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Abstract

There is recent interest in the generalization of classical factor models in which
the idiosyncratic factors are assumed to be orthogonal and there are identification
restrictions on cross-sectional and time dimensions. In this study, we describe and
implement a Bayesian approach to generalized factor models. A flexible framework
is developed to determine the variations attributed to common and idiosyncratic
factors. We also propose a unique methodology to select the (generalized) factor
model that best fits a given set of data. Applying the proposed methodology to
the simulated data and the foreign exchange rate data, we provide a comparative
analysis between the classical and generalized factor models. We find that when
there is a shift from classical to generalized, there are significant changes in the
estimates of the structures of the covariance and correlation matrices while there
are less dramatic changes in the estimates of the factor loadings and the variation
attributed to common factors.
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1 Introduction

Financial and economic activities are characterized by some common movements with
booms and depressions as the extreme examples. Cyclical behaviors or business cycles
express the same common belief that there is a common movement between the vari-
ables. One can also refer to this common behavior as the state of the economy or the
state of the market. If this common behavior is strong, it makes sense to represent
the state of the economy or the market by an index characterizing the comovement of
such economic or financial variables. A method that has been widely used to derive
the common components of the variables is factor analysis. A factor model has two
significant parts: common factors and idiosyncratic factors. Factor models have many
applications in finance and economics: 1. Asset pricing and risk measurement (Ross
(1976), Geweke and Zhou (1996)); 2. Monitoring the economy and the market (Forni,
Hallin, Lippi and Reichlin (FHLR 2000), Stock and Watson (1998) and Kose, Otrok
and Whiteman (2003)); 3. Economic indicators and forecasting (Stock and Watson
(2002)); 4. Trading strategies (Tong (2006)).

Classical factor models and the need for new factor models. Classical factor
models have been widely used in financial and economic applications since mid-1970s;
however, these models have some limitations and use some restrictive assumptions
(see Bai (2003) and FHLR (2000, 2001)): 1) Classical factor analysis assumes that
cross-sectional dimension N is small and fixed. However, there are many large sample
problems available these days; 2) Idiosyncratic factors are assumed to be orthogonal;
however, this is an unrealistic and restrictive assumption. To relax these assumptions
and extend the range of applications of factor models, there has been recent interest
in finding more flexible and “generalized” factor models. Generalized factor models
are proposed recently by Stock and Watson (1998, 2002), FHLR (2000, 2001), Bai and
Ng (2002), Bai (2003) and Boivin and Ng (2006). However, these recently developed
“generalized” factor models also have some limitations: 1) They assume weak idiosyn-
cratic cross-sectional correlation; 2) The infinite cross-sectional dimension is the key
assumption to identify the common components, idiosyncratic components and factor
loadings. As discussed in FHLR (2000), for fixed number of cross-sections reasonable
assumptions, without orthogonality, for identification of the factor structure can hardly
be found.

In order to overcome these limitations, we develop a Bayesian generalized factor
model allowing for non-orthogonality of the idiosyncratic factors and the flexibility of
cross-sectional dimension. This proposed generalization is mainly for small samples but
it can be applied to large samples as well. In this paper, we also evaluate the assumption
of orthogonality of idiosyncratic factors and give a comparative analysis between the
classical and generalized models to find out if there is a gain from a generalized factor
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model. Moreover, we propose a unique methodology to choose the generalized factor
model that best fits the given data set.

The assumptions, orthogonality of idiosyncratic factors and restrictions on the cross-
sectional dimension, are necessary for identification of factors and the parameters of
the models proposed in the current literature; however, their applications are limited
to the extend that the data series satisfy these assumptions. Allowing the idiosyncratic
factors to be correlated and working with small samples can make the factor analysis
framework suited for a wider range of economic applications.

Recent developments and the need for improved models. Among the early
studies that introduce factor models as a tool for the study of time series in the eco-
nomics literature are Geweke (1977) and Sargent and Sims (1977). However, Chamber-
lain and Rothschild (1983) is the first study to allow for idiosyncratic cross-sectional
correlation. They define an approximate factor structure and show that a weaker as-
sumption that allows for some correlation in the idiosyncratic factors is sufficient for
the result in Ross (1976) that says if there is a factor structure, then the mean asset
returns are approximately linear functions of factor loadings. Stock and Watson (1998,
2002) extends this idea and applies in an index model which they call an approximate
dynamic factor model. They work with asymptotic cross-sections and asymptotic time
dimensions while allowing for weak cross-sectional correlation. In three other recent
papers, FHLR (2000), FHLR (2004) and Forni and Lippi (2001) propose a factor model
with non-orthogonal idiosyncratic components which they call the generalized dynamic
factor model. Their model combines the characteristics of Geweke (1977) and Cham-
berlain and Rothschild (1983). Using the asymptotic analysis in both cross-sections
and time series, they utilize the principal components method to estimate the common
components and idiosyncratic components.

A very recent study on the generalization of the classical factor structure is Bai and
Ng (2002) which develops a theory on estimating consistently the number of factors
in a factor model within the framework of infinite cross sections N and infinite time
dimension T . In another paper, Bai (2003) derives the limiting distributions and the
rate of convergence of the estimated factors and factor loadings as N and T go to
infinity. In both of these papers, the method of asymptotic principal components is
used to estimate the factors and factor loadings.

These studies provide a tractable methodology to replace the classical orthogonal-
ity assumption with a more flexible one. However, these papers also have restrictive
assumptions to achieve identification of the common and the idiosyncratic components.
First, they assume weak idiosyncratic cross-sectional correlation. Second, they have to
work with infinite cross-sectional dimensions. A methodology to generalize the classical
factor structure for finite samples (either N finite, or both N and T finite) is still miss-
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ing. As pointed out in FHLR (2000), reasonable assumptions, without orthogonality,
for identification of the idiosyncratic and the common component is hard to find for
fixed N . Hence the infinite cross-section is crucial for identification in the generalized
models discussed so far.

In addition to these, the recent work by Boivin and Ng also supports the need for
an alternative model that allows cross-sectional correlations and heteroscedastic vari-
ances for idiosyncratic factors within the framework of both small and large samples.
Boivin and Ng (2006) shows that we do not need large data sets for better forecasting;
idiosyncratic cross-sectional correlations and heteroscedastic variances of idiosyncratic
factors are important assumptions to achieve precise estimation and have better fore-
casting results; and underestimating the number of factors has large efficiency loss in
the factor estimates and forecasts. However, the idiosyncratic factors are correlated
when the number of factors are underestimated. Therefore it is also important to know
the patterns of covariations left unexplained by the common factors.

Major contributions and the main results of this paper. The main problem
with the generalization of the classical factor structure, obviously, is the identification
issue. If we can find proper priors on the model parameters, the Bayesian analysis of a
non-identified model is always possible (Poirier (1998)). Thus, in this paper we propose
a Bayesian approach for generalized factor models allowing for non-orthogonality of the
idiosyncratic factors and the flexibility of cross-sectional dimension. To the best of
our knowledge, this paper is the first Bayesian approach for generalized factor models.
Moreover, the generalized factor methodology for small data is still missing; thus, this
is the first study for generalized factor analysis of small data. While the proposed
model is applied for the small cross-sectional data, it can also be used for the factor
analysis of large data sets. Another nice feature of the model is that it can easily be
transformed into a classical factor model because of the flexible setup of the model.

This study also provides a unique methodology for model selection. Using Bayes
factors, we show how to select the generalized factor model that best fits the given data
and characterizes the structure of the correlation and covariance matrices. The pro-
posed model setup provides a flexible approach to determine the variations attributed
to common and idiosyncratic factors.

Applying the proposed model to both the simulated data and the foreign exchange
rates data, we provide a comparative analysis between the classical and generalized
models, and evaluate the assumption of no cross-sectional correlation between the id-
iosyncratic factors. We find that when there is a shift from classical to generalized,
there are significant changes in the estimates of the structure of the correlation matrix
while we find less dramatic changes in the estimates of the factor loadings and the
variation attributed to common factors.
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The paper is organized as follows. Section 2 introduces the proposed generalized
factor model. Section 3 describes how to make inference using the Bayesian framework
and gives a simulation analysis of the model. Section 4 presents the data and com-
parative analysis with the foreign exchange rate data. Section 5 provides the model
selection. Finally, section 6 summarizes the conclusions.

2 The Generalized Factor Model

In this section, we introduce and examine the generalized factor model and the prior
beliefs associated with the model. This section is split into three parts. We describe
the model in the first part. Then we introduce the prior beliefs that accompany the
model to complete the generalization structure. The mechanics and advantages of the
proposed methodology are provided in the last part of this section.

2.1 The Model

The basic structure of the generalized factor model proposed in this paper is represented
by,

yit = Λift + ciiεit (1)

for i = 1, . . . , N and t = 1, . . . , T . For the ith cross-section, yit is the observed variable
at time t, Λi is the 1 × r vector of factor loadings, εit is the idiosyncratic factor at
time t and ft denotes r × 1 unobservable random factors at time t. In the model, cii

is part of the decomposition of the variance-covariance matrix, which is one of the
major components of the generalized factor model in this study. The mechanics of the
generalization methodology is provided in section 2.3. A more convenient way to work
with the model is the vector form which is expressed in an N dimensional dynamic
model:

yt = Λft + Cεt (2)

in which yt is N × 1 observable random variables, Λ is N × r factor loadings that
is Λ = (Λ′

1, . . . ,Λ
′
N )′, εt is N × 1 idiosyncratic factors, and C = diag(c11, . . . , cNN ).

Further assumptions on the model are:

ft
i.i.d.∼ N(0, Ir) (3)

εt
i.i.d.∼ N(0,Σ) (4)

where εt = (ε1t, . . . , εNt)′ and Σ is N × N positive definite matrix. Also, we assume
that Cov(εit, fjt) = 0 for all i,j and t. Orthogonality of the factors is a common
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assumption to exploit the information from the data. We also assume N > r, that is,
factor structure of the data is not more complicated than that of the observed data.
Otherwise, there would not be much gain from the factor analysis. One should notice
that variables on the left hand side of the equation (2) are observable whereas none of
the variables on the right hand side are observable.

A significant difference in this setup is the allowance for cross-correlations across id-
iosyncratic components which is represented by the positive definite variance-covariance
matrix Σ. Thus, the cross sections of observables vector yt can be contemporaneously
correlated through both common factors ft and idiosyncratic errors εt. The variance-
covariance matrix Σ and the diagonal matrix C are the two components of the model
that allows the flexibility and the generalization of the classical factor models.

An additional assumption is on the factor loadings to avoid identification problems
arising because of location shifts of the factor loading matrix (see Geweke and Zhou
(1996)). The factor loading matrix is assumed to be of the following form:

Λ =




λ11 0 0 . . . 0
λ21 λ22 0 . . . 0
...

...
...

...
...

λr1 λr2 λr3 . . . λrr

λr+1,1 λr+1,2 λr+1,3 . . . λr+1,r
...

...
...

...
...

λN1 λN2 λN3 . . . λNr




(5)

where λii > 0, i = 1, . . . , r.

One can observe that the specification of the model in equation (2) implies that the
unconditional distribution of the observable variable is

yt
i.i.d.∼ N(0,ΛΛ′ + CΣC) (6)

We denote the covariance matrix of the observables by Ω which is linked to the param-
eters by Ω = ΛΛ′ + CΣC.

2.2 Prior Distributions

The Bayesian method assigns uncertainty to the model parameters. Therefore param-
eters are assumed to be random variables in the Bayesian framework. Hence, prior
distributions for the parameters, in addition to the data distribution, are defined in
this subsection.
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We consider a set of informative priors on the parameters of the model. Let Λ∗
i =

(λi1, . . . , λii) for i = 1, . . . , r and Λ∗
i = Λi for i = r+1, . . . , N . Let λ = (Λ∗

1, . . . ,Λ∗
N )′

be the [(2N +1−r)r/2]×1 vector of nonnegative elements of Λ. We adopt the following
class of priors on λ (or, equivalently Λ), C and Σ:

cii
i.i.d.∼ HN(0, h−1

c ), i = 1, . . . , N (7)

λ ∼ N(λ,H−1
λ ), λii > 0, i = 1, . . . , r (8)

νΣ−1 ∼ W (IN , ν + N + 1), ν > 2 (9)

In the prior specification for C, HN denotes a normal distribution truncated below
at 0 and hc is the precision hyperparameter. Prior for λ is normal with mean λ and
positive definite precision matrix Hλ. In this prior setup, factor loadings are allowed to
be correlated in the prior, which gives more flexibility and interaction between loadings.
The constraint λii > 0 is for identification purposes due to the structural form in (5).
The covariance matrix Σ is assumed to have a Wishart prior with the scale parameter ν,
the identity scale matrix IN and the degrees of freedom equal to the sum ν+N +1. The
condition ν > 2 is derived from the restrictions of the Wishart distribution explained
in Appendix A. How these prior specifications give us the flexibility to generalize the
factor model is discussed in the next section.

2.3 Advantages of the Proposed Model Structure

In this section, we provide several advantages of the proposed model structure given
by (2)-(4) and (7)-(9), and show how this structure generalizes the classical factor
model. Lawley and Maxwell (1971) and Timm (2002) can be referred to for detailed
description of the classical factor models. The main problem with the generalization
of the classical factor structure is the identification issue. Therefore we first clarify the
concept of identification and the related problems in the generalized factor framework
in order to understand how the proposed approach in this study uniquely identifies
factors, factor loadings and other parameters of interest. Then we explain further
advantages of the model to show the usefulness of the flexible structure of the model
in generalization, model selection and empirical applications.

Identification. Kadane (1974) provides that identification concept is a property of
the likelihood function L(θ; Y ) where, for example, θ = (Λ,C,Σ) in our case and,
hence, is the same in both Bayesian and non-Bayesian analysis. Therefore the solution
to the identification problem requires more information; however, this is usually not an
additional data information but a non-data information. Although there is a consensus
that the concept of identification and the solution requirement are the same whether a
Bayesian or a non-Bayesian framework is considered, approaches to introduce additional
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information to achieve the identification differ from one another. As Poirier (1998)
indicated, if a proper prior is specified on all the parameters, a Bayesian analysis of
a nonidentified model is always possible. The reader can refer to Poirier (1998) for
more demonstrations and further discussions of the identification issue. On the other
hand, a non-Bayesian approach requires additional restrictions and assumptions on the
unknown parameters until they are identified.

Now we can specifically analyze the identification problem in the generalization of
the factor structure. Let Φ represent the idiosyncratic variance-covariance matrix in
a generalized factor model –for example, Φ is equal to CΣC in our model– in order
that Φ is some N ×N positive definite symmetric matrix and the variance-covariance
matrix of the observables density is Ω = ΛΛ′ + Φ. Then the likelihood is L(Ω; Y ) or
equivalently L((Λ,Φ);Y ). The data would determine only the covariance matrix Ω;
however, Λ and Φ would not be identified because the right hand side of Ω = ΛΛ′+Φ
has (N2+3N +2r)/2 unknowns, whereas the left hand side has (N2+N)/2 determined
distinct elements. So there is clearly an identification problem. Proposing a Bayesian
approach, we solve the identification problem by introducing the information through
prior densities. We introduce proper priors for the model parameters (Λ,C,Σ). This
leads to proper posteriors and ensures the existence of posterior moments such as
posterior means and posterior medians for all the parameters.

In addition, we need the assumption that Λ be of full column rank r to avoid
identification problems arising through invariance of the model under location shifts of
the factor loading matrix. Factors and factor loadings should be invariant under linear
transformations. On this issue, following the setup used in the literature such as Aguilar
and West (2000) and Geweke and Zhou (1996), we adopt the structural constraint of
the form given in expression (5). This guarantees that Λ is of full column rank r. This
structural form will ensure the invariance of the component ΛΛ′ and uniquely identify
the factors and loadings. This is just a technical model identification. It has no impact
on the estimates of the observable variances, covariances, or their decompositions.

Flexibility of the Model and the Generalization Issue. After studying the identifi-
cation problem, our next issue is to give a full analysis of the prior beliefs that have
significant role on the generalization of the classical factor model. Normal prior on
Λ is a standard prior assumption for the coefficients. The critical part of the model
setup is the construction of the covariation attributed to idiosyncratic factors; that is,
the covariance matrix of the idiosyncratic components CΣC and the prior beliefs on
the parameters of this covariance structure. This part requires particular attention
since it characterizes the generalization of the classical factor analysis. What are the
implications of the structural form of the idiosyncratic covariance matrix CΣC for the
generalization? What do the priors associated with this covariance structure, specif-
ically priors on C and Σ, imply for this task? Now we will discuss this important
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feature of the model.

First of all, a nice feature of the generalized model is that if Σ = IN , then the
factor model defined in (2), (3) and (4) fall into the classical factor modeling where
idiosyncratic components are cross-sectionally uncorrelated. In this special case, the
variance-covariance matrix of the observables is Ω = ΛΛ′+CC. In the proposed model
setup, ν is the key parameter to determine the amount of idiosyncratic cross-sectional
correlation. In addition to the structural form CΣC, having ν in front of Σ, setting the
degrees of freedom equal to ν + N + 1 and also setting the scale matrix equal to IN in
the prior provide three advantages. First, the size of the scale parameter ν gives us the
flexibility to set the level of idiosyncratic correlations. As ν increases [decreases], Σ gets
tightened [loosened] up at around the scale matrix IN . At the extreme case, Σ

p→ IN

as ν →∞; this leads us to the classical factor model. The algebraic derivation of this
idea is available in Appendix A. Second, as ν changes, only variances and covariances
of the elements of Σ change whereas the mean of Σ is kept the same. This is what
we desired because we just intend to investigate how the parameter estimates change
with different levels of idiosyncratic correlations. We just do not want mean shifts;
therefore Σ is centered at IN for any value of ν. This is also demonstrated in Appendix
A. Third, as N changes, neither variances and covariances nor the mean changes in the
prior belief, technical details of which are provided in Appendix A. So the prior beliefs
are the same whether we include additional observable variables in the model or not.

On the other hand, the diagonal matrix C in the covariance structure is a technical
part to handle the estimation of idiosyncratic variance-covariance matrix CΣC as the
estimate of Σ changes due to a change in the size of ν. For example, when ν is
sufficiently large, Σ is almost equal to the identity matrix. In this case, idiosyncratic
standard deviations are estimated by diagonal elements of C. Hence, C displays as a
scaling depending on whether Σ has a loose or tight prior.

The major technical contribution of this paper is the specification characterized
by the covariance structure CΣC and the priors in (7) and (9). This is a unique
specification that can be used to determine the covariance and correlation structures
between idiosyncratic components in factor analysis or between error terms in linear
models.

Model Selection. Another advantage of the proposed model structure is about the
model selection. We use Bayes factors to choose the model that best explain the cor-
relation structure of the data, which is a model comparison between a “more” classical
model and a “more” generalized model. The calculation of the Bayes factor for model
selection in this study is quite straightforward because different factor models are char-
acterized by the priors, (7)-(9), rather than the body of the model, (2). This idea is
explained in detail in section 5.

9



Small Data or Large Data. One final comment about the proposed model is its
usefulness in the applied analysis. For the convenience of many repeated experiments
and simulations for this study, we take a small number of cross-sections; however, the
model works for the estimation and inference in both small sample and large sample
analysis. We applied the model for large cross-sections of up to sixty with simulated
data but we do not want to discuss the large data analysis in this study because this
is beyond the scope of this paper.

3 Bayesian Inference for the Factors and Parameters

Bayesian inference requires us to compute the posterior distributions and sample from
these distributions. Therefore we start this section with posterior densities and sam-
pling algorithms. Then we discuss the verification of the accuracy of the analytic
derivations, posterior simulators and the computer coding.

3.1 Posterior Distributions and Sampling

Explicit forms of the posterior densities for the model parameters are not available
and the closed forms of the conditional posterior densities can not be derived for some
parameters. Therefore, we need to employ hybrid Markov Chain Monte Carlo (MCMC)
sampling algorithms in order to get the draws from each posterior density. Let Y =
(y1,y2, ...,yT ). The kernel of the joint posterior p.d.f. p(C, λ,Σ,F|Y) is proportional
to the multiplication of the prior densities and the observables density:

p(C, λ,Σ,F|Y) ∝ p(C)p(λ)p(Σ)p(F)p(Y|C, λ,Σ,F) (10)

We solve out the following conditional posteriors from this kernel of joint posterior of
parameters for simulation purposes in MCMC sampling.

We do not have a known distributional form for the conditional posterior of C. The
kernel of the conditional posterior distribution of C, p(C|Y,Λ,Σ,F), is given as in the
following function:

exp{−1
2
(hc

N∑

i=1

c2
ii +

T∑

t=1

zt)}(
N∏

i=1

cii)−T
N∏

i=1

I[0,∞)(cii) (11)

where zt = (yt − Λft)′(CΣC)−1(yt − Λft). We apply the Metropolis within Gibbs
sampling algorithm to draw from the conditional posterior of C. Metropolis sampling
is applied to draw from each cii conditional on other cjj ’s (j 6= i) and other parameters of

10



the model. Gibbs sampling part of this algorithm enters when this drawing is recursively
applied for each cii.

We need to introduce an additional notation before we continue the characterization
of the conditional posterior of λ. Let Fi be the matrix consisting of the first i columns
of F for i = 1, . . . , r and Fi = F for i = r +1, . . . , N . Then let F∗ = diag(F1, . . . ,FN )′.
The conditional posterior of λ (or, equivalently Λ) is a multivariate normal distribution

λ|(Y,C,Σ,F) ∼ N(λ,H−1
λ ) (12)

where
Hλ = Hλ + F∗

′
(CΣC⊗ IT )−1F∗

λ = H−1
λ [Hλ.λ + F∗

′
(CΣC⊗ IT )−1Y]

with a truncation of the elements λii’s, i = 1 . . . r, below at 0.

The conditional posterior of Σ is inverted Wishart in the following form

νΣ−1|(Y,C,Λ,F) ∼ W (G−1
, ν + T + N + 1) (13)

where the posterior scale matrix is defined by G = IN + AA′/ν in which the N × T
matrix A = (A1, . . . ,AT ) and the N × 1 matrix At = C−1(yt −Λft).

The conditional posterior of F is a multivariate normal distribution. For t = 1, ..., T ,
the conditional posterior of ft is of the form

ft|(Y,C,Λ,Σ) ∼ N(µt,H
−1) (14)

where µt = Λ′(ΛΛ′+CΣC)−1yt and H = [Ir−Λ′(ΛΛ′+CΣC)−1Λ]−1. Furthermore,
Cov(ft, fs|Y,C,Σ,Λ) = 0 for t 6= s.

In all the posterior sampling studies of the paper, we use the following MCMC
algorithm. We adopt the Gibbs sampling algorithm as our MCMC procedure to sample
from the posterior densities. However the Metropolis within Gibbs sampling is applied
to draw from the joint kernel for the diagonal elements of C. Here is how the full
MCMC is run:
• First, in order to draw from the joint kernel for the diagonal elements of C, we
draw each diagonal element cii once at a time conditional on the others. Hence, for
i = 1, . . . , N , we draw from the kernel of cii conditional on cjj ’s, j 6= i.
• Second, we draw λ’s from the multivariate Normal posterior in (12).
• Third, we draw Σ’s from the Wishart posterior in (13).
• Last, we draw F’s equation by equation from the multivariate Normal posterior in
(14).
Let the output from the full MCMC run be denoted by {C(m),Λ(m),Σ(m),F(m)}M

m=1

for future reference.
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3.2 Simulation Analysis

We have to verify the accuracy of the analytic derivations, posterior simulators ex-
plained in the previous section and computer coding incorporating the ideas before we
proceed to the applications of the proposed model. It is essential that all of these be
error-free in order to have reliable simulated and empirical results. In all of the data
generations below to run the tests, we set N = 5, T = 20 and r = 2 and hyperparame-
ters in the priors are simply taken as hc = 1, λ = 0, Hλ equal to identity matrix and
ν = 120. Accuracy of simulation results are also verified with various other values of
model parameters. Furthermore, number of iterations is 10000, 500 of which are used
in the burn-in period.

We first conduct the joint distribution test proposed in Geweke (2004) which is
designed to detect the errors in posterior simulators. These errors could be in the
analytic derivations or in the computer coding. In other words, this is a test for the
consistency of the posterior simulator explained in the previous subsection with the
data density (6) and prior densities (7), (8) and (9). Some of the test functions and
their chi-square probability values are reported in Table 1. These joint distribution
tests suggest that our posterior simulators seem error-free.

In order to further check for the accuracy of our procedure, we test the convergence
of the algorithm using artificially created data. So we run an experimental study to
highlight the convergence of the posterior simulator. First, we create observable data
and latent factors using the expressions (2), (3) and (4). We call these artificially
created factors the true factors. Parameters of the model are constructed using the
priors specified in section 2.2 with the hyperparameters listed above. We use the
MCMC algorithm described in section 3.1 to estimate the unobservable factors and
unobservable model parameters created artificially. We confirm the convergence of the
algorithm using different segments of the entire simulation. Chi-square probability
values for some selected parameters are presented in Table 2.

4 Data and the Comparative Analysis

We implement the methodology described in section 2 and give a comparative analysis
between different specifications of the generalized factor model and the classical factor
model. We apply the proposed methodology to the foreign exchange rates (forex).
The forex data are the seven major foreign currencies that span the EMU (European
Monetary Union) era from 1999:1 to 2003:12. The results derived in this study present
some evidence of how the Euro is strongly linked to world currencies in such a short
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period of time.

4.1 Data

We use the foreign exchange rate (forex) data publicly available on the New York Fed-
eral Reserve Bank’s website. The data are monthly foreign exchange rates dated from
January 1999 to December 2003 and transformed to monthly percentage returns by
setting yit = 100(pit−pi(t−1))/pi(t−1) where pit is the dollar price of foreign currency at
month t. We use every month’s last trading day in these calculations. The data are de-
meaned because of the purposes of this study. The seven major international currencies
to be analyzed are the Australian Dollar (AUD), Canadian Dollar (CAD), European
Euro (EUR), Japanese Yen (JPY), Swedish Krona (SEK), Swiss Franc (CHF) and the
British Pound (GBP). There are several reasons why we select these currencies. These
are the seven major currencies that are internationally traded in deep and relatively
liquid financial markets. Short-term and long-term interest rates are readily available
for them. Moreover, these seven currencies serve as a gauge of financial pressure on the
value of the dollar.

Summary statistics of the data are reported in Table 3, Table 4, and Table 5. Table
3 reports sample means and sample standard deviations. Standard deviations vary
between 1.85 and 3.12. Table 4 presents sample autocorrelations. Clearly, exchange
rate returns have low autocorrelations as most financial asset returns do. Highest
autocorrelation appears in the Euro, yet that dies out soon after second lag. If the
percentage growth rates for currencies were a Gaussian white noise, the approximate
lower and upper confidence bounds would be (-0.2582, 0.2582) and all of the currencies
would be inside the interval. That is, all the autocorrelations are insignificant. Hence,
in most of the factor analysis papers the returns are assumed to be independent and
identically distributed.

Correlation coefficients between currency returns are reported in Table 5. First, all
coefficients are positive and most of them are significantly high. These indicate that
correlations are clearly nonzero and there may be a strong common behavior between
the currencies. Obviously, European currencies are more correlated with each other
than the rest of them. For example, the Swede Krona, Swiss Franc and Euro are
highly correlated while the UK Pound is a little less correlated with other European
currencies. The Canadian Dollar has a large correlation coefficient with the Australian
Dollar while its correlation coefficients with the rest of the world is smaller. On average,
the Japanese Yen and Canadian Dollar have the lowest correlation numbers whereas
the Euro has the largest value.
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4.2 Comparative Analysis

This section presents the first empirical results with the generalized factor model devel-
oped in this study. We run a comparative analysis to understand the impact of a move
from a classical factor model to a generalized factor model on the estimates of functions
of model parameters and the latent factors. In the model, we have a set of informative
priors which requires specifying the hyperparameters that determine the prior densities.
Priors on the factor loadings are centered at zero and the prior covariance matrix is
set to Hλ = (1/5)× IN . The hyperparameter on the prior for C is set to be hc = 1/5.
The prior specification of Σ has a significant role on the generalization of the classi-
cal framework as discussed in section 2.3. There is one parameter left to move freely,
the scale parameter ν for Σ. This is the key parameter in terms of the generalization
setup. Its determination is the key point because determining the scale parameter is
equivalent to determining the correlation structure between idiosyncratic factors and
the correlation structure of the observed variables. Discussions in the following three
paragraphs are based on a one-factor model. Although we present the results from a
one-factor model in the rest of this section, all the discussions and conclusions are valid
for two- and three-factor models as well.

We start the comparative analysis with the investigation of changes in the estimates
of the variation explained by common factors, Λ′iΛi

Λ′iΛi+c2iiσii
, the variation attributed to

idiosyncratic factors, c2iiσii

Λ′iΛi+c2iiσii
and factor loadings Λi, which are often of research in-

terest in the literature. However we only discuss the variation due to common factors
since the second expression is the complement of the first one and the factor loadings
can easily be derived from the first one. The estimates of these expressions are widely
used in finance and economics. For example, the Arbitrage Pricing Models (see Geweke
and Zhou (1996)) and portfolio management problems (see Aguilar and West (2000)).
Therefore which model we use to estimate is quite important in financial decision prob-
lems.

The comparison of the estimates derived using different model specifications are
displayed in Table 6. The reported numbers are the posterior means and numerical
standard errors. As the scale parameter ν increases [decreases], Σ gets tightened [loos-
ened] up at around IN and the model converges to a more classical factor model [more
generalized model]. ν = 5 is quite a small number to represent a model with an ex-
tremely loose covariance matrix Σ and ν = 500 is quite a large number to show a model
with an extremely tight covariance matrix Σ. As the model converges to the classical
factor model, variation attributed to the common factor rises on average. That is,
there is an increase on average in the estimates as we move from a “loose” model to a
“tight” model. This result is not a surprise because we are imposing the assumption
that there is almost no cross-correlation between idiosyncratic factors and we are forc-
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ing the common factors to explain all of the covariation between the variables when we
use the classical factor model. Since the estimated variance is the same whether it is a
“loose” model or a “tight” model, we can deduce from Table 6 that the estimates for
factor loadings increase as we move from generalized to classical model.

We can summarize the empirical results from Table 6 as follows. The variation
attributed to the common factor achieves the highest percentage values for the Euro,
Krona and Franc while its smallest values are for the Canadian Dollar and the Japanese
Yen. Interestingly, these latter currencies seem apart from the common movements of
the other five major currencies. On the other hand, the Euro displays a very high
variation, 97%, explained by the common factors. It seems that the common factor is
almost a “Euro factor”.

Next we compare the changes in the idiosyncratic correlation coefficients for the
“loose” and “tight” models. Mean absolute idiosyncratic correlation coefficients for
ν = 5 and ν = 500 are displayed in Table 7 and Table 8, respectively. The idiosyncratic
correlations are quite big if we employ the “loose” model, that is, the generalized factor
model, whereas they are quite small if we apply the “tight” model, that is, “almost”
classical factor model. Considering the fact that the classical factor model apriori
assumes the zero-correlation between idiosyncratic components, we can understand
how big the amount of correlation that is not captured by the classical factor analysis
is. For example, unexplained correlation between CAD and AUD is 0.6558, however
this number is zero when classical factor model is employed.

Lastly, we examine the factor estimates in the same one-factor model for various
model specifications discussed above. Figure 1 demonstrates the factor estimates over
time for four values of the scale parameters, that is (a) ν = 5, (b) ν = 10, (c) ν = 100
and (d) ν = 500. Factor estimates do not change as we move from the classical model
to the generalized model. One empirical result one can observe from Figure 1 is that
the U.S. dollar depreciates over the time.

In this section, we show an implementation of the generalized factor model and run
a comparative analysis between the estimates of the generalized and classical factor
models. In addition, we evaluate the assumption that the idiosyncratic factors in a
classical factor model are cross-sectionally orthogonal. From the outputs of various
model specifications, we find that there are slight decreases in the estimates of factor
loadings and variation due to common factors (hence, slight increases in the estimates
of the variation due to idiosyncratic factors), and there is no change in the factor
estimates as we switch from the classical to the generalized model setup. However, we
find substantial changes in the structure of the correlation matrix. These evaluations
are in terms of statistical estimates for some functions of parameters which are often of
research interest, but whether these differences make significant changes in economic
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and financial applications is future research interest.

5 Model Comparison

The purpose of this section is two-fold: First, we want to propose a methodology to
select the generalized factor model that best explains the given data. We wish to do
a formal model comparison between different specifications of the generalized factor
structure, including the classical factor structure. We use Bayes factors to choose the
model that best fits the data. The calculation of the Bayes factor for model selection in
this study simplifies substantially because different factor models are characterized by
different prior beliefs rather than the body of the model in (2). Second, we want to run a
comparative analysis between models. We show that the data favor a generalized factor
model over a classical factor model unless a significant amount of each covariation within
the data is explained by the common factors. Moreover, we study the implications of
the selected model setup for the structures of the covariance and correlation matrices.

Each specification of the model is characterized by the choice of the scale parameter
ν. So selection of the model for the true characterization of the data is determined
by selection of the scale parameter. This analysis also provides an answer to the
problem of model comparison between the classical and generalized framework. The
prior hyperparameters for the posterior simulation analysis are given in section 4.2.

Bayesian model selection proceeds by pairwise comparison of the models through
their Bayes factors. A nice feature of the proposed model setup is that the computation
of the Bayes factor simplifies substantially since any pair of models have the same
conditional probability densities of observables but have different prior densities. The
derivation of the Bayes factor is available in Appendix B. The resulting Bayes factor
for a pair of models is

BF o = E{p(Σ|ν1)
p(Σ|ν2)

|Y, ν2} (15)

where p(Σ|ν1) and p(Σ|ν1) are prior densities for the models with scale parameters
ν1 and ν2, respectively. Let {Σ(m)}M

m=1 be the output from the posterior simulator
p(Σ|Y, ν2). Then, the Bayes factor can be approximated consistently by

BF =
1
M

M∑

m=1

p(Σ(m)|ν1)
p(Σ(m)|ν2)

(16)

under the conditions that posterior moment in expression (15) be well defined and
finite, and the ratios of prior densities p(Σ|ν1)

p(Σ|ν2) be bounded in the parameter space
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of ν2 (Geweke (2005)). Data favors the model characterized by the parameter ν1 if
BF > 1 whereas it favors the model characterized by the parameter ν2 if BF < 1.
It is essential that the model characterized by the parameter ν2 be more diffuse (less
restrictive); hence we must have ν2 < ν1. Another important point, however, is that
we are not able to compute the Bayes factor consistently if ν2 is a lot smaller than ν1

because we lose the numerical efficiency as the difference between these two numbers
grows substantially. For example, we can hardly compare a model with ν2 = 10 and a
model with ν1 = 400.

In section 5.1, we run an experiment using the simulated data to implement and
illustrate the model selection method. In section 5.2, we explore the empirical implica-
tions of the model selection for the foreign exchange rate data and study the structures
of the covariance and correlation matrices implied by the generalized factor model.

5.1 Results with Simulated Data

We build a pseudo-true model and study the implications of the model selection proce-
dure in the light of the simulated data from this model. We construct the pseudo-true
model with N = 7, T = 60 and r = 2 and Σ = IN . To determine the model parameters
Λ and C, we draw them from their priors given the values of the hyperparameters in
section 4.2. Under these specifications, the data are generated according to the expres-
sions (2), (3) and (4). This two-factor model is the “true model” to be estimated by the
generalized factor model. Observe that all the covariations are driven by two common
factors in this simulation study.

We next apply the generalized factor model to the simulated data. Using the MCMC
output {Σm}M

m=1 from the generalized factor model with r = 1, r = 2 and r = 3,
we compute the Bayes factors. Bayes factors for various pairs of models conditional
on one factor, two factors and three factors are presented in Tables 9, 10 and 11,
respectively. The models compared using the Bayes factor are pairwise listed in the
first two columns. The first column represents the model characterized by ν1 and the
second column displays the model characterized by ν2 in equation (16). Using Bayes
factors, we can select the best generalized factor model for a given number of factors.
Assuming a one-factor model (Table 9), marginal likelihood rises sharply until ν1 = 7.
Then it drops slowly afterwards and become flatter as the model approaches a classical
model. The shape of the log marginal likelihood function is depicted in Figure 2, which
has the mode at ν1 = 7. Hence the model characterized by the scale parameter ν1 = 7
is chosen under the framework of a one-factor model. So idiosyncratic factors are not
orthogonal and some covariations are not explained by the common factor. This is no
surprise because our “true model” is a two-factor model with orthogonal idiosyncratic
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components. Then we try the two-factor and three-factor model.

With the two-factor model whose results are reported in Table 10, the marginal
likelihood increases until the model completely converges to the classical factor setup.
This picture is depicted in Figure 3. The three-factor model (Table 11) has the same
picture as the two-factor model. The only difference is that the log marginal likelihood
function (Figure 4) is flatter for the three-factor model. So the log marginal likelihood
favors the two-factor model which is the “true model”. After this verification and
illustration of the model selection methodology, now we can apply the model to the
foreign exchange rates data.

5.2 Empirical Results

The generalized factor model is applied to the foreign exchange rates data in order
to explore the empirical implications of the proposed model setup. As in the simu-
lated data analysis, we show how to choose the generalized factor structure that best
characterize the data and study the implications of the model for the structures of the
covariance and correlation matrices.

Bayes factors for the models with one factor, two factors and three factors are
reported in Tables 12, 13 and 14, respectively. Pairs of models compared using the
Bayes factor in (16) are listed in the first two columns and their corresponding Bayes
factors are given in the third column. NSEs are also reported in each table. From Table
12, one can clearly see that the marginal likelihood increases steeply until ν1 = 12 and
then falls gradually afterwards. Hence the log marginal likelihood function have a
picture as graphed in Figure 5. The mode is at ν1 = 12. Therefore we can conclude
that the best model specification is at ν1 = 12 for a one-factor model. Table 13 shows
that, with two factors, the more restrictive the model is, the higher the log marginal
likelihood is. The graph of the log marginal likelihood should be like the one depicted
in Figure 6. Thus the data favors the restrictive model with a diagonal idiosyncratic
covariance matrix. Results for a three-factor model in Table 14 are quite similar to
those for the two-factor model. Bayes factors favor the restricted model again but now
the log marginal likelihood function, displayed in Figure 7, is flatter than the one for
the two-factor model. These results are almost the same as the ones derived using the
simulated data in the previous section. Only the one-factor model requires a loose Σ,
hence favors a less restrictive model. Thus from the analysis of log marginal likelihoods
we conclude that two factor model is chosen for the foreign exchange rates since the
intuitive idea behind the factor analysis is to explain the covariation between observed
variables with the minimum number of factors.
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With two and three factors, the best model is characterized by a quite large hyper-
parameter ν. Therefore the idiosyncratic factors for these models are orthogonal, which
implies a generalized factor model equivalent to a classical factor model. However, with
a one-factor model the idiosyncratic factors are not orthogonal but correlated. For this
model, the proposed structure allows us to analyze the patterns of covariance and cor-
relation that are not driven through the dynamics of the common factor. Tables 15
and 16 show that these patterns of covariation left unexplained by the common factor
are significant amount. For example, much of the covariation between the Australian
Dollar and the Canadian Dollar are determined by the idiosyncratic factor but not the
common factor. This may not be surprising because the common factor is almost a
“Euro factor”.

We can summarize this section in three parts. As a first result, we show how to
choose the best generalized factor model in financial and economic applications. Second,
for any given number of factors, we are able to select the model that best characterize
the idiosyncratic component as well as the common component of the covariance and
correlation matrices. This allows us to study the patterns of covariations within a data
set. Third, even in a factor model where the computation of the marginal likelihood
to determine the number of factors is complicated, as in this model, we can still make
inferences about the number factors that best characterize the data.

6 Concluding Remarks

In this study, we describe and implement a Bayesian approach for generalized factor
models in which idiosyncratic factors can be correlated and identification does not re-
quire any restrictions neither on cross-sectional dimensions nor on time dimensions. We
also propose a methodology to choose the generalized factor model that best describe
the factor structure of a given data set. This model selection methodology is specific
to factor analysis questions; however, it is more efficient –in terms of time cost, ana-
lytical derivations and computational effort– to employ this method than the marginal
likelihood method. For the convenience of many repeated experiments and simulations
for this study, the model is applied for the analysis of a small cross-sectional data set
but it can be used for large data analysis as well.

Applying the model to the foreign exchange rate data, we discuss whether the
generalization of the classical factor model makes any changes in the estimates for the
functions of factor loadings and factors, and evaluate the controversial assumption of no
cross-sectional correlation between idiosyncratic factors. We find that when there is a
shift from classical to generalized model, there are significant changes in the estimates
of correlation structure while we find less dramatic changes in the estimates of the
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factor loadings and variation attributed to common factors.

This study can initiate possible further research projects that can be based on the
idea of generalization. The model and the ideas in this paper can lead to several empiri-
cal and technical extensions. First, the current paper presents the statistical differences
between the outputs of generalized and classical factor models. However, an interesting
empirical question will be to study the differences these models will make in economic
and financial applications. Second, the generalized factor models are relatively new
ideas. Therefore their applications in empirical problems are just expanding recently.
Pattern analysis of covariances and correlations –for example, patterns of covariations
in bank default rates or international markets– are just some possible empirical appli-
cations. Third, the generalized factor model for serially correlated data can be a major
extension of this project. Forth, the proposed model selection approach is relatively an
efficient method; however, a development of a model with hierarchical structure may
improve the efficiency, which is an on-going research project.
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Appendix

A Analysis of the Prior For Variance-Covariance Matrix

Let U be N × N symmetric and positive definite matrix. If U follows an inverted
Wishart distribution with scale matrix G and degrees of freedom v, that is, U ∼
IW (G, v), then first and second moments are given by

E(U) =
G

v − 2N − 2
, v − 2N − 2 > 0

V ar(uij) =
giigjj + (v−2N)

(v−2N−2)g
2
ij

(v − 2N − 1)(v − 2N − 2)(v − 2N − 4)
, v − 2N − 4 > 0

Cov(uij , ukl) =
2

(v−2N−2)gijgkl + gikgjl + gilgkj

(v − 2N − 1)(v − 2N − 2)(v − 2N − 4)
, v − 2N − 4 > 0

for all i, j, k, l and G = (gij).

In the prior specification of Σ, νΣ−1 ∼ W (IN , ν + N + 1) implies that 1
ν Σ ∼

IW (IN , ν + 2N + 2). Hence, with v = ν + 2N + 2 and G = IN , we have ν > 2 and
following prior moments

E(Σ) = IN

V ar(σii) =
2

ν − 2

V ar(σij) =
ν

(ν + 1)(ν − 2)

for i 6= j and Σ = (σij). Variances go to zero as ν increases and converge to infinity as
ν approaches to 2. Hence variances are monotone decreasing functions of ν. Similarly
one can straightforwardly show that these are true for covariances as well.

B Derivation of the Bayes Factor

Using Bayes factors, we compare two (generalized) factor models to choose the one
that better characterizes the data. Each specification of the model is represented by
the choice of the scale parameter ν. Let ν1 and ν2 represent the two competing models,
say model 1 and model 2. In the model setup of this paper, these models share the
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same conditional probability densities of observables but have different prior densities.
Therefore the computation of the Bayes factor simplifies substantially.

Let δ = (C, λ,Σ,F) be the set of model parameters and latent factors. Let also ∆1

and ∆2 be parameter spaces for models 1 and 2, respectively. Then the Bayes factor
in favor of model 1 is

BF o =

∫

∆1

p(Σ|ν1)p(C)p(λ)p(F)p(Y|C, λ,Σ,F)dδ

∫

∆2

p(Σ|ν2)p(C)p(λ)p(F)p(Y|C, λ,Σ,F)dδ

=

∫

∆1

[p(Σ|ν1)/p(Σ|ν2)]p(Σ|ν2)p(C)p(λ)p(F)p(Y|C, λ,Σ,F)dδ

∫

∆2

p(Σ|ν2)p(C)p(λ)p(F)p(Y|C,λ,Σ,F)dδ

=
∫

∆2

p(Σ|ν1)
p(Σ|ν2)

p(Σ,C, λ,F,Y|ν2)
p(Y|ν2)

dδ

= E{p(Σ|ν1)
p(Σ|ν2)

|Y, ν2}

The condition ∆1 ⊆ ∆2 should be satisfied for the validity of the derivation above.
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Figure 1: Factor estimates over time for four values of the scale parameter: (a) scale param-
eter=5, (b) scale parameter=10, (c) scale parameter=100 and (d) scale parameter=500.
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Table 1: Testing for coding error

Test Functions P-values for equality of means
trace(YY’) 0.72

max. eigenvalue of (YY’) 0.62
min. eigenvalue of (YY’) 0.89

σ11 0.37
F11 0.94

The test proposed in Geweke (2004) is conducted to check for errors in the analytic
derivations and the computer programming. Some selected samples of the test

functions are presented. All results pass the test at the 10% level.

Table 2: Testing convergence

Variables of interest P-values for equality of means
Ω11 0.65
Ω13 0.89

Λ1Λ′
1 0.53

Λ1Λ′
3 0.96

Convergence test results for Posterior Simulation of covariance matrix,
Ω = ΛΛ′ + CΣC. Some selected components are presented. Convergence is verified

at the 10% level.
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Table 3: Summary statistics

CURRENCY Mean Std. Dev.
AUD 0.3678 3.1289
CAD 0.2325 1.8539
EUR 0.1944 2.9681
JPY 0.1925 2.8398
SEK 0.1265 3.0114
CHF 0.2386 2.9419
GBP 0.1931 2.2033

Sample means and sample standard deviations for currency percentage returns.

Table 4: Autocorrelations

CURRENCY lag 1 lag 2 lag 3 lag 4
AUD 0.0796 -0.0848 0.0192 0.0997
CAD 0.054 -0.0734 -0.1304 0.0758
EUR 0.1725 -0.0022 -0.0499 -0.0916
JPY 0.1103 -0.0523 0.2333 -0.1519
SEK 0.0754 -0.048 0.0905 0.0472
CHF 0.0957 0.0217 -0.0366 -0.2389
GBP -0.0449 -0.1204 0.2452 -0.0219

Sample autocorrelations for currency percentage returns.
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Table 5: Cross-correlations

CURRENCY AUD CAD EUR JPY SEK CHF GBP
AUD 1 0.7523 0.5214 0.3034 0.5847 0.3665 0.3519
CAD 0.7523 1 0.3509 0.1867 0.4542 0.1811 0.1605
EUR 0.5214 0.3509 1 0.3347 0.8954 0.9492 0.6985
JPY 0.3034 0.1867 0.3347 1 0.3605 0.3388 0.2665
SEK 0.5847 0.4542 0.8954 0.3605 1 0.8102 0.6191
CHF 0.3665 0.1811 0.9492 0.3388 0.8102 1 0.6722
GBP 0.3519 0.1605 0.6985 0.2665 0.6191 0.6722 1

Sample correlation coefficients between currency percentage returns.

Table 6: Variation attributed to the common factor

Model AUD CAD EUR JPY SEK CHF GBP
ν = 5 0.2516 0.1199 0.9800 0.1123 0.7674 0.8927 0.4512

(0.0006) (0.0005) (0.0002) (0.0004) (0.0004) (0.0003) (0.0006)
ν = 10 0.2579 0.1232 0.9777 0.1139 0.7721 0.9007 0.4546

(0.0006) (0.0005) (0.0001) (0.0004) (0.0004) (0.0002) (0.0006)
ν = 20 0.2784 0.1341 0.9837 0.1200 0.7889 0.9084 0.4665

(0.0006) (0.0005) (0.0001) (0.0004) (0.0003) (0.0002) (0.0006)
ν = 100 0.2991 0.1481 0.9922 0.1200 0.7972 0.9072 0.4747

(0.0005) (0.0005) (0.0000) (0.0004) (0.0003) (0.0001) (0.0005)
ν = 500 0.2955 0.1482 0.9948 0.1283 0.8094 0.9079 0.4982

(0.0006) (0.0005) (0.0000) (0.0004) (0.0003) (0.0001) (0.0005)

Variation attributed to the common factor, Λ′iΛi

Λ′iΛi+c2iiσii
in a one-factor model.

Numerical standard errors are in the parenthesis. Number of iterations is 30000.

28



Table 7: Idiosyncratic correlations, scale parameter=5

CURRENCY AUD CAD EUR JPY SEK CHF GBP
AUD 1.0000 0.6558 0.3394 0.1606 0.2959 0.4093 0.1169

(0) (0.0004) (0.0012) (0.0006) (0.0009) (0.0010) (0.0005)
CAD 0.6558 1.0000 0.3398 0.1196 0.3147 0.4276 0.1373

(0.0004) (0) (0.0012) (0.0005) (0.0009) (0.0010) (0.0006)
EUR 0.3394 0.3398 1.0000 0.2031 0.2932 0.3125 0.2044

(0.0012) (0.0012) (0) (0.0009) (0.0011) (0.0012) (0.0009)
JPY 0.1606 0.1196 0.2031 1.0000 0.1464 0.1463 0.1078

(0.0006) (0.0005) (0.0009) (0) (0.0006) (0.0007) (0.0005)
SEK 0.2959 0.3147 0.2932 0.1464 1.0000 0.2599 0.1213

(0.0009) (0.0009) (0.0011) (0.0006) (0) (0.0009) (0.0005)
CHF 0.4093 0.4276 0.3125 0.1463 0.2599 1.0000 0.1449

(0.0010) (0.0010) (0.0012) (0.0007) (0.0009) (0) (0.0007)
GBP 0.1169 0.1373 0.2044 0.1078 0.1213 0.1449 1.0000

(0.0005) (0.0006) (0.0009) (0.0005) (0.0005) (0.0007) (0)

Mean absolute idiosyncratic correlation coefficients when ν = 5 in a one-factor model.
Numerical standard errors are in the parenthesis. Number of iterations is 30000.
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Table 8: Idiosyncratic correlations, scale parameter=500

CURRENCY AUD CAD EUR JPY SEK CHF GBP
AUD 1.0000 0.0823 0.0361 0.0366 0.0438 0.0565 0.0339

(0) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001)
CAD 0.0823 1.0000 0.0362 0.0345 0.0456 0.0598 0.0349

(0.0002) (0) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
EUR 0.0361 0.0362 1.0000 0.0358 0.0358 0.0361 0.0356

(0.0002) (0.0002) (0) (0.0002) (0.0002) (0.0002) (0.0002)
JPY 0.0366 0.0345 0.0358 1.0000 0.0357 0.0345 0.0338

(0.0002) (0.0002) (0.0002) (0) (0.0002) (0.0002) (0.0001)
SEK 0.0438 0.0456 0.0358 0.0357 1.0000 0.0431 0.0338

(0.0002) (0.0002) (0.0002) (0.0002) (0) (0.0002) (0.0001)
CHF 0.0565 0.0598 0.0361 0.0345 0.0431 1.0000 0.0339

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0) (0.0001)
GBP 0.0339 0.0349 0.0356 0.0338 0.0338 0.0339 1.0000

(0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0)

Mean absolute idiosyncratic correlation coefficients when ν = 500 in a one-factor
model. Numerical standard errors are in the parenthesis. Number of iterations is

30000.
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ν1 ν2 Mean NSE
6 5 1.2069 0.0635
7 6 1.1403 0.0470
8 7 0.9305 0.0276
11 10 0.7295 0.0136
21 20 0.6362 0.0054
101 100 0.8052 0.0023
501 500 0.9808 0.0002

Table 9: Estimates of the Bayes factor
with r = 1 for simulated data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 2: The log marginal likelihood as
a function of the scale parameter ν from
the one-factor model applied to simulated
data.

ν1 ν2 Mean NSE
6 5 1.7883 0.0896
11 10 1.4308 0.0259
21 20 1.1210 0.0073
101 100 1.0095 0.0007
501 500 1.0001 0.0001

Table 10: Estimates of the Bayes factor
with r = 2 for simulated data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 3: The log marginal likelihood as
a function of the scale parameter ν from
the two-factor model applied to simulated
data.

ν1 ν2 Mean NSE
6 5 1.5944 0.0735
11 10 1.2528 0.0216
21 20 1.0772 0.0077
101 100 1.0076 0.0007
501 500 1.0001 0.0001

Table 11: Estimates of the Bayes factor
with r = 3 for simulated data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 4: The log marginal likelihood as
a function of the scale parameter ν from
the three-factor model applied to simu-
lated data.
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ν1 ν2 Mean NSE
6 5 1.4256 0.0675
11 10 1.1124 0.0263
12 11 1.0716 0.0180
13 12 0.9609 0.0126
21 20 0.9049 0.0081
101 100 0.9366 0.0010
501 500 0.9939 0.0002

Table 12: Estimates of the Bayes factor
with r = 1 for forex data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 5: The log marginal likelihood as a
function of the scale parameter ν from the
one-factor model applied to forex data.

ν1 ν2 Mean NSE
6 5 1.4564 0.0586
11 10 1.2221 0.0260
21 20 1.1226 0.0078
101 100 1.0087 0.0009
501 500 1.0003 0.0001

Table 13: Estimates of the Bayes factor
with r = 2 for forex data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 6: The log marginal likelihood as a
function of the scale parameter ν from the
two-factor model applied to forex data.

ν1 ν2 Mean NSE
6 5 1.2664 0.0359
11 10 1.1404 0.0240
21 20 1.0583 0.0068
101 100 1.0052 0.0008
501 500 1.0003 0.0001

Table 14: Estimates of the Bayes factor
with r = 3 for simulated data. Posterior
mean and numerical standard error are re-
ported. Number of iterations is 10000.
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Figure 7: The log marginal likelihood as a
function of the scale parameter ν from the
three-factor model applied to forex data.
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Table 15: Unexplained covariance in one-factor model

CURRENCY AUD CAD EUR CAD SEK CHF GBP
AUD 7.1261 2.8770 0.1371 0.9934 1.0261 -0.9069 -0.0018

(0.0078) (0.0040) (0.0025) (0.0053) (0.0037) (0.0026) (0.0033)
CAD 2.8770 3.0090 0.0846 0.3401 0.7198 -0.6279 -0.2431

(0.0040) (0.0032) (0.0016) (0.0034) (0.0023) (0.0018) (0.0022)
EUR 0.1371 0.0846 0.1910 -0.0363 0.1126 0.0446 0.0408

(0.0025) (0.0016) (0.0012) (0.0014) (0.0014) (0.0008) (0.0009)
JPY 0.9934 0.3401 -0.0363 7.6221 0.3861 0.0869 0.1506

(0.0053) (0.0034) (0.0014) (0.0084) (0.0030) (0.0021) (0.0033)
SEK 1.0261 0.7198 0.1126 0.3861 2.0067 -0.2859 -0.0170

(0.0037) (0.0023) (0.0014) (0.0030) (0.0029) (0.0011) (0.0018)
CHF -0.9069 -0.6279 0.0446 0.0869 -0.2859 0.8093 0.0386

(0.0026) (0.0018) (0.0008) (0.0021) (0.0011) (0.0018) (0.0012)
GBP -0.0018 -0.2431 0.0408 0.1506 -0.0170 0.0386 2.7448

(0.0033) (0.0022) (0.0009) (0.0033) (0.0018) (0.0012) (0.0031)

Patterns of covariance left unexplained by the one-factor model denoted by CΣC.
Numerical standard errors are in the parenthesis. Number of iterations is 30000.
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Table 16: Idiosyncratic correlations in one-factor model

CURRENCY AUD CAD EUR JPY SEK CHF GBP
AUD 1.0000 0.6190 0.2675 0.1494 0.2686 0.3852 0.1008

(0) (0.0004) (0.0010) (0.0006) (0.0007) (0.0008) (0.0004)
CAD 0.6190 1.0000 0.2721 0.1112 0.2904 0.4063 0.1240

(0.0004) (0) (0.0010) (0.0005) (0.0007) (0.0008) (0.0005)
EUR 0.2675 0.2721 1.0000 0.1757 0.2316 0.2325 0.1674

(0.0010) (0.0010) (0) (0.0008) (0.0009) (0.0010) (0.0007)
JPY 0.1494 0.1112 0.1757 1.0000 0.1302 0.1193 0.0994

(0.0006) (0.0005) (0.0008) (0) (0.0005) (0.0005) (0.0004)
SEK 0.2686 0.2904 0.2316 0.1302 1.0000 0.2490 0.1051

(0.0007) (0.0007) (0.0009) (0.0005) (0) (0.0008) (0.0005)
CHF 0.3852 0.4063 0.2325 0.1193 0.2490 1.0000 0.1166

(0.0008) (0.0008) (0.0010) (0.0005) (0.0008) (0) (0.0005)
GBP 0.1008 0.1240 0.1674 0.0994 0.1051 0.1166 1.0000

(0.0004) (0.0005) (0.0007) (0.0004) (0.0005) (0.0005) (0)

Mean absolute idiosyncratic correlation coefficients for the one-factor model.
Numerical standard errors are in the parenthesis. Number of iterations is 30000.
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