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Abstract

Barberà and Coelho (2006) documented six screening rules associated with the

rule of k names that are used by diferent institutions around the world. Here, we

study whether these screening rules satisfy stability. A set is said to be a weak

Condorcet set à la Gehrlein (1985) if no candidate in this set can be defeated by

any candidate from outside the set on the basis of simple majority rule. We say that

a screening rule is stable if it always selects a weak Condorcet set whenever such set

exists. We show that all of the six procedures which are used in reality do violate

stability if the voters act not strategically. We then show that there are screening

rules which satisfy stability. Finally, we provide two results that can explain the

widespread use of unstable screening rules.
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1 Introduction

The study of set-valued functions has a long tradition in economics, in general, and in

social choice theory, in particular. The Walrasian correspondence is a salient example.

More speci�c to social choice theory is the study of social choice correspondences and of

set valued social choice functions.

The speci�c meaning attached to these rules can be very diverse. But there are two

types of competing interpretations, depending on the nature of the objects to be chosen.

In a �rst interpretation, the chosen sets consist of elements that are not mutually

exclusive. Here are some examples:

� The choice of new members for a club, or of several compatible projects, as in

Barberà, Sonnenschein and Zhou (1991). In that case, the sets in the range can be

of di¤erent cardinalities.

� The choice of locations for a �xed number of public facilities, as in Barberà and
Beviá (2002).

� The choice of candidates to form a delegation, or to represent a district in a legisla-
tive body, as in Dodgson (1884, 1885a, 1885b).

In the last two cases, the cardinality of the sets to be chosen is exogenously given.

Turning now to a second interpretation, the elements chosen by a social choice rule

need not be mutually exclusive objects. They may be sets of candidates for o¢ ce, sets of

alternative policies to solve the same social problem, etc... In this case, the set cannot be

seen as a full solution of the social choice problem, a further resolution is necessary, and

the underlying procedure to solve the remainder of the problem is a necessary reference

to complete the interpretation. To give some examples:

� It is sometimes assumed that the �nal choice will be made through some random
procedure. (See Barberà, Dutta and Sen, 2001 and references therein).

� It is sometimes assumed that a new decision process will take place to choose from
the pre-selected alternatives. This covers a wide range of possibilities, and it includes

the one that motivates our study here.
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Under each of these interpretations, and many others, set valued social choices become

objects of theoretical and practical interest. What questions to ask, and to eventually

solve about them depend very much on our speci�c interpretations and of the kind of

phenomena we want to focus on.

In this paper, we are mainly interested in the characteristics of (set valued) screening

rules, which are part of the �rst stage of rules of k names (Barberà and Coelho, 2006).

We refer by this to a widely used class of collective decision procedures, which work as

follows. Given a set of candidates, a committee must pre-select a short list consisting of

exactly k of them by voting. Then a single decision-maker from outside the committee,

the chooser, will select one of the listed candidates. Hence, rules of k names are single

valued, but their de�nition must include a description of the method that the committee

will be using to prepare the short list. Our paper concentrates on the properties of these

screening methods.

Speci�cally, we are concerned about the possibility that one candidate who is included

in the short list might be defeated in a majority contest by one who is not in it. Should

this happen, a majority of a committee members could agree to vote for the removal

of the included alternative and to substitute it for the dominating one that is initially

excluded. This might be a cause of instability in the proposal. Of course, our statement

is conditional. The member of this majority could agree on that, but they don�t need

to. They might agree, or at least they would be better o¤ with this substitution, under

the assumption that the voters�preferences over sets satisfy the following monotonicity

axiom: if a voter prefers candidate a to b and b is substituted by a in the elected set

then this voter cannot be worse o¤.1 Under the rule of k names, this would be a natural

assumption in a scenario where no voter has any knowledge whatsoever of the chooser�s

preferences over the candidates. Thus, for them, each listed name would have the same

probability of being the chooser�s selected candidate for the o¢ ce.

We want to distinguish between those screening rules that avoid this possible challenge,

which we�ll call stable screening rules, and those that may be exposed to it. Notice,

however, that we can also easily imagine other scenarios under the rule of k names where

the satisfaction of this monotonicity axiom would not necessarily work in favor of the

1This axiom was proposed by Kannai and Peleg (1984) and it is used very often in the literature on

matching.
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members of the committee. For instance, suppose an election for an o¢ ce under the rule

of two names and fa; b; cg as being the set of candidates. Let a committee member rank
candidate a �rst, b second and c third, and let the chooser rank b �rst, a second and

c third. So, under the assumption of complete information , this committee member�s

preferred list would be fa; cg instead of fa; bg, thus violating monotonicity.
Hence, our analysis is inspired by the study the rule of k names but we do not claim

that the stability requirement is always equally compelling. But we still feel it worth

studying when it can be satis�ed. Moreover, the reader may �nd that some of our results

can be used under other circumstances, to discuss issues relating to other types of choice

procedures. For example, stability may be attractive for rules that choose sets of repre-

sentatives. But, here again, it is in some cases and not in other cases. This was already

argued by one of the founders of the Social Choice theory, the Rev Charles Lutwidge

Dodgson (Lewis Carroll) who wrote in 1884 a pamphlet entitled "The principle of parlia-

mentary representation".2 In the supplement and postscript of this pamphlet, he rejects

the criticism on his method for transferring the spare of district representative candidates

that have more votes than they need to be returned. The argument against his method

said that it fails to pass the test of always selecting a weak Condorcet set, i.e. a set such

that no candidate in it can be defeated by any candidate from outside by majority rule.

Dodgson rejected this criticism by using two di¤erent arguments. The �rst says that

this "test" would give too much power to the majority. In some circumstances, 49% of

the electors would not return any candidates, and using his own words, 49% of the votes

would be wasted. The second says that this test would be valueless by giving an example

where there exists no weak Condorcet set with three candidates.

We have two comments about his arguments: �rst, the fact that sometimes there exists

no weak Condorcet set cannot be the basis for a criticism to any particular rule, since this

non-existence is prior to it. The most we can ask for a rule is to select such an alternative

when it exists. Secondly, his argument on the majority voting power would not apply

for the case of screening rules, since only one candidate from its elected outcome will be

2William Gehrlein informed us about the existense of this pamphlet. He got it from Bert Levin, an

associate of Duncan Black, after he has published a paper about Condorcet winner sets. This pamphlet is

reprinted in McLean and Urken (1995) and its supplement and postscript are in Black, McLean, McMillan

and Monroe (1995).
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chosen for o¢ ce. This proves that although formally we move in the same framework,

the interpretation given to set-valued rules is crucial in order to appreciate the validity of

certain axioms or the criticisms to any given rule.

This paper proceeds as follows: In the next section, we formally de�ne screening rules

and the stability property. In Section 3, we show that all screening rules documented by

Barberà and Coelho (2006) and which are used in reality violate stability. We also discuss

the way to adapt several general well known voting rules in order to choose sets, and we

study the extent to which the resulting screening rules may or not satisfy stability. Then,

in Section 4, we exibit a di¢ culty that is common to all stable rules. We also present a

strategic analysis, suggesting that stability may be recovered when agents act strategically

and cooperatively. These two results may help explain the widespread use of rules that

are not stable.

2 Notations and de�nitions

For n � 2, consider a polity N = f1; :::; ng; whose members confront a nonempty �nite
set of candidates A. Writing W for the set of all strict orders (transitive3, asymmetric4,

irre�exive5 and complete6) on A, each member i 2 N has a strict preference �i2 W , and
we let �N� f�igi2N 2 WN: Given k 2 f1; 2; :::;#Ag, let 2A be the set of all non empty
subsets of A and Ak � fB 2 2Aj#B = kg be the set of all possible subsets of A with

cardinality equal to k.

Our agents will be allowed to in�uence the choice of the sets by taking actions. Let

MN �M � :::�M where M is the space of actions of a voter in N: We leave the exact

form of the elements of M unde�ned. But the reader will �nd it easy to identify the

appropriate set of messages for each of the cases we study. For example, if the actions in

MN are casting single votes then M � A: If the actions in MN are submissions of strict

preference relation then M � W .

De�nition 1 Given k 2 f1; 2; :::;#Ag; a screening rule for k names is a function Sk :
MN �! Ak associating to each action pro�le mN � fmigi2N 2 MN the k-element set

3Transitive: For all x; y; z 2 A : (x � y and y � z) implies that x � z:
4Asymmetric: For all x; y 2 A : x � y implies that :(y � x):
5Irre�exive: For all x 2 A;:(x � x):
6Complete: For all x; y 2 A : x 6= y implies that ( y � x or x � y):
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Sk(mN):

In words, a screening rule for k names is a voting procedure that selects k alternatives

from a given set, on the basis of actions of the voters. These actions may consist of single

votes, sequential votes, the submission of preference of rankings, the �lling of ballots,

etc...

We have de�ned screening rules as a function of general strategies, in order to allow

for methods which go beyond the simple declaration of preferences. However, most of

the paper refers to the relationship between the preferences of agents on alternatives and

the speci�c sets that will be chosen. As Gibbard (1973) already pointed out, we can

always de�ne a clear cut concept of sincere, or straightforward behavior, by assigning a

strategy to each possible preference, even if in principle the agents could �ll their ballots

in many ways. In what follows, we often limit our statements to the case where agents

�act according to their true preferences�, in an obvious sense. However, we prefer to keep

the larger de�nition of screening rules, because this is useful for the strategic analysis in

Section 4.

De�nition 2 (Gehrlein, 1985) Given A; k 2 f1; 2; :::;#Ag and �N2 WN, a set B 2
Ak is a (weak) Condorcet set if for any a 2 B and b 2 AnB we have that #fi 2 Nja �i
bg(�) > #fi 2 Njb �i ag:

In other words, a set B 2 Ak is a Condorcet set if each candidate in this set defeats

any other candidate from outside the set on the basis of simple majority rule. And a set

B 2 Ak is a weak Condorcet set if no candidate that belongs to B can be defeated by

any other candidate that belongs to AnB on the basis of simple majority rule.

Remark 1 Given A; k 2 f1; 2; :::;#Ag and �N2 WN, any Condorcet set, if it exists,

is the unique weak Condorcet set. Moreover, when there is an odd number of voters any

weak Condorcet set is also Condorcet set.

Notation 1 Given A; k 2 f1; 2; :::;#Ag and �N2 WN, denote by E(A;�N; k) the set
of all weak Condorcet sets that belong to Ak.
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Example 1 Consider the following preference pro�le:

No. of voters: 1 1

a a

b c

c b

d d

We can see that E(A;�N; 1) = fag, E(A;�N; 2) = ffa; bg ; fa; cgg and E(A;�N; 3) =
ffa; b; cgg and E(A;�N; 4) = ffa; b; c; dgg:

Remark 2 Given any A; k 2 f1; 2; :::;#Ag and �N2 WN, if n is odd then E(A;�N; k)
is either empty or singleton.

Remark 3 Given any A; k 2 f1; 2; :::;#A�1g and �N2 WN, we have that E(A;�N; k)
is never empty whenever the preference pro�le satis�es single peakedness.

Ratli¤ (2003) proposes two procedures that always select Condorcet sets, when such

a set exists: these are the Dodgson Method and the Kemeny Method (see de�nitions 8

and 9). By contrast, we investigate procedures that always select weak Condorcet sets.

De�nition 3 Given any A; k 2 f1; 2; :::;#Ag and �N2 WN, we say that a screening

rule Sk : MN ! Ak is stable if Sk(mN) 2 E(A;�N; k) whenever E(A;�N; k) is not
empty and mN is a pro�le of sincere actions.

For example, if Sk is plurality rule then a voter�s sincere action is casting a vote for

its preferred candidate. If Sk is Borda rule7 then a voter�s sincere action is declaring its

true preferences over candidates.

In words, we say that screening rule for selecting k names is stable if it always selects

a weak Condorcet set, whenever one exists and voters choose sincere actions.

7The Borda rule is de�ned as follows: Voters are required to rank the candidates, thus giving #A� 1
points to the one ranked �rst,#A�2 to one ranked second, and so on. The Borda winner is the candidate
with the highest total point score. The Borda loser is the candidate with the lowest total point score.
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3 Almost all screening rules are unstable

We will show in this section that di¤erent standard voting rules which are actually used

in reality do not satisfy stability.

Example 2 In this example, we provide a single preference pro�le in which all screening

rules documented in Barberà and Coelho (2006) fail simultaneously to select a weak Con-

dorcet set. These screening rules, which are used in reality by di¤erent decision bodies

around the world, can be described as follows:

1) Screening 3 names by 3-votes plurality: Each proposer votes for three candidates and

the list has the names of the three most voted candidates, with a tie-break when needed. It

is used in the election of Irish Bishops and that of Prosecutor-General in most of Brazilian

states.

2) Screening 3 names by 1-vote sequential plurality: The list is made with the names of

the winning candidates in three successive rounds of plurality voting. It is used in the

election of English Bishops.

3) Screening 3 names by 3-vote sequential strict plurality: this is a sequential rule adopted

by the Brazilian Superior Court of Justice to select its members. Each proposer votes for

three candidates from a set with six candidates, and if there are three candidates with more

votes than half of the total number of voters, they will form the list. If there are positions

left, the candidate with less votes is eliminated, so as to leave twice as many candidate as

there are positions to be �lled in the list. The process is repeated until three names are

chosen. It may be that, at some stage (including the �rst one), all candidates have less

than half of the total number of voters. Then the voters are asked to reconsider their vote

and vote again. Notice that, if they persist in their initial vote, the rule leads to stalemate.

Equivalently, we could say that the rule is not completely de�ned. However, in practice,

agents tend to reassess their votes on the basis of strategic cooperative actions. It is used

in the election of the members of the Brazilian Superior Court of Justice.

4) Screening 5 names by 3-votes plurality: Each proposer votes for three candidates

and the list has the names of the �ve most voted candidates, with a tie break when

needed. It is used in the election of the members of Superior Court of Justice in Chile.

5) Screening 3 names by 2-votes plurality: Each proposer votes for two candidates and

the list has the names of the three most voted candidates, with a tie break when needed. It is
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used in the election of the members of Court of Justice in Chile.

6) Screening 3 names by 1-vote plurality: Compute the plurality score of the candi-

dates and include in the list the names of the three most voted candidates, with a tie

break when needed. It is used in the election of rectors of public universities in Brazil.

Having de�ned these six rules, let us now propose a case where they all fail to work prop-

erly.

Consider the preference pro�le below with 11 voters and 9 candidates:

Name of the voter: 1 2 3 4 5 6 7 8 9 10 11

i d g f a b g g h b i

e b f a h d c b f c h

c e i i g g i d e e b

d h h d e a a a a a a

a c a c d f f h g f f

f a c g f e e f c h e

g f d e c h h e d g d

h i e h i c d c i d c

b g b b b i b i b i g

Figure 1 below displays the binary relations induced by the preference pro�le where #fi 2
Njx �i yg > #fi 2 Njy �i xg if and only if there is a line from x to y induced by the

preference pro�le above.

h

i

d

f

b
ca

g

e

Figure 1
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As it can be veri�ed with the help of Figure 1 that E(A;�N; 1) = ffagg; E(A;�N
; 2) = ffa; fgg; E(A;�N; 3) = ffa; f; ggg; E(A;�N; 4) = ffa; f; g; egg; E(A;�N; 5) =
ffa; f; g; e; hgg:
Now let us check whether or not the screening rules listed above select weak Condorcet

sets. Assume that the ties are broken according to the following order: a � b � c � d �
e � f � g � h � i: Notice that the �rst screening rule described above selects fb; g; ig
and the second one fb; d; gg: The table below presents what are the sets selected by the
screening rules listed above:

Screening Rules Screened Sets

1 fb; g; ig
2 fb; d; gg
3 Not de�ned

4 fb; c; e; g; ig
5 fb; f; gg
6 fb; g; ig

Therefore all these six rules fail to satisfy stability.

The table below shows the Borda score of each candidate.

Candidates Borda score

a 56

f 49

g 47

h 45

e 44

d 43

c 39

i 37

b 36

Notice that Candidate a is the Condorcet and the Borda winner candidate, and yet does

not belong to the outcomes of those screening rules. Moreover, �ve of the rules do select

candidate b; who is the Condorcet and the Borda loser candidate.
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3.1 Scoring rules

Our next proposition states that any screening method based on scoring voting rules fails

to satisfy stability.8

De�nition 4 A scoring voting rule is characterized by a nondecreasing sequence of real

numbers s0 � s1 � ::: � s#A�1 with s0 < s#A�1: Voters are required to rank the candi-

dates, thus giving s#A�1 points to the one ranked �rst, s#A�2 to one ranked second, and

so on. The winner of the election is the candidate with the highest total point score (see

Moulin, 1988).

As �rst pointed out by Condorcet, there exist some preference pro�les in which any

scoring voting rule fails to select the Condorcet winner candidate (see Fishburn, 1974,

page 544). Moreover, Theorem 1 in Saari (1989) states that the rankings given by the

scoring rules over subsets of candidates need not be related to each other in any manner.

Thus, our next proposition can be viewed as a natural consequence of this theorem, when

applied to the choice of sets. Notice that the screening rules described in Example 2 are

based on scoring voting rules.

Proposition 1 For any k � 1, screening a list of k names by applying a scoring voting
rule, either sequentially or one shot, does not satisfy stability provided that ties are broken

according to a �xed ordering over A.9

Proof. For k = 1. Consider the following pro�le with 17 voters and 3 candidates.10

8Gehrlein (1985) provides estimations of the conditional probability of one-stage constant scoring rules

selecting the Condorcet set given that such a set exists, in a context with m candidates and an in�nitely

large number of voters. One-stage constant scoring rules can be described as follows: Each voter is

instructed to vote for q candidates and the k most voted candidates are selected.

9A sequential application of a voting rule can be described as follows: given a voting rule, write in the

list the name of the winner candidate. A new election is held with the same voting rule on the set of the

remaining candidates, then the process is continued until k names are chosen.
10This preference pro�le was used in Fishburn (1984) to prove that the scoring voting rules do not

satisfy Condorcet consistency (see Moulin, 1988, page 232).
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No. of voters: 3 6 4 4

c a b b

a b a c

b c c a

Here candidate a is the Condorcet winner. However for any scoring method candidate b

will be elected. So the elected outcome will not be a weak Condorcet. Let us show why

a cannot be elected.

score of a = 6s2 + 7s1 + 4s0

score of b = 8s2 + 6s1 + 3s0

(score of b)� (score of a) = (s2 � s1) + (s2 � s0) > 0
The inequality above is strict because (s2 � s1) is nonnegative and (s2 � s0) is strict pos-
itive.

For k = 2, consider the following preference pro�le with 17 voters 4 candidates.

No. of voters: 3 6 4 3 1

d d d d b

c a b b d

a b a c c

b c c a a

Notice that the only weak Condorcet set is fd; ag. However for any sequential appli-
cation of a scoring method the elected set is fd; bg. This set is not weak Condorcet set,
since the majority of the voters prefers a to b. For the case of a simultaneous application

of a scoring method the proof need to be a little bit more elaborated. Notice that

score of a = 6s2 + 7s1 + 4s0:

score of b = 1s3 + 7s2 + 6s1 + 3s0:

score of c = 3s2 + 4s1 + 10s0:

score of d = 16s3 + 1s2:

(score d+score b) > (score x+score y) for every x; y 2 fa; b; c; dg such that (x; y) 6= (b; d):
For k � 3; the proof is similar, we only need to add k-2 candidates at the top of this

preference pro�le.
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3.2 The Copeland rule

Now we will explore the consequence of trying to use a voting rule that always selects a

Condorcet winner candidate whenever one exists.

De�nition 5 Compare candidate a with every other candidate x. Give a score +1 if a

majority prefers a to x, -1 if a majority prefers x to a, and 0 if it is a tie. Adding up

those scores over all x 2 Anfag yields the Copeland score of a. The winner of the election,
called a Copeland winner, is the candidate with the highest total point score (see Moulin

1988).

Proposition 2 For any k � 1, screening a list of k names by applying the Copeland rule,
either sequentially or one shot, does not guarantee stability.

Proof. In the preference pro�le below we have that E(A;�N; 1) = ffag; fcgg and
E(A;�N; 2) = ffa; cgg. However, applying the Copeland rule sequentially or taking the
candidates with highest scores leads to fdg when k = 1 and fd; cg when k = 2:

No. of voters: 1 1 1 1

a e d b

c f h d

b g g a

d c f e

h h c c

g a e f

f b a g

e d b h

Copeland score

Candidates 1st stage 2st stage

a 1 1

b -1 -2

c 2 2

d 3 -

e -1 0

f -1 0

g -1 0

h -2 -1

Therefore the proof is established for k 2 f1; 2g. To prove the result for k > 2, we need
just to add k � 2 candidates at the top of this preference pro�le.

Proposition 3 For any k � 1, if there is a Condorcet set with cardinality k then it will
be selected by applying the Copeland rule, either sequentially or in one shot.

13



Proof. Take any k � 1; and suppose that B is a Condorcet set. We need to prove

that if the Copeland rule is applied sequentially or in one shot then the set B will be

the screened set. In order to prove it, it is enough to show that all the candidates in B

have higher Copeland scores than any candidate in AnB: Notice that the fact that B is a
Condorcet set implies that all candidates of B defeat by majority any candidate in AnB.
Let a be the number of candidates in A. Thus, the Copeland score of any candidate in B

cannot be smaller than a � k. By this same reason, the Copeland score of any candidate
in AnB cannot be higher than a�1�k. Since a�k > a�1�k, the proof is established.

Corollary 1 For any k � 1, if the number is odd then screening k names by applying the
Copeland rule , either sequentially or in one shot, guarantees stability.

3.3 The Simpson rule

Now let us check another method that always selects a weak Condorcet winner candidate

whenever one exists.

De�nition 6 Compare candidate a with every other candidate x. Let N(a; x) be the

number of voters preferring a to x. The Simpson score of a is the minimum of N(a; x)

over all x 2 Anfag: The winner of the election, called a Simpson winner, is the candidate
with the highest total point score (see Moulin, 1988).

Proposition 4 Screening a list of two names by selecting the two candidates with highest

Simpson score (one shot method) does not guarantee stability. However, applying the

Simpson rule sequentially does.

Proof. First let us prove that making a list of two names by selecting the two

candidates with highest Simpson score (one shot method) does not satisfy stability. We

will prove it through the example below with 3 voters and 3 candidates.

No. of voters: 2 1

a c

b a

c b

Candidates Simpson score

a 2

b 0

c 1

14



Thus the elected outcome is fa; cg. However E(A;�N; 2) = ffa; bgg:
To prove that applying the Simpson rule sequentially satis�es stability for k = 2 just

notice that E(A;�N; 2) = ffx; yg � Ajx is a weak Condorcet winner over A and y is a

weak Condorcet winner over Anfxgg. In addition, the set of winning candidates under
the Simpson rule is the set of all weak Condorcet winners whenever such candidates exist.

Proposition 5 For any k � 3; screening k names by applying the Simpson rule, either

sequentially or in one shot, does not satisfy stability.

Proof. This proposition will be proved with an example with 9 voters and 4 candi-

dates.

No. of voters: 3 2 1 3

a c d d

b a c b

c b a c

d d b a

Candidates Simpson score

a 3

b 3

c 3

d 4

Notice that E(A;�N; 3) = ffa; b; cgg. However it is easy to see that if we apply the
Simpson rule, either sequentially or one shot, the elected set must contain d. To prove

this for k > 3, we just need to substitute, in the preference pro�le above, the top cycle of

size 3 for another top cycle with size k such that candidate d still is the Simpson winner

and does not belong to this top cycle. This completes the proof.

3.4 The Dodgson rule

Now let us turn our attention to a method that was proposed speci�cally to select a

Condorcet set provided that one exists.

De�nition 7 The Dodgson method for selecting a set with cardinality k: Compute for

each set B 2 Ak the minimum number of adjacency switches on the voters�preferences

required for B to become the Condorcet set. The winner is the set with k candidates that

requires the fewest adjacency switches (see Ratli¤, 2003).

The proposition below shows that stability is stronger than the requirement of choosing

the Condorcet set whenever such a set exists.
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Proposition 6 For any k � 2; the Dodgson method for selecting a set with cardinality k
does not satisfy stability.

Proof. In the preference pro�le below we have that E(A;�N; 2) = ffa; cgg. Now
let us apply Dodgson method to select a set with cardinality two. Notice that the set

fd; cg is the Dodgson winner since it requires only four adjacency switches on the voters�
preferences. While the weak Condorcet set fa; cg requires �ve switches.

No. of voters: 1 1 1 1

a c d b

c g g d

b f f a

d e e c

e a c e

f b a g

g d b f

Therefore the proof is established. To prove for k > 2, we just need to add k�2 candidates
at the top of this preference pro�le.

3.5 The Kemeny rule

The following method was proposed by Ratli¤ (2003). It is a generalization of the proce-

dure proposed by John Kemeny in 1959.

De�nition 8 (Ratli¤ 2003) The total margin of loss of a set B 2 2A to the candidates
in AnB induced by a pro�le of preferences �N2 WN is denoted by KE(A;�N; B) and
de�ned over A as follows:

KE(A;�N; B) =
X

y2AnS and x2S

Maxf0;#fi 2 Njy �i xg �#fi 2 Njx �i ygg

The Kemeny Method (KEk): compute the KE score for all subsets of candidates with

cardinality k. The elected set is the one with the lowest KE score.

The Kemeny method was speci�cally proposed to select Condorcet sets. The proposi-

tion below shows that it also selects weak Condorcet sets whenever such set exists.
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Proposition 7 For any k � 1; the Kemeny method for selecting a set with cardinality k
satis�es stability.

Proof. Take any k � 1; suppose that B is a weak Condorcet set with cardinality

k. By de�nition of weak Condorcet set and KE score, we have that KE(A;�N; B) = 0:
Thus, it is enough to prove that for any X 2 Ak that is not a weak Condorcet set with

cardinality k we have that KE(A;�N; X) > 0: Since X is not a weak Condorcet set then

for any x 2 X there exists y 2 AnX such that #fi 2 Njy �i xg �#fi 2 Njx �i yg > 0:
It implies that KE(A;�N; X) > 0: Therefore the proof is established.
Many other stable screening rules can be conceived. Below we give three examples.

We leave to the reader to check that they satisfy stability.

a) Compute for every subset with cardinality k, the total number of pairwise majority

defeats of the candidates in the set against the candidates outside the set. The elected set

is the one with smallest total number of pairwise majority defeats;

b) Compute for every subset with cardinality k, the highest margin of loss of a candidate

in the set against a candidate outside the set. The elected set is the one with smallest

margin of loss.

This method can be viewed as an adaptation of the Simpson rule for selecting sets with

�xed size.

c) Compute for every subset with cardinality k, the minimum number of adjacency switches

on the voters� preferences required for the set to become the weak Condorcet set. The

winner is the set with k candidates that requires the fewest adjacency switches.

Notice that this method is an adaptation of the Dodgson method (see De�nition 7).

4 Why are unstable screening rules so popular?

We have shown in the previous sections that unstable screening rules are often used. In

fact, we do not have any example of a stable screening rules that is actually used by some

decision body. Yet, we also have shown that there exist stable and reasonable screening

rules. In this section we provide two results that can be viewed as hints to solve this

apparent puzzle.
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4.1 An impossibility result

The following proposition shows that stability is incompatible with another desirable

property that one might expect from screening rules.

De�nition 9 A familiy of screening rules is a function S : k �! Sk associating to each

k 2 f1; 2; :::;#Ag a screening rule for k names Sk:

De�nition 10 Axiom I: Any listed name should not be excluded if the list is enlarged. In

other words, if a candidate is included in the chosen set with k names then he should be

also in the chosen set with k + 1 names.

Proposition 8 There exist no family of stable screening rules satisfying Axiom I .

Proof. The proof of this proposition is very simple. Let us prove it by contradiction.

Suppose that there exist a family of stable screening rules for k satisfying Axiom I .

Consider the following preference pro�le:

No. of voters: 1 1 1 1 1 1

a a a c e d

b b b d c e

c e d e d c

d c e a a a

e d c b b b

Notice that fa; bg and fc; e; dg are the unique weak Condorcet sets for k=2 and k= 3

respectively. Hence, since the screening rules of this family are stable then we have that

for k = 2, the selected set has to be fa; bg and for k = 3, the selected set has to be

fc; e; dg: Therefore, Axiom I is violated since fa; bg is not contained in fc; e; dg.

Remark 4 It turns out that all screening rules based on the sequential application of any

voting rules satisfy Axiom I.

Remark 5 Notice that in the domain of single peaked preferences, with an odd number

of voters, any family of stable screening rules satis�es Axiom I. This last result follows

by remarks 1 and 2.
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4.2 A strategic analysis: the Random Chooser Game

We now study the case where the voters act strategically and cooperatively. More speci�-

cally, we propose a voting game where the players choose by voting a subset of candidates

with a �xed size from a given set of candidates. We call this game by Random Chooser

Game because it is inspired in a scenario under the rule of k names where the committee

members who are supposed to choose the list with k names by voting, do not have any

knowledge whatsoever of the chooser�s preferences over the candidates. Thus, each com-

mittee member would choose their voting strategies assuming that each listed name would

have the same probability of being the chooser�s selected candidate for the o¢ ce. After

describing the game, we will show that for some type of unstable screening rules which

are used in reality, the chosen set with k names in any pure strong Nash equilibrium of

this game is a weak Condorcet set.

De�nition 11 Given k 2 f1; 2; :::;#Ag, a screening rule for k names Sk : MN �!Ak
and a preference pro�le �N2 WN; the Random Chooser Game can be described as follows:

it is a simultaneous game with complete information where each voter i 2 N chooses a

message mi 2 M . Given mN � fmigi2N 2 MN, Sk(m) 2 Ak is the screened set. Each

voter i 2 N has a payo¤ function ui :MN ! R that satis�es the following axioms: (Axiom

1) For any mN;m
0
N 2 MN we have that ui(mN) > ui(m

0
N) only if Sk(mN) 6= Sk(m

0
N);

and (Axiom 2) for any mN;m
0
N 2 MN and any y; x 2 A we have that ui(mN) > ui(m

0
N)

if x �i y; y 2 Sk(m0
N) and Sk(mN) = fxg [ (Sk(m0

N)nfyg):11

Let us introduce the solution concept that we will use to analyze this game.

De�nition 12 Given k 2 f1; 2; :::;#Ag, a screening rule for k names Sk : MN �!Ak
and a preference pro�le �N2 WN; a joint strategy mN = fmigi2N 2 MN is a pure

strong Nash equilibrium of the Random Chooser Game if and only if, given any coalition

C �N; there exists no m0
N � fm

0
igi2N 2 MN with m

0
j = mj for every j 2NnC such that

ui(m
0
N) > ui(mN) for each i 2 C:

The �rst three screening rules described in Example 2 and documented in Barberà

and Coelho (2006) are majoritarian and the others are not.

11Axiom 2 is a modi�ed version of the monotonicity axiom of Kannai and Peleg (1984), used among

others by Roth and Sotomayor(1990) and Kaymak and Sanver (2003). We have refered to it informally

in the introduction.
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De�nition 13 We say that a screening rule Sk :MN �! Ak is majoritarian if and only

if for every set B 2 Ak there exists m 2 M such that for every coalition C � N with

#C > n=2, and every pro�le of the complementary coalition mNnC 2MNnC we have that

Sk(mNnC ;mC) = B provided that mi = m for every i 2 C:

Proposition 9 Let Sk : MN �!Ak be a majoritarian screening rule. If a set is a pure
strong Nash equilibrium outcome of the Random Chooser Game then it is a weak Condorcet

set.

Proof. Suppose that a subset B � A with cardinality k is an outcome of a strong

equilibrium of the Random Chooser Game. Thus there exists a strong Nash equilibrium

strategy pro�le m0
N � fm0

igi2N 2 MN such that Sk(m0
N) = B. Suppose by contradiction

that B is not a weak Condorcet set. Then there exists x 2 B and y 2AnB such that a

strict majority of the voters prefers y to x. LetD � fyg[Bnfxg and C � fi 2 Njy �i xg:
Since the screening rule is majoritarian and #C > n

2
, there exists m

00
N � fm

00
i gi2N 2MN

with m
00
j = m0

j for every j 2NnC such that Sk(m
00
N) = D. By Axiom 2, we have that

ui(m
00
N) > ui(m

0
N) for every i 2 C: This is a contradiction since m0

N is a strong Nash

equilibrium. Therefore any Strong Nash equilibrium outcome need to be a weak Condorcet

set.

This result implies that any majoritarian screening rule tends to be stable if the voters

act strategically and cooperatively, provided that the monotonicity axiom holds. Notice

also that to be a weak Condorcet set is a necessary but not su¢ cient condition to be

pure strong Nash equilibrium of this game. A su¢ cient condition would require that a set

being a Condorcet set à la Fishburn, i.e. a set that cannot be defeated by any other set

with the same cardinality on the basis of majority rule.12 As Kaymak and Sanver (2003)

already pointed out, a set being a weak Condorcet set à la Gerhlein does not guarantee

that it is a weak Condorcet set à la Fishburn (1981).13

In the example below, we provide a preference pro�le over candidates in which there is

a unique Condorcet set with cardinality two. However, for a given players�payo¤ function

that satisfy both axioms 1 and 2 and a majoritarian screening rule, the set of Strong Nash

equilibrium outcome of the Random Chooser Game is empty.

12Notice that Fishburn�s de�nition is based on preferences over sets.
13See Kaymak and Sanver (2003) studies the connections between this two alternative de�nitions of

weak Condorcet sets.
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Example 3 Consider the following preference pro�le over candidates:

a �1 b �1 c �1 d
c �2 b �2 a �2 d
d �3 a �3 b �3 c

a b

cd

Figure 2

Notice that the any candidate of the set fa; bg defeats any other candidate of Anfa; bg on
the basis of simple majority rule. Hence fa; bg is a Condorcet set.
Consider now the following preference pro�le over sets of two candidates which is a lexi-

cographic extension of the above preference pro�le over candidates.

fa; bg �1 fa; cg �1 fa; dg �1 fb; cg �1 fb; dg �1 fc; dg
fb; cg �2 fa; cg �2 fc; dg �2 fa; bg �2 fb; dg �2 fa; dg
fa; dg �3 fb; dg �3 fc; dg �3 fa; bg �3 fa; cg �3 fb; cg

bc

cd

bd ad

ac

ab

Figure 3

Notice that the players�payo¤ functions derived from this preference pro�le over sets sat-

isfy axioms 1 and 2. As we can see in �gure above, there exists a strict majority of voters

that prefers fc; dg to the weak Condorcet set fa; bg. Hence, fa; bg cannot be a strong
Nash equilibrium outcome of the Random Chooser Game whenever the screening rule is

majoritarian. Therefore, by Proposition 10, the set of strong Nash equilibrium outcomes

of the Random Chooser Game is empty. It can be easily check in the preference pro�le

over sets, with the help of Figure 3, that there is no Condorcet set à la Fishburn.
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5 Concluding remarks

We have shown that all of the six screening rules documented in Barberà and Coelho

(2006) violate stability if the voters do not act strategically. In our search for stable

procedures, we have proved that any procedure based on scoring rules or resulting from

a sequential use of standard Condorcet consistent methods such as those of Simpson,

Copeland and Dodgson rules, also violates this property. We also give there examples of

stable screening rules. One example is the Kemeny method proposed by Ratli¤ (2003).

We provide two results that can explain the widespread use of unstable screening

rules. The �rst one states that there exists no family of stable screening rules satisfying

the following natural requirement that any listed name should not be excluded if the list

is enlarged. Or, in other words, that if a candidate is included in the chosen list of k

names, then he should be also in a larger list. Therefore, leaving stability aside can be

seen as a price to pay for a rule to keep an alternative important or desirable property.

The second justi�cation comes from the remark that any majoritarian procedure tends

to select weak Condorcet sets if the agents act strategically and cooperatively. More

speci�cally, we propose a voting game where under any majoritarian procedure, a set is a

strong Nash equilibrium outcome only if it is a weak Condorcet winner set. Half of the six

screening rules documented in Barberà and Coelho (2006) turns out to be majoritarian

and would thus generate attractive choices under this form of strategic behavior.
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