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Abstract

The first contribution of this paper is to provide a framework, a model together with a cor- 
responding equilibrium notion, suitable for the study of the interaction between insurance 

and dynamic financial markets. This framework is used to prove the central result in the 
paper: in equilibrium agents purchase full insurance coverage, despite insurance prices that 

are not actuarially fair. The paper identifies three conditions which together explain why 
buying full insurance is optimal for any risk-averse individual even in the presence of loaded 

insurance prices: (i) insurance contracts are priced competitively, (ii) financial prices include 

a risk premium only for undiversifiable risk, and (iii) financial markets are effectively com- 
plete. An implication is that in this model disasters can be insured by fully reserved stock 

insurance companies. 
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rate is assumed to be zero for convenience. 
they are representative of the kind of numbers that can be obtained from a numerical example. The interest 

1 All numbers for the example are made up (coconut trees only produce around 50 coconuts per year) but 

shares of an insurance company at the end of the year will receive a dividend equal to the 

market, which is open every day, and where a riskless bond is also traded. Anyone holding 
the end of the year. Insurance companies also issue shares in the island’s booming stock 

of the year, it is not traded during the year, and the corresponding indemnities are paid at 
companies that compete fiercely for customers in prices. Insurance is sold at the beginning 

independent from one tree to another). Suppose that insurance is issued by three insurance 

tree is hit by lightning, which occurs with 10% probability per year (assume the risks are 
year’s time. All villagers are exposed to the risk of losing 80% of the coconuts if their 

archipelago. Each villager owns a coconut tree which will produce 1.000 coconuts in one 

are 50 villagers living on an island which is the only source of coconuts for the nearby 

To illustrate the main ideas in this paper, consider the following simple example:1 there 
the sense that it decentralizes a Pareto optimal risk sharing rule.

of the companies that sell insurance. Moreover, it is shown that equilibrium is efficient in 

general equilibrium model, where agents not only buy insurance, but can also invest in shares 

coverage, even when insurance prices are not actuarially fair. This is demonstrated using a 

presence of loaded insurance prices. This paper shows that it is optimal to purchase full 
flexible, efficiency and equilibrium go hand in hand with full insurance coverage even in the 

and the main contribution of this paper, is that when financial markets are sufficiently 

provides rich insights on the workings of modern insurance markets. The first such insight, 

trading in financial markets’. Including financial markets as an integral part of the analysis 

This paper provides a novel framework with which to study insurance without ‘bypassing 

behavior under risk.” Marshall (1974b, p675)

assets, the formal model in this paper bypasses an important aspect of consumer 

portfolio and use the insurance market to insure their personal risk. In ignoring trade in financial 

“Consumers trading in both markets at once use the financial market to diversify their investment 



insurance premia collected by the insurance company at the beginning of the year minus 

the indemnity payments that are due—if indemnity payments are greater than the premia 

collected, the shareholders will have to make up the difference.

The results in this paper say that in an equilibrium of this economy all villagers will buy 

full coverage (i.e., receive 800 coconuts in the event of a loss) and they will pay a premium 

which will be more than 80 coconuts, say 90 coconuts, to the insurance companies. The 10 

coconuts the insurance companies receive from each villager over and above the actuarially 

fair price of 80 will be redistributed to the insurance companies’ shareholders to compensate 

them for the risk of owning shares—the risk that indemnity payments are not equal to their 
expected value and that the indemnities tend to be high (and dividends low) when coconuts 

are scarce. This paper shows that all the villagers will own shares and their asset trading 

behavior can be described using a single fully diversified portfolio, for example, a portfolio 

that puts the same weight on each of the three companies. But, if villagers have different 

degrees of risk aversion, they will invest different amounts of wealth in the portfolio relative 
to the riskless bond: those with greater risk aversion will have more wealth invested in risky 

insurance company stocks. As time passes and storms come and go, sometimes lightning 

will hit some trees and sometimes not. These news affect the probability and amount of 
indemnities each insurance company will pay and hence the dividends to shareholders and 

current share prices. Villagers will react to these changes in share prices and future dividends 

by readjusting the amount of money invested in the risky portfolio. The current paper shows 

that not only is the villager’s behavior just described optimal, but also, that the economy’s 
institutions: private insurance combined with trading on insurance company shares, leads 

to an optimal distribution of the risk in the island amongst all villagers.

The first step is to set up a general model of an economy in which private insurance is 
available and insurance company shares are traded. Then, an appropriate notion of equilib- 

rium is defined. Having developed the necessary tools, the paper presents the main results: 

first, it is shown that there exist efficient insurance market equilibria and that the number 

of actively traded financial assets needed to attain efficient allocations can be as few as two. 

Then, the central result of the paper is given: in efficient equilibria agents buy full insurance. 
This is shown to hold despite strictly positive loadings on insurance. The paper identifies 
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three conditions which together explain why buying full insurance is optimal for any risk- 

averse individual even in the presence of loaded insurance prices. These three conditions 

are formalized in the paper and can described as requiring that (i) insurance contracts be 

priced competitively, (ii) financial prices include a risk premium only for undiversifiable risk, 

and (iii) financial markets are effectively complete. Conditions (i) and (ii) ensure that the 
price of insurance is “economically fair”, i.e. it exactly compensates for the actuarial and 
the economic risk (the probability and magnitude of indemnity payments plus the market 

price for the undiversifiable component of insurance risk, minus the time value of premium 

payments), and Condition (iii) says that given a sufficient amount of initial capital, any 

Pareto efficient consumption allocation can be constructed by trading in financial markets. 
These results imply that in this model disasters can be insured by stock insurance com- 

panies when those companies are required to reserve in full (so that there will never be a 

shortfall in insurance company assets) or when they are fully assessable (owners are liable 

for any liabilities not covered by firm assets, as are private Names for the liabilities of their 

Syndicates at Lloyd’s of London). 
Another result obtained here is to show that optimal trading strategies, which are usually 

obtained as the solution of a stochastic differential equation, can be described explicitly in 
terms of (deterministic) equations. 

Methodologically, the paper makes two contributions: the model and the notion of equi- 

librium. The model developed in this paper generalizes those in the insurance literature by 

allowing the joint analysis of the market for private insurance and continuously open finan- 
cial markets. The model also permits great heterogeneity in preferences and endowments. 

The insurance market equilibrium is an equilibrium concept specially suited for problems 

of insurance, where contracts that are not traded dynamically (personal insurance) coexist 

with actively traded financial ones (bonds and stock company shares).

A final contribution of this paper is to provide a unifying framework for a number of 
existing results. For example, as markets are frictionless and there are no agency costs 

reinsurance is redundant as put forward in Doherty and Tini˘ (1981). In fact, as investorsc 

will always hold a fully diversified portfolio of shares, the number of insurance companies is 
irrelevant (as long as they act competitively). A second example is the characterization of 

3
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equals the one obtained here for the special case of risk-neutral insurers.

that will depend on the aggregate price of risk and their corporate risk aversion and the loading they obtain 
and risk-averse insurance firms that invest in a competitive financial market. These firms set premium prices 

return for coverage which does not depend on total loss but in which they hold “stock” in an 
2 MacMinn and Witt (1987) analyze the determination of the loading with monopolistically competitive 

be thought of as having a kind of split personality in which they make a certain payment in 
equilibrium in Kihlstrom and Pauly (1971): “Persons who bear part of the total loss might 

The central result in this paper formalizes for the first time the following description of 

Related Literature 

Only the short and simpler proofs are in the text, the rest are in the Appendix. 

and concludes with some comments on future research.

main results of the paper, discusses the special case where agents have HARA preferences, 
equilibrium result in context, considers several extensions of the model and their effect on the 

decision, as well as including other interesting results. The final section puts the efficiency of 

behind the central result and identifies the three conditions that help explain the insurance 

buy full insurance coverage despite unfair prices. The fourth section analyzes the causes 
characteristics of efficient equilibria are determined, and it is shown that it is optimal to 

second section. These set the stage for the central result in the third section, where the 
of an insurance market equilibrium. Then, the first results on efficiency are presented in the 

budget constraints. The section concludes with a short review of the model plus the definition 

and risks, the insurance market and the stock market (contracts and pricing), and agents’ 
model is new, the section provides a detailed description of its different aspects: preferences 

of the more relevant articles in the literature. The next section introduces the model. As the 

The paper proceeds as follows: this introduction concludes with a brief overview of some 

from Borch (1962) to Aase (2002)).2 
interaction of the risk aversions of insurance companies and reinsurers (as in many papers 
with the approach that the loading is determined from the insured’s willingness to pay or the 

pursued in Ellickson and Penalva (1997), Aase (1999) and Schweitzer (2001), and it contrasts 

the loading using the market price for risk and its actuarial properties. This is the approach 
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3 The relationship between the efficiency results in this paper and existing ones is analyzed in detail in 
Section 5.1. 

Penalva (2001) in a number of ways. Most importantly, in this paper insurance contracts 
equilibrium perspective. The present analysis is a general equilibrium one and differs from 

Somerville (2004), as a partial equilibrium problem while Penalva (2001) takes a general 

investment decisions is treated in Smith and Mayers (1983), Eeckhoudt et al (1997) and 

able asset and studying its price and demand. The interaction of individual insurance and 

The current paper extends the literature by formally including insurance as a nontrade- 

Harrington and Niehaus (1999), Aase (2001), Christensen et al (2001), Penalva (2001). 
The financial market based approach to insurance is studied in Ellickson and Penalva (1997), 

Zanjani (2002)). 
reinsurance (Borch (1984), Doherty and Tini˘ (1981), Froot (2001), Jaffee Russell (1997),c 

insurance contracts (Cummins and Mahul (2003), Cass Chichilninsky and Wu (1996)), or via 

e.g. via mutual insurance companies ( Doherty and Dionne (1993)), via the design of private 
mechanisms other than financial markets to implement efficient risk sharing arrangements, 

implement efficient risk-sharing. Based on these early results, many researchers have studied 

and one that motivates our analysis of the role of financial markets as an institution to 
on the Law of Large Numbers)—an argument repeated in different forms in the literature 

catastrophic insurance that cannot be obtained from a reserves-based approach (which relies 

discusses how this (mutuality) approach to insurance provides a solution to the provision of 
established the mutuality principle for characterizing efficiency under risk. Marshall (1974a) 

extensive literature on the efficiency of insurance markets.3 Borch (1962) and Wilson (1968) 

literature. We will restrict attention to the closest references. For example, there is an 

additional results that extend and complement a large number of results in the existing 

While the main contribution of the current paper is entirely original, it also contains 

that these conditions could also hold out of equilibrium.

identifying the conditions under which equilibrium implies full insurance demand and show 

in Kihlstrom and Pauly (1971) are greatly generalized. Also, the analysis goes further by 
in the original). In the current paper insurance firms are explicitly included and the results 

insurance “firm” which makes their final wealth positions vary with the total loss” (quotes 
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dates zero and one is equal to p. 
into a fixed loss, L, of date one income. The probability that agent i has an accident between 
point between dates zero and one, each agent may suffer an accident (at most) that translates 

Endowments: Each agent, i, has a constant income at each date (wi,0 , wi,1 ). At some 

standard Inada conditions (described in Appendix A).

where both ui and vi are increasing, strictly concave differentiable functions satisfying the 

Ui (x) = ui (x(0)) + βi E [vi (x(1))] ,

Assumption 1: For all i = 1, . . . , n, 

described by standard risk-averse expected utility functions:

Preferences: In this economy there are n < ∞agents with heterogenous preferences 

considered in Section 5.3). 

The basic model is that of a two-date economy, E⇔ with a finite number of agents who have 
heterogeneous von Neumann-Morgenstern preferences and risky endowments (extensions are 

The Basic Economy: Preferences and Risk1.1 

refer back to sections 1.1 and 1.2 as needed.

rized briefly and the notion of a competitive insurance market equilibrium is defined, and 

the model. The eager reader may jump ahead to subsection 1.3, where the model is summa- 
The following two subsections describe in detail all the different components that define 

notion provide the basic tools with which the economic results of the paper are demonstrated. 

the notion of a competitive insurance market equilibrium. The model and the equilibrium 
risks with non-traded private insurance and a financial market with continuous trading, plus 

This section contains the basic methodological contribution of the paper: a model of private 

The Framework 1 

constructive. 
prices. Technically, this paper also differs in that the proofs used here are more elegant and 

the current paper focuses on the details of insurance demand, investment decisions, and 
are not tradable. Also, Penalva (2001) looks for conditions that will ensure efficiency while 
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transfer of the contract to certain prespecified third parties, etc.
   5Thus, for all i, Ii = {(αNi (1))α�[0,L] }. 

one individual, whose payments depend on special non-individual specific events, with clauses that allow the 
the current richness and complexity of the practice of insurance contracts: contracts who cover more than 
but is highly simplified. A general definition of an insurance contract would include caveats to account for 

4 Insurance markets are extremely rich and complex. The description just provided applies quite generally 

(no coverage) and all of L (full coverage).5

Let I denote the set of non-traded contracts, which is the union of the set of non-traded 

contracts available to each individual, Ii . Each agent can purchase private insurance, a 

contract that pays him only in the event that he has an accident (the event: ¶Ni (1) = 1˝) 

and can choose what amount he wants reimbursed which can be anything between nothing 

specific occurrences which cannot be transferred to a third party.4

representatives) that specifies payments to the individual depending on certain individual- 

are contracts settled via bilateral negotiation between an individual and a corporation (or its 

vided in the form of private, personalized, non-transferable contracts. Insurance contracts 
Non-traded Contracts: A basic characteristic of private insurance is that it is pro- 

(financial market). 

non-traded contracts (private insurance) and a sector with continuously trading contracts 

In addition to preferences and endowments, the model includes two sectors: a sector with 

Insurance and the stock market1.2 

at least one i. All agents have the same priors on the distribution of N.

where P r(ıNi (1) = 1˝) = p � (0, 1), L > 0, and wi,0 ≥ 0, wi,1 ≥ L with strict inequality for 

ei (1) = wi,1 −Ni (1)L,&ei (0) = wi,0

Assumption 2: Agents endowments are:

Let ei ≡ (ei (t))t�{0,1} denote agent i’s endowment and e ≡(e(t))t�{0,1} , e(t) =

the aggregate endowment. Then: 

n 
i=1 ei (t),

keeps track of the total number of accidents. 
only take values 0 or 1. The vector N(t) ≡(N1 (t), . . . , Nn (t)) keeps track of each agent’s 

n 
i=1 Ni (t) accidents, and N (t) ≡ 

i between date zero and t � [0, 1]. As each agent can have at most one accident, Ni (t) can 
Risk: The random variable Ni (t) keeps track of the number of accidents suffered by agent 



8

pursued by the insurance company with the premia collected will not add or subtract value to the company. 

6 In the current frictionless model, this assumption is without loss of generality as the investment strategy 

random variable, x, let EQt [x] denote the expectation of xconditional on information avail- 

Kreps(1979)), where the expectation is taken with respect to available information (for any 

be priced as the present expected discounted value of its future payments (Harrison and 

sure, Q, and an interest rate process, r(t),such that the price of any (traded) asset can 
No arbitrage in frictionless financial markets implies that there exists a probability mea- 

by the desire to control risk exposures. 

(described by an objective probability measure, P), so that trades will be motivated purely 

prices at any time without any costs, frictions or constraints. Agents have common priors 

opportunities exist. Agents can go to the stock market and trade shares at the announced 

no private information or agency costs and the auctioneer sets prices such that no arbitrage 

at any time (t � [0, 1]), called a stock exchange. This financial market is an institution in 
which an auctioneer continuously sets prices to facilitate share trading. We assume there is 

The shares issued by insurance companies can be traded in a frictionless financial market 
Pricing in Financial Markets: 

dj . The price of this claim is determined in financial markets.

of the shares issued by insurance company j= 1, ...,Jis represented by a random variable, 

all premia are invested in riskless bonds.6 The claims that will be received by the owner(s) 
dates zero and one) minus any indemnities paid at date one. It is convenient to assume that 

claim on the premia collected by the insurance company (plus any interest earned between 

divisible) shares at date zero. The total number of shares is normalized to one. A share is a 
J insurance companies who are fully equity financed and each company issues (infinitely 

insurance firm is independent of its financing strategy. For simplicity we assume there are 

such a setting, the classic result of Modigliani and Miller (1958) applies: the value of the 
will be satisfied, i.e. there is no bankruptcy/insurance companies are fully assessable. In 

debt, etc.). Financial markets are frictionless and all claims issued by the insurance company 
issue financial contracts that are tradeable in stock markets (insurance company shares, risk 

An insurance company is an institution which sells private insurance contracts and can 
Insurance companies and Traded Contracts:
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rate, λi (t), which is defined by the function η  : [0, 1] × ¶0⇔ 1, . . . , n℘  → R:

                                    � 

                                    � η(t, N (t− )) if Ni (t− ) = 0 

 

To better understand this assumption consider the following three examples:

i

                           λi (t) = 
                                   0if
Example 1 (constant hazard): 

  N (t− ) = 1 �
If the hazard rate is constant, η(t, N (t− )) = λ, then for any i the distribution of the arrival 

time of an accident to i is iid exponential with parameter λ and the total number of accidents, 

Assumption 3: For each i, the dynamics of Ni (t), t � [0, 1] is described by the hazard 
described by a common hazard rate, λ(t), as follows:

themselves depend on who has had accidents. For any random process ¶§⇐∫⇒♦s�[0,1] and any 

t � (0, 1], define x(t− ) = lims↑t x(s). The process of the arrival of accidents to agent i is 

panies, which depends solely on the indemnities they have to pay out. These indemnities 
Information: Insurance company shares are claims on the performance of those com- 

are described by their no-arbitrage prices and denoted by D = ¶Sj (t)t�[0,1] ♣| = 0, 1, . . . , J℘  . 

The set of assets traded in stock markets (insurance company shares plus the riskless bond) 

r(s)ds .
t

≡exp −
1

S0 (t) = e −r(1−t)

assumed, promises to pay one unit of consumption at date one, d0 = 1, has price S0 (t) where 

 1 
0 r(t) dt be the interest rate, so that the price of the riskless bond which, is Let r = 

prices. 

to P ). This object plays a key role in the results of the paper as it is used to describe market 
Note that ξ(1) = dQ/dP is the Radon-Nikodym derivative (the density of Q with respect 

ξ(t) =
  ξ(1)dQt
          ≡ 
EPt [ξ(1)]dPt

Q = P · ξ(1),

Define the likelihood ratio process, ξ(t), as

(1)P −a.s.r(s) dst

R1
−Sj (t) = EQt dj e�t � [0, 1], 

t, Sj (t), which promises claims dj at date one is given by:

able at date t using probability measure Q).Thus, the price of a share in company j at date 
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weights. 
does not satisfy this additional condition can be made to satisfy it by a very small change in the portfolio 
This technical condition is generally satisfied by almost all fully diversified portfolios. In fact, a portfolio that 
{N (t) = n} for all t. This assumption ensures that price of the portfolio always responds to new accidents. 

θj (t)(Sj (t) − Sj (t, N (t) + 1)) = 0 P-a.s. on 
an extra accident (to any of the consumers that have not had an accident yet) at date t. Then, a self-financing 

J
P 

j=1portfolio will be assumed to satisfy an additional condition:

be the price of security j, calculated using Condition 1 but changing the current history of events by adding 
Further, we assume that a self-financing portfolio satisfies an additional technical condition. Let Sj (t, N (t)+1) 

�t � [0, 1]. θj (s) dSj (s),
t

0j=1j=1 j=1

j

(Q, r), a self-financing portfolio of risky shares, (θj (t))Jj=1

exists a deterministic function g : R → R such that

portfolio is fully diversified in the sense that dividends from the portfolio only depend on 
7 A portfolio of risky shares is self-financing if

J J 
j j 

X θ (t)S (t) = X θ (0)S (0) + X Z 
J

j

= g(e(1)).7 Then, the
t�[0,1]

J
j=1 θj (1)dj (1)

is fully diversified if there

that of a fully diversified portfolio of risky shares. Given a set of prices described by the pair 

Diversified Portfolios: A special construct that will useful throughout the paper is 

the tree was planted, e.g., let η(t, N (t−)) = βtα with β > 0 and α > 1.

tree becomes unproductive between today and tomorrow is increasing with the time since 

One way to incorporate this risk into the model is by assuming that the probability that a 

unproductive. This risk is independent from one tree to another and increases with age. 

sume all trees are planted at the same time. As time passes a tree may randomly become 
Example 3 (aging): consider the risk of coconut trees becoming unproductive and as- 

hazard rate will then be: η(t, 0) = λ and η(t, m) = λγ for m = 1, . . . , n.

rate for every tree is λ. If one agent’s tree is hit by a hurricane at time s, so that N (t) ≥  1 

for t > s, then the proximity of a hurricane increases everyone else’s hazard rate to λγ. The 

using two constants, λ > 0 and γ > 1, as follows: at the beginning, if N (t) = 0, the hazard 
the example used in the introduction. Describe the risk of a hurricane affecting any one tree 

Example 2 (hurricanes): consider the risk of a hurricane destroying the coconut trees in 

λ = −ln(1 −p).p = 1 − exp(−λ) �

following equation: 
N (t), is similar to a Poisson process. Note that the parameter λ is related to p via the 



   I≡kSi −e−r EQ [kNi (1)]. This 
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on the price of the insurance company is to change it by

            Ian asset: kSi er of date one consumption. The effect of selling this contract at date zero 

 ISi to agent i. This contract represents a liability: k ·Ni (1) of date one consumption, and 

consider the following thought experiment: a company sells kunits of coverage at price at 
petition (e.g., Bertrand-type successive price cutting) among insurance firms. For example, 

highly illiquid assets). But, this condition is justified because it arises as the result of com- 

condition is not defensible using arguments based on arbitrage (as insurance contracts are 
mined as if it were a tradeable financial asset satisfying the no-arbitrage condition. This 

This condition states, literally, that the competitive price of insurance should be deter- 

(2) ISi = e−r EQ [Ni (1)]

equation (1), insurance prices are competitive under (Q, r) if for all i,

Definition 1 In an economy where the pair (Q, r) prices all traded assets, D⇔ according to 

competitive insurance prices as follows: 
stituted and prices should reflect the lack of bargaining power between the parties. Define 
sufficiently large n and J. Therefore, any of the parties, buyer or seller, can be easily sub- 

J companies all of which have the same ‘technology’ for providing insurance, at least for 

tential insureds, all with the same risk (p, L).The seller (insurance company) is one of 
insurance contracts should be priced “competitively”. The buyer (insured) is one of n po- 

The sustitutability between consumers and between insurance companies suggests that 

bilaterally it is not obvious how their prices will be determined.

A key element of the model proposed here is the presence of non-traded contracts, I. 

Given that we are interested in insurance contracts which are not traded and are negotiated 

Insurance Pricing 

(insurance companies), i.e. θj (t) = 1/J, j = 1, . . . , J.

weighted portfolio, a portfolio which puts the same weight in each of the Jrisky assets 
This paper will make use of a particular type of fully diversified portfolio: the equally 

(Borch (1962) and Wilson (1968))— and we will refer to it as the mutuality property. 
among other things, to characterize efficient risk sharing rules by the mutuality principle 

what happens to the economy on aggregate. This property is very important—it is used, 
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8                                              IA formal and detailed description of Bi (D, Si ) is included in Appendix A. 
asset and insurance prices form a competitive insurance market equilibrium if agent’s con- 

For this economy, agent’s consumption, insurance and investment decisions together with 

enters the stock market.

prices change over time as new information on the final value of insurance company shares 

                                                                                       Icompanies, which can be traded at any date, t � [0, 1]. Prices of 

insurance contracts, Si , are 
determined by competition, while share prices, Sj (t), are determined by no-arbitrage. Share 

only at date zero. There are also financial assets, D¬ a bond and shares of J insurance 

(assumption 2). There are non-traded private insurance contracts, I⇔ which can be bought 

zero which are subject to a common type of shock, with probability pand of magnitude L 

There is an economy, E⇔ described by n heterogeneous agents with von Neumann-Morgenstern 

expected utility, Ui , who are risk averse (Assumption 1) and have incomes at dates one and 

Model Overview and Equilibrium1.3 

and trading opportunities.8 
i.e., the set of consumption allocations the agent can achieve given his endowment, prices 

                                                  ITo reduce notation, for each agent i, let Bi (D, Si ) denote agent i’s budget constraint,

given prices, his wealth, and his insurance decision.

ance contracts (they have to be in Ii ) and any investment strategy has to be implementable 

cannot spend more than they are endowed with, they have access to a restricted set of insur- 
shares), and how much to consume. Agent’s decisions are restricted in the sense that they 

ance to buy, how and how much to invest in financial assets (bond and insurance companies’ 

An agent in this economy is faced with three basic decisions: how much private insur- 
Insurance and Investment Decisions

of insurance contracts will be equal to e−r EQ [Ni (1)] as claimed.

share price using such a strategy does not exist. This then implies that the competitive price 
private insurance market is said to be competitive if the possibility to increase a company’s 

                                 Ithe same contract at a price of Si −/2k and increase its share price by at least /2. The

contract. But, if it is strictly positive, i.e. if > 0, then another insurance company can offer 

effect cannot be negative as the insurance company can always reject (not propose) such a 



sumption allocations, xi , resulting from their investment and insurance decisions are optimal, 
                                        Igiven their budget constraints (Bi (D,
Si )): 

                                  IDefinition 2 A triple ((xi )n , (Si )n , D⇒ is a competitive insurance market equilibrium if:i=1i=1

(i) there exists (Q, r) such that every Sj � D satisfies no-arbitrage (Relation (1));

(ii) insurance prices are competitive; and

                                            II(iii) for all i = 1, . . . , n, xi � Bi (D, Si ) and for all x � Bi (D, Si ), Ui (xi ) ≥  Ui (x ). 

2 Efficiency and Equilibrium with an Insurance Market 

This section studies the properties of a competitive insurance market equilibrium in our 

model. In particular, it establishes the existence of efficient competitive insurance equilib- 
ria in which consumers have the same allocations as in a complete markets equilibrium— 

markets are complete if the set of available assets are sufficient to reproduce every possible 

state-contingent consumption allocation. If assets are sufficient to attain Pareto efficient 
consumption allocations (but not all possible allocations) then the market is said to be 

effectively complete. 
The first notions of equilibria for financial markets are due to Arrow (1964) and Rad- 

ner (1972). An important question to ask of such equilibria is: when are the allocations 

from a financial market equilibrium the same as those from a standard (Arrow-Debreu state- 

contingent commodity) equilibrium? As standard equilibria are Pareto efficient, a financial 

market equilibrium with the same allocations will also be efficient. The answer usually rests 

on determining whether financial assets are (effectively) complete.

When considering competitive insurance market equilibria, this paper shows that the 

combination of private insurance with two dynamically traded assets generates effectively 
complete markets. In particular, the paper shows that for every state-contingent commodity 

equilibrium there is a corresponding competitive insurance market equilibrium that decen- 

tralizes it, and the set of dynamically traded financial assets that has to be available can be 

reduced to two: a riskless bond and a fully diversified portfolio (described in Section 1.2: 

Diversified Portfolios), such as the equally weighted portfolio of insurance company shares. 

13



Theorem 1 For every state-contingent commodity equilibrium of economy E with allocations 
((x∗ ), there exists a competitive insurance market equilibrium with the same allocations, )n 
   i i=1 
           I((x∗ )n , (Si ))n , D⇒⇔ and where D contains only two assets: a zero coupon bond and a fullyi i=1i=1

diversified portfolio. 

The proof of this result is based on the following chain of reasoning: every state-contingent 

commodity equilibrium is Pareto efficient; every Pareto efficient equilibrium of E implies 
optimal risk sharing; optimal risk sharing implies that consumption allocations have the 

mutuality property (described in Section 1.2: Diversified Portfolios); such consumption allo- 

cations can be constructed by purchasing full insurance, which eliminates risk from agents’ 
endowments, and reallocating wealth net of insurance by dynamically trading the bond and 

the risky portfolio. To conclude, it is shown that the suggested combination of insurance 

and dynamic trading is feasible and optimal for every agent.

Theorem 1 implies:

Remark 1 Insurance markets can function efficiently when insurance firms are stock com- 
panies, although those stock companies have to reserve in full or, alternatively, be fully as- 

sessable (as Lloyd’s syndicates used to be).

The assumption that stock companies are fully assessable is implicit in the definition of 
equilibrium as equilibrium imposes that the dividends promised by insurance companies are 

paid/collected in full. The flexibility in modeling the underlying risk in Assumption 3 allows 
one to have correlated date one risks, and hence to apply this model to natural disasters. 

Competitive insurance market equilibria which decentralize state-contingent commodity 

equilibria (as in Theorem 1) will be referred to as efficient insurance market equilibria. 
As this paper makes repeated use of the combination of the bond and the portfolio of equally 
weighted insurance company shares, we will denote their prices by D∗ .

Given that a state-contingent commodity equilibrium for E always exists, then it follows 

that: 

                                                                 ICorollary 1 There exists (Q, r) and (xi )n such that ((xi )n , (Si )n , D∗ ) is an 

efficienti=1i=1i=1 insurance market equilibrium of E. 

14
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substantial portfolio rebalancing. 
that does not require rebalancing over time, while one that replicates a put or a call would generally require 

insurance contracts are strictly nontradable: insurance contracts in economy E are said to 
9 As one can synthesize puts and calls. Nevertheless, note that an equally weighted portfolio is a portfolio 

labeled as “shares of insurance company X”). To avoid these extreme cases, assume that 

such an economy is that agent’s private insurance contracts are explicitly tradeable (although 

indemnity payments received by one of the agents. An additional unnatural characteristic of 

as the dividends from the insurance company are perfectly (negatively) correlated with the 

it would be impossible to separate insurance coverage decisions from investment decisions 
two insurance companies in the economy. If each insurance company insures a different agent 

purchases of private insurance contracts. For example, there could be only two agents and 
includes economies for which the demand for insurance is not uniquely defined by agents’ 

to make sure that the question can be properly framed. The model in its full generality 

In order to determine how much insurance agents are buying in equilibrium, one needs 

Full Insurance in Equilibrium 3.1 

will be analyzed and explained in detail in the following section (Section 4).

prices will be unfair, i.e. above their actuarial value. This seemingly contradictory result 

insurance agents will buy full coverage in this equilibrium. It is also shown that in equilibrium 
efficient insurance market equilibrium. This section presents the central result of the paper: 

portfolio of insurance company shares and a riskless bond are traded dynamically has an 

In the previous section, it is established that an economy in which an equally weighted 

Demand for Full Insurance 3 

agent is to construct equally weighted portfolios.

company shares are traded, Theorem 1 says that an optimal investment strategy for any 

that D contains D∗ . Then, in the economy where only the bond and individual insurance 

the actual securities traded, D⇔ is different from D∗ . But, even though the equally weighted 
portfolio is not traded, it may be synthesized using existing assets.9 In such cases we say 

Note that financial markets trade the shares of the J insurance companies. Therefore, 



be strictly nontradable if there is no way of constructing a portfolio of existing traded assets 

that acts as a private insurance contract for any agent in the economy.

Definition 3 Insurance contracts in economy E⇐I⇔ D⇒ are strictly nontradable if �i⇔ 
J 

(θj )Jj=0

such that θj dj (1) = Ni (1). 
j=0 

Using this definition we can establish the primary contribution of this paper: the optimal 

insurance coverage decision can be uniquely determined and for every efficient insurance 
market equilibrium every agent will optimally choose full insurance coverage.

Theorem 2 In every efficient insurance market equilibrium such that D contains at least 

a zero coupon bond and a fully diversified portfolio, and where insurance contracts in econ- 
omy E⇐I⇔ D⇒ are strictly nontradable, then full insurance coverage will be the unique optimal 

insurance coverage. 

3.2 The Loading on Insurance 

Economists, specially those of us interested in the economics of insurance are familiar with 

Mossin (1968)’s result that “if the [insurance] premium is actuarially unfavorable, then it 

will never be optimal to take full coverage”. Thus, the natural reaction is to think that 

insurance prices in an efficient equilibrium must be fair. Actually, the opposite is true: 

Theorem 3 In every efficient insurance equilibrium, for every agent in the economy the 
                                              Iprice per unit of coverage is the same, �i � I Si = S, and this price has a strictly positive

loading, �γ > 0 such that: 
S = p(1 + γ)e−r (3)

The positive loading comes from the presence of aggregate risk in the economy. Insurance 

companies need to convince investors to buy risky shares and the only way to do so is to 

promise them an expected return that is higher than the riskless rate. This extra return is 

paid for with the loading. 

Note that, as the price is the same for all agents:

16



Remark 2 The competitive price of private insurance does not depend on the insured’s 

willingness to pay for coverage. 

The seeming contradiction between buying full coverage when insurance prices have a 

positive loading begs the question of what is happening in E and how can these two results 

be compatible. 

4 Explaining Full Insurance with Unfair Prices 

Fist of all let us be clear: Mossin did not make a mistake. The main difference between 
the results in this paper and Mossin’s is the context in which the coverage decision is made. 
Mossin makes a statement about how agents behave when faced with an isolated insurance 

decision. In this paper, on the other hand, agents make insurance decisions as well as other 

investment decisions. The question now is what makes the current setup special that leads 

to such different results.

The answer is that there are three conditions that are satisfied in equilibrium, and which 

together imply that agents’ optimal demand for insurance will include full coverage. The 
conditions are that: 

(i) insurance prices are competitive, 

(ii) only aggregate risk matters, and 

(iii) financial markets are effectively complete.

The first condition has been formally introduced earlier in the description of the model 
(Section 1.2). The other two need more explanation.

4.1 Equilibrium Prices 

Condition (ii), that only aggregate risk matters, addresses the properties of financial prices. 

It says that financial prices do not put a premium on idiosyncratic risks which should, in 

principle, be diversified away. Given that insurance prices are competitive and hence derived 

from financial markets (as described in Theorem 3), this condition says that the loading on 

insurance arises only from the undiversifiable component of the private insurance contract. 
Condition (ii) is stated formally as: 

17
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effectively complete. Rather than appeal to a generic result on effective completeness, we 
10 See, for example, Constantinides (1982) or the proof of Proposition 1 in Appendix C.

insurance company shares (such as the equally-weighted portfolio) make financial markets 

the proof of Theorems 1 and 2 is to show that a bond and a fully diversified portfolio of 
As Pareto efficient consumption allocations satisfy the mutuality property, a key step in 

θj (t) dSj (t)
0 j=0

θj (0)Sj (0) +

j=0 
d= 

1J

Definition 5 In economy E⇔ financial markets are effectively complete if for every

random dividend d that satisfies the mutuality property, there exists θ  � Θ such that 

J 

formal statement of Condition (iii) is: 
access to financial assets that will allow them to replicate any fully diversified portfolio. The 

Condition (iii) addresses the individual’s ability to diversify. In the economy E all agents 
are risk averse and hence would like to diversify. The third condition ensures that they have 

Effective Completeness and Optimal Investment 4.2 

(4)ξ(1) =
v1 (e(1))
EP [v1 (e(1))]

Then, 

V (x) = v0 (x(0)) + β0 EP [v1 (x(1))]

state-contingent equilibrium of E⇔ where the representative agent’s preferences are charac- 
terized by the utility function V : 

every state-contingent equilibrium of E.10 Suppose that one is presented with a particular 
Proposition 1 follows naturally from the representative agent representation of prices of 

and for any asset with dividend dj , there exists a price process Sj (t) satisfying Relation (1). 

Proposition 1 For every state-contingent commodity equilibrium of E with state-contingent 
prices π  , (x∗ , π  ), there exists (Q, r) derived from π  such that Q prices only aggregate risk˜˜i˜ 

Definition 4 In economy E⇔ a measure Q is said to price only aggregate risk if there 

exists a real-valued function g such that the Radon-Nikodim derivative ξ(1) = g(e(1)). 



19

The problem of tracking D∗ (t) can be split into two parts: one is maintaining the value of the 

the portfolio. D∗ (t) gives us the value of the portfolio that the trading strategy has to track. 
discounted value of d at date zero, and also the initial amount of money needed to construct 

                                                   ∗ 
value of d given information known at date t, and SM (t) the date zero discounted price of 
the fully diversified portfolio of shares. Then, D∗ (0) will be a constant equal to the expected 

                                        ∗First, define two processes, D∗ (t) and SM (t), where D∗ (t) is the date zero discounted

in the end, be equal to d. 

portfolio, and follow a trading strategy that will ensure that the value of the portfolio will, 

d one needs to start with a certain amount of money, use it to construct an investment 
If d satisfies the mutuality property, then for some function f , d = f (e(1)). To attain 

and refer the reader to Appendix C for details.

by the aggregate accident process, N (t). We will describe the basic steps of the proof here 

to describe the strategy arise from the Poisson-like properties of the information represented 

gale representation results to construct trading strategies. The deterministic functions used 
The proof of this result makes use of Duffie and Huang (1985)’s idea of applying martin- 

- If N (t−) = n, invest θ0 (t, n) = D∗ (t, n)er in the riskless bond.

D∗ (t, m + 1) − D∗ (t, m)

                 ∗∗SM (t, m + 1) − SM (t, m) 
                    ∗ ∗ (t, m) − θ(t, m)SM (t, m) D
                           . 
            e−rθ0 (t, m) =

θM (t, m) =

- For any t � [0, 1], if N (t−) = m < n, invest θ0 (t, m) is the riskless bond and θM (t, m) in 

the risky asset, where 

portfolio of insurance company shares following the trading strategy:

           ∗θ0 (t, m), SM (t, m), D∗ (t, m), m = 0, 1, . . . , n, t � [0, 1], such that d can be attained with an

initial amount of money, D∗ (0), and by dynamically trading the bond and a fully diversified 

idend, d, that satisfies the mutuality property, there exists deterministic functions θM (t, m), 

Theorem 4 Suppose that in economy E⇔ the measure Q prices only aggregate risk and there 

is a fully diversified portfolio with price process, SM (t), and dividend dM . For any date 1 div- 

replicate any fully diversified portfolio. 

proceed by characterizing, using deterministic equations, an investment strategy that will 
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theorem—in this paper the proof is constructive.

the above strategy is optimal and ensuring that no partial coverage decision will lead to an 
11 That one portfolio of shares is enough to track the changes can be proven using a martingale representation 

With these results all that is needed to complete the proof of Theorem 2 is to show that 

Optimality of Full Insurance 4.3 

financial markets effectively complete. 

                                                                       IRemark 3 For every efficient insurance market equilibrium, ((xi )n , (Si ))n , 
the com-i=1i=1 D⇒⇔ 

bination of a riskless bond and fully diversified portfolio of insurance company shares make 

equilibrium: 
Combining Theorem 4 with Proposition 1 one obtains that Condition (iii) is satisfied in 

at date one will be equal to d. 

θ0 (t, m) =
                  ∗D∗ (t, m) − θ(t, m)SM (t, 
m) 
                           . 
           e−rWith this strategy, the tracking portfolio will always be equal to D∗ (t) and hence its value 

sure the value of the portfolio if there is no accident continues to track D∗ (t):

Then, the number of units invested in the riskless asset, θ0 (t, m), are chosen so as to make 

D∗ (t, m + 1) − D∗ (t, m)
 ∗∗SM (t, m + 1) −SM (t, m) θM (t, m) =

accident: 

the diversified portfolio is chosen so as to match changes in the value of D∗ (t) if there is an 
t if there have been m accidents up to (but not including) date t.The amount invested in 

Now, define the function θM (t, m) as the units of the diversified portfolio needed at date 

in detail in Appendix C.

                                                              ∗agent has an accident N (t) jumps up by one unit), D∗ (t) and SM (t) will also 
jump (though 
                                                          ∗not necessarily by one unit). These processes, D∗ (t) and SM (t), can be represented 
in terms 
                                              ∗of the deterministic functions, D∗ (t, m) and SM (t, m) mentioned in Theorem 4 and 
described 

Recall that e(t) is a linear function of N(t). Then, as N(t) jumps randomly (whenever an 

The bond helps us with the first part, and the portfolio of insurance shares for the second.11 

will be matched by changes in the value of the portfolio so that it continues to track D∗ (t). 

portfolio, and the other is making sure that any news that change D∗ (t) (and security prices) 



optimal consumption allocation. The next result takes that step:

                                         ITheorem 5 In economy E⇔ with prices (D, Si ), agent i’s optimal insurance demand includes

buying full insurance if:

(i) there exists (Q, r) such that D satisfy Relation 1 and Q prices only aggregate risk; 
                         I(ii) insurance prices, (Si )n , are competitive under (Q, r),  and,i=1

(iii) the set of assets D makes financial markets effectively complete.

If agent i’s insurance contract is strictly nontradable then agent i’s unique optimal insurance 

demand is to purchase full coverage. 

Theorem 5 establishes why in an efficient insurance market equilibrium the optimal in- 
surance strategy is to purchase full insurance: Conditions (i) and (ii) make the price of 

insurance “economically fair”, i.e. it exactly compensates for the actuarial and the eco- 
nomic risk (the probability and magnitude of indemnity payments plus the market price for 

undiversifiable risk, minus the time value of premium payments), and Condition (iii) says 
that having eliminated their idiosyncratic risk, agents can construct their preferred fully 

diversified consumption allocation by trading in financial markets. Optimality of insurance 
and the trading strategy described in Theorem 4 then follows from the fact that the budget 

constraint in the efficient insurance equilibrium is contained in the agent’s budget constraint 
in the state-contingent commodity equilibrium.

Note that a trivial corollary of Theorem 2 is that every agent’s optimal investment deci- 

sion in an efficient insurance market equilibrium is independent of his demand for insurance— 
independence meant in the classical statistical sense: knowing the demand for insurance in 

any efficient equilibrium (full coverage) tells us nothing about the individual’s optimal in- 
vestment decision. 

5 Discussion and Extensions 

5.1 Insurance Equilibrium and Effective Completeness 

In Section 2, it was shown that efficient competitive insurance markets equilibria exist with 
only two dynamically traded assets plus private insurance. A useful illustration of the 
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n 

number of different types of assets needed is (n + 1)H mutual insurance contracts plus n + 1 

and preferences. More precisely, if H is the number of types of agents in the economy E⇔ the 

types of agents, i.e. amount of symmetry across agents in terms of risks AND endowments 

study E⇐I⇔ ∅⇒ and conclude that the number of assets needed to effectively complete the 
market can be reduced (down from Arrow’s 2n ). The number depends on the number of 

contracts they call “mutual insurance” (contracts that depend on Ni (1) and N (1)). They 

Cass et al (1996) expand I to include not just private insurance but also a class of 

can be constructed using only the n insurance contracts.

diminishes down to zero (by the Law of Large Numbers) and an approximate equilibrium 
to infinity, aggregate risk (or rather the amount of aggregate risk apportioned to each agent) 

both with individual risk and aggregate risk. On the positive side, he shows that as n goes 

preferences, risks and endowments) there is no efficient insurance market for E⇐I⇔ ∅⇒ because 

individual risks generate aggregate risk and n insurance contracts are insufficient to deal 

contracts rather than Arrow securities. He considers an economy where Iis the set of 

private insurance contracts. He shows that even if all agents are the same (in terms of 

D = ∅. 

Pure and Mutual Insurance: Malinvaud (1973) studied Arrow’s economy using insurance 

everyone has access to the same securities, dA , and can freely contract on them, θj � R, butj 

(like insurance contracts) they are not traded dynamically: I = Ii = ¶⇐θj dj )θj �R ♦2 , andj=1 

his financial equilibrium can be considered as a competitive insurance equilibrium where 

realization of N(1). As Arrow did not consider the possibility of dynamically traded assets, 

requires at least one asset for each state of the world. In E (ignoring the uncertainty on 
the exact timing of accident arrivals) there are 2n states of the world, one for each possible 

contingent equilibria using financial assets demonstrates that in general complete markets 

Arrow Securities: Arrow’s pioneering work (Arrow 1964) on the decentralization of state- 

by Theorem 1. 
frictionless financial markets. This also helps illustrate the value of the contribution made 
librium to express existing results on optimal risk sharing and effective completeness with 

methodological contribution in this paper is to use the notion of insurance market equi- 
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state of agent j and aggregate state m, i.e. these two contracts are counted as one type of contract. 
depending on the state of agent i and the aggregate state m is ‘the same’ contract as that depending on the 

rium has been shown to be due to the confluence of three factors: insurance that is priced 
12 Note also, that if two agents i and j are of the same type of agent, the mutual contract that pays 

The reason that agents will optimally buy full insurance despite loaded prices in equilib- 

Law of Large Numbers does not apply. 
be strongly correlated so that these efficient insurance market equilibria exist even when the 

existing results on insurance market efficiency as the number of agents is finite and risks can 

equilibrium is achieved using fully assessable stock insurance companies. The model extends 
markets which allows for the presence of dynamically traded financial assets. The efficient 

which are actuarially unfair. This result is shown using a quite general model of insurance 
agents’ optimal insurance demands are to purchase full coverage despite insurance prices 
The primary contribution of the paper is to show that in efficient insurance market equilibria 

Discussion of Extensions 5.2 

agent. 

Remark 4 It is possible to decentralize a complete market equilibrium allocation of E with 

only two dynamically traded financial assets in the economy, plus private insurance for each 

the two financial assets.

are sufficient. Furthermore, each agent uses only three contracts: his private insurance and 

libria can be decentralized with very few assets: n insurance contracts and two financial assets 

if D contains n appropriate financial assets.

Insurance and Dynamically Traded Assets: Theorem 1 shows that state contingent equi- 

is demonstrated that for economy E⇔ K = n, so that E⇐∅⇔ D⇒ has complete financial markets 

at most K + 1 assets (which have to satisfy certain abstract properties). In Appendix B it 

much smaller than 2n . They determine that there exists a number Ksuch that agents need 

namic trading of all assets (I = ∅⇔ D = ∅⇒. They demonstrate that if agents can change their 
asset positions over time, then the number of assets needed to complete the market can be 

Dynamically Traded Assets: Duffie and Huang (1985) take Arrow’s model and allow dy- 

Arrow-type securities (securities that pay only if a particular aggregate state is reached).12 



competitively, financial prices that only carry a risk premium for undiversifiable risk, and 

effectively complete financial markets. Furthermore, one can characterize agent i’s trading 
strategy using deterministic equations. 

In this section alternative specifications of the model are considered, together with their 

consequences on the above results. The first additional element that can be introduced into 
the model is agents that are not at risk. This would not alter any of the results.

Further, one can change the specification of risk (Assumption 3). This change can have 

a number of different effects depending on the type of change proposed. For example, the 
hazard rate could be allowed to depend on the time elapsed since the last accident. All results 

would continue to hold and the only substantial change is that the equations describing the 

optimal trading strategy in Theorem 4 would need to include an extra term (to account for 

the time elapsed since the last accident).

Another possible variation is to allow agents to be exposed to more than one type of 
risk. In a similar setting, Penalva (2001), it is shown that each additional risk an agent is 

exposed to will require an additional insurance contract. In this model, it is not necessary 

to introduce more insurance contracts. It suffices to change the description of the contract 

and allow insurance companies to write multi-peril contracts. Then, in efficient insurance 
equilibria, agents would only require one multi-peril insurance contract and they would 

purchase full coverage for all risks. On the other hand, the number of financial assets needed 

to make financial markets effectively complete may be greater, as the informational content 

of accidents of different types may be different.

A third variation is to allow more than one accident per person. The main results 
stated before will hold true but with some caveats. The full insurance coverage result will 

continue to hold but, as is the case when accidents are of different types, agents may require 
additional financial assets. Again what determines the number of financial assets needed is 
the informational content of accidents. For example, compare the informational content of 

one agent having two accidents versus two different agents having one accident each. If (from 
the point of view of aggregate risk) these two events are equivalent, then Condition (iii) will 

continue to hold, but, if they are not, then once an agent has had an accident, investors 

need to consider at least three different contingencies (one accident to a different agent, a 
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second accident to this agent, and no more accidents) and this uncertainty may require more 

than two dynamically traded assets. A minor issue that arises with multiple accidents is the 

need to ensure that agents not lose more than they have (i.e. agents do not have negative 

endowments), but this is a technical issue that can be dealt with quite easily in the standard 

way. A final remark regarding multiple accidents has to do with the insurance loading. The 
method we have used to prove Theorem 3 is valid only for a single accident. Whether the 

same result can be proven with multiple accidents requires further research.

5.3 HARA Preferences and Linear Risk Sharing Rules

An interesting special case of the model (mainly due to its extensive use in the literature) is 

when agents have HARA preferences. Then, agents’ optimal investment strategy is to buy 
assets at date zero and hold on to them, i.e. not trade them at all:

Proposition 2 If agents’ preferences in E are of the form

Ui (x) = vi (x(0)) + βi E(ui (x(1))),

where −ui (x)/ui (x) = ai + bx, and if agents have access to a bond, full insurance and 

an equally-weighted portfolio of insurance company shares, then agents’ optimal investment 

strategies are to buy-and-hold the bond and the equally weighted portfolio and purchase full 

coverage. 

This result follows immediately from the linearity of the optimal sharing rule and the fact 

that the dividends of the equally weighted portfolio are a linear function of the aggregate 

endowment. 

In the HARA case, agents can be exposed to multiple risks and multiple occurrences of 

the same accident and Proposition 2 would continue to hold verbatim.

5.4 Future Research 

A question that remains open is the possibility of the existence of inefficient competitive 
insurance market equilibria. This problem is not unique to the current model but is shared 

by any model which has effectively complete (but not complete) markets. The sufficient 
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implications for insurance have not been explored, to the best of my knowledge.

Geanakoplos and Zame (2002), Araujo, Pascoa and Torres-Martinez (2002)) prove existence, but their detailed 

13 The main existence results for general equilibrium with default (Dubey, Geanakoplos, Zame (2000), 

what effect these will have on agents’ insurance decisions.

default risk13 would trickle down to insurance premia and it would be interesting to determine 
activity. Additional capital costs, such as taxes (as in Harrington and Niehaus (2003)) or 

In our competitive setting, insureds pay all the costs (and only the costs) of the insurance 

such as taxes or costs arising from allowing insurance companies that are not fully assessable. 
A final interesting question is what would happen if there were additional costs of capital, 

conditions. 

not aware of any results that would generally rule out such prices using only equilibrium 
shares) financial prices have to make a distinction across individual risks, but the author is 

two basic financial assets are present (bonds and a diversified portfolio of insurance company 
conditions established in Section 4 imply that for an inefficient equilibrium to exist when the 
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to hold going into date t. As real activity (endowments and consumption) takes place only 

                              iiintegrable stochastic process θj (t), where θj (t) is the number of units of asset j agent i plans

Θ denote the vector of allowable trading strategies given D. Feasible trades satisfy the 
usual restrictions: an allowable trading strategy on asset j is an Ft -predictable and (P, Ft )- 

♣§⇐t⇒♣P ( dω) < ∞. 
Allowable Trading Strategies: In an economy with J assets, D= ((Sj (t))t�[0,1] )J , letj=0 

able with respect to Ft− ≡ ∩s<t σ(N(s)). Let x(t−) denote lims↑t x(s). A process x(t) is 
said to be (P, (Ft )t�[0,1] )-integrable if x(t) is measurable with respect to Ft− and for all t 

each t � [0, 1], Ft = ∩s≤t σ(N(s)). A process x(t) is said to be adapted to (Ft )t�[0,1] if for 
all t, x(t) is Ft -measurable. A process x(t) is said to be Ft -predictable if x(t) is measur- 

by N. Let σ(x) denote the sigma-algebra generated by the random variable x, then for 

The information generated by N is formally described by the filtration (Ft )t�[0,1] generated 

cess, N, is defined and is denoted Ω (for more details on jump processes see Bremaud (1981)). 

Stochastic Processes: There is a canonical probability space on which the stochastic pro- 

economies with preferences that do not satisfy the Inada conditions in the standard way. 

of prices. Existence and representative agent characterization of prices can be extended to 
in the paper–they are used to guarantee existence and representative agent characterization 
sups u (x) = +∞. Note that this condition is sufficient though not necessary for the results 

The Inada conditions on an increasing function u : R+ →R are: inf x u (x) = 0 and

Formal Definitions A 

lemmas. Finally, Appendix D contains the proof of Theorem 3.

Appendix C includes the proofs of Theorem 1, 2, 4 and 5 together with some auxiliary 

a state-contingent commodity equilibrium, K,is equal to the number of agents at risk, n. 
proves the remark made in the text that the number of financial assets needed to decentralize 

definitions that were unsuitable for the presentation but are used in the proofs. Appendix B 

makes the logic of the proofs more transparent. Appendix A contains basic mathematical 
The order of the results in the Appendix is slightly different than in the text. This order 

Appendix 



at dates zero and one, feasible trades also require that allowable trading strategies satisfy 

the following self-financing condition: for all θ � Θ:

J J J t

θj (t)Sj (t) = 
j=0 j=0 

θj (0)Sj (0) +

j=0 0
θj (s) dSj (s), �t � [0, 1]. 

The budget constraint 

The budget constraint is the set of consumption allocations the agent can achieve given 

his endowment (and trading opportunities). In a competitive insurance market, agents can 

only alter their consumption by buying insurance and trading financial assets so that the set 
of attainable consumption allocations is determined by asset prices, D ≡ ((Sj (t))t�[0,1] )J ,j=0 

allowable tr ing strategies, Θ (as defined above), and the availability of private insurance. ad

Keeping the model simple, the agent’s initial asset holdings are assumed not to affect 
his total wealth (so that the distribution of wealth is uniquely determined by agent’s risky 

ny agent has an initial endowment of insurance company shares, either income). Thus, if a

the price of th zero (which is the case if insurance companies are fully assessable e shares is

and only issue equity) or any initial share holdings are compensated with a corresponding 
                                                                                i ative holding o    neg f the bond (i.e. initial share holdings are fully
leveraged). Let θj,0 denote 
the number of units of asset j agent i is endowed with at date zero. The complete description 

of agent i’s endowment is ei (0) = wi,0 + Bi (D, S ) = x = (x(0), x(1))j=0 Jij=0 θj,0 Sj (0), ei (1) = wi,1 −Ni (1)L. 
                                  IAgent i’s budget constraint, Bi (D, Si ), is determined by asset prices, the price of his   

i 
             � 

                         insurance coverage for him, Si , and the set of allowable trading strategies Θ:     I             � 

             � 

             � 

             � 

                               
             � 
�θi � Θ, αi � [0, L] 

             � 

             � 

             � 

                                                        
             � 
J 

             �Ii 

             �x(0) = ei (0) − αi Si −θj (0)Sj (0)I 

             � 

                                                           
             � 
J 

             �i 

             � 

             � 

                               
             � 
x(1) = ei (1) + αi Ni (1) +θj (1)dj 

             � 

j=0

� 

� � 

� � 

� � 

� � 

� � 

��
Duffie and Huang (1985) show how to decentralize a state-contingent equilibrium as a Radner 

  

��
� � 

� � 

  equilibrium if you have one riskless asset plus K appropriate risky assets—we refer the reader 

B Martingale Dimension 

28
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7. Relate the optimality of full insurance to Conditions (i)-(iii) (Theorem 5);

6. Relate Condition (ii) and the mutuality property of optimal consumption;

5. Establish the uniqueness of full insurance demand (Theorems 2);

4. Establish the insurance equilibrium (Theorem 1).

3. Determine effective completeness (Theorem 4);

(Proposition 1); 

2. Relate state-contingent equilibria with the Radon-Nikodym derivative and Condition (ii) 

1. Determine the properties of a state-contingent equilibrium;

We proceed as follows:

tion 1 

Coverage: Proofs of Theorems 1, 2, 4 and 5 and Proposi- 

Competitive Insurance Market Equilibria and Insurance C 

any Mi , the set ¶M1 , . . . , Mn ♦ ∩ ¶Mi ♦is not a basis) for the space of martingales so that the 

martingale dimension K= n. 

Brandt (1991, pp. 342-346)), the martingales represent a minimal basis (if you eliminate 

Namely, theProof This follows from the properties of Mi (t) ≡Ni (t) −  t
0 λi (s)ds. 

stochastic processes M1 , . . . , Mn are (P, Ft )-martingales and pairwise orthogonal. Thus, 

applying the martingale representation theorem for marked point processes (see Last and 

Lemma 1 The space of martingales on (Ω , F1 , (Ft )t , P ) has martingale dimension of n. 

change of measure so that to prove the claim in the text (that K = n) it suffices to show: 

martingale dimension of the space of martingales is invariant to an absolutely continuous 
As ξ(1) > 0 P -a.s. then Q is absolutely continuous relative to P . Fortunately, the 

Radon-Nikodym derivative, ξ(1) (see the discussion after Relation (1) in the main text). 

is derived from the equilibrium price of the state-contingent commodity equilibrium via the 

is equal to the dimension of the space of (Q, (Ft )t�[0,1] )-martingales, where the measure Q 
to the original for full details, such as the exact definition of ‘appropriate’. The number K 



− m)η(r, m)dr.
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arrival times by their hazard rates. P is constructed recursively. Let Rm (s, t) be the cu- 
 t 
s (n mulative hazard rate from the hazard rate (n −m)η(t, m), Rm (s, t) =

Proof: This follows immediately from the characterization of the distribution function of 

(6)P (—N (1) = mjN (t) = n, t℘) = P⇐t⇔ n, m)
such that 

Lemma 2 Assumption 3 implies there exists a function P : [0, 1] × ¶0⇔ 1, . . . , n℘2 → [0, 1] 

functions D∗ (t) and S∗ (t). The following lemma will be crucial:

±3. Proof of Theorem 4: To establish that a dividend with the mutuality property 

can be attained using the strategy specified in the theorem, one first has to construct the 

Then, for any asset with dividends described by dj define Sj (t) = EQt [dj S0 (t)].

r(s)ds .
t

≡exp −
1

S0 (t) = e −r(1−t)

EP [v1 (e(1))] and use it to define r(t) using

±∈. Proof of Proposition 1: (in Section 4.1) Given a state-contingent equilibrium 
as described in Proposition 3 above, construct Qusing Equation (4). Then, let e−r = 

For all i, there exists fi : R → R such that x∗ (1) = fi (e(1)).i

where vt (x) is the first derivative of the representative agent’s utility function at date t = 0, 1. 

(5)
β0 v1 (e(1))
v0 (e(0))π=˜

such that 

v0 (x(0)) + β0 EP [v1 (x(1))]

Proposition 3 A state-contingent equilibrium of E = ((ei , Ui )n ) exists. Every state-i=1 

contingent equilibrium of E⇔ ((x∗ )n , π  ), is Pareto efficient and there exists a representative 
                                i i=1 ˜agent representation of prices with strictly concave vonNeumann-Morgenstern preferences 

in the following result (see Constantinides (1982)):

±∞¬ The main properties of state-contingent equilibria for this economy are summarized 
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come from a one-dimensional space of martingales using the same arguments used in Appendix B. 

scribed using a deterministic function, θM (t, m) : [0, 1] × ¶0⇔ 1, . . . , n − 1˝ → R which is con- 
14 Note, that both processes are Q-martingales and, as they are functions of N (t), they can be shown to 

Using the above equations, the solution to this stochastic differential equation can be de- 

(7)                               ∗dD∗ (t, N (t)) = θM (t, N (t)) dSM (t, N 
(t)), 

stochastic differential equation: 

P⇐t⇔ n, m) function constructed in the proof of Lemma 2 define the functions

                       �ξ(1, r) 

                       � 

                       � 

                                                  
                                 P⇐t⇔ k, m (1, m) 
,k = 0, . . . n,n 

k= 0, ...,n, ; D (t,∗  k) = 

         ξ(t, k, r) =m=k 
               1,r<k         ��                                                                                  ∗Note that with these functions one can construct the processes D∗ (t, 
N (t)) and SM (t, N (t)) 

                                      ∗where D∗ (t, N (t)) = EQt [e−r d] and SM (t, N (t)) = e−rt SM 
(t).14 

The strategy to attain d at date one (as in Duffie and Huang (1985)) is to solve the 

)ξ

n 

m=k 
n 
P⇐t⇔ k, m)ξ(t, k, m)g(m)e−r ,k= 0, ...,n,;

P⇐t⇔ k, m)ξ(t, k, m)f (m) e−r ,

m=k 
 , n,  r = k, . . . , 
 ∗ 
SM (t, k) = 

are constant on ¶N (1, ω) = m℘, define f (m) = f (e(1)), g(m) = g(e(1)), and ξ(1, m) = ξ(1)

where e(1) and ξ(1) are evaluated on the set ¶N (1, ω) = m℘, m = 0, . . . , n. Then, using the 

d = f (e(1)). Abusing notation slightly, and using the fact that for m = 0, . . . , n, e(1) and ξ(1) 

Then, define P using H.  P⇐t⇔ k, m) = H(t, 1, k, m).

As d and dM have the mutuality property, there exists fand gsuch that dM = g(e(1)) and 

m = k, . . . , n −1

H(s, r, k, m)η(r, m) exp(−Rm+1 (r, t)) dr, 
s

H(s, t, k, m + 1) = (n − m) 
t

H(s, t, m, m) = exp(−Rm (s, t))

�k > m

�∫  ≥  t

H(s, t, k,m) = 0, 

H(s, t, k,m) = 0, 

Then define the function H : [0, 1]2 × ¶0⇔ 1, . . . , n℘2 → [0, 1] as follows:
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(x∗ (0), x∗ (1)): as x∗ is in the state-contingent budget constraint then, using the definition of  
  iii 
Q and r.  x∗ (0) + EQ [x∗ (1)]e−r = wi,0 + EQ [wi,1 −Ni (1)L]e−r . From equilibrium pricing ofii 

                                                                     Ithe mutuality property). This makes i’s allocation equal to (wi,0 − Si − D∗ (0), wi,1 
+ d) = 
         I(wi,0 − Si L − D∗ (0), x∗ (1)).i 

We now use the (Q, r) as constructed above to show that the new allocation is equal to 

                                                   I(iii) For each i, we first need to show x∗ � Bi (D, Si ). Assume the agent buys full 

 insurance.i                                                                                            IThis changes i’s allocation from the risky (wi,0 , wi,1 − Ni (1)L) to the 
riskless (wi,0 − Si , wi,1 ). 
Then, apply Theorem 4 using d = x∗ (1) −wi,1 (recall from Proposition 3 that x∗ (1) hasi 

          I(ii) Let Si = EQ [Ni (1)e−r ]. 

representative agent representation, so that for every i, x∗ has the mutualization property. 
                                                           i

By Proposition 1, construct (Q, r) using π  so that D satisfy Relation 1 and Q prices only˜ 
aggregate risk. 

(i) By Proposition 3, every state-contingent commodity equilibrium is efficient as has a 

                                                                  I±4. Proof of Theorem 1: We need to construct a triple ((xi )n , (Si ))n , D⇒ 
ati=1i=1 th

satisfies the conditions in Definition 2. 

                                                                              ∗an initial amount of money D∗ (0), the value of the portfolio θ0 (t)e−r + θM 
(t)SM (t) will be 
equal to D∗ (t) and hence equal to d at date one.

Then, following the strategy proposed in the Theorem using the two functions (θ0 , θM ) and 

m = 0, 1, . . . , n −  1 

m = 0, 1, . . . , n −  1 

                               ∗D∗ (t, m) − θM (t, m)SM (t, m)
                                        ,θ0 (t, m) = 
                      e−r 

           D∗ (t, m + 1) −D∗ (t, m) 
θM (t, m) = ∗, 
                           ∗SM (t, m + 1) − SM (t, m) 

Then, to reconstruct x, define 

Define the function θM :

                                                  ∗∗D∗ (t, N (t− ) + 1) − D∗ (t, N (t− )) = θ(t, N (t)) SM (t, N (t− ) + 1) − SM 
(t, N (t− ) 

will be determined by what happens at accident times. This is because, θM (t, N (t)) solves 

ment strategies cannot anticipate surprise changes in stock prices) the value of θM (t, N (t)) 

structed as follows: as equation (7) has to hold and θM (t, N (t)) has to be predictable (invest- 
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that D satisfy Relation 1 and the probability measure Q prices only aggregate risk then the 
Lemma 3 For agents whose preferences satisfy Assumption 1, if there exists (Q, r) such 

optimal consumption satisfies the mutuality property:

±6. The next lemma shows that if Condition (ii) is satisfied, and markets are complete, 

strategy does not exist—a contradiction.

J 
j=0 θj (1)dj (1) 

Jˆ
j=0 θj (1)dj (1)

                  ˆ 
trading strategy (θj (t))t�[0 1] ) such that,
                                 ˆ 
ence between the two strategies (θj − θj ) and dividing by (1 −α)L one obtains a new strategy 
whose dividend is equal to Ni (1). But, as insurance is strictly non-tradable, such a trading 

= x∗ (1) −wi,1 . Taking the differ-i

= X(1). However, note that (by Theorem 4) one can also construct a 

                                                         Iand there is strategy (θj (t))t�[0,1] such that x∗ � Bi (D, Si ). Then, (θj (t))t�[0,1] 

 achievesithe date one net trade, denoted X(1).  X(1) = x∗ (1) −wi,1 + (1 −αi )L1Ni (1)=1 , i.e.i 

                                                                                     Iequilibrium. Consider the strategy used in the proof of Theorem 1 to
show x∗ � Bi (D, Si ).i 
Suppose instead that agent i optimally chooses partial insurance coverage, i.e. αi � [0, 1) 

                                       I±5. Proof of Theorem 2: Let ((x∗ )n , (Si )n , D⇒ be an efficient insurance marketi i=1i=1

equilibrium. As x∗ was optimal in the state-contingent equilibrium, it is also optimal re- 
                 i 
                                                   Istricted to the smaller budget constraint, Bi
(D, Si ). 

                              ILNi (1))e−r ] so that Bi (D, Si ) is contained in the budget constraint in the state-contingent

                                          Ifrom state-contingent prices, �§i � Bi (D, Si ), xi (0) + EQ [xi (1)e−r ] ≤ wi,0 + EQ [(wi,1 −

                                          IFinally, we need to show that �§i � Bi (D, Si ), Ui (xi ) ≤  Ui (x∗ ). As (Q, r) are derivedi

                         Iwhich implies x∗ � Bi (D, Si ).i

= x∗ (0)i

= wi,0 + EQ [wi,1 −Ni (1)L]e−r −EQ [x∗ (1)]e−ri

        Iwi,0 − Si L − D∗ (0) = wi,0 −EQ [Ni (1)]e−r L −EQ [x∗ (1) −wi,1 ]e−ri

            Iinsurance, Si = EQ [Ni (1)]e−r . By construction, D∗ (0) = EQ [de−r ] = EQ [x∗ (1) − wi,1 ]e−r .i 

So that, 
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same arguments used in the Proof of Theorem 2.

Uniqueness of full insurance coverage as the optimal insurance strategy follows by the 

                                                                                        Iin [Problem B] includes the budget constraint of an agent in economy E 
with prices (D, Si ), 
then full insurance could be agent i’s optimal insurance demand.

[Problem B] is attainable using full insurance and asset trading. As the budget constraint 

                                                                       Iin the proof of Theorem 1: consider (Q, r)given by Condition (i) and Si = EQ 
[Ni e−r ] from 
Condition (ii). Then, use Condition (iii) and Lemma 3 to determine that the the solution to 

±7. Proof of Theorem 5: To prove this theorem one can follow a similar strategy as 

vi (x∗ (0))ξ(e(1))e−r
          β

ui−1

constraint) imply that such a x∗ (0) exists.
                               i

The properties of the problem (preferences satisfying Assumption 1 plus the linearity of the 

x∗ (0) + EP [ξ(e(1))fi (e(1))]e−r = ei (0) + e−r EP [ξ(1)ei (1)]i

and ∗ (0) is the constant that solves x
     i 

fi (e(1)) ≡

x∗ , at date one is equal to fi (e(1)) where:

of ui ensure that ui−1 is a well-defined function so that the optimal consumption allocation, 
where λ is the Lagrange multiplier in the constrained maximization problem. The properties 

�ω � Ω , βui (x(1, ω)) = λ ξ(e(1, ω))e−r

vi (x(0)) = λ

The necessary and sufficient first order conditions are:

L = Ui (x) − λ x(0) −ei (0) + e−r EP [ξ(1)(x(1) −ei (1))]

Proof: Using EQ [z] = EP [ξ(1)z], the Lagrangian for [Problem B] is

has the mutuality property. 

x(0)+ EQ [x(1)]e−r = ei (0) + EQ [ei (1)]e−r , max Ui (x) s.t.
x 

[Problem B] 

optimal consumption in the following problem:



pj jpj
     − pj =(j − np) 
pnnp
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P (N = jjAi ) − P (N = j) =

Let pj ≡ P (N = j), then

and by exchangeability, qi = pEP [ξ–Ak ], �k � ¶∞⇔ . . . , n℘. Thus, for all i = 1, . . . , n, qi = q. 

qi = pEP [ξ(N (1))–Ai ]

P (N = jjAi )P (Ai )ξ(N = j)

j=0

qi = 

P (ω)ξ(ω)

j 
n = P(N = j) 

ω i�A
n 

qi = 

Let qi = EQ [Ai ], ξ = dQ/ dP and recall n is finite, then

P (N = j, Ni = 1) = P (N = j,Nk = 1)
                              n−1n  
                  = P (N = j)/ 
                               j−1j 

implies that for i, j, k � ¶∞⇔ . . . , n℘, P (Ai ) = P (Ak ) = p and

Proof of Theorem 3: Let Ai denote events of the kind ¶Ni (1) = 1˝. Exchangeability 

That this is true can be seen from the way the function P was constructed in the proof of 

Lemma 2. 

of exchangeable events.

Remark 5 If λi (t) satisfies Assumption 3 then any set of events ¶B1 , B2 , . . . , Bn ♦  is a set 

Let Bi represent an event of the kind ¶Ni (1) = 0˝ (agent i did not have an accident 

between dates zero and one) or ¶Ni (1) = 1˝ (agent i did have an accident between dates 

zero and one). 

P (A1 , A2 , . . .,An ) = P(Aι(1) ,Aι(2) ,...,Aι(n) )

permutations of the indexes, i.e., for all permutation functions on ¶∞⇔ . . . , n℘,

denote the indicator function of C. The function ι : ¶∞⇔ . . . , n℘  −→  ¶∞⇔ . . . , n℘, is a permuta- 

tion function on ¶∞⇔ . . . , n℘  if ι is bijective. The events A1 , . . . , An are exchangeable if for all 

The proof make use of the concept of exchangeability: for any arbitrary event C, let 1C 

Proof of Theorem 3 D 
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spectively, X dominates Y in the first-order sense if F (z) ≤ G(z) for all z � R.
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