sarides 1994) posits a match-specific productivity shock, so that workers and firms

separate when their joint surplus becomes negative. Instead, for simplicity, we just

assume an exogenous separation rate that depends negatively on the aggregate tech-

nology shock, which is essentially what the model of Mortensen and Pissarides implies.

We set δ̄(ZLO) = 0.25 ∗ 1.15 = 0.2875 and δ̄(ZHI) = 0.25/1.15 ≈ 0.2174, so that δ̄

varies by ±15%, depending on Z. We see in line 8 that this variation in separation

brings the cyclicality of unemployment close to that in the data: σU/σQ rises to 5.89.

The semielasticity of unemployment with respect to ξ changes only slightly, so the ratio

(σU/σQ)/εU
ξ improves, rising to 2.79.

The problem is that this way of resolving the conflict destroys the Beveridge curve:

the correlation between unemployment and vacancies switches sign to ρU,V = 0.95. The

fact that variable separation helps increase unemployment volatility, but eliminates the

Beveridge curve, has also been noted by Cole and Rogerson (1999) and Shimer (2005).

14Hall (2004) assumes that b is 35% of the firm’s flow of surplus (in a new match), so his b is even
smaller than that of Shimer.
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Second, although unemployment becomes more variable, the probability of job finding

now varies less: the ratio σp/σQ falls from 1.61 with the baseline parameters to 1.40 with

variable separation. This contradicts the data of Section 1, which showed that job finding

has roughly the same percentage variability as unemployment. Third, the amount of

variation in the separation probability needed here is too large. The relative standard

deviation of job destruction to employment, σD/σN , is now 13.51, well above Cole and

Rogerson’s (1999) figure of six. (In the benchmark, it is exactly one by construction.)

Lines 9 and 10 allow for variable search effort, first considering the relatively inelastic

case ηh
S = 4 and then the more elastic case ηh

S = 2. Variable search effort makes unem-

ployment more cyclical because (as we saw in Section 2) search rises when productivity

is high. With ηh
S = 4, we have σU/σQ = 2.75, while with ηh

S = 2, we match cyclical data

quite well, reaching σU/σQ = 5.31. However, the semielasticity of unemployment with

respect to the replacement rate ξ rises even more, so that the ratio (σU/σQ)/εU
ξ falls to

0.66 when ηh
S = 4, and to 0.59 when ηh

S = 2. As our analytical calculations indicated,

endogenous search only makes the tradeoff worse. Also, sufficiently elastic search effort

again destroys the Beveridge curve: with ηh
S = 2, we have ρ(U, V ) = −0.17.15

4.3 Finite UI benefit duration

Another issue that might matter for our results is that we have assumed that unem-

ployment benefits continue as long as a person remains unemployed. UI benefits might

affect unemployment less if instead they eventually expired, and this could help the

model better match the data. The easiest way to model finite benefit duration is to

make benefits expire with probability φ per period, so that their expected duration is

D ≡ 1/φ. Then there are three possible labor market states: employed, unemployed with

benefits, and unemployed without benefits. The employed workers’ Bellman equation

(2) is unchanged.16 Restricting ourselves to exogenous search effort (S = 1, h(S) = 0),

equation (3) for the value of unemployment with benefits is replaced by

W U(Z) = b + βEZ′|Z

{

p(1, θ(Z))W E(Z ′, Z ′) + (1 − p(1, θ(Z)))[(1 − φ)W U(Z ′) + φW X(Z ′)]
}

(31)

Here W X(Z) is the value of an unemployed worker without benefits, given by

W X(Z) = b0 + βEZ′|Z

{

p(1, θ(Z))W E(Z ′, Z ′) + (1 − p(1, θ(Z)))W X(Z ′)
}

(32)

15Merz (1995) also finds that variable search effort acts against the Beveridge curve.

16This means we are assuming that workers are eligible for unemployment benefits from the moment
of matching. Otherwise we would need to define another labor market state (employed without benefits)
with a different wage.
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Note that here, for the first time, we must distinguish between the UI benefit b−b0 itself

(which expires at rate φ) and the disutility cost of working b0. For consistency with the

US, we set b − b0 = 0.4.

We first consider a mean benefit duration of six months, which is the US norm.

Shorter benefit duration increases the surplus ΣW = W E −W U associated with employ-

ment (this is still the relevant surplus for the Nash wage equation), so with the baseline

b = 0.745 the volatility of unemployment over the cycle is greatly decreased. Therefore,

in line 11 of the table we instead set b = 0.87, bringing the volatility of unemployment

roughly back to its value in the benchmark model of line 1. The implications are very

similar to those of the benchmark model: the effect of benefits on unemployment is

reasonable, but the cyclical variability of unemployment is much too small, so the key

ratio (σU/σQ)/εU
ξ only increases from 0.7 in line 1 to 0.79 in line 11. In line (12), we

instead assume benefits last two years, which is the median duration reported for Eu-

ropean countries in LN99. We again adjust b, this time to 0.80, to keep unemployment

volatility in line with the benchmark model. Results are again similar.

Thus finite benefit duration leaves our main results essentially unchanged. However,

it also gives us an additional way to test the model, because LN99 also study the effects

of the duration of benefits on the unemployment rate. Their Table 15 reports that

the semielasticity of unemployment with respect to benefit duration is εU
D = 0.1. Since

the cyclical variability of unemployment is roughly 7, the ratio (σU/σQ)/εU
D should be

around 70. Instead, the final column of lines 11 and 12 reports values of 7.33 and

11.27, respectively: σU/σQ is too small compared with the effect of duration on the

unemployment rate. Thus considering finite benefit duration reinforces our claim that

the standard RBCM framework understates cyclical volatility relative to the effects of

policies.

4.4 Sticky wages

We have seen that higher b means higher percentage variation in the firm’s surplus over

the cycle, increasing the variability of hiring and unemployment. Another obvious way

to make the firm’s surplus volatile would be to impose some form of wage stickiness, as

has been emphasized recently by Shimer (2004) and Hall (2004, 2005). Furthermore, it

seems natural to assume that sticky wages are only a short run phenomenon, so that

they should have less influence on the long run impact of the UI benefit.

Again, we choose an easy ad hoc way of making wages sticky. We assume that

workers’ bargaining power varies negatively with the technology shock, so that workers

get a larger share of surplus in recessions. This stabilizes the wage over the cycle, and
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thus destabilizes the firm’s hiring incentives. In line 13 we assume that the worker’s

bargaining power increases (decreases) by 15% when the aggregate technology shock is

low (high). This amount of variation in bargaining power suffices to raise σU/σQ to

5.67, roughly consistent with the data. The semielasticity εU
ξ hardly changes, so that

(σU/σQ)/εU
ξ increases to 2.73.

This does not seem like an unreasonable degree of wage stickiness: the ratio of the

standard deviations of log wages and log output is now σw/σQ = 0.59. This is better

than the figure of 0.91 in the baseline model, though still not as low as in the data;

for example, Merz (1995) reports σw/σQ = 0.37 for the US. Therefore, sticky wages

seem a potentially promising way of improving the model’s fit. But obviously they are

controversial, and debate goes on about possible justifications for wage stickiness.

One possible microfoundation for wage stickiness is an “efficiency wage”. Here, if

we follow Shapiro and Stiglitz (1984) by assuming a constant probability of observing

shirking behavior, firms should offer workers a constant surplus just sufficient to prevent

shirking. Thus in line 14 we report a version of our model where the Nash bargaining

condition (8) is replaced by an equation that fixes a constant surplus for the worker at

all times (equal to the average surplus in the benchmark model of line 1). While the

cyclical variability of unemployment increases, the semielasticity of U with respect to ξ

increases even more, so that (σU/σQ)/εU
ξ falls to 0.64. The problem is that the incentive

problem alters wages not only in the short run, but also in the long run. Imposing a

constant surplus for the worker makes hiring incentives fall sharply with the replacement

ratio, so that our efficiency wage model fits less well than our ad hoc sticky wage model,

in which wages adjust flexibly to long run changes in UI.

4.5 Cohort-specific technology shocks

Finally, we argue that a form of embodied technological change could also help solve

the puzzle that concerns us. If technological progress is embodied in new capital, and

requires the hiring of new workers with different skills, then technology shocks should

affect new matches without changing the productivity of old ones. Such a specification

has the advantage that, unlike our baseline model, it makes the wages for new hires more

procyclical than those for continuing jobs. This is a well-established empirical fact (see

for example Bils 1985 and Bowlus 1995). There is also plenty of direct evidence that

workers find higher-quality jobs in booms than in recessions, from data on movements

across sectors (Heckman and Sedlacek 1985), job tenure (Bowlus 1995), and the char-

acteristics of workers and jobs (Devereux 2003). Again, this suggests that productivity

should have a match-specific or cohort-specific component.
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So now we set αZ = 0, making the productivity of each match specific to the time

of its creation. Since shocks no longer affect all matches equally, the persistence of

aggregate output increases, and we therefore decrease the persistence ρ̄Z of the shock

from 0.67 to 0.6 annually. We also initially set ζ = 1, so that the cohort-specific shock

has the same impact as the aggregate shock did; and we lower b slightly to 0.7, to keep

εU
ξ near its target level of two. This simple change of specification, which we call the

“cohort-specific benchmark” in the table, more than suffices to solve the problem. In

line 15, we find that σU/σQ = 9.66, higher than in the data, while εU
ξ = 1.79 is slightly

decreased, so that the ratio (σU/σQ)/εU
ξ rises to 5.40.17 Thus, the cyclical variability of

unemployment is no longer problematic. The job finding probability also varies more:

with filtering, σp/σQ = 11.32.

When technology shocks are disembodied (αZ = 1) and thus immediately affect all

matches, workers and firms know that a high match productivity Z may fall before

separation, while a low Z may rise before separation. In contrast, in the embodied

(αZ = 0) case, the match productivity z will be unchanged until separation; other things

equal, this increases the difference in value between high and low productivity matches,

making hiring respond more strongly to the aggregate state. Since employment now

varies more relative to output, we also find that the average productivity across matches

varies less compared with output than it does in the baseline model. That is, σy/σQ

falls from 0.92 in the benchmark case of line 1 to 0.54 in the cohort-specific benchmark

of line 15. This also improves the model’s fit, since the relative standard deviation of

labor productivity compared with output is only 0.68, according to Merz’ (1995) data.

A disadvantage of this new specification is that the standard deviation of log output

is now too low, falling to σQ = 0.85. But we will fix this by reparameterization below.

A more serious problem is that even though labor productivity now varies less, wages

vary more: σw/σQ more than triples from its benchmark value in line 1, which is al-

ready too high. The reason is that even though a technological improvement leaves the

productivity of existing matches unchanged, it nonetheless raises all workers’ outside

options, and thereby their wages.18 We must emphasize here that matching models do

not actually tie down the wage process. Matching models only specify how the surplus

17Since fluctuations are more persistent under this specification, the results are now more sensitive
to the HP filter. Without filtering, we have σU/σQ = 7.86 instead of 9.66, but this is still sufficient to
match the data.

18Our parameterizations ensure that the outside option never rises enough to make separation op-
timal. But if we allowed a wider range of productivities, and endogenized separation like Mortensen
and Pissarides (1994), then old matches might sometimes separate in response to a positive technology
shock. This would raise the volatility of of job destruction and vacancies, while making unemployment
and job finding probabilities somewhat less volatile.
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is split between the firm and worker, and more than one wage process (including, for

example, an implicit contract model that keeps the wage of existing matches fixed) is

consistent with the model’s implications for the behavior of the surplus. Therefore we

may not want to reject this model on the basis of its wage implications. However, those

who wish to take wage data literally may prefer the sticky wage model of line 13.

Since output varies across matches, it now seems especially important to allow for

variable separation, depending on the match-specific productivity shock. Thus in line

16 we assume that separation rises or falls by 6% when z = ZLO or z = ZHI , respec-

tively. The variability of unemployment increases again, to σU/σQ = 10.02, and there

is little change in the semielasticity εU
ξ . The relative standard deviation of job destruc-

tion compared with employment rises from 1.00 to σD/σN = 2.08. Furthermore, since

productivity now varies across matches, imposing a relation between productivity and

separation does less damage to the Beveridge curve than it did in line 8: unemployment

and vacancies remain strongly negatively correlated, with ρU,V = −0.68.

To further improve the fit, we next raise ζ to 1.6. By increasing the impact of cohort-

specific shocks, this raises the variability of log output, which is too low in line 15. Since

this makes σU/σQ rise even more, when it is already too high, at this point we can afford

to go to the intermediate case αZ = 0.5 where technology shocks have both aggregate

and cohort-specific effects. This parameterization (without variable separation) is shown

in line 17, and both σQ = 1.39 and σU/σQ = 5.36 fit quite well.

Finally, in line 18 we allow the separation rate to vary by ±10%, which gives our

most successful simulation. The ratio σU/σQ rises to 6.43, while the semielasticity of

unemployment with respect to the replacement ratio ξ remains nearly unchanged at

εU
ξ = 1.80, and the ratio (σU/σQ)/εU

ξ = 3.58 is consistent with the data. Again, variable

separation combined with embodied technological change has little adverse impact on

the Beveridge curve: the correlation between unemployment and vacancies is now -0.60.

Also, as in the data, the variability of job finding is similar to that of U , at σp/σQ = 6.79.

The relative standard deviation of job destruction compared with employment is now

σD/σN = 3.36, lower than the figure of six reported by Cole and Rogerson (1999), but a

big improvement relative to the case of constant δ where it is exactly one. Furthermore,

the relative standard deviation of labor productivity σy/σQ = 0.60 now fits well, and

the biggest problem is again the high variability of the wage, σw/σQ = 2.43.
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5 Matching in business cycle models with capital

Up to now we have simplified our calculations by forgetting about physical capital. We

have argued that this is probably unimportant for the issue at hand, but to be sure, we

now consider the models of Merz (1995) and Andolfatto (1996), where capital is included.

While these papers reported some success in modeling the cyclical behavior of the labor

market, when we recalculate their steady states to measure the effects of unemployment

insurance, we find that they suffer from the same problem as our benchmark model:

insufficient cyclical volatility compared with policy effects.

5.1 The model of Andolfatto (1996)

To understand both models it is helpful to start by looking at the surplus. In Andol-

fatto’s case, we calculate that the match surplus is equal to only 17.3% of mean quarterly

labor productivity— close to the lowest surplus we considered, in line 3 of Table 1.19

This suggests that the labor market in his model should be quite volatile.

At first glance, Andolfatto’s labor market appears to work well. His Table 1 shows

that the percentage variability of employment is 0.51 times that of output, compared

with 0.67 in his data. However, this hides a surprising failure to explain unemployment,

because of an unusual calibration. Andolfatto sets the mean employment rate to 57%,

so that the mean unemployment rate is 43%. Unlike many matching papers (including

this one) which ignore the “out of the labor force” state, Andolfatto treats any person

over 16 years of age who is not working as unemployed. This goes far beyond some

authors, such as Cole and Rogerson (1999) or den Haan et. al. (2000), who have claimed

that it is helpful to work with a broader definition of unemployment.

Thus Andolfatto’s calibration grossly overstates the number of people looking for a

job, by including all pensioners, students, and homemakers as inputs to the matching

function. Any given standard deviation of log employment therefore corresponds to

a smaller standard deviation of log unemployment in Andolfatto’s calibration than it

would if baseline unemployment were lower. With his numbers, we find:

σU

σQ

=
1 − U

U

σN

σQ

=

(

0.57

0.43

)

0.51 = 0.68 (33)

19In Andolfatto’s notation, from qJ = κ and J = αΣ we get the total surplus as Σ = κ/(qα) =
0.105/(0.9 ∗ 0.6) = 0.194 in units of quarterly output. (This is equal to µ, the shadow value of
a match, divided by the marginal utility of consumption.) The marginal productivity of labor is
(1 − θ)y/n = 0.64/0.57 = 1.123, so that match surplus is equal to 17.3 percent of quarterly marginal
productivity.

22



roughly ten times lower than our reading of the US data, based on the usual definition

of unemployment.

Furthermore, even if we choose to ignore the low variability of unemployment in

Andolfatto’s model, it also implies insufficient variation in other labor market variables.

For vacancies, Andolfatto’s model yields σV /σQ = 3.2, compared to 9 in his data.

This means that the percentage variability of vacancies is about 4.4. The variability of

tightness is only slightly higher (4.6 percent) since unemployment hardly varies. Using

1 − λ = 0.6 in Andolfatto’s parameterization, the variability of workers’ job finding

probability is 0.6∗4.6 = 2.8 percent. This is about twice the variability of output, while

in the data the probability of job finding varies about seven times as much as output.

Andolfatto’s model has no unemployment benefits, but since they are equivalent to

work disutility in these models, we are able to calculate their effect on his steady state.

We mimic a one percentage point increase in the UI replacement ratio by raising the

utility of the non-employed by one percent of the mean marginal product of labor, scaled

by the marginal utility of consumption. We calculate that the semielasticity of unem-

ployment with respect to the replacement ratio is 2.41 in Andolfatto’s model, almost

twice LN99’s point estimate. But given Andolfatto’s interpretation of unemployment, a

one percent increase in log U means a 0.43 percentage point increase in unemployment;

that is, a one percentage point rise in the replacement ratio increases unemployment

by 2.41*0.43=1.04 percentage points, about six times higher than the slope estimate of

Layard, Nickell, and Jackman (1991). Seen in this way, Andolfatto’s labor market is

both insufficiently volatile over the business cycle, and excessively volatile in response

to UI; the punchline for his paper is (σU/σQ)/εU
ξ = 0.68

2.41
= 0.28.

5.2 The model of Merz (1995)

Merz (1995) comes close to fitting the variability of unemployment and job finding

probability in US data. With her benchmark specification, the standard deviation of log

unemployment over that of log output is 4.77,20 and for the job finding probability it is

5.41. However, if we back out the effect of the unemployment benefit in the same way we

did for Andolfatto, we see that the model exaggerates the sensitivity of unemployment

to benefits. For her model, the semielasticity of unemployment with respect to the

replacement ratio is 6.54. The statistic σU

σQ

1

εU
ξ

is therefore 0.73, so Merz’ model fails by

roughly the same factor as our benchmark model in Section 4.1.

20This is the result of our own calculation and differs slightly from the number in Merz’ Table 2.
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When we calculate the joint match surplus in Merz’ model, it turns out to be only 1.69

percent of mean quarterly marginal product of labor— ten times smaller than anything

we have seen before. Thus Merz achieves sufficient volatility to match business cycles

only by assuming an almost negligible surplus, and in doing so exaggerates the response

to the unemployment benefit.

If anything, the surprising aspect of Merz’ results is how little fluctuation she obtains,

given the tiny surplus she assumes. The explanation lies in the fact that she defines

the surplus differently from all the other papers we have discussed. Most matching

models assume that the marginal disutility of work is constant along the extensive

margin (increases in employment) even if it is increasing along the intensive margin

(increasing marginal disutility as hours per job increase, like Andolfatto assumes). In

contrast, Merz assumes that surplus accrues to a family with a continuum of members,

and that marginal disutility of work is increasing as more family members find jobs. At

the margin in her equilibrium, the disutility from one more job almost equals the wage

income from that job, so the surplus is extremely small. To us, the usual formulation

seems more appropriate, since typical households contain only one or two earners, each

of whom may have a large inframarginal gain when they find a job.

5.3 Other models with capital

Den Haan et. al. (2000) study an RBCM model with an endogenous separation decision.

They are successful in explaining variations in job creation and destruction, and find

that the interaction between job destruction and investment helps amplify shocks. Their

results are consistent with our finding that we can make matching volatile by varying

separation over the cycle. However, our calculations suggest that their model will fail to

generate a Beveridge curve. They do not report the correlation between vacancies and

unemployment in their paper.21

Gomes et. al. (2001) simulate a business cycle model in which individuals search for

jobs. It is not entirely comparable with the models we are analyzing, because there

is no matching function. Instead, the distribution of job offers is exogenous, making

their model a dynamic extension of McCall’s (1970) partial equilibrium search model.

They successfully reproduce the cyclical fluctuations of unemployment. However, they

state that a rise in the replacement ratio from 0.5 to 0.7 makes unemployment increase

from 6.1% to 13.9%, which is a semielasticity of 6.49, at least three times too large to

21Fujita (2003) explores several promising extensions of the den Haan et. al. RBCM model, including
lags in vacancy creation, temporary layoffs, and startup costs for new matches, and finds that these
extensions help generate a Beveridge curve.
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be consistent with the data. Thus their model suffers from the same problem as the

RBCM models we have discussed here.

6 Conclusions

A model of real business cycles and matching implies that match formation depends

on the surplus available to the matched pair. Procyclical employment fluctuations oc-

cur if match surplus rises in booms, and increased unemployment benefits drive down

employment by decreasing match surplus. The standard RBCM model implies a close

relationship between these two aspects of employment variability, which is strongly at

odds with data. To fit business cycle data, the surplus must be small enough so that

productivity shocks have a big effect on vacancies; but to reproduce the observed effects

of policies, the surplus must be large enough so that the unemployment benefit has

a small effect on vacancies. We have shown analytically that these two requirements

cannot be reconciled in a baseline version of the model. We have shown numerically

that this result is robust to endogenous search, endogenous separation, finite benefit

duration, and efficiency wages; we have also argued that capital, variable benefits, and

variable hiring costs are unlikely to resolve the puzzle; and we have argued that the

problem would be more severe if we chose not to HP filter the unemployment data.

Embodied technological change can help reconcile these two implications of the

model, because it makes the surplus accruing to the firm substantially more procycli-

cal, so that hiring, unemployment, and the worker’s job-finding probability all fluctuate

more. Sticky wages have a similar impact on the firm’s surplus, so they also help increase

cyclical variability without affecting the response to labor market policy.

Future research will have to determine whether the standard model’s inconsistency

with the results of empirical work comes mainly from the RBC mechanism, from the

matching function, from the bargaining setup, or from econometric difficulties in esti-

mating the effects of labor market policy. Perhaps one of the variants of the model which

we have proposed will prove to be a satisfactory framework for labor market analysis.

But for now the most important conclusion is that we must be cautious about using

models calibrated to reproduce business cycles as laboratories for labor market policy

experiments.
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Appendix: Linearized dynamics

First we linearize the zero profit condition (18):

λθ̃t − S̃t = λ∗θ̃t = EtΣ̃t+1 (34)

and the dynamics (17) of the surplus:

Σ̃t =
y

Σ
ỹt + β(1 − δ − µp)EtΣ̃t+1 − βµpp̃t +

h

Σ
ηh

SS̃t (35)
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These equations can be simplified by writing p̃t and S̃t in terms of θ̃t and EtΣ̃t+1,

as follows: p̃t = (1 − λ∗)θ̃t, and S̃t = ηS
θ θ̃t, and θ̃t = 1

λ∗
EtΣ̃t+1. The following matrix

system summarizes the dynamics:

(

Etỹt+1

EtΣ̃t+1

)

=

(

ρ 0

−
y
Σ

[

β
(

1 − δ − µp
λ∗

)

+
hηh

S
ηS

θ

Σλ∗

]−1 [

β
(

1 − δ − µp
λ∗

)

+
hηh

S
ηS

θ

Σλ∗

]−1

)

(

ỹt

Σ̃t

)

(36)

The eigenvalues are 0 < ρ < 1 and
[

β
(

1 − δ − µp
λ∗

)

+
hηh

S
ηS

θ

Σλ∗

]−1

. The second eigen-

value is greater than one with exogenous search.22 We restrict our analysis of endogenous

search to the case of sufficiently inelastic search so that this eigenvalue remains greater

than one; thus the system is saddle-path stable, and has a unique equilibrium. The

eigenvector associated with the stable eigenvalue can be written as (1 x)′, where

x ≡
y

Σ
(

1 − ρ
[

β
(

1 − δ − µ p
λ∗

)

+
hηh

S
ηS

θ

Σλ∗

]) (37)

Using the steady state surplus equation (20), this can be written as

x =

(

y

y − b + h

)[

1 − β + βδ + βµp

1 − ρβ + ρβδ + ρβµp/λ∗ − ρhηh
SηS

θ /(Σλ∗)

]

(38)

Saddle path stability implies that x is the elasticity Σ̃t/ỹt. Thus, in terms of the

observable variable p̃, we have:

p̃t = (1 − λ∗)θ̃t =
1 − λ∗

λ∗
EtΣ̃t+1 =

1 − λ∗

λ∗
ρxỹt (39)

Again we see that our assumption (21) of sufficiently inelastic search so that λ∗ > 0

is essential to make the model consistent with data: (39) shows that job finding is

negatively related to labor productivity if λ∗ < 0.

Now using formula (38) for x, we obtain equation (27), which is used to derive

Proposition 1.

For Proposition 2, we linearize the dynamics (29) of unemployment, to obtain:

Ũt+1 = (1 − δ)Ũt − δ

(

1 − U

U

)

(1 − λ∗)θ̃t − δ

(

1 − U

U

)

Ũt (40)

On the saddle path, we have:

θ̃t =
1

λ∗
EtΣ̃t+1 =

1

λ∗
ρΣ̃t =

1

λ∗
ρxỹt (41)

22We assume periods are short enough that p is small, so that this eigenvalue is positive.
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so the dynamics of U become Ũt+1 = AŨt − Bỹt, where we define A ≡ (U − δ)/U and

B ≡ δ((1 − U)(1 − λ∗)/(Uλ∗))ρx. This implies:

Var(Ũt) =
B2(1 + ρA)

(1 − A2)(1 − ρA)
Var(ỹt) (42)

which simplifies to:

σU

σy

≡

√

Var(Ũt)

Var(ỹt)
= ρx(1 − U)

(

1 − λ∗

λ∗

)

√

δ(U + ρ(U − δ))

(2U − δ)(U + ρ(δ − U))
(43)

This equation, together with the formula (38) for x, and the formula (23) for the steady

state comparative statics, gives us Proposition 2.
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Parameters Results
σQ ρQ−1

σy

σQ

σw

σQ

σp

σQ

σU

σQ
ρU,V εU

ξ
σU

σQ

1

εU
ξ

σU

σQ

1

εU
D

1) Benchmark 1.62 0.84 0.92 0.91 1.61 1.40 -0.80 2.00 0.70 -
2) b = 0.9 1.84 0.86 0.81 0.91 3.65 3.16 -0.80 5.41 0.58 -
3) b = 0.4 1.54 0.84 0.96 0.93 0.72 0.62 -0.80 0.82 0.76 -
4) ρ̄Z = 0.75 1.55 0.87 0.91 0.93 1.68 1.48 -0.83 2.07 0.71 -
5) δ̄ = 0.4 1.64 0.84 0.91 0.94 1.69 1.52 -0.89 2.00 0.76 -
6) λ = 0.3 1.70 0.85 0.88 0.95 2.37 2.06 -0.66 2.89 0.71 -
7) µ = 0.3 1.61 0.84 0.92 0.82 1.54 1.33 -0.80 2.04 0.65 -
8) δ varies with Z by ±15% 2.31 0.88 0.64 1.00 1.40 5.89 0.95 2.11 2.79 -
9) ηh

S = 4 1.78 0.85 0.83 0.95 3.18 2.75 -0.60 4.14 0.66 -
10) ηh

S = 2 2.21 0.87 0.67 1.01 6.14 5.31 -0.17 8.98 0.59 -
11) Benefits last 6 months, b = 0.87 1.59 0.84 0.94 0.94 1.60 1.45 -0.86 1.83 0.79 7.33
12) Benefits last 2 years, b = 0.80 1.61 0.84 0.92 0.92 1.64 1.44 -0.82 1.96 0.73 11.27
13) µ varies with Z by ±15% 2.27 0.87 0.65 0.59 6.55 5.67 -0.80 2.08 2.73 -
14) Efficiency wages 1.76 0.85 0.84 0.82 2.97 2.58 -0.80 4.00 0.64 -
15) Cohort-specific benchmark 0.85 0.93 0.54 3.64 11.32 9.66 -0.77 1.79 5.40 -
16) Cohort-specific, δ varies with z by ±6% 0.97 0.94 0.47 3.56 11.07 10.02 -0.68 1.80 5.56 -
17) Cohort-specific, ζ = 1.6, αZ = 0.5 1.39 0.88 0.67 2.29 6.28 5.36 -0.77 1.77 3.02 -
18) Cohort-specific, ζ = 1.6, αZ = 0.5, δ varies with z by ±10% 1.55 0.89 0.60 2.43 6.79 6.43 -0.60 1.80 3.58 -

Notes:
Benchmark: αZ = 1, Z = ±0.018, ρ̄Z = 2/3, β̄ = 0.95, δ̄ = 0.25, λ = µ = 0.5, b = 0.745, ηh

S = ∞

Cohort-specific benchmark: αZ = 0, Z = ±0.018, ζ = 1, ρ̄Z = 0.6, β̄ = 0.95, δ̄ = 0.25, λ = µ = 0.5, b = 0.7, ηh
S = ∞

σx: standard deviation of log x (quarterly)
ρU,V : correlation between log U and log V (quarterly)
ρQ−1

: annual first order serial correlation of log Q
ηy

x: elasticity of y w.r.t x
εy
x: semielasticity of y w.r.t x

Table 1: Numerical results
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