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Abstract

We propose a new theory of the demographic transition based on the evidence
that body development during childhood is an important predictor of adult life ex-
pectancy. This theory is embodied in an OLG framework where fertility, longevity
and education all result from individual decisions. The model displays different
regimes, allowing the economy to move slowly from an initial Malthusian regime
towards the Modern era. The dynamics reproduces the key features of the demo-
graphic transition, including the permanent increase in life expectancy, resulting
from improvements in body development, the hump in both population growth
and fertility, and a late increase in secondary educational attainments.
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1 Introduction

Providing children with appropriate hygienic conditions and good nutrition, as well as a

good attitude towards health during childhood, are very effective ways of affording them

a longer life. Starting with Kermack, McKendrick, and McKinlay (1934), who showed

that the first fifteen years of life were central in determining the longevity of the adult,

the relationship between early development and late mortality has been well-established.

Fogel (1994) emphases that nutrition and physiological status are at the basis of the link

between childhood development and longevity. Another important mechanism stressed

by epidemiologists links infections and related inflammations during childhood to the

appearance of specific diseases in old age (Crimmins and Finch 2006). In the same

direction, Barker and Osmond (1986) relates lower childhood health status to higher

incidence of heart disease in later life. It is in this sense that, following Harris (2001),

we echo Wordsworth (1802)’s aphorism “The Child is Father of the Man,” meaning that

the way a child is brought up determines what she or he will become in the future.1

It is well documented that the timing of fertility, mortality and education differ during

the demographic transition. We illustrate it for Sweden in Section 2. First, body devel-

opment and adult life expectancy have both permanently improved from the beginning

of the 19th century. Second, the time profile of net fertility rates, net of infant mortal-

ity, is hump shaped, declining from the dawn of the 20th century. As it is well known,

the combination of these two forces made population growth rates also hump shaped.

Finally, years of schooling that start increasing around 1850, accelerate at the beginning

of the 20th century with the development of secondary education.

In this paper, we propose a new theory of the demographic transition based on the cited

evidence that body development during childhood favors adult longevity. We claim

the demographic transition have been shaped by a slow but permanent improvement

in childhood development, promoting adult life expectancy. As pointed out by (Galor

2005a) “The reversal in the fertility patterns in England ... suggests therefore that the

1The state of the debate between nature and nurture may be synthesized by the following statement
“The effects of genes depend on the environment,” (Pinker 2004) where genes are associated with nature,
and the environment, as a short-hand for the effects of human behavior, with nurture. In this paper, we
are mainly interested in understanding how changes in human behavior, for a given distribution of genes,
affect childhood development and then demographics. By restricting the analysis to a representative
cohort member, a standard assumption in OLG models, we do not pay much attention to within cohort
differences in genes, but concentrate on how changes in nurture over time affect childhood development
on average. The implicit assumption is that the complex interaction between nature and nurture shaping
the distribution of childhood development across cohort members in society has no significant effect on
the mean over a period of time covering some few centuries.
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demographic transition was prompted by a different universal force than the decline

in infant and child mortality.” In our view, contrary to reductions in infant and child

mortality, deliberate improvements in childhood development promoting adult survival

have prompted the demographic transition, in particular the observed fertility patterns.

When today’s developed world was in the Malthusian era, most individuals were liv-

ing at the subsistence level. Small changes in the environment inducing improvements

in adult life expectancy slowly increased individual’s lifetime surplus, allowing people

to afford more and healthy descendants, which reinforced the initial effect of an im-

proved environment on survival. As a consequence, net fertility rates were increasing

as predicted by the Malthusian theory. At some point at the beginning of the 19th

century, the Western world escaped the subsistence trap and the desire of having more

children became dominated by the search of an individual better life. Net fertility rates

remained high but stable for some decades while life expectancy kept growing. Finally,

with the arrival of the 20th Century, for the first time in human history adults started

finding it attractive to invest in their own human capital, which reduced the incentives

to have children and, consequently, net fertility rates. More educated, richer cohorts

have additional incentives to invest in childhood development, keeping life expectancy

permanently growing up to our days.

The model in this paper is a continuous time overlapping generations economy as in

Boucekkine, de la Croix, and Licandro (2002), where the key demographic variables,

fertility, mortality and education, are all decided by individuals. Parents like to have

children, but they also care about child longevity. By ensuring an appropriate physical

development for their children, parents provide them with a longer life. Such provision is

costly though, and its cost is increasing with the number of children. As a consequence,

having many children prevents parents of spending much on their body development,

which makes longevity and fertility negatively related in the modern era.2 We assume

adults decide about their own education, and we take basic education, even if provided

by parents, as being exogenously given. Adults face a trade-off between having children

2We are aware that longevity does not depend solely on childhood development. Adults’ investment
in health and government spending on the elderly also contribute considerably to reductions in mortality.
However, adding these mechanisms into our setup would not alter the trade-off we want to put forward,
and, therefore, we abstract from them in order to streamline the argument. We are also aware that
there are at least two different types of health capital, as pointed out by Murphy and Topel (2006).
One extends life expectancy so that individuals can enjoy consumption and leisure for longer; the other
increases the quality of life, raising utility from a given quantity of consumption and leisure. In this
paper, since we are mainly interested in longevity, we restrict the analysis to the first type of health
capital.
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and improving their own education, which makes the number of children and schooling

negatively related. This is similar to the trade-off faced by parents in a Beckerian

world, where they care about the quantity and quality (education) of their offsprings.

However, observed data on primary school education anticipate in many decades the

decline in fertility predicted by the Beckerian theory, but not secondary school, as shown

by Figure 1. Finally, the mechanism relating demographics and education is the Ben-

Porath hypothesis that longevity positively affects education, by extending individual

active life.3

The model dynamics displays the key features of the demographic transition, including

the observed permanent rise in adult life expectancy, the hump in net fertility and the

late increase in secondary educational attainments. For this reason, we claim that body

development and adult life expectancy played a fundamental role explaining the demo-

graphic transformations faced by Western economies. In particular, it has promoted an

initial increase in fertility, with improvements on secondary education and reductions in

fertility arriving late with the modern era at the beginning of the 20th century.4

This article differs from the previous attempts in the literature to endogenize fertility and

longevity. Many papers have the standard education/fertility trade-off with exogenous

longevity, for example Doepke (2004) and Soares (2005). Other papers model health

investment either by households (Chakraborty and Das (2005) and Sanso and Aisa

(2006)) or by the government (Chakraborty (2004) and Aisa and Pueyo (2006)) but have

exogenous fertility. A few treat both fertility and longevity as endogenous variables, but

the mechanism leading to longer lives always relies on an externality: more aggregate

human capital or more aggregate income leads to higher life expectancy (Blackburn and

Cipriani (2002), Kalemli-Ozcan (2002), Lagerloef (2003), Cervellati and Sunde (2005)

and (2007) and Hazan and Zoabi (2006)).

Two recent papers have modeled the trade-off between the number and survival of

children exclusively in the context of pre-modern societies. In Galor and Moav (2005)’s

paper, there is an evolutionary trade-off (i.e. not faced by individuals but by nature),

between the survival to adulthood of each offspring and the number of offspring that can

be supported. Lagerloef (2007) suggested that agents chose how aggressively to behave,

given that less aggressive agents stand a better chance of surviving long enough to have

3Conditions for this mechanism to hold in the presence of endogenous fertility are derived in Hazan
and Zoabi (2006). The main argument in our paper would also hold if, as in Hazan and Zoabi, childhood
development affects education directly because healthier children perform better.

4The role of life expectancy on raising income well before the industrial revolution has been stressed
by Boucekkine, de la Croix, and Licandro (2003).
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children, but gain less resources, so more of their children die early from starvation. In

both cases, the trade-off is between the number and survival of children, while in our

paper it is between the number of children and adult longevity.

This paper is organized as follows. Section 2 presents some evidence on the link between

the improvement in childhood development and the demographic transition. In Sec-

tion 3.1, we present and solve the problem for individuals. Section 3.2 is devoted to the

study of the dynamics of dynasties. The demographic transition is analyzed in Section 4.

Implications for growth are studied in Section 5. Section 6 presents our conclusions.

2 Childhood Development and Demographic

Transition

Height at age 18 is a good measure of childhood development, since both better nutrition

and lower exposure to infections leads to increased height, and a good predictor of adult

life expectancy.5 According to Waaler (1984), the trend towards greater height found in

the data means that younger cohorts, which have grown up under better conditions, de-

velop more and live longer as adults. Height is also frequently used as a health indicator

in microeconomic studies. Weil (2007) finds that the effect on wages of an additional

centimeter of height ranges between 3.3% and 9.4%. In a second step, he exploits the

correlation between height and direct measures of health such as the adult survival rate

to evaluate health’s role in accounting for income differences among countries; he finds

that eliminating health variations would reduce world income variance by a third.

The height of conscripts has been systematically recorded by the Swedish army since

1820, which provides a unique source of time-series information on changes in body

development throughout the demographic transition. Figure 1 presents data for the

cohorts born between 1760 and 1960. The left panel shows that the height of soldiers

(measured at approximately age 20) is highly correlated with life expectancy at age 10.6

The right panel of Figure 1 reports net fertility rates, as well as years of schooling. We

5According to Silventoinen (2003), height is a good indicator of childhood living conditions (mostly
family background), not only in developing countries but also in modern Western societies. In poor
societies, the proportion of cross-sectional variation in body height explained by living conditions is
larger than in developed countries, with lower heritability of height as well as larger socioeconomic
differences in height.

6Notice that this strong correlation over time can also be established in a cross section of countries:
Baten and Komlos (1998) regressed life expectancy at birth on adult height and explained 68% of the
variance for a sample of 17 countries in 1860.

5



Figure 1: Height, Life Expectancy, Fertility and Education in Sweden
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Figure 2: Fertility Rates in Germany
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observe that fertility raises for cohorts 1800-1830, then becomes relatively stable and

reduces sharply since the beginning of the 20th century. Years of elementary schooling

were growing well before fertility declined, but secondary schooling started moving up

when net fertility started to decline. Permanent improvements in survival rates over the

nineteenth and twentieth centuries and the hump shaped profile of fertility rates during

the demographic transition are well established facts for most developed countries, as

reported for example by Galor (2005a).

Further insights into the links between childhood development and fertility during the de-

mographic transition can be gained by combining two data sets. Baten (2003) classified

the former provinces of the German empire into six categories according to conscripts’

height in 1906, i.e., for men born in the 1880s. In Figure 2 we retain the two extreme

categories: provinces with the tallest (168.70 cm and more) and the shortest (166.50 cm

and less) soldiers. The Princeton European Fertility Project provides information on

fertility in these provinces for the years 1867-1933 (see Knodel (1974)). In the period

1870-1890, which is when the soldiers of 1906 were born, we can see that fertility rates

were systematically higher in the provinces with shorter soldiers, which is consistent

with the idea of a trade-off between the number of children and childhood development

(as measured by adult height). Later on, fertility rates dropped and converged.

3 The Model

The model is a continuous-time overlapping generations economy with endogenous fer-

tility and mortality inspired by de la Croix and Licandro (1999) and Boucekkine, de la

Croix, and Licandro (2002), who modeled the link between longevity and education in

a framework where all the demographic variables are exogenous. The interest of using

continuous time rather than discrete is to be able to model length of schooling and length

of life in a meaningful way.

There is a continuum of dynasties defined in the time domain. However, a dynasty is

an ordered sequence of individuals born at different points in time. In the following, the

individual problems is solved first, then the dynasty problem and finally the aggregates.
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3.1 Individuals

Let us denote by B the age of puberty, i.e., the age at which individuals acquire regular

fertility. B is assumed to be strictly positive and constant. Individuals reaching puberty

at time t are said to belong to cohort t, whose size is denoted by P (t). Life expectancy

at age B is denoted by A(t), which is referred to as life expectancy below. We abstract

from infant mortality, and assume that the survival law is rectangular, with mortality

rates equal to zero for ages below B + A, and individuals dying with probability one

at this age. Consequently, B + A is life expectancy at birth. Consistently with the

thesis developed by Aries (1962) according to which people become adults much earlier

in old times and start making decisions themselves, we assume that choices are made by

individuals reaching puberty.7 Preferences are represented by (we drop the cohort index

to ease the exposition)
∫ A

0

c (t) dt +
(

β ln n̂ + δ ln Â
)

. (1)

We assume that individuals do not consume until they reach age B. c(t) represents

consumption at age B+t. Preferences in consumption are linear and the time preference

parameter is assumed to be zero. Under this assumption, the equilibrium interest rate

is zero and the marginal value of the intertemporal budget constraint, the associated

Lagrange multiplier, is unity. In addition to their own consumption flow, individuals

value the number of children, denoted by n̂, as well as the life expectancy of their

children, denoted by Â. Parameters β, β > 0, weight the marginal utility of the number

of children relative to adult consumption. The marginal utility of the children’s life

expectancy is weighted by δ, δ > 0.

Our assumption that utility is linear in consumption and logarithmic in children is highly

consistent with the objective pursued by humans as a living specie. The first thing that

matters is survival. Imposing the constraint

C =

∫ A

0

c (t) dt ≥ 0

amounts to require that consumption is above the survival threshold; here zero. Once

subsistence is achieved, priority moves to reproduction. This is what quasi-linear pref-

7Modeling family behavior is not a simple issue. As children grow, parents take child preferences
into account more and more, but parents still have something so say as long as they support children
financially until they find a job, leave home and become fully independent. Since modeling this complex
process is beyond the objective of this paper, we assume that children become fully independent at one
stroke.
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erences deliver. Reproduction covers the two relevant dimensions in the transmission of

genes: the quantity and survival of descendants.8

The technology producing human capital depends on the time allocated to education,

denoted by T :

h = µ (θ + T )α .

The productivity parameter µ and the parameter θ, which relates to schooling before

puberty, are strictly positive, and α ∈ (0, 1). θ ensures that human capital, and hence

income, are positive even if individuals choose not to go to school after age B.

The budget constraint takes the form

∫ A

0

c (t) dt + n̂ Ψ(Â) = µ (θ + T )α (A − T − φn̂) . (2)

The right hand side is the total flow of labor income under the assumption that one unit

of human capital produces one unit of good. For simplicity, we assume that people have

and raise their children immediately after finishing their studies and before becoming

active in the labor market. This greatly simplifies the dynastic structure of the model.

Raising a child takes a time interval of length φ > 0, implying that individuals work for

a period of length A − T − φn̂. Parental expenditure on each child’s development is

Ψ(Â) = κ
1

2

1

A
Â2, (3)

which implies that the expenditure is quadratic in Â and inversely related to A.9 This

formulation is consistent with the complex interaction between nurture and nature ob-

served by biologists and psychologists. It stresses the difficulty of raising life expectancy

above that of the parents, reflecting how the genes interact with human behavior (the

environment) in building up a child body. The parameter κ > 0 measures the costs of

developing children in a broad sense.

Figure 3 summarizes the life cycle of a representative individual of generation z, born

at z − B, becomes independent at z, going to school until z + T and entering the labor

market at z + T + φn̂. Her children belong to generation z + T + B, since T is the

8In nature, different species develop different fertility-mortality patterns. See for example Anderson
et al. (2008).

9An example of a technology of childhood development is given by Dalgaard and Strulik (2006), where
the metabolic energy to create a new cell is an exponential function of the body mass the individual
wants to reach.
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Figure 3: The life cycle

birth puberty work starts death

z − B z + T (z) + φn̂(z) z + A(z)z

age at which individuals have children, and children reach puberty after a period of

length B. Individuals chose their own education T , the number of children n̂ and their

life expectancy Â. Their choice depends on three types of parameters. First, those

related to preferences, β and δ. Second, the parameters associated with child rearing

and childhood development, φ, B and κ. Finally, the educational technology parameters

θ, µ and α.

The maximization of utility (1), subject to the budget constraint (2) and to the positivity

constraints T ≥ 0 and C ≥ 0, can be interior or corner. Note that the integral in Equa-

tion (2) may be substituted in Equation (1). The resulting objective function, depending

on Â, n̂ and T , is concave. We make the following assumption about preferences:

Assumption 1 Preferences satisfy δ < 2β.

Assumption 1 states that the preference weight attached to childhood development, δ,

cannot exceed twice the weight attached to the number of children, β. The trade-off

between number of children and their survival depends on the ratio of marginal utilities to

marginal costs, which crucially depends on the factor two because of the quadratic form

of the childhood development costs. A similar condition can be found in Moav (2005)

and de la Croix and Doepke (2006), when parents face the standard fertility/education

trade-off.

We make the following assumptions about education technology µ:

Assumption 2 The productivity of education technology satisfies:

µ > max

[
(β − δ/2)α2

θ1+α(1 + α)
,

δα

2θ1+α

]

≡ µ.

This assumption requires the productivity coefficient µ to be large enough. Let us

establish the main proposition on individual behavior.
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Proposition 1 Under Assumptions 1 and 2, there exist two thresholds A and A, 0 <

A < A, such that:

If A ≥ A, there is a unique interior solution satisfying

Â2 =
δ

κn̂
A, (4)

T =
α

1 + α
(A − φn̂) −

θ

1 + α
, (5)

n̂ =
β − δ/2

µφ
(θ + T )−α . (6)

If A ≤ A < A, there is a unique corner solution with positive consumption satisfying

Â2 =
δ

κn̂
A, (7)

T = 0, (8)

n̂ =
β − δ/2

µφθα
. (9)

If 0 < A < A, there is a unique corner solution with zero consumption satisfying

Â2 =
δ

κ

µθαφ

β − δ/2
A, (10)

T = 0, (11)

n̂ =
β − δ/2

βφ
A. (12)

Proof. Using the Kuhn-Tucker conditions for constrained optimization, we can identify

the two thresholds A and A and characterize the different regimes. See Appendix A.

Restriction A ≥ Ā in Proposition 1 states that parental life expectancy has to be large

enough for schooling to be positive. At the interior solution, Equation (4) shows the

trade-off faced by parents between the number and the life expectancy of their chil-

dren. The relation is negative, since the total cost of providing children with a good

body development increases as their number increases. Equation (5) is the standard

Ben-Porath (1967) result, as described by de la Croix and Licandro (1999), where life

expectancy positively affects the time allocated to education since it allows people to

work for a longer time. The term φn̂ in Equation (5) shows an additional trade-off of

having children: parents expecting to have many children will postpone their entry into
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the labor market, reducing the incentives to take additional education. This trade-off

also shows up in Equation (6).

When A ≤ A < A, parental life expectancy A is not long enough to render optimal a

positive investment in education. For lower levels of life expectancy, i.e. when A < A,

both education and consumption are zero.10 Expected life time earnings are so low that

parents use all their resources in bearing a limited number of children.

From now on, the interior solution, (4)-(6), and the corner solutions, (7)-(9) and (10)-

(12), are referred to as Â = fA(A), T = fT (A) and n̂ = fn(A). The effect of an increase

in A is given by Corollary 1:

Corollary 1 f ′

A(A) > 0;

f ′

n(A) < 0, for A ≥ A, f ′

n(A) = 0, for A ≤ A < A, and f ′

n(A) > 0 otherwise

f ′

T (A) > 0, for A ≥ A, and f ′

T (A) = 0 otherwise

Proof. See Appendix A.

In the interior solution, increased life expectancy raises optimal schooling and human

capital levels via the Ben-Porath effect. This increases the opportunity cost (time cost)

of raising children. Hence, the optimal number of children drops as life expectancy

increases.

In the corner solutions, since T = 0, a change in parental life expectancy does not affect

education, canceling the Ben-Porath effect. In the corner regime (7)-(9) the number

of children remains constant whatever the life expectancy, but childhood development

is still positively affected by life expectancy, since the efficiency of body development

activities depends positively on parental life expectancy. In the corner regime (10)-(12),

when consumption C is zero, however, the effect of life expectancy on the number and

survival of children reverses, since the number of children is directly determined by the

C = 0 constraint, which allows for more children as life expectancy, and hence life-cycle

income, increases. This is a pure income effect as in the Malthusian “positive check”

hypothesis.

10Imposing a strictly positive minimum consumption level with C ≥ C̄ for the sake of realism would
not change the results. The only difference is that A would be larger and increasing in C̄.
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3.2 Dynasties

Since individual decisions do not depend on aggregate variables, we can study the dy-

namics of life expectancy, fertility and education within dynasties separately, before the

analysis of the aggregates.

Let us consider the dynamics of life expectancy first. At any point t, individuals reaching

puberty belong to a representative dynasty with life expectancy A (t). Let us denote as

A1 the life expectancy of the first generation of this dynasty. The operator fA defined

above consists in a difference equation governing the evolution of the dynasty’s life

expectancy since

Ai+1 = Âi = fA(Ai),

where the index i = 1, 2, 3, ..., is associated with generations. From Proposition 1, for

any initial value A1 there exists a sequence of solutions Ti = f i
T (A1), Âi = f i

A (A1) and

n̂i = f i
n (A1) for i = 1, 2, 3, ..., where X i is the ith consecutive application of operator X.

In the following, we characterize the dynamics of life expectancy. Once this has been

done, the sequence {A1, A2, ...} determines through the operators fT and fn the date

and size of the following generations.

Proposition 2 Under Assumptions 1 and 2, a stationary solution A = fA(A) exists, is

unique and globally stable.

Proof. See Appendix A.

Proposition 2 states that life expectancy converges to a constant value in the long run.

Consequently, from Proposition 1, fertility and education also converge to a constant

value. Demographic variables are then stationary, meaning that the demographic tran-

sition only occurs, as the name itself indicates, as a transitional phenomenon.

The results obtained so far allow us to assess some theoretical characteristics of the

demographic transition in our model. Consider Figure 4. The lower panel plots the

function fA(A). It describes a situation where the globally stable steady state is in the

modern regime. The top panel shows fertility as a function of life expectancy. Suppose

now that initial life expectancy is very low, below A. The dynamics of life expectancy

will be monotonic and converge to the steady state. A rise in life expectancy will firstly

drive fertility up (as long as the economy is in the Malthusian regime A < A), then

fertility will peak in the zone where A ≤ A < A (i.e. where T = 0 but C > 0), and

then decrease in the modern era. (Secondary) schooling will be zero until we reach the
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Figure 4: A Steady State in the Interior Regime

A

Â
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fA(A)

n̂

modern regime and will then increase monotonically at the time fertility is decreasing.

This sharp characterization is very much in line with the stylized facts of the demographic

transition as reported in Figure 1.

In this description of the theoretical dynamics, we have assumed a steady state in the

interior regime. A condition for such a situation to occur is given by Remark 1.

Remark 1 The steady state is in the modern regime if

κ <
4αδθ2αµ2φ

(2β − δ) (α[2β − δ] + 2θ1+αµ)
≡ κ (13)

Proof. See Appendix A.
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Condition (13) states that if the childhood development technology is cheap enough,

there is an interior steady state with positive education. Changing the value of κ is a

natural way of generating a demographic transition: if κ is initially high, the economy

may be in one of the corner regimes. Once κ decreases, body development becomes

more affordable, and the new steady state may move to the modern regime, with life

expectancy converging monotonically.

4 Simulating the Demographic Transition

In this section, we investigate to what extent changes in the cost of childhood develop-

ment helps reproducing the key facts of the demographic transition. The transition is

studied as the reaction to a change in the environment occurring slowly from 1700 and

leading the economy to a new balanced growth path in the 21st century characterized by

longer lives. For this purpose, we implement a change in cost of childhood development

as measured by parameter κ and analyze how the economy adjusts to this change.11

4.1 The Change in Parameter κ

Before analyzing the demographic transition as a response to a reduction in the cost of

childhood development, we need to discuss briefly the interpretation to be given to such

a change. The quantitative exercise requires, as explained in the following section, a slow

and long reduction in κ starting in the 18th century and lasting to our days, with more

than 80% of this reduction occurring between 1840 and 1960. Reducing the cost of body

development may be due to improvements in hygienic habits, medical treatments and

nutrition. Nobody would object to such progresses in the late nineteenth and twentieth

century. The references below claim that improvements in these dimensions started in

fact before the 19th century.

Johansson (1999) argues against the therapeutic nihilism denying that medicine had any

effectiveness before the end of the nineteenth century. Firstly, in the period 1500-1800,

medicine showed an increasingly experimental attitude: no improvement was effected

on the grounds of the disease theory (which was still mainly based on traditional ideas),

11A more sophisticated version of the model, in line with Galor and Weil (2000), would allow the
demographic transition to be associated with an endogenously generated industrial revolution. This
could be achieved by letting the body development technology, as measure by the inverse of κ, depend
upon population size or density, for example.
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but significant advances were made based on practice and empirical observations. For

example, although the theoretical understanding of how drugs work only came progres-

sively in the nineteenth century with the development of chemistry (Weatherall 1996),

the effectiveness of the treatment of some important diseases was improved thanks to

the practical use of new drugs coming from the New World. Second, the number of

books containing lifestyle advice increased significantly over the period 1750-1800, which

provides some indirect evidence on the fact that personal and domestic cleanness, for

example, became popular before the 19the century. Third, as early as 1829, Dr.F.B.

Hawkins wrote a book entitled Elements of Medical Statistics, in which he described

what could be called an early modern epidemiological transition. He describes a set of

diseases which were leading causes of death but could at the time be treated effectively:

leprosy, plague, sweating sickness, ague, typhus, smallpox, syphilis and scurvy. The cu-

mulative effects of these improvements could have produced a net increase in the efficacy

of medicine as early as in the eighteenth century (see de la Croix and Sommacal (2008)

for further arguments).

However, medicine did not play a major role during the 19th century, as claimed by

Omran (1971). “The reduction of mortality in Europe and most western countries during

the nineteenth century ... was determined primarily by ecobiologic and socioeconomic

factors. The influence of medical factors was largely inadvertent until the twentieth

century, by which time pandemics of infection had already receded significantly.” In the

same direction, refereing to the first half of the 19th century, Landes (1999) argues that

“Much of the increased life expectancy of these years has come from gains in prevention,

cleaner living rather than better medicine.” He relates it to reductions in the price of

washable cotton, along with the mass production of soap. In a recent survey conducted

by the British Medical Journal, medical professionals consider the sanitary revolution

of the nineteen century as the major medical milestones since 1840, leading medical

innovations as antibiotics, anaesthesia and vaccines.

The fundamental role of nutrition improvements on the reduction of mortality during

and before the Industrial Revolution has been stressed by McKeown and Record (1962),

and recently restated by Harris (2004).
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4.2 The Demographic Transition

4.2.1 Calibration

Some parameters are set a priori. The age of puberty, B, is assumed equal to 13.5

(average between women, 12, and men, 15). The rearing cost per child, φ, is set to

one year. The elasticity of human capital to schooling, α, is equal 1/6, which is a

conservative value. Finally, the length of basic skills, θ, is equivalent to six years. We

next calibrate the remaining parameters to reproduce a steady state having the following

properties in the pre-1700 balanced path: low life expectancy at age B (A = 27), no

education after puberty (T = 0) and a population growth rate of 0.5% per year. We

also set the parameters to obtain the thresholds A = 28, which ensure that the economy

is initially in the Malthusian regime and ends in the modern regime. Parameters µ, κ,

δ and β have been computed to match the properties given above. This leads to the

following results: µ = 0.7418, κ = 1.7954 ≡ κ0, δ = 53.7811, and β = 28. For these

values, the life expectancy threshold leading to the modern regime, A, is 37.1095, and

Assumption 1 and 2 hold.

The demographic transition is generated by a change in the cost of childhood de-

velopment increasing life expectancy to 76.5 years at the new steady state (implying

B + A = 90 in 2100 from Li and Lee (2005)), which requires κ = 0.7077 ≡ κ1. This

change is assumed to take place smoothly, following a logistic curve:

κ(t) = κ0 +
κ1 − κ0

1 + e1890−t/30
.

Under these assumptions, most of the change takes place after 1840.12 We also assume

that κ(t) is specific to generation t. Hence any change only affects new generations,

leaving past decisions unaffected.

4.2.2 Simulation

Figure 5 depicts the simulation results which are in line with the observed Swedish data

as shown in Section 2. We first observe that following the drop in childhood development

12If, instead, the change in κ were discrete, we would observe intervals of times with no births,
corresponding to periods where everybody increases their length of schooling in a discrete way, giving
rise to permanent replacement echoes which are typical of models with delays (Boucekkine, Germain,
and Licandro 1997). In this case, the economy keeps fluctuating forever, moving from baby booms to
baby busts. Non-monotonic convergence also occurs in the Galor and Weil model - see Lagerloef (2006).
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Figure 5: Example of dynamics - drop in κ
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costs cohorts’ life expectancy increases monotonically over time. Note that Figure 5

stops well before life expectancy has converged to steady state. Cohorts’ secondary

education remains nil up to the beginning of the 20th century when the economy enters

the modern regime, and it increases from then monotonically. Notice that the magnitude

of the increase is about right, with secondary schooling reaching 3 years around 1970.

Cohorts’ fertility (per individual, to be multiplied by 2 to get fertility per women)

first increases as long as the economy is in the Malthusian regime, then peaks in the

intermediary regime, to monotonically drop as a consequence of the trade-off between

education and the number of children in the modern era.

4.3 Regional Variations

We conclude from the above simulation exercise that our model is able to reproduce

the main features of the demographic transition. Another question is whether we can

also shed some light on regional variations in the demographic transition. Considering

the German data presented in Figure 2, we have seen that adult height (a proxy for
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childhood development) and fertility were negatively associated across provinces on the

eve of the twentieth century.

At that time, the prevailing regime is the one where consumption is above subsistence

but it is not yet optimal to invest in (secondary) education. One reason for different

places exhibiting different fertility and height levels during this phase of demographic

transition is that the productivity parameter µ could vary in different places. The high

µ regions will have lower fertility and taller citizens as it is clear from Equations (7)

and (9). A similar argument can be made by letting the other parameters vary across

regions. For example, regions with a higher θ or φ will also have tall parents with few

children.

In Figure 2 we also observe that differences across regions seem to vanish as soon as the

interior regime is reached in the beginning of the twentieth century. This convergence

could reflect a reduction in the variance of the distribution of µ across regions, which

would be the case for example if the education system is more and more framed by a

central authority.

5 From Malthus to Modern Growth

The transition from a world of low economic growth with high mortality and high fertility

to one with low mortality and fertility but sustained growth has been the subject of

intensive research in recent years.13 In this literature, the relation between growth

and fertility results from the quantity/quality trade-off faced by parents between the

number of children and their education. Indeed, the gradual increase in the observed

level of human capital during the nineteenth century ‘has led researchers to argue that

the increasing role of human capital in the production process induced households to

increase investment in the human capital of their offspring, ultimately leading to the

onset of the demographic transition’ (Galor 2005b).

If the rise in education was indeed driven by a stronger demand for skills from the indus-

trial sector, one should have observed a rise in the skill premium during and following

the industrial revolution. Looking for such evidence, Clark (2005) computes a skill pre-

mium over the period 1220-1990 in two different ways. First by measuring the relative

13Rostow (1960) presents an early attempt to understand the transition from stagnation to growth.
The first modern treatment of the issue is in the seminal paper by Galor and Weil (2000). See Doepke
(2006) for a recent survey.
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wage of all skilled building workers 14 relative to all laborers and, second, by using only

those observations in which there is a matched pair for the same place and year of wages

for craftsmen and laborers. The two methods lead to the same conclusion: the skill

premium did not rise during the Industrial Revolution. And Clark concludes that ‘The

market premium for skills, does not explain the increased investment in human skills

evident after 1600.’ Hence, we might wonder whether the human capital interpretations

of the Industrial Revolution are based on the right trade-off. The new mechanism we

develop in this paper could be seen as an alternative to the usual one.

5.1 A Growth Model

We introduce endogenous growth to the model in Section 3 by adding a human capital

externality in the education technology:

h = µ (θ + T )α H̄,

where H̄ is human capital per worker. It may reflect, for example, the quality of educa-

tion or the cultural ambience in the society.

To keep utility balanced in a growing economy, we assume that preferences are

∫ A

0

c (z) dz + H̄
(

β ln n̂ + δ ln Â
)

, (14)

where H̄ now multiplies the term associated with children, implying that the value of

children also grows with cultural ambience in the society. Finally, for similar reasons,

childhood development costs are also indexed on average human capital per worker:

Ψ(Â) = κ
1

2

H̄

A
Â2. (15)

These assumptions do not affect the household decision problem and all the results in

the previous sections can be applied directly.
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Figure 6: Life cycle (from left to right) and living cohorts (from right to left)
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5.2 Aggregates

Some definitions are useful to study the dynamics of population growth and output

growth. In Figure 6, t and z represent time and cohort, respectively. Let us define

Ã (t) as the age of the oldest cohort still alive at time t, which then represents the life

expectancy at time t of cohort t − Ã(t). By definition, A(z) is the life expectancy of

cohort z. Then, given that generations z and t− Ã(t) are the same, A(z) has to be equal

to Ã(t), implying that

Ã(t) = A
(

t − Ã (t)
)

.

A similar argument applies to functions T (.) and n̂(.). Let us define T̃ (t) and ñ (t) as

the schooling time and the number of children of the youngest cohort entering the labor

market at time t, i.e., cohort v = t − T̃ (t) − φñ(t) in Figure 6. Since T̃ (t) = T (v) and

ñ (t) = n̂(v),

T̃ (t) = T (t − T̃ (t) − φñ(t)),

and

ñ(t) = n̂(t − T̃ (t) − φñ(t)).

14According to Clark, Skilled building workers typically acquired those skills by apprenticing them-
selves to a craftsman, with the traditional apprenticeship lasting up to seven years.
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Total population is computed by integrating over all the living cohorts:

N (t) =

∫ t+B

t−Ã(t)

P (z) dz, (16)

from the oldest t − Ã(t) to the youngest t + B. The cohort size P (z) is given by

P (z + T (z) + B) = n̂ (z) P (z) , (17)

since members of cohort z have n̂(z) children at time z + T (z), who belong to cohort

z + T (z) + B.

Aggregate human capital is defined by the human capital of active cohorts

H (t) =

∫ t−T̃ (t)−φñ(t)

t−Ã(t)

P (z) µ (θ + T (z))α H̄ (z)
︸ ︷︷ ︸

h(z)

dz (18)

where average human capital per worker is given by

H̄ (t) =
H (t)

E (t)
,

and total employment E (t) is

E (t) =

∫ t−T̃ (t)−φñ(t)

t−Ã(t)

P (z) dz.

The technology producing the consumption good, the only final good in this economy,

is linear in aggregate human capital with productivity one, implying that the real wage

per unit of human capital is unity. Output per capita is then H(t)/N(t).

5.3 Balanced Growth Path

A balanced growth path is an equilibrium path where population grows at rate η, human

capital at rate γ, and, the demographic variable T , n and A are all constant. From

Equation (17), the grow rate of cohorts’ size is such that eη(T+B) = n, i.e.

η =
ln (n)

T + B
,
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with P (t) = P ⋆eηt, P ⋆ > 0. The population growth rate depends on the fertility rate n

and on the age at child’s birth B + T . At a given fertility rate, the smaller the age at

birth, the larger the frequency of births and thus the population growth rate.

Total population, as defined in Equation (16), evolves along a balanced growth path

following

N(t) = N⋆ eηt = P ⋆ eηB − e−ηA

η
eηt,

with N⋆ > 0. Population also grows at rate η and its size depends positively, as expected,

on life expectancy. When η approaches zero, i.e., when population is constant, its size is

given by N(t) = P ⋆(B + A), which is the product of the cohort size and life expectancy

at birth. Along a balanced growth path, the active population is given by

E (t) = E⋆ eηt = P ⋆ e−η(T+φn) − e−ηA

η
eηt.

Similarly as for total population, when η approaches zero E(t) converges to P ⋆(A−T −

φn), where the term in brackets is the length of active life.

Finally, the growth rate of human capital γ satisfies at the balanced growth path

γ =
P ⋆

E⋆
µ(θ + T )α

(
e−γ(T+φn) − e−γA

)
.

To understand this result better, let us differentiate, at the balanced growth path, the

definition of H(t) in Equation (18) with respect to time:

H ′(t) = P (t − T − φn)h(t − T − φn) − P (t − A)h(t − A).

The change in aggregate human capital is the difference between the human capital of

the youngest workers and that of the oldest. From the human capital technology, and

using the balanced growth path assumption

γ =
H ′(t)

H(t)
=

P ⋆

E⋆
µ(θ + T )α

(
e−γ(T+φn) − e−γA

)
.

The first term on the r.h.s, P ⋆/E⋆, derives directly from the assumption that per worker

human capital affects the human capital of the current cohort. If, instead of normalizing

total human capital by E, we normalized it by P , this term would vanish. It basically

corresponds to the length of active life. The second term reflects the fact that both
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Figure 7: Example of dynamics - drop in κ - human capital
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the oldest and the youngest cohort share the same human capital technology, with a

common length of education. For this reason, the term µ(θ + T )α is common. Finally,

the last term in brackets reflects the fact that aggregate human capital was not the same

at the time the two cohorts were at school, the difference depending on the growth rate

itself and the age difference between the cohorts.

5.4 Simulating the Transition to Modern Growth

No theorem is available to assess the asymptotic behavior of the solutions of our dynamic

system directly, and in particular, whether income per capita converges to its balanced

growth path.15 In the simulation below though, the solution converges asymptotically

to the balanced growth path.16

Figure 7 illustrates the complex relationship between the demographic transition and the

transition from Malthus to Modern growth. As long as the economy is in the Malthusian

regime, an increase in life expectancy induces an increase of the population growth rate.

Since fertility goes up, the associated raise in the dependency ratio reduces income per

capita. In the intermediary regime, with consumption above subsistence but still no

education, increases in life expectancy promote growth, because it raises adult longevity

and the number of workers per dependent children. Finally, in the modern era, the take-

off of education generates an acceleration in growth and a switch to a balanced growth

15No direct stability theorem is available for delay differential systems with more than one delay
since the stability outcomes depend on the particular values of the delays. See Mahaffy, Joiner, and
Zak (1995).

16The simulation was performed using the method in Boucekkine, Licandro, and Paul (1997).
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path with positive income growth.17 Notice that the model does not generate enough

growth compared to observations, as it relies only on population and human capital as

the engine of growth.

6 Conclusion

The epidemiology literature stresses that life expectancy depends greatly on body de-

velopment during childhood. Both better nutrition and lower exposure to infections

leads to increased body height and a longer life. We have proposed a theory of the

demographic transition based on this fact. The novel mechanism of the model is that

parents face a trade-off between the quantity of children they have and the amount they

can afford to spend on childhood development of each of them. Parents like to have

many children, but they also care about their longevity. Having many children pre-

vents parents spending much on their body development. If its cost decreases, parents

will increase their investment in their children’s longevity. The number of children will

first increase in the Malthusian regime as a consequence of higher lifetime income. As

longevity rises, fertility starts falling as a result of the trade-off faced by parents between

investing in their own human capital and spending time rearing children. Following the

trade-off between the number of children and childhood development, adult longevity

keeps increasing.

The model we have developed reproduces the characteristics of the demographic tran-

sition well, displaying the appealing features that longer education delays birth and

reduces fertility. Our theory can be seen as an alternative to the one based on a rise in

the return to human capital investment induced by economic progress, leading parents

to substitute quality for quantity. A distinctive implication of our theory is that im-

provements in childhood development should precede the increase in education. Taking

height as a proxy for childhood development, we have observed just such a pattern in

Swedish historical data.

Our theory can also provide an explanation for the puzzling fact that height at age

18 is a strong predictor of education attained later in life (Magnusson, Rasmussen,

and Gyllensten (2006) showed that Swedish men taller than 194 cm were two to three

times more likely to obtain a higher education than men shorter than 165 cm), even

17The slowdown around 1900 is related to the fact that the first educated generations postpone their
entry on the labor market.
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after controlling for parental socioeconomic position, other shared family factors, and

cognitive ability. A further test of our theory would consist of checking whether family

size is related to childhood development as measured by average height on historical

micro-data.
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A Proofs of Propositions

Proof of Proposition 1

After substituting the integral in (2) into (1), the objective becomes

(

β ln n̂ + δ ln Â
)

+ µ (θ + T )α (A − T − φn̂) − n̂

(

κ

2

Â2

A

)

︸ ︷︷ ︸

C

which is maximized under the restrictions T ≥ 0 and C ≥ 0.

First order conditions to this problem are (omitting the Kuhn-Tucker conditions):

(1 + η)Â2 =
δ

κn̂
A (A.1)

(1 + η)αµ (θ + T )α−1 (A − T − φn̂) = (1 + η)µ (θ + T )α − λ (A.2)

1

n̂

(

β −
δ

2

)

= (1 + η)µ (θ + T )α φ (A.3)

where λ and η are the Kuhn-Tucker multipliers associated with the constraints T ≥ 0

and C ≥ 0, respectively. The interior solution (4)-(6) is (A.1)-(A.3) under η = λ = 0.

The corner solution (7)-(9) results from the same system under η = T = 0, and finally,

the corner solution (10)-(12) results from the first order conditions under T = C = 0.

Under Assumption 2, η = C = 0 is not optimal.

Interior Regime. The solution to the first order conditions (4)-(6) exists and is unique

iff the loci in (5) and (6) cut once and only once for positive n and T , and C ≥ 0 at

the solution. The locus in (5) is a straight line with negative slope and cuts the n̂ axes

at A−θ/α
φ

≡ n0, see Figure A.1. The locus in (6) has a negative slope, is convex, and

is such that n̂ goes to zero when T goes to infinity and cuts the n̂ axes at β−δ/2
µφθα ≡ n1.

Comparing these two points and imposing n0 ≥ n1 leads to the condition A ≥ A, where

A =
β − δ

2

µθα
+

θ

α
.

Substituting (4) and (5) in the definition of C gives

C =
µ

α
(θ + T )1+α −

δ

2
,
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Figure A.1: The interior solution

β−δ/2
µφθα

A−θ/α

φ

∆+A

n̂

T

which is positive under Assumption 2 for all T ≥ 0.

Corner regime A ≤ A < A. If A < A, the straight line is above the convex curve at

T = 0 (see Figure A.1). A sufficient condition for these two curves not to intersect in

the positive plane is that the straight line is steeper than the convex curve at zero. This

is guaranteed by Assumption 2. In that case, there is no interior solution, since negative

values for T are not feasible. Consequently, the solution must be corner with T = 0.

From equations (7)-(9), at this corner solution

C = µθα

(

A −
β − δ/2

µθα

)

− δ/2,

which is positive for A ≤ A < A,with

A ≡
β

µθα
.

From Assumption 2, A < A. It is easy to see that the solution is unique.

Corner regime 0 < A < A. Finally, when 0 < A < A, the optimal solution is (10)-(12),

with both inequality constraints being binding. Uniqueness is trivial.
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Proof of Corollary 1

For the interior solution, we apply the implicit function theorem to (4)-(6), which leads

to

f ′

A = dÂ/dA =

√

Aδ

n̂κ

(T (α + 1) + θ + α((A − n̂φ)α + θ))

2A((α + 1)(T + θ) − n̂α2φ)
.

The numerator is positive. Under Assumption 2, the denominator is also positive. The

results for f ′

n and f ′

T can be proved using the same arguments. For the corner solutions,

the result is straightforward.

Proof of Proposition 2

Let us denote the function fA(.) by fA1(.) when A ≥ A, fA2(.) when A ≤ A < A, and

fA3(.) when 0 < A < A. The dynamics of life expectancy following Ai+1 = fA(Ai) are

monotonic because fA is continuous and non-decreasing.

Let us first prove the existence of a solution. From corollary 1, f ′

A(A) > 0. It is easy

to see that limA→0 fA(A) = limA→0 fA3(A) > 0. To prove the existence it is enough to

show

lim
A→∞

fA(A)

A
= lim

A→∞

fA1(A)

A
= 0.

From (5) and (6)

n̂ = cste(A − φn̂)−α.

Substituting in (4), and dividing by A2 gives

(

Â

A

)2

= cste
(A − φn̂)α

A
.

Since limA→∞ fn(A) = 0, it’s now easy to see that limA→∞

fA1(A)
A

= 0.

Let us now prove its unicity. For 0 < A < A, the function fA3(.) is increasing and

concave, with fA3(0) = 0 and f ′

A3(0) = ∞, implying that if it crosses the diagonal on

the interval (0, A), it crosses it only once.

Function fA2(.) is increasing and concave, with fA2(0) = 0 and f ′

A2(0) = ∞, implying

that if it crosses the diagonal on the interval [A, A), it crosses it only once.
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Finally, let us prove that f ′

A1(A) < 1 for any fixed point of fA1(.) in A ≥ A. From the

implicit function theorem applied to (4)-(6),

dÂ

Â
/
dA

A
=

1

2

(1 + α)(A − φn̂)

A − (1 + α)n̂
.

At a fixed point of fA1, since Corollary 1 shows that f ′

A(A) > 0 in this interval, the

denominator must be strictly positive. It is then easy to see that f ′

A(A) < 1 iff A >
1+α
1−α

φn̂. Since, from Corollary 1, f ′

n(.) < 0 in this interval, f ′

A(A) < 1 for all A ≥ A iff

A > 1+α
1−α

φn̂, which holds under Assumption 2.

Global stability is then trivial, since fA is above the diagonal before the unique steady

state equilibrium and below it afterwards.

Proof of Remark 1

A steady state for A in the interior regime exists iff there is a solution to the system

(4)-(6) evaluated at the steady state. Eliminating A and n from Equation (5) using

Equations (4) and (6) we find that the steady state T should satisfy:

T (1 + α) + θ = α

(
2δφµ(T + θ)α

κ(2β − δ)
−

(2β − δ)(T + θ)−α

2µ

)

The left hand side is a linear increasing function of T . The right hand side is a concave

function of T , with a slope going to zero as T goes to infinity. A sufficient condition for

existence and uniqueness of a stationary solution is that the right hand side is larger

than the left hand side at T = 0. This leads to Condition (13).
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