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1 Introduction

Single-dipped preferences naturally arise in the presence of a public bad.
Consider, for example, the decision on where to locate a facility whose neigh-
borhood is undesirable, like a prison, a dumping site or an incineration plant.
It is natural to assume that the worse allocation for each agent is the one
that places the facility right by their home, and that locations become better
as they place it further away.1

When location can be identi�ed with a point on a line, this gives rise to
single-dipped preferences. We concentrate on this case, though we can also
think of natural extensions to two-dimensional spaces, or even k-dimensional
ones, under alternative interpretations.2

The purpose of this paper is to de�ne and to partially characterize strategy-
proof rules on the domain of single-dipped preferences, and also on its sub-
domains.
It is natural to compare our setup and our results with those obtained

in the case of single-peaked preferences, a much more studied but somewhat
dual case that arises in cases when proximity to the public facility to be
located is desirable, rather than a bad. In fact, these two restrictions also
arise naturally from assumptions on the fundamentals of very simple models,
other than the location example we just started with. For example, when
agents with linear preferences must choose from the downward sloping fron-
tier of a set of feasible alternatives in a two-good model, one can identify this
frontier with a segment of the line, over which individual preferences will be
single-dipped, or single-peaked, depending on whether the frontier is convex
or concave.

1The appropriate speci�cation of what is meant by �being further�may not only involve
standard distance, but also other considerations, like the direction of prevailing winds, in
the case of incineration plants, the existence of natural barriers in some directions and not
in others, etc,...

2Another interesting model giving rise to single-dipped preferences is provided by Man-
junath (2009) and involves the division of a given budget for public goods among two sites.
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Figure 1: Single-peaked preferences over a
concave frontier
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Figure 2: Single-dipped preferences over a
convex frontier

The set of all strategy-proof rules whose domain includes all single-peaked
preferences was characterized by Moulin (1980). These rules, called general-
ized median voter schemes, constitute a rich class and contain many alterna-
tive procedures.
One feature that is common to both domains is that all rules that are

strategy-proof on them or on any of their subdomains are also group strategy-
proof. This is because both satisfy a condition called sequential inclusion (see
Barberà, Berga, and Moreno, 2009a) that guarantees the equivalence of these
two otherwise di¤erent incentive-compatibility requirements.
However, this coincidence regarding the equivalence of individual and

group strategy-proofness does not carry over other characteristics of our rules
on these two domains. In particular, they dramatically di¤er regarding the
characteristics of their ranges. In the case of single-peaked preferences and
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their subdomains, the range of strategy-proof functions can often consist of
the whole set of alternatives.3 By contrast, we will show that in domains
where all single-dipped preferences are feasible, the range of strategy-proof
rules contain at most two alternatives. This striking limitation is only one
instance of a more general fact: that the size of the maximal ranges for
strategy-proof rules on families of single-dipped preferences is endogenously
predetermined by the nature of the domains that it must be de�ned on.
This leads us to consider di¤erent subdomains of single-dipped preferences,
to establish the maximal sizes that the range of strategy-proof rules over
them, and to exhibit examples of rules where these sizes, that can certainly
be larger than two, are e¤ectively attained.
Of course, all strategy proof rules on the domain of all single-dipped

preferences are also strategy-proof on its subdomains. But as these become
more restrictive, new strategy-proof rules may arise. Some of those that we
describe are of special interest, and all of them will still be group strategy-
proof, as a result of our already mentioned equivalence result.
The work of Peremans and Storcken (1999) is an important predecessor

of ours. Indeed, they already pointed at the equivalence between individual
and group strategy-proofness in subdomains of single-dipped preferences, a
phenomenon that we can rationalize and extend because we now can check
that the condition of sequential inclusion is satis�ed on any such subset of
pro�les. Peremans and Storcken started a systematic study of restrictions
imposed by strategy-proofness on the ranges of rules de�ned for special sub-
domains of single-dipped preferences. We improve on the bound that they
propose and we analyze several new cases for which we can also provide tight
results. However, there is no denial that theirs is a pioneer study of the
subject.
A recent paper by Manjunath (2009) provides a result that is very similar

to the one we obtain for the domain of all single-dipped preferences, in that
it also shows that the range of rules must be of size two, and also provides a
characterization of all strategy-proof rules in that case. The main di¤erences
are that, unlike Manjunath, we do not impose the requirement that rules
are unanimous and we do not concentrate on a bounded interval in the real
line, and this allows us to be slightly more general on those points. Another

3This is true for rules de�ned on the full domain of single-peaked preferences, and for
many other subdomains. To get a full range it is su¢ cient (though not necessary) that
any alternative is top for each agent at some admissible preference.
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di¤erence is that we use a result of our own in the characterization of the
rules (see Barberà, Berga, and Moreno, 2009b), while he appeals to a previous
result by Larsson and Svensson (2006). In that speci�c aspect, our paper and
Manjunath�s seem to be nicely complementary. After that our contribution,
as already explained, takes the direction of exploring new subdomains and
to provide additional results on the maximal sizes of ranges allowed by the
strategy-proofness requirement.
The paper is organized as follows. Section 2 contains the model and de-

�nitions while Section 3 encompasses the results concerning the set of all
single-dipped preferences. Finally, in Section 4 we gather some examples of
rules for subdomains of single-dipped preferences and also the results con-
cerning the size of the range of strategy-proof rules on such subdomains.

2 The setup and de�nitions

Let A be a �nite set of alternatives4 and N = f1; :::; ng be a �nite set
of agents. Let R denote the set of admissible preferences for any agent
i 2 N , such that individual preferences are preorders (complete, re�exive,
and transitive binary relations on A). We denote by Ri 2 R an admissible
preference relation for agent i and let as usual, Pi and Ii be the strict and
the indi¤erence part of Ri, respectively. A preference pro�le, denoted by
RN = (R1; :::; Rn); is an element of Rn = R � ::: � R. Let C; S � N be
two coalitions such that C � S and c and s denote their cardinality. We will
write the subpro�le RS = (RC ; RSnC) 2 Rs when we want to stress the role
of coalition C in S. Then the subpro�les RC 2 Rc and RSnC 2 Rs�c denote
the preferences of agents in C and in SnC, respectively. In the case, where
we denote full preference pro�le (that is, when S = N), we simplify notation
by using (RC ; RNnC) as (RC ; R�C).
We now de�ne formally the notion of single-dipped preferences, of single-

dipped pro�les and of single-dipped preference domains, relative to a given
order of alternatives.

De�nition 1 A preference relation of individual i 2 N , Ri is single-dipped
on A relative to a linear order > of the set of alternatives if

4All results in Section 3 hold if A is any closed interval in the real line or the real line
itself.
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(1) Ri has a unique minimal element di(A), called the dip of i, and
(2) For all di(A) and for all y; z 2 A

[di(A) > y > z or z > y > di(A)]! zPiy.

De�nition 2 A preference pro�le is single-dipped relative to a linear order
> of alternatives if the preferences of all individuals satisfy the conditions
in De�nition 1, relative to the same order. Let D> denote the set of all
single-dipped preferences pro�les relative to >.

De�nition 3 A preference domain is a subset of preference pro�les. A (pref-
erence) domain is single-dipped if all the pro�les it contains (and thus, all
the preferences of all agents at all of its pro�les) are single-dipped relative to
the same linear order. In our notation, a domain is single-dipped if it takes
the form Rn

> = R> � :::�R> � D>.

Note that single-dipped preferences satisfy one of the forms of value re-
striction, as de�ned in Sen and Pattanaik (1969).
A social choice function (or a rule) is a function f : Rn

> ! A. Let Af
denote the range of the social choice function f .
We will focus on rules that are nonmanipulable, neither by a single agent

nor by a coalition of agents. We �rst de�ne what we mean by a manipulation
and then we introduce the well known concepts of strategy-proofness and
group strategy-proofness.

De�nition 4 A social choice function f is group manipulable on Rn
> at

RN 2 Rn
> if there exists a coalition C � N and R0C 2 Rc

> (R
0
i 6= Ri for

any i 2 C) such that f(R0C ; R�C)Pif(RN) for all i 2 C. We say that f is in-
dividually manipulable if there exists a possible manipulation where coalition
C is a singleton.5

De�nition 5 A social choice function f is group strategy-proof on Rn
> if f

is not group manipulable for any RN 2 Rn
>. Similarly, f is strategy-proof if

it is not individually manipulable.

5Our de�nition requires that all agents in a coalition that manipulates should obtain a
strictly positive bene�t from doing so. We consider this requirement compelling, since it
leaves no doubt regarding the incentives for each member of the coalition to participate
in a collective deviation from truthful revelation. For the analysis of a stronger version of
group strategy-proofness in the present setting, see Manjunath (2009).
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Notice that the domains of our social choice functions will always have
the form of a Cartesian product. This is necessary to give meaning to our
de�nitions of individual and group strategy-proofness.6

Barberà, Berga, and Moreno (2009a) showed that any subset of single-
dipped preferences pro�les satis�es a domain condition called sequential
inclusion. They also showed that for domains satisfying such condition,
strategy-proofness and group strategy-proofness turn out to be equivalent
(see next Remark 1). From now on, we will use strategy-proofness and group
strategy-proofness indistinctly.

Remark 1 (See Theorem 1 in Barberà, Berga, and Moreno, 2009a) Any
strategy-proof rule f de�ned on Rn

> � D> is group strategy-proof.

3 Strategy-proofness on D>
In this section we provide a characterization of all strategy-proof rules on
the set of all single-dipped preferences. After reminding the reader of some
facts that are relevant for our purposes, we establish that the range of these
functions must contain at most two alternatives. That is, all non-constant
strategy-proof rules on the domain should establish which pair of preselected
alternatives prevails. We then combine this fact with a characterization result
on strategy-proof rules with range two, in order to get the characterization.
We start by stating a well-known result that applies for any domain of

preferences, not only for single-dipped ones. We include its straightforward
proof, for the sake of completeness.

De�nition 6 Let �i2NRi � Rn such that Ri may di¤er from Rj for any
i; j 2 N . A social choice function f is Pareto e¢ cient on Af if for any
RN 2 �i2NRi � Rn there is no alternative x 2 Af such that xPif(RN) for
all i 2 N .

6This is why we choose to de�ne single-dipped domains in the way we do, that is,
relative to the same order of alternatives for all pro�les. An alternative de�nition would
say that a domain is single-dipped if for each pro�le there exists an order of alternatives
relative to which this pro�le is single-dipped. However, such de�nition would not guarantee
the Cartesian structure of the domain.
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Lemma 1 Any group strategy-proof social choice function f on �i2NRi is
Pareto e¢ cient on the range.7

Proof. By contradiction suppose there exist RN 2 �i2NRi and x 2 Af such
that xPif(RN) for all i 2 N . Let R0N such that x = f(R0N). Let S � N be
the set of agents i such that Ri 6= R0i: Note that S 6= ?. Then, S manipulates
f at RN via R0S which contradicts group strategy-proofness.

Peremans and Storcken (1999) show that as a consequence of their Lem-
mas 3 and 4, any given strategy-proof rule on any subdomain of single-dipped
preferences has at most 2n alternatives in the range. In particular this up-
per bound is determined by the cardinality of the set of admissible pro�les
when each agent has only two admissible preferences (leftist, i.e., the order
of alternatives according to the "smaller than" relation and rightist, i.e., the
order of alternatives according to the "greater than" relation). This upper
bound can be attained for this very restricted domain provided that there
are enough feasible alternatives. We obtain other bounds for the size of the
range, which depend on the size and nature of the preferences that constitute
admissible domains. The �rst bound applies when all single-dipped prefer-
ences are admissible and it is expressed in Theorem 1: only two alternatives
may be in the range! Other interesting bounds for the sizes of ranges under
di¤erent subdomains of single-dipped preferences are obtained in Section 4.
In the next Theorem 1 we re�ne such Peremans and Storcken (1999)�s result
by obtaining a more accurate upper bound when all single-dipped preference
pro�les are admissible.

Theorem 1 Any strategy-proof social choice function f on D> is such that
#Af � 2.

Note, as we show in the following example, that the result in Theorem 1
can not be generalized to all subset of single-dipped preferences. In the next
section we stress this point.

Example 1 Let N = f1; 2g, A = fx; y; zg where z > y > x and R> =
fR;R0; Rg such that xPyPz, xP 0zP 0y, and zPyPx as presented in the fol-

7The de�nition of group strategy-proofness is valid for any Cartesian product of indi-
vidual domain of preferences.
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lowing table:
R R0 R
x x z
y z y
z y x

.

Note that R2
> is a subset of single-dipped pro�les relative to the above de�ned

order of alternatives. The social choice function f on R2
> de�ned below is

strategy-proof and the size of its range (#Af) is 3 > 2.

f R2 R02 R2
R1 x x y
R01 x x z
R1 y z z

.

Before proving Theorem 1, we need to introduce the following fact, some
useful notation, and other interesting results.

Fact Note that for any triple of alternatives in A, say t, formed by x; y; z
where z > y > x, the restriction of any RN 2 Rn

> � D> to x; y; z, say
RN;t = (R1;t; :::; Rn;t), reduces to one of the following kinds of admissible
individual preference relations:

xP 1y, xP 1z, and yR1z
xP 2zP 2y
xI3z, and zP 3y
zP 4xP 4y
zP 5y, zP 5x, and yR5x.

Informally, we call such individual preferences as type l preferences, where
l 2 f1; 2; 3; 4; 5g. We will say that type 1 preferences in the list above are
�leftist on t�and that type 5 preferences are �rightist on t�.

Notation: Take a triple t formed by x; y; z 2 A and S � N: For any l 2
f1; 2; 3; 4; 5g; denote as Rl;tS any subpro�le of preferences of agents in S, where
for any j 2 S, Rl;tj is such that its restriction to fx; y; zg coincides with Rl in
the above fact.
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Let us point out that the following three results apply for any subdomain
of single-dipped preferences pro�les. The �rst lemma states a property that
any subdomain of single-dipped preferences must satisfy. Lemma 2 guaran-
tees, when considering strategy-proof rules, the existence of two individual
preferences for any triple t of alternatives in the range, one that is �leftist on
t�and one that is �rightist on t�.
Lemma 3 ensures that any alternative in the interior of the range can be

obtained as the outcome of a preference pro�le where individual preferences
are either �leftist on t�or �rightist on t�.

Lemma 2 Let f be a strategy-proof social choice function on Rn
> � D> with

#Af � 3. For any triple t formed by x; y; z 2 Af such that z > y > x, then
there exist R1;t and R5;t 2 R>:

Proof. Fix a triple t: x; y; z 2 Af such that z > y > x, and let x = f(R0N);
y = f( eRN), and z = f(RN). Suppose �rst that there does not exist any
type 1 preference on t. That is, for any RN 2 Rn

> only preferences of type
2, 3, 4, and 5 may coexist. Then, N would manipulate f at eRN via RN
since z = f(RN) ePif( eRN) = y for any i 2 N which is a contradiction to
group strategy-proofness. Thus, there exist RN 2 Rn

> such that restricted to
t there are type 1 preferences.
Suppose that there does not exist any type 5 preference on t. That is, for
any RN 2 Rn

> only preferences of type 1, 2, 3, and 4 may coexist. Then,
N would manipulate f at eRN via R0N since x = f(R0N) ePif( eRN) = y for any
i 2 N which is a contradiction to group strategy-proofness. Thus, there exist
R00N 2 Rn

> such that restricted to t there are type 5 preferences. This ends
the proof.

Lemma 3 Let f be a strategy-proof social choice function on Rn
> � D> with

#Af � 3. For any triple t: x; y; z 2 Af , z > y > x, then y = f(R1;tS ; R
5;t
NnS)

for some S � N .

Proof. Let t be the triple x; y; z 2 Af , z > y > x, and y = f( eRN): De�ne
Sl = fi 2 N : eRi;t = Rl;tg for l 2 f1; 2; 3; 4; 5g. Consider the set of agents
in Nn(S1 [ S5) and de�ne S = fi 2 Nn(S1 [ S5) : d( eRi) � yg. By strategy-
proofness, f(R1;t

S
; eRNnS) = y. The argument is as follows: observe �rst that

f(R1;t
S
; eRNnS) 2 [y; z), otherwise S would manipulate f at eRN via R1;tS and
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get an outcome strictly better than y. Second, f(R1;t
S
; eRNnS) = y. Otherwise,

if f(R1;t
S
; eRNnS) 2 (y; z), S would manipulate f at (R1;tS ; eRNnS) via eRS and

get y; since any j 2 S, yP 1;tj f(R
1;t

S
; eRNnS). Thus, f(R1;tS ; eRNnS) = y.

De�ne now bS = fi 2 Nn(S1 [ S5) : d( eRi) < yg. By strategy-proofness,
f(R5;tbS ; R1;tS ; eRNn(S[bS)) = y. The argument is similar to the one above: �rst
note that f(R5;tbS ; R1;tS ; eRNn(S[bS)) 2 (x; y]. Otherwise, bS would manipulate f at
(R1;t

S
; eRNnS) via R5;tbS and get an outcome better than y for any j 2 bS. Second,

f(R5;tbS ; R1;tS ; eRNn(S[bS)) = y. Otherwise, if f(R5;tbS ; R1;tS ; eRNn(S[bS)) 2 (x; y), bS
would manipulate f at (R5;tbS ; R1;tS ; eRNn(S[bS)) via eRbS and get y; since any j 2 S,
yP 5;tj f(R

5;tbS ; R1;tS ; eRNn(S[bS)). Thus, f(R5;tbS ; R1;tS ; eRNn(S[bS)) = y.
The following result obtained by the two previous lemmata assures that

for any triple t: z > y > x where x; z 2 Af , if alternative y is in the range
then there can not exist simultaneously a type 2 and a type 4 individual
preference over the triple t.

Theorem 2 Let f be a non-constant strategy-proof social choice function on
Rn
> � D>. Let x; z 2 Af , and a triple t : z > y > x for which there exists

R2;t,R4;t 2 R>. Then, y =2 Af .

Proof. If #Af = 2 the result trivially holds. Suppose that #Af � 3.
By contradiction suppose that y 2 Af : Let x; z 2 Af , and the triple t:
z > y > x. By Lemma 2 there exist R1;t and R5;t in R>. Moreover, by
Lemma 3, y = f(R1;tS ; R

5;t
NnS) for some S � N .

By group strategy-proofness, f(R1;tS ; R
4;t
NnS) 2 (y; z] [ fxg (otherwise, coali-

tion NnS would manipulate f at (R1;tS ; R
4;t
NnS) via R

1;t
NnS. By Lemma 1,

f(R1;tS ; R
1;t
NnS) = x) and again by group strategy-proofness, f(R

1;t
S ; R

4;t
NnS) = x

(otherwise, coalition NnS would manipulate f at (R1;tS ; R
5;t
NnS) via R

4;t
NnS).

By group strategy-proofness, f(R2;tS ; R
5;t
NnS) 2 [x; y)[fzg (otherwise, coalition

S would manipulate f at (R2;tS ; R
5;t
NnS) via R

5;t
S and get f(R5;tS ; R

5;t
NnS) = z),

and again by group strategy-proofness, f(R2;tS ; R
5;t
NnS) = z (otherwise, coali-

tion S would manipulate f at (R1;tS ; R
5;t
NnS) via R

2;t
S ).

By group strategy-proofness, f(R2;tS ; R
4;t
NnS) = z (otherwise, coalition NnS

would manipulate f at (R2;tS ; R
4;t
NnS) via R

5;t
NnS and get f(R

2;t
S ; R

5;t
NnS) = z),
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but then coalition S would manipulate f at (R2;tS ; R
4;t
NnS) via R

1;t
S and get

f(R1;tS ; R
4;t
NnS) = x. Thus, we obtain a contradiction.

Note that Theorem 2 generalizes Theorem 1 above. And in fact Theorem
1 is a straightforward corollary of Theorem 2. Observe that if Rn

> = D>, for
any t in A: z > y > x there exist R2;t and R4;t in R>. Thus, recursively
applying Theorem 2 we end up showing that the #Af � 2.
Observe that by Theorem 1, the following result straightforwardly holds.

Corollary 1 There is no strategy-proof and onto social choice function on
the domain of all single-dipped preferences if #A � 3.

In Barberà, Berga, and Moreno (2009b), we obtained a characterization
of all strategy-proof rules with a binary range (that is, Af = fx; yg for some
pair x; y of alternatives in A) by means of two conditions that we de�ne
below. Let X(RN) = fi 2 N : xPiyg and Y (RN) = fj 2 N : yPjxg for each
preference pro�le RN 2 Rn

>.

De�nition 7 A social choice function f with a binary range is respon-
sive if and only if for all RN ; R0N 2 Rn

> such that Rh = R0h; for any
h 2 Nn[X(RN) [ Y (RN)] \Nn[X(R0N) [ Y (R0N)], the following holds:
(1) If X(R0N) � X(RN); Y (RN) � Y (R0N) (with at least one strict inequal-
ity), and f(RN) = x, then f(R0N) = x; and
(2) If Y (R0N) � Y (RN); X(RN) � X(R0N) (with at least one strict inequal-
ity), and f(RN) = y, then f(R0N) = y.

De�nition 8 A social choice function f with a binary range is xy-based
if and only if for all RN ; R0N 2 Rn

> such that X(RN) = X(R0N), Y (RN) =
Y (R0N), and Rh = R

0
h; 8h 2 Nn[X(RN) [ Y (RN)], then f(RN) = f(R0N).

These two conditions characterize strategy-proof social choice functions
with a binary range.

Theorem 3 (see Barberà, Berga, and Moreno, 2009b) Let f be a social
choice function on Rn

> � Rn with a binary range. Then, f is strategy-proof
if and only if f is responsive and xy-based.
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We already know, from our previous work, that responsiveness and the
xy-based condition are independent whatever the domain of preferences is.
For the sake of completeness, in the following example we present two rules
violating only one of them when we concentrate on the set of single-dipped
preferences pro�les.

Example 2 Let N = f1; 2g, A = fx; y; zg where z > y > x; and for any
i 2 N , R> = fR1; R2; R4; R5g such that:

R1 R2 R4 R5

x x z z
y z x y
z y y x

Note that R2
> is the subset of all strict single-dipped pro�les relative to the

above de�ned order of alternatives. Observe that f below satis�es xz-based
but it violates responsiveness. Note also that bf satis�es responsiveness but it
violates xz-based. Both are manipulable.
f R12 R22 R42 R52
R11 z z x x
R21 z z x x
R41 x x x x
R51 x x x x

bf R12 R22 R42 R52
R11 z x z z
R21 x x z z
R41 z z z z
R51 z z z z

Therefore, as a corollary of Theorem 3 and Theorem 1, we can state the
following result.

Proposition 1 Let f be a social choice function on D> with a binary range.
Then, f is strategy-proof if and only if f is responsive and xy-based.

4 Strategy-proofness on restricted single-dipped
domains

We now present three families of subdomains of single-dipped preferences.
For two of them we describe classes of rules that are strategy-proof on these
domains, and yet have ranges of size larger than two. For the third one, we
show that even it is a subset of one of those two, we are back to the situation
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where the range of any strategy-proof rule on it can only contain at most
two alternatives.
Our analysis is not exhaustive. We do not work on all possible subdo-

mains of single-dipped preferences, nor do we claim that the rules we exhibit
exhaust the set of all those satisfying strategy-proofness on the respective
domains. Our aim is a more limited one, hopefully interesting for the reader.
It is to show that there is no inherent association between the fact that pref-
erences are single-dipped and the need for the range to be limited to size
two, nor between this limitation of the range and the fact that only two al-
ternatives can be the best for agents, under single-dipped preferences. These
connections are only e¤ective when all single-dipped preferences are in the
domain of our rules.
We present our examples for the case where domains consist of preferences

de�ned on a �nite set of alternatives. With some changes and quali�cations,
our examples and results could also extend to the case where the set of
alternatives is a continuum. However, as already remarked by Peremans and
Storcken (1999), the ranges will still be �nite in that case. Again, this is a
substantial di¤erence with the case of single-peakedness.
We will let the set of alternatives be the integer interval A = [0; 1; 2; :::; k],

k � 3. For k � 2, the subdomains we de�ne below would give rise to non-
interesting results. We denote by [a; b] the set of integer numbers between a
and b both included, while (a; b) excludes both a and b.

De�nition 9 For any given set of alternatives of size k, and any integer h,
0 < h < k, the set Dkh of single-dipped preferences with an h bias consists of
all preferences R that:
(1) are single-dipped, and
(2) either hPs for all s 2 [h+ 1; k], or else
(k � h)Ps for all s 2 [0; k � h� 1].

Note �rst that condition (2) implies that alternatives 0 and k will not
be indi¤erent. Notice also that if h = 0, condition (2) would have no bite
and we would be back to the case of single-dipped preferences, where 0 and
k are not indi¤erent. Moreover if h = k � 1, then the only two admissible
preferences are those where 0 is the best and k is the worst alternative, or
its opposite.
Notice also that, �xed k, Dkh0 $ Dkh where 0 < h < h0 < k. Furthermore,

observe that if h < k
2
, the set on which the dips of agents with tops in 0 and
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agents with tops on k can be located are overlapping, and their intersection
is the segment Ih = (h; k � h) whereas, if h � k

2
, then the set Ih is always

empty, and the preferences of all agents in the segment Ch = [k � h; h] are
strictly increasing or strictly decreasing. These two subdomains will allow
for di¤erent types of strategy-proof rules.
We now present, for each of these two domains, examples of group strategy-

proof rules whose range size is larger than two.

Example 3 For k � 3; 0 < h < k
2
, de�ne a rule on Dkh as follows:

Fix a range consisting of four outcomes, r1; r2; r3; r4 such that r1; r2 � h and
r3; r4 � k � h:
For a given pro�le RN 2 (Dkh)n, then
- Let f(RN) = r1 (respectively, r2) if (1) #fi 2 N : r2Pir3g � #fj 2 N :
r3Pjr2g and
(2) #fi 2 N : r3Pir2 and r1Pir2g � #fj 2 N : r3Pjr2 and r2Pjr1g (respec-
tively, <).
- Let f(RN) = r3 (respectively, r4) if (1) #fi 2 N : r3Pir2g > #fj 2 N :
r2Pjr3g, and
(2) #fi 2 N : r2Pir3 and r3Pir4g � #fj 2 N : r2Pjr3 and r4Pjr3g (respec-
tively, <).

Informally, we could describe the rule as follows. Agents �rst vote by
majority whether the outcome should be in fr1; r2g or fr3; r4g, and then,
those disagreeing with this majority vote again by majority to determine
which of the two chosen alternatives should come out.
The rule is strategy-proof, and its range contains, by construction, four

elements. The argument for (individual) strategy-proofness is as follows.
Since preferences are single-dipped with a bias, all agents either prefer both
r1 and r2 to both r3 and r4, or vice-versa. Hence, they will try to ensure that
the outcome is any one of the two that they prefer, and no voter has a better
strategy than supporting their best pair. In the second vote, agents who did
not get their best alternatives pre-selected can still express their preferences
between the other two, and either support the most extreme outcome or else
get the less extreme one. Again, supporting their preferred alternative in this
new binary vote is a dominant strategy. Group strategy-proofness is derived
from Remark 1, that our domain satis�es sequential inclusion.
This rule provides an example of how, by restricting the domain of de�-

nition of our social choice functions, we may get group strategy-proof rules
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with a range larger than two. Remark that, contrary to what happened in
richer domains, the rule we propose is strategy-proof but requires informa-
tion beyond knowing what is the preferred alternative of each agent on the
range. This is worth remarking because for many domains it is known that
strategy-proof rules must only use information regarding the "tops on the
range" of individual preferences. Our domains are such that this informa-
tional simplicity requirement can be skipped.
The choice of a range in this example is not capricious. The following

theorem proves that, in the domain Dkh with h < k
2
, this is the larger size of

ranges admitting a strategy-proof rule.

Proposition 2 Let k � 3, 0 < h < k
2
. There is no strategy-proof social

choice function f : (Dkh)n ! A with #Af > 4.

Proof. The proof consists of two steps.
Step 1: If #Af � 3, no alternative in the interval (h; k � h) belongs to the
range of f .
Proof of Step 1 : Let y 2 (h; k� h) and let x; z 2 Af . Observe that wherever
the triple t: x; y; z, belongs to and for any possible order of them, there exist
some preferences R2;t and R4;t in Dkh.
If z > y > x, by Theorem 2, y =2 Af .
If z > x > y (respectively, y > z > x), if we assume that y 2 Af then
by Theorem 2 we obtain that x =2 Af (respectively, z =2 Af) which is a
contradiction. This shows Step 1.
Thus Af � [0; h] [ [k � h; k].
Step 2: #(Af \ [0; h]) � 2 and #(Af \ [k � h; k]) � 2.
Proof of Step 2 : Let us show that#(Af \ [k � h; k]) � 2 (a similar argument
would follow to show that #(Af \ [0; h]) � 2). Suppose that there exists
S � [k � h; k] \ Af such that #S � 3. Observe that for any triple in
[k � h; k], there exist some preferences R2;t and R4;t in Dkh. Thus, �xed any
pair x0; z0 2 S, z0 > x0, for any y 2 S such that z0 > y > x0, y =2 Af by
Theorem 2. Repeatedly applying Theorem 2 for all di¤erent pairs x1; z1 2 S,
x0 � x1; z1 � z0 we obtain that #S � 2 which is a contradiction and shows
Step 2.
Thus #Af � 4.

Now, let us consider the following rules for the domain Dkh with h > k
2
.
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Example 4 For k � 3, k
2
< h < k � 1 de�ne a rule on Dkh as follows:

Fix four outcomes, r1; r2; r3; r4 such that 0 � r1; r2 < k�h and h < r3; r4 � k.
For a given pro�le RN 2 (Dkh)n,
- Let f(RN) = r1 (respectively, r2) if (1) 0P1k, 0P2k, and (2)#fi 2 Nnf1; 2g :
r1Pir2g � (respectively, <) #fj 2 Nnf1; 2g : r2Pjr1g.
- Let f(RN) = r4 (respectively, r3) if (1) kP10, kP20 and (2)#fi 2 Nnf1; 2g :
r4Pir3g � (respectively, <) #fj 2 Nnf1; 2g : r3Pjr4 g.
- Let f(RN) = minfh; k � h + #fi 2 Nnf1; 2g : kPi0g if 0P1k and kP20 or
kP10 and 0P2k.

Informally, we could describe the rule as follows. If agents 1 and 2 agree
on their top then they select only two alternatives out of which the rest of
agents will have to choose one. If agents 1 and 2 disagree on their top then
the outcome will be an alternative within the interval [k�h; h] and outcome
will depend again on the preferences of the remaining agents (notice that
their preferences on this interval will be either leftist or rightist). Let us
brie�y describe why this rule is strategy-proof. Since their preferences have
an h bias, if 1 and 2 both prefer 0 to k, then they both prefer r1 and r2 to
all other alternatives in the range. Hence if both agree that 0 is best, it is
optimal for them to declare 0 and to obtain either r1 or r2. Similarly if both
agree that k is best. And if agents 1 and 2 disagree, then it is best for both of
them to avoid extreme outcomes r1; r2; r3 and r4 and to ensure through their
sincere vote that the outcome lies in the range [k � h; h]. Given the votes
of 1 and 2, the choices of the rest of the agents are either a binary election
or else a vote on their best element on [k � h; h] resulting in some outcome
in this interval. In each of these three cases, being truthful is a dominant
strategy for all them.
Let us remark that depending on k, h and n, the range of these functions

can be as large as minf2h� k + 5; 2ng.
In fact, this example provides an upper bound for the size of the range

of strategy-proof rules on Dkh with h > k
2
, as proven in the following propo-

sition.

Proposition 3 Let k � 3 and k
2
< h < k � 1. There does not exist any

strategy-proof social choice function f : (Dkh)n ! A such that #Af >
minf2h� k + 5; 2ng.

Proof. Let h � k � 2. We only need to show Step 1:
Step 1: #(Af \ (0; h)) � 2 and #(Af \ (k � h; k)) � 2.
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If these two statements in Step 1 hold, then the maximum number of alter-
natives in the range is four plus the maximum number of alternatives in the
range that belong to the interval [k�h; h]. That is, #Af � 2+2+ (h� [k�
h� 1]) = 2h� k + 5. This would end the proof of this Proposition.
Proof of Step 1 : Let us show that #(Af \ (0; h)) � 2 (a similar argument
would follow to show that #(Af \ (k � h; k)) � 2). Suppose that there
exists S � (0; h) \ Af such that #S � 3. Observe that for any triple in
(0; h), there exist some preferences R2;t and R4;t in Dkh. Thus, �xed any pair
x0; z0 2 S, z0 > x0, for any y 2 S such that z0 > y > x0, y =2 Af by Theorem
2. Repeatedly applying Theorem 2 for all di¤erent pairs x1; z1 2 S, x0 � x1;
z1 � z0 we obtain that #S � 2 which is a contradiction. This shows Step 1.

Finally, let us consider a third subdomain of preferences with an h bias,
one that restricts the domain Dkh with h < k

2
. Speci�cally, we will consider

the set bDkh :
De�nition 10 Let bDkh be the domain formed by preferences that
(1) belong to Dkh with h < k

2
and

(2) d(Ri) 2 Ih = (h; k � h).

It turns out that, like in Theorem 1, it is now only possible to de�ne
strategy-proof rules on this subdomain of single-dipped preferences if the
range is restricted to two alternatives at most, as shown by the following
result.

Proposition 4 Let k � 3, 0 < h < k
2
. There is no strategy-proof social

choice function f :
� bDkh�n ! A with #Af > 2.

Proof. The proof consists of two steps.
Step 1: #(Af \ [0; h]) � 1 and #(Af \ [k � h; k]) � 1.
Proof of Step 1 : Observe that for any R 2 bDkh, R is strictly decreas-
ing in [0; h] and strictly increasing in [k � h; k]. Suppose that there exist
x1; x2 2 Af \ [0; h] where x1 = f(RN), x2 = f( eRN). Then, N would manipu-
late f at eRN via RN which is the desired contradiction. A similar argument
holds for Af \ [k � h; k]. This shows Step 1.
Step 2: No alternative in the interval (h; k � h) belongs to the range of f .
Proof of Step 2 : Let #Af � 3 and by contradiction suppose that Af \
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(h; k � h) 6= ?. Suppose �rst that Af � (h; k � h). Then we get a con-
tradiction to Lemma 3 since for any triple t: x; y; z 2 Af , there exist R2;t
and R4;t 2 bDkh and thus y =2 Af . Second, consider the case such that
Af \ ([0; h] [ [k � h; k]) 6= ? and Af \ (h; k � h) 6= ?. We may have two
subcases: (2.1) x 2 Af \ [0; h], z 2 Af \ [k � h; k], and y 2 Af \ (h; k � h),
and (2.2) x 2 Af \ [0; h], y; z 2 Af \ (h; k � h) (or else z 2 Af \ [k � h; k],
x; y 2 Af \ (h; k�h)). For both cases, consider the triple t: x; y; z 2 Af and
observe that there does not exist R1;t and R5;t bDkh on the triple t which con-
tradicts Lemma 2. Thus, the only possibility is that Af � [0; h] [ [k � h; k]
which shows Step 2.
Combining the results in both Steps, we obtain that #Af � 2.

5 Conclusions

We have highlighted the fact that, in environments where preferences are
single-dipped, bounds on the size of the ranges of social choice functions
arise as necessary conditions for their strategy-proofness. We have shown how
these bounds result from the interaction between the number of individuals
and alternatives, and most importantly from the nature of the subdomains
where the functions must be de�ned.
One important consequence of our research in this and other papers is a

full characterization of the family of group strategy-proof rules on the full
domain of single-dipped preferences.
The propositions on the bounds of the size of the ranges for functions

de�ned on di¤erent subdomains also allow us to exhibit quite unexpected re-
sults. One is the very fact that such restrictions arise: this does not happen in
other well studied domain restrictions admitting strategy-proof rules, like the
domain of single-peaked or separable preferences (see Moulin, 1980, Barberà,
Sonnenschein, and Zhou, 1991). The other is that, in a very strong sense,
the relationship between the size of single-dipped subdomains and that of the
ranges of strategy-proof rules de�ned on them is not necessarily monotonic.
We have exhibited one case where it is: this is the one where we compare
the three domains Dkh0 $ Dkh $ D>, �xed k, and being h < k

2
, and h0 > k

2
,

which are nested, and where indeed the maximal range size compatible with
strategy-proofness increases as the domains shrink. However, we have also
identi�ed the three domains bDkh $ Dkh $ D>, �xed k and being h < k

2
(see
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Section 4). For these three nested domains, the admissible range size goes
up, as we restrict the domain from D> to Dkh, and yet it then goes down if
we continue restricting the domain from Dkh to bDkh. This de�nitely shows
that the interactions we have unearthed are non-trivial.
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