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Abstract: We characterize the class of strategy-proof social choice functions on the domain

of symmetric single-peaked preferences. This class is strictly larger than the set of generalized

median voter schemes (the class of strategy-proof and tops-only social choice functions on the

domain of single-peaked preferences characterized by Moulin (1980)) since, under the domain

of symmetric single-peaked preferences, generalized median voter schemes can be disturbed by

discontinuity points and remain strategy-proof on the smaller domain. Our result identi�es the

speci�c nature of these discontinuities which allow to design non-onto social choice functions

to deal with feasibility constraints.
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1 Introduction

The aim of this paper is to identify the class of strategy-proof social choice functions

on the domain of symmetric single-peaked preferences. The characterization of this

class allows us to design social choice functions that are strategy-proof in cases in which

there are feasibility constraints; i.e., when the set of possible alternatives is not convex.

Although we think that the restriction to the domain of symmetric single-peaked prefer-

ences is interesting in its own right, the ability of designing strategy-proof social choice

functions under feasibility constraints is certainly relevant in many applications.

Consider a society with n agents who have to collectively choose one alternative from

a given set of social alternatives. Assume that this set is endowed with a natural strict

order because alternatives have a common characteristic that makes the comparison

between pairs of alternatives meaningful and objective. For instance, the set of alterna-

tives may consist of physical locations (a public facility on a road or street), properties

of a political project in terms of its left-right characteristics, the expenditure level on a

public good, indexes re�ecting the quality of a product, feasible temperatures in a room,

and so on.1 In all these cases, and in many others, this linear order structure permits to

identify the set of alternatives with a subset of the real line. Agents have (potentially

di¤erent) preferences on the set of alternatives. Black (1948) is the �rst to suggest that,

given the linear order on the set of alternatives, agents�preferences ought to be single-

peaked. The preference of an agent is single-peaked if there exists an alternative (called

the top) which is strictly preferred to any other alternative and on each side of the top

the preference is strictly monotonic, increasing on its left and decreasing on its right.2

Society would like to select an alternative according to agents� preferences. But

since they constitute private information, agents have to be asked about them. A social

choice function on a domain of preferences requires each agent to report a preference

and associates an alternative with the reported preference pro�le. Hence, a social choice

function on a Cartesian product domain induces an (ordinal) direct revelation game

where each agent�s set of strategies is his set of possible preferences. A social choice

1There is an extensive literature studying collective choice problems where the set of social alter-
natives is a linearly ordered set. See Moulin (1980), for instance. This class of problems also plays a
fundamental role in Sprumont (1995) and Barberà (2001), two excellent surveys on strategy-proofness.

2The set of single-peaked preferences is extremely large and rich; for instance, for each alternative
there are many single-peaked preferences that have as top this alternative. Moreover, no a priori
restriction is imposed on how pairs of alternatives lying in di¤erent sides of the top are ordered. Ballester
and Haeringer (2007) identify two properties that are both necessary and su¢ cient to characterize the
domain of single-peaked preference pro�les.
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function is strategy-proof if no agent has never incentives to strategically misrepresent

his preference; in other words, truth-telling is a (weakly) dominant strategy in the direct

revelation game induced by the social choice function.

Moulin (1980) characterizes the class of strategy-proof and tops-only social choice

functions on the domain of single-peaked preferences as the set of generalized median

voter schemes.3 A generalized median voter scheme is, in general, a non-anonymous

extension of the median voter. It can be interpreted as a particular way of distributing

the power to in�uence the social outcome among all coalitions of agents. In addition,

Moulin (1980) also identi�es the two nested subclasses of strategy-proof, tops-only and

anonymous social choice functions, and strategy-proof, tops-only, anonymous and e¢ -

cient social choice functions.4 All the functions in these characterizations have convex

range meaning that the set of implementable alternatives is convex. This implies that

if some alternatives were banned or infeasible, either the social choice function would

have to request from the agents more information than just their top, or there would be

a single-peaked preference pro�le for which truthtelling is strictly dominated by some

agent.

In many applications however, the domain of preferences can be restricted even

further because the linear order structure of the set of alternatives conveys to agents�

preferences more than just an ordinal content. Often, an agent�s preference on the set

of alternatives is responsive also to the notion of distance, embedding to the preference

its corresponding property of symmetry. A single-peaked preference is symmetric if the

following additional condition holds: an alternative is strictly preferred to another one

if and only if the former is strictly closer to the top. If an indi¤erence class contains

two alternatives then both are located in opposite sides of the top and are at the same

distance of the top.

To restrict further the domain of a social choice function is equivalent to shrink the

set of agents� strategies in its induced direct revelation game. Thus, strategies that

were dominant remain dominant while strategies that were not dominant in the larger

domain may become dominant after the domain reduction. Therefore, two important

facts hold. First, any strategy-proof social choice function on a domain remains strategy-

proof on all of its subdomains. Second, a manipulable social choice function on a domain

3A social choice function is tops-only if the chosen alternative only depends on the pro�le of tops.
Tops-only social choice functions are especially simple in terms of the amount of information they
require about individual preferences.

4A social choice function is anonymous if it is independent of the identities of the agents; it is e¢ cient
if it always selects a Pareto optimal alternative.
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may become strategy-proof in a smaller subdomain.5 Hence, we ask whether the set

of strategy-proof and tops-only social choice functions on the domain of single-peaked

preferences, identi�ed by Moulin (1980) as the class of generalized median voter schemes,

becomes larger when the domain of preferences where we want the social choice functions

to operate is the subdomain of symmetric single-peaked preferences. We answer this

question a¢ rmatively by completely identifying the larger class of functions that emerge

after restricting further the domain.

The new class of social choice functions can be described as generalized median

voter schemes disturbed by discontinuity jumps. A social choice function f in the class

coincides with a generalized median voter scheme except that at some (countable number

of) discontinuity jumps (for instance, an interval (a; b) with middle point d), instead of

taking the value prescribed by the generalized median voter scheme, f takes the constant

value a at [a; d); either the value a or b at d, and the constant value b at (d; b]. Our

description of the class makes precise that the choice of either a or b at any of those

pro�les where the generalized median voter scheme would choose d must be monotonic

in order to preserve strategy-proofness of the social choice function.

We want to stress the importance for applications of admitting discontinuous social

choice functions that are non-onto because they have a disconnected range. Non-onto

social choice functions are indispensable for the design of social choice functions that

require that some subsets of alternatives are never chosen due to feasibility constraints.

For instance when the range of the function has to be �nite, or not all locations for a

public facility are possible, or the set of indexes re�ecting the quality of a product must

be disconnected, or the thermostat controlling for the temperature in a room can not

take all values, and so on. In all these cases, and in many others, discontinuities can not

be regarded as pathological features of social choice functions but rather as indispensable

requirements to deal with constraints on the set of feasible alternatives to be chosen.6

There is a large literature studying strategy-proofness on domains related to single-

peakedness. Our result and its proof are closely related to the following papers. Theorem

5Observe that this is just a possibility. For instance, for the case where the set of social alternatives
is the family of all subsets of a given set of candidates Barberà, Sonnenschein, and Zhou (1991) show
that voting by committees is the class of strategy-proof and onto social choice functions on both, the
domain of separable preferences as well as on the subdomain of additive preferences, although the set
of additive preferences is strictly smaller than the set of separable preferences. No new strategy-proof
social choice function appears after the domain reduction in this case.

6Barberà, Massó, and Neme (1997 and 2005) and Barberà, Massó, and Serizawa (1998) identify sub-
classes of strategy-proof social choice functions that are able to deal with constrained sets of alternatives
in di¤erent environments.
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1 partly retains the structure of Moulin (1980)�s characterization of strategy-proof and

tops-only social choice functions under the single-peaked domain of preferences. Our

result in Theorem 1 says that social choice functions that are strategy-proof on the

symmetric single-peaked domain but they were manipulable in the larger single-peaked

domain consists of generalized median voter schemes that are perturbed by speci�c dis-

continuities. Our result is also related to Theorem 3 in Barberà and Jackson (1994)

characterizing all strategy-proof social choice functions on the domain of single-peaked

preferences. Their characterization includes social choice functions whose range is not

convex; however, the characterization is open because it relays on a family of strategy-

proof tie-breaking rules (used to select between the two extremes of the discontinuity

jumps). Our characterization is closed because it explicitly describes the exact family

of admissible tie-breaking rules needed to preserve strategy-proofness. Yet, we are able

to provide this closed description because our domain contains only symmetric prefer-

ences. The proof of our result relays at some point on Berga and Serizawa (2000)�s

characterization of all strategy-proof and onto social choice functions on a minimally

rich domain as the class of generalized median voter schemes;7 we use their result in the

easier case when the given strategy-proof social choice function is continuous. In addi-

tion, our proof is substantially simpler than it would have been if we were not able to use

Barberà, Berga, and Moreno (2009) result identifying conditions of preference domains

under which (individual) strategy-proofness is equivalent to group strategy-proofness.

Their result allows us to avoid many steps of individual changes of preferences by in-

stead moving simultaneously the preferences of all members of a given coalition.

The paper is organized as follows. In Section 2 we present the preliminary nota-

tion and the most basic de�nitions. In Section 3 we state some preliminary results

and give the main de�nitions and intuitions in order to understand why and how the

class of generalized median voter schemes has to be enlarged in order to identify the

full class of strategy-proof social choice functions on the domain of symmetric single-

peaked preferences. In Section 4 we state and prove our main result characterizing

the complete class of strategy-proof social choice functions on the domain of symmet-

ric single-peaked preferences (Theorem 1). After presenting some preliminaries of the

proof in Subsection 4.2, we prove Theorem 1 in Subsection 4.3. In Section 5 we �rst

state as corollaries of Theorem 1 the corresponding characterizations under strategy-

7A domain is minimally rich if (i) it is a subset of the single-peaked domain, (ii) for each alternative
x there is a preference relation in the domain with top at x, and (iii) for any pair of alternatives x and
y (x 6= y) there is a preference in the domain that strictly orders x and y and whose top lies between x
and y. Obviously, the set of symmetric single-peaked preferences is a minimally rich domain.
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proofness and anonymity (Corollary 1) and under strategy-proofness, anonymity and

e¢ ciency (Corollary 2). We then argue about the importance for applications of al-

lowing for non-onto social choice functions which were ruled out by the combination of

strategy-proofness and tops-onlyness in Moulin (1980)�s characterization under single-

peaked preferences and state Corollary 3 characterizing all strategy-proof social choice

functions that are e¢ cient relative to a given closed set of feasible alternatives. We

�nish with the remark that, as the consequence of the main result in Barberà, Berga,

and Moreno (2009), the four statements hold if we replace in them strategy-proofness

by group strategy-proofness.

2 Preliminary notation and de�nitions

Let N = f1; :::; ng be the set of agents of a society that has to choose an alternative
x from the interval [0; 1].8 The preference of each agent i 2 N on the set of alterna-

tives [0; 1] is a complete, re�exive, and transitive binary relation (a complete preorder)

Ri on [0; 1]. Let R be the set of complete preorders on [0; 1]. A preference pro�le

R = (R1; :::; Rn) 2 RN is a n-tuple of preferences. To emphasize the role of agent i or

subset of agents T , a preference pro�le R will be represented by (Ri; R�i) or (RT ; R�T ),

respectively. As usual, let Pi and Ii denote the strict and indi¤erence preference rela-

tions induced by Ri, respectively. Given Ri 2 R, the top of Ri (if any) is the unique
alternative t(Ri) that is strictly preferred to any other alternative; i.e., t(Ri)Pix for all

x 2 [0; 1]nft(Ri)g.
Given a subset of preferences S � R, a social choice function f on S is a function

f : SN ! [0; 1] selecting an alternative for each preference pro�le in SN . We will refer to
this Cartesian product set SN (or to the set S itself) as a domain of preferences. Given a
social choice function f : SN ! [0; 1], denote its range by rf ; i.e., rf = fx 2 [0; 1] jthere
exists R 2 SN such that f(R) = xg.
We will be interested in social choice functions that induce truth-telling as a (weakly)

dominant strategy in their associated (ordinal) direct revelation game.

De�nition 1 A social choice function f : SN ! [0; 1] is strategy-proof if for all

R 2 SN , all i 2 N , and all R0i 2 S,

f(Ri; R�i)Rif(R
0
i; R�i):

8Our results also hold for any linearly ordered metric space of alternatives. In particular, for any set
of alternatives which is a closed interval of real numbers (as well as for the set R [ f�1;+1g).
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If f(R0i; R�i)Pif(R) we say that i manipulates f at R via R
0
i. A social choice function

f : SN ! [0; 1] is group strategy-proof if for all R 2 SN , all T � N , all R0T 2 ST , and
all i 2 T;

f(RT ; R�T )Rif(R
0
T ; R�T ):

If f(R0T ; R�T )Pif(R) for all i 2 T we say that T manipulates f at R via R0T .

We will also consider other properties of social choice functions. A social choice

function f : SN ! [0; 1] is anonymous if it is invariant with respect to the agents�

names; namely, for all one-to-one mappings � : N ! N and all R 2 SN , f(R1; :::; Rn) =
f(R�(1); :::; R�(n)). A social choice function f : SN ! [0; 1] is dictatorial if there exists

i 2 N such that for all R 2 SN , f(R)Rix for all x 2 rf . A social choice function

f : SN ! [0; 1] is e¢ cient if for all R 2 SN , there is no z 2 [0; 1] such that, for all
i 2 N , zRif(R) and zPjf(R) for some j 2 N . A social choice function f : SN ! [0; 1]

is unanimous if for all R 2 SN such that t(Ri) = x for all i 2 N , f(R) = x. A social
choice function f : SN ! [0; 1] is onto if for all x 2 [0; 1] there is R 2 SN such that

f(R) = x (i.e., rf = [0; 1]). A social choice function f : SN ! [0; 1] is tops-only if for

all R;R0 2 SN such that t(Ri) = t(R0i) for all i 2 N , f(R) = f(R0). Let bS � R be

any subset of preferences with the property that for each x 2 [0; 1] there exists at least
a preference Ri 2 bS such that t(Ri) = x: Then, bSN is called a rich domain (note that
all minimally rich domains are rich) and with some abuse of notation, given a tops-only

social choice function f : bSN ! [0; 1] we will refer to it by its corresponding voting

scheme f : [0; 1]N ! [0; 1].

The Gibbard-Satterthwaite Theorem states that a social choice function f : RN !
[0; 1], with #rf 6= 2, is strategy-proof if and only if it is dictatorial.9 An implicit as-

sumption of the Gibbard-Satterthwaite Theorem is that the domain of the social choice

function is universal: the social choice function operates on all preference pro�les, be-

cause all of them are reasonable. However, for many applications, a linear order structure

on the set of alternatives naturally induces a domain restriction in which there always

exists a top, and at each of the sides of the top the preference is strictly monotonic.

De�nition 2 A preference Ri 2 R is single-peaked if:

9See Gibbard (1973) and Satterthwaite (1975). Of course, the social choice function f that consists
of preselecting two di¤erent alternatives x; y 2 [0; 1] and deciding between them by majority voting
(i.e., for all R 2 RN , f(R) = x if and only if #fi 2 N j xRiyg � #fi 2 N j yPixg) is strategy-proof
but not dictatorial. Observe that the range of f is equal to two. Constant social choice functions (with
only one alternative in the range) are also covered by the Gibbard-Satterthwaite Theorem because they
are trivially strategy-proof and dictatorial (note that our notion of dictator is relative to the range of
the social choice function).
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(1) there exists the top t(Ri) of Ri, and

(2) for all x; y 2 [0; 1] such that y < x � t(Ri) or t(Ri) � x < y, xPiy.

Let SP be the set of single-peaked preferences on [0; 1]. Observe that, given a single-
peaked preference Ri 2 SP, yPix may hold even if jt(Ri)� xj < jt(Ri)� yj; but then, x
and y are necessarily located in di¤erent sides of the top t(Ri). Often, the linear order

structure of the set of alternatives and a distance conveys to the preference a symmetric

property around the top (coming for instance, from a location interpretation of the set

of alternatives) that naturally induces the restriction that preferences respond to the

distance as follows.

De�nition 3 A preference Ri 2 R is symmetric single-peaked if:

(1) there exists the top t(Ri) of Ri, and

(2) for all x; y 2 [0; 1], xPiy if and only if jt(Ri)� xj < jt(Ri)� yj.

Obviously, a symmetric single-peaked preference is single-peaked. Let SSP be the set
of symmetric single-peaked preferences on [0; 1]. Given any alternative x 2 [0; 1], there
is a unique symmetric single-peaked preference Ri with its top t(Ri) = x (SSP is a rich
domain). Hence, there is a one-to-one mapping between the set of symmetric single-

peaked preferences SSP and the set of alternatives [0; 1]. Thus, we will use ti 2 [0; 1]
to identify the (unique) Ri 2 SSP such that t(Ri) = ti and t = (t1; :::; tn) to denote

the corresponding symmetric single-peaked preference pro�le R = (R1; :::; Rn) such that

t(Ri) = ti for all i 2 N . Note that, by this one-to-one identi�cation, any social choice
function f : SSPN ! [0; 1] is tops-only. Observe that SSPN is also a minimally rich
domain. Thus, we will also denote a social choice function f : SSPN ! [0; 1] by its

corresponding voting scheme f : [0; 1]N ! [0; 1].

3 Preliminary results and main intuition

3.1 Preliminary results

Moulin (1980) characterizes the family of strategy-proof and tops-only social choice func-

tions on the domain of single-peaked preferences as well as its anonymous subfamily.10

The two characterizations are useful to develop helpful intuitions to understand our

10Moulin (1980) also characterizes the subfamily of strategy-proof, tops-only, anonymous and e¢ cient
social choice functions on the domain of single-peaked preferences. See Corollary 2 in Section 5 for the
characterization of the same class of social choice functions on the domain of symmetric single-peaked
preferences.
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characterization of strategy-proof social choice functions (and its anonymous subfamily)

on the domain of symmetric single-peaked preferences. To state them, we need to de�ne

the median of an odd set of numbers. Given a set of odd real numbers fx1; :::; xKg, de�ne
its median as medfx1; :::; xKg = y, where y is such that #f1 � k � K j xk � yg � K

2

and #f1 � k � K j xk � yg � K
2
: Observe that since K is odd the median belongs to

the set fx1; :::; xKg and it is unique.

Proposition 1 (Moulin, 1980) A social choice function f : SPN ! [0; 1] is strategy-

proof, tops-only and anonymous if and only if there exist n + 1 �xed ballots 0 � pn �
::: � p0 � 0 such that for all R 2 SPN ,

f(R) = medft(R1); :::; t(Rn); pn; :::; p0g:

Proposition 2 (Moulin, 1980) A social choice function f : SPN ! [0; 1] is strategy-

proof and tops-only if and only if there exists a monotonic family fpSgS22N of �xed

ballots, with pS 2 [0; 1] for all S 2 2N and pQ � pT if T � Q, such that for all

R 2 SPN ,
f(R) = min

S22N
max
i2S

ft(Ri); pSg:

The social choice functions identi�ed in Propositions 1 and 2 are called median voter

schemes and generalized median voter schemes, respectively. A simple way of interpret-

ing them is as follows. Each generalized median voting scheme (and its associated family

of monotonic �xed ballots) can be understood as a particular way of distributing the

power among coalitions to in�uence the social choice. To see that, take an arbitrary

coalition S and its �xed ballot pS. Then, coalition S can make sure that, by all of

its members reporting a top alternative below pS, the social choice will be at most pS,

independently of the reported top alternatives of the members of the complementary

coalition.11 An alternative way of describing this distribution of power among coalitions

is as follows. Fix a family of monotonic �xed ballots fpSgS22N (i.e., a generalized median
voter scheme) and take a vector of tops (t(R1); :::; t(Rn)): Start at the left extreme of

the interval and push the outcome to the right until it reaches an alternative x for which

the following two things happen simultaneously: (i) there exists a coalition of agents

S such that all its members have reported a top alternative below or equal to x (i.e.,

t(Ri) � x for all i 2 S) and (ii) the �xed ballot pS associated to S is located also below x
(i.e., pS � x). Median voter schemes are the anonymous subclass of generalized median
11See Barberà, Massó, and Neme (1997) for a similar interpretation for the case of a �nite number of

ordered alternatives.
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voter schemes. Hence, the �xed ballots of any two coalitions with the same cardinality

of any anonymous generalized median voter scheme are equal. From a monotonic family

of �xed ballots fpSgS22N associated to an anonymous generalized median voter scheme
f we can identify the n+1 ballots pn � pn�1 � ::: � p0 needed to describe f as a median
voter scheme as follows: for each 0 � s � n, ps = pS for all S 2 2N such that #S = s.
Moulin (1980) also shows that the class of group strategy-proof and tops-only social

choice functions on the domain of single-peaked preferences coincides with the set of

generalized median voter schemes. From the main result in Barberà, Berga, and Moreno

(2009) we can conclude that any strategy-proof social choice function on the domain of

symmetric single-peaked preferences is group strategy-proof as well. Since we will later

use this fact we state it here as a remark.12

Remark 1 (Barberà, Berga, and Moreno, 2009) Let f : SSPN ! [0; 1] be a strategy-

proof social choice function. Then, f : SSPN ! [0; 1] is group strategy-proof.

To see that in the statements of Propositions 1 and 2 tops-onlyness does not follow

from strategy-proofness consider the social choice function f : SPN ! [0; 1] where for

all R 2 SPN ,

f(R) =

(
0 if #fi 2 N j 0Ri1g � #fi 2 N j 1Pi0g
1 otherwise.

(1)

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates

e¢ ciency, unanimity, and ontoness. In the last section of the paper we will describe how

our characterization includes this class of rules on the domain of symmetric single-peaked

preferences.

3.2 Main intuition and de�nitions

Consider Propositions 1 and 2 for the simplest case where n = 1.13 Figure 1 depicts the

voting scheme f : [0; 1]! [0; 1] of a strategy-proof and tops-only social choice function

12Barberà, Berga and Moreno (2009) gives su¢ cient conditions de�ning domains of preferences under
which strategy-proofness is equivalent to group strategy-proofness. The domain of symmetric single-
peaked preferences satis�es these su¢ cient conditions.

13When n = 1 anonymity does not have any bite. Indeed, we can uniquely identify the two �xed
ballots of the propositions as p1 = pf1g and p0 = p;.

9



-

6

t
0

p1 �
�
�
�
�
�
��

p0

f(t)

p1 p0 1

Figure 1

f : SP ! [0; 1] with the two associated �xed ballots 0 < p1 < p0 < 1. Observe

that for any pair of �xed ballots 0 � p1 � p0 � 1 the corresponding voting scheme

f : [0; 1] �! [0; 1] is always increasing and continuous, and rf = [p1; p0]. By Proposition

2 the following remark holds.

Remark 2 Let f : SPN �! [0; 1] be a strategy-proof and tops-only social choice

function. Then, its corresponding voting scheme f : [0; 1]N �! [0; 1] is increasing and

continuous.

Let S be any generic subset of SP. A social choice function f : SN ! [0; 1] is

increasing if f(R) � f(R0) for all R;R0 2 SN such that t(Ri) � t(R0i) for all i 2 N .
Lemma 1 below states that, for any n � 1, any strategy-proof social choice function

is increasing on the domain of symmetric single-peaked preferences (observe that tops-

only is not required explicitly since for each x 2 [0; 1] there exists a unique Ri 2 SSP
such that t(Ri) = x).

Lemma 1 Let f : SSPN ! [0; 1] be a strategy-proof social choice function. Then, f

is increasing.

Proof The statement follows from the iterated application of Claim A.

Claim A Let f : SSPN ! [0; 1] be a strategy-proof social choice function. Let t; t0 2
SSPN be such that for some i 2 N , ti < t0i and t�i = t0�i. Then, f(t) � f(t0).
Proof of Claim A Assume otherwise; that is, there exist t; t0 2 SSPN and i 2 N
such that

ti < t
0
i; (2)
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t�i = t0�i and f(t
0) < f(t). We distinguish among six possible cases. The �rst three

cases (i) f(t0) < f(t) � ti < t0i; (ii) ti � f(t0) < f(t) � t0i; and (iii) f(t0) < ti � f(t) � t0i
contradict strategy-proofness of f since in all three i manipulates f at t0 via ti. The

two cases (iv) ti < t0i � f(t0) < f(t) and (v) ti � f(t0) � t0i � f(t) contradict strategy-
proofness of f since in all two i manipulates f at t via t0i. The remaining case is (vi)

f(t0) � ti < t0i � f(t): Since ti; t0i 2 SSP and f is strategy-proof,

f(t)� ti � ti � f(t0)
t0i � f(t0) � f(t)� t0i:

Adding up,

f(t)� ti + t0i � f(t0) � ti � f(t0) + f(t)� t0i
t0i � ti � ti � t0i

t0i � ti;

a contradiction with (2). �

We have shown that the monotonicity of strategy-proof social choice functions is

preserved when we restrict the domain of single-peaked preferences to be symmetric.

However, continuity (of its corresponding voting scheme) does not follow from strategy-

proofness and tops-onlyness in this smaller domain. Indeed, a special class of discontinu-

ities may arise. It is very easy to understand why when n = 1: First, take any � ; � 2 (0; 1)
such that � � minf� ; 1 � �g and de�ne the social choice functions f� : SSP �! [0; 1]

and f+ : SSP �! [0; 1] where for each ti 2 SSP,

f�(ti) =

(
� � � if ti � �
� + � if � < ti

and

f+(ti) =

(
� � � if ti < �

� + � if � � ti:

In Figure 2 we depict f�. Both f� and f+ are strategy-proof on the domain of symmetric

single-peaked preferences. At any ti 2 SSP such that either ti > � or ti < � agent i can
not manipulate them. Let ti 2 SSP be such that ti = � : Then, (� � �)Ii(� + �) since
(� � �) and (� + �) are at the same distance � to � :

11
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Figure 2

The function f� : SSP �! [0; 1] is left-continuous while the function f+ : SSP �!
[0; 1] is right continuous. Observe that neither f� nor f+ are strategy-proof on the

domain of single-peaked preferences since, for instance, for � = 1=2, � = 1=4, and any

Ri 2 SP such that t(Ri) = 3=8 and 3=4Pi1=4 agent i manipulates f� and f+ at Ri via
any R0i such that t(R

0
i) = 7=8 since f

�(R0i) = f
+(R0i) = 3=4Pi1=4 = f

+(Ri) = f
�(Ri):

More generally, a strategy-proof social choice function f : SSP �! [0; 1] could have

a countable number of discontinuities as long as the middle point of each discontinu-

ity jump is the discontinuity point itself; namely, for the point d 2 [0; 1] where f is
discontinuous at d,

d =
lim
x!d�

f(x) + lim
x!d+

f(x)

2

must hold, otherwise, f is not strategy-proof. Thus, discontinuity jumps have to be

symmetric around the discontinuity point.

As we will show in Section 4, the class of strategy-proof social choice functions on

the domain of symmetric single-peaked preferences is the class of generalized median

voter schemes identi�ed by Moulin (1980) plus the social choice functions obtained after

perturbing each generalized median voter scheme by admitting these very particular

kind of discontinuities. We will call them disturbed minmax. Formally,

De�nition 4 Let fpSgS22N be a family of monotonic �xed ballots. A collection of

intervals I = fImgm2M is a family of discontinuity jumps compatible with fpSgS22N if:
(1) M is a countable set,

(2) for all m 2M , Im = (am; bm) � [pN ; p;],

12



(3) for all m;m0 2M such that m 6= m0, Im \ Im0 = ;,
(4) for all S 2 2N , pS =2

S
m2M

Im.

Given a family of discontinuity jumps I = fImgm2M we denote the middle point

of each open interval Im = (am; bm) by dm = am+bm
2

and we preliminary perturb the

identity function as follows.

De�nition 5 Given a family of discontinuity jumps I = fImgm2M , the corresponding
perturbation function �I : [0; 1]! [0; 1] is de�ned as follows: for each x 2 [0; 1],

�I(x) =

8>><>>:
x if x =2

S
m2M

Im

am if x 2 (am; dm]
bm if x 2 (dm; bm):

(3)

Let I be a family of discontinuity jumps compatible with the family of monotonic

�xed ballots fpSgS22N . A possible perturbation of the generalized median voter scheme
associated to fpSgS22N that preserves its strategy-proofness in the symmetric single-

peaked domain is as follows: for each t = (t1; :::; tn) 2 SSPN ,

f(t1; :::; tn) = �
I(min
S22N

max
i2S

fti; pSg):

We will show that these perturbed functions (of generalized median voter schemes)

are the basis to characterize the class of all strategy-proof social choice functions on the

domain of symmetric single-peaked preferences.

Figure 3 illustrates the perturbation for the case n = 1, M = fmg and I = fIm =
(am; bm)g; i.e., f(t) = �I(medft; p1; p0g).

-

6

f(t)

t
0

p1 �
�
�

ram

p1 p0

b �
�

bm

p0

dmam bm 1

Figure 3
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Notice that �I arbitrarily assigns the value am to the point dm. If instead �I(dm) =

bm, the perturbed median voter scheme would still be strategy-proof. When n = 1,

there are just two ways of perturbing the generalized median voter scheme at each

discontinuity jump while preserving its strategy-proofness. When n > 1 the process

of assigning values to the discontinuity points in a way that maintains the strategy-

proofness is more complex.

Figure 4 illustrates the perturbation of an anonymous social choice function for the

case n = 2, M = fmg; I = fImg and 0 < p2 < am < dm < bm < p1 < p0 < 1;

i.e., f(t1; t2) = �I(medft1; t2; p2; p1; p0g). The tops of the two agents are measured on
the axes and in bold-italic is represented the value of the social choice function in each

region. The bold line indicates the discontinuity points of the social choice function.

-

6

t(R1)
0

t(R2)

p2

p2

p2

p1

p1

p1

p1

�
�
�

t(R1)

t(R2)

t(R1)

t(R2)

�
�
�
�
��
�
�
�
��

t(R1)

t(R2)

p0

p0

p0

am

am

am

bm

bm

bm

dm

dm 1

1

Figure 4

It is easy to see that if �I had assigned the value bm; instead of am; to dm the

perturbation of the generalized median voter scheme would still have remained strategy-

proof on the domain of symmetric single-peaked preferences. But now there are more

ways of assigning values to the discontinuity points that preserve the strategy-proofness

of f . For the particular case depicted in Figure 4, the social choice function would have

remained strategy-proof and anonymous if it had assigned the value am to the points in

14



the set B1 = f(t1; t2) 2 [0; 1]2 j 0 � t1 < dm and t2 = dmg, as well as to the points in the
set B2 = f(t1; t2) 2 [0; 1]2 j t1 = dm and 0 � t2 < dmg, whereas it had assigned bm to the
point (dm; dm). Actually, if anonymity was not required then it could also have assigned

the value am to the points in B1, and bm to the rest of points in B2 [ (dm; dm). However
assigning the value am to the point (dm; dm) and bm to the rest of points in B1 [ B2
would violate strategy-proofness because at any pro�le (t1; dm) with 0 < t1 < dm agent

1 could manipulate the social choice function via t01 = dm.

Intuitively, the perturbation of the generalized median voter scheme should preserve

the increasing monotonicity of the social choice function; otherwise, some agent could

manipulate it at some pro�le. We next formalize all these possibilities.

Consider a generalized median voter scheme with its associated family of monotone

�xed ballots fpSgS22N . Let I = fImgm2M be a family of discontinuity jumps compatible

with fpSgS22N , and assume M 6= ?. Fix m 2M and de�ne

Dm = ft = (t1; :::; tn) 2 SSPN j min
S22N

max
i2S

fti; pSg = dmg;

namely, Dm is the set of symmetric single-peaked preference pro�les at which the gen-

eralized median voter scheme will select dm and thus the corresponding perturbation

function �I will generate a discontinuity point. We refer to any set Dm as a disconti-

nuity set. We want to determine the shape of the discontinuity sets because, in order

to maintain strategy-proofness, we ought to preserve the increasing monotonicity of the

function. To do that we need to track the agents with tops strictly bellow, equal, and

strictly above dm:

Note that, since no �xed ballot belongs to any discontinuity jump, if t 2 Dm then

there is at least one agent i 2 N such that ti = dm.

For each t 2 Dm de�ne the vector of extreme votes evm(t) = (evm1 (t); :::; ev
m
n (t)) 2

f0; dm; 1gN ; where for each i 2 N ,

evmi (t) =

8><>:
0 if 0 � ti < dm
dm if ti = dm
1 if dm < ti � 1:

The vector evm(t) describes at the pro�le t the location of the top of each agent

relative to dm (0 if it is strictly below, 1 if it is strictly above, and dm if it is exactly

located at dm). Let EV (Dm) denote the set fevm 2 f0; dm; 1gN j evm = evm(t) for some
t 2 Dmg. To describe EV (Dm) in a more useful way, de�ne


m = fS 2 2N j pS < dmg

15



as the family of subsets of N whose associated �xed ballots are strictly below dm. Since

the family of �xed ballots fpSgS22N is monotonic, S 2 
m and S ( T imply T 2 
m:
To describe the set EV (Dm) we may restrict our attention to the family of coalitions in


m, those that may induce the value dm at some preference pro�le.

Remark 3 Let m 2M . Then,

Dm = ft = (t1; :::; tn) 2 SSPN j min
S2
m

max
i2S

ftig = dmg

and

EV (Dm) = fevm 2 f0; dm; 1gN j there exists S 2 
m such that (i) evmi = dm for some
i 2 S, (ii) evmj 2 f0; dmg for all j 2 S and (iii) for all
T 2 
mnS; there exists j 2 T such that evmj 2 fdm; 1gg:

Namely, the set EV (Dm) describes all the extreme votes at which dm is chosen

by the generalized median voter scheme associated to the family of monotonic �xed

ballots fpSgS22N . We call them extreme because given t 2 Dm; ev
m(t) reallocates

agents�tops on the set f0; dm; 1g with the property that minS22N maxi2Sfti; pSg = dm =
minS22N maxi2Sfevmi (t); pSg: To know them, we have to look at the set of coalitions who
have the possibility of inducing the generalized median voter scheme to choose dm by

all of its members reporting a top at dm or below, at least one of its members reporting

a top exactly at dm, and all other coalitions with a �xed ballot strictly below dm must

contain an agent reporting a top at dm or above.

We now turn to describe how strategy-proof social choice functions on the symmetric

single-peaked domain may choose between am and bm at those pro�les that induce a

discontinuity at dm = am+bm
2
. De�ne the preorder � on RN as follows: for all x; x0 2 RN ,

x � x0 , xi � x0i for all i 2 f1; :::; Ng

and, given m 2M , denote the restriction of � on the set EV (Dm) by �m : Observe that
the natural preorder � on RN induces an incomplete, re�exive, and transitive binary

relation�m on EV (Dm) with the property that bevm �m evm if and only if evm represents
a shift to the right of some of the extreme votes of bevm. Thus, �m can be read as the
relation �to be more rightist than�.

Let Ym be a non-empty subset of EV (Dm). Denote by Xm = U(Ym) the upper

contour set of Ym (according to �m) as

Xm = U(Ym) = fevm 2 EV (Dm) j bevm �m evm for some bevm 2 Ymg:
16



By convention, set U(?) = ?. Now, given Xm � EV (Dm) with the property that

Xm = U(Xm); de�ne gXm : Dm �! fam; bmg as follows: for every t 2 Dm;

gXm(t) =

(
bm if evm(t) 2 Xm

am otherwise.

The functions gXm cover all di¤erent ways of assigning values am and bm to the

preference pro�les that generate a discontinuity point at dm preserving the monotonicity

of the perturbation. For each particular m 2M there are many such functions because

there are many subsets Xm � EV (Dm) with the property that Xm = U(Xm). Given

a family of discontinuity jumps I = fImgm2M we say that fXmgm2M is a family of

tie-breaking sets of M if for all m 2M , Xm � EV (Dm) and Xm = U(Xm).

4 Characterization

We are now ready to de�ne disturbed minimax social choice functions and state and

prove that they constitute the class of all strategy-proof social choice functions on the

domain of symmetric single-peaked preferences.

4.1 De�nition and statement

De�nition 6 A social choice function f : SSPN �! [0; 1] is a disturbed minmax if

there exist:

(1) a monotonic family of �xed ballots fpSgS22N ;
(2) a family of discontinuity jumps I = fImgm2M compatible with fpSgS22N ; and
(3) a family of tie-breaking sets fXmgm2M of M

such that, for all t = (t1; :::; tn) 2 SSPN ;

f(t) =

8<: �I(min
S22N

max
i2S

fti; pSg) if min
S22N

max
i2S

fti; pSg 6= dm for all m 2M

gXm(t1; :::; tn) if min
S22N

max
i2S

fti; pSg = dm for an m 2M:
(4)

Theorem 1 A social choice function f : SSPN �! [0; 1] is strategy-proof if and only

if it is a disturbed minmax.

Before moving to the proof of Theorem 1 consider again the social choice function

f de�ned in (1) but restricted to the domain of symmetric single-peaked preferences,

17



where for all R 2 SSPN ,

f(R) =

(
0 if #fi 2 N j 0Ri1g � #fi 2 N j 1Pi0g
1 otherwise.

Observe that for any Ri 2 SSP, 0Ri1 if and only if t(Ri) � 1
2
: It is easy to see that

in the domain of single-peaked preferences f is strategy-proof and anonymous but it is

not tops-only. Hence, while it is excluded in Moulin (1980)�characterization under the

domain of single-peaked preferences stated above as Proposition 2, it has the following

representation as a disturbed minmax under the domain of symmetric single-peaked

preferences. Its family of monotonic �xed ballots is

pS =

(
0 if #S �

�
n
2

�
1 if #S <

�
n
2

�
,

where
�
n
2

�
is the smallest integer larger or equal to n

2
. The family I of discontinuity jumps

compatible with the monotonic family of �xed ballots contains only one discontinuity

interval Im = (am; bm) = (0; 1) with dm = 1
2
; and the tie-breaking set of M = fmg is

Xm = fev 2 f0; 12 ; 1g
N j #fi 2 N j evi 2 f0; 12gg <

�
n
2

�
g.

4.2 Preliminaries of the proof of Theorem 1

We start with some additional notation. Given x 2 [0; 1], S � N , and t 2 SSPN ,
de�ne xS � ( x; :::; x| {z }

#S�times

) and tS � (tj)j2S: Thus, (xS; t�S) � (y1; :::; yn), where yj = x if

j 2 S and yj = tj if j =2 S: Let f : SSPN �! [0; 1] be a social choice function and

S � N: De�ne the social choice function �S
f : [0; 1]� SSPNnS �! [0; 1] as follows. For

all (x; t�S) 2 [0; 1]� SSPNnS;

�S
f (x; t�S) = f(x

S; t�S):

We will denote the diagonal function associated to f by �f � �N
f .

Given t 2 [0; 1]N and x 2 [0; 1], de�ne the subset of pro�les of tops Ct;x as:

Ct;x = ft0 2 SSPN j x � t0i � ti for all i such that x � ti and
ti � t0i � x for all i such that ti � xg;

namely, Ct;x is the set of pro�les t0 with the property that the top t0i of each agent i
lies between ti and x. Given a social choice function f : SSPN �! [0; 1], a subset

T � SSPN , and x 2 [0; 1] the notation f jT� x means that for all t 2 T , f(t) = x:
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As a consequence of Remark 1 and Lemma 1 the following statements hold.

Remark 4 Let f : SSPN �! [0; 1] be a strategy-proof social choice function. Then,

(R4.1) f is unanimous on its range rf ; namely, x 2 rf implies f(xN) = x;
(R4.2) for all S � N , �S

f : [0; 1]� SSPNnS �! [0; 1] is strategy-proof; and

(R4.3) if t 2 SSPN is such that f(t) = x then, f jCt;x � x.

The two �rst statements follow from group strategy-proofness (Remark 1) and the

last one from monotonicity (Lemma 1) and (R4.1).

We now state and prove the following three lemmata that will be useful in the proof

of Theorem 1. Lemma 2 says that the range of a strategy-proof social choice function

and the range of its associated diagonal function coincide and it is a closed subset of

[0; 1] (see also Zhou (1991)).

Lemma 2 Let f : SSPN �! [0; 1] be a strategy-proof social choice function. Then,

rf = r�f . Moreover, rf is closed.

Proof By de�nition of �f , r�f � rf . Take x 2 rf . Then, by (R4.1), f(xN) = x.

Thus, x 2 r�f . Let fxkg ! x be such that xk 2 rf for all k � 1 and assume x =2 rf .
De�ne y = f(xN) 6= x and let xk be such that jxk � xj < jy � xj. By (R4.1), f(xNk ) = xk.
Thus, N manipulates f at x via xk. �

Lemmata 3 and 30 roughly say that if a strategy-proof social choice function is con-

stant and equal to x on one variable over some interval containing this constant x, but it

is not constant over the whole interval [0; 1], then there is a discontinuity at some point

z and the discontinuity leaves indi¤erent the agent with top at z (see Figures 2 and 3).

In the proof of Theorem 1, z will correspond to the middle point dm of a discontinuity

jump Im = (am; bm), where am = x and bm = 2z � x.

Lemma 3 Let f : SSPN �! [0; 1] be a strategy-proof social choice function with the

property that there are i 2 N , x 2 [a; b) � [0; 1], and t�i 2 SSPNnfig such that
(3.1) f(ti; t�i) = x for all ti 2 [a; b) and
(3.2) f(1; t�i) = y > x.

Then, there exists z 2 [b; x+y
2
] such that f(�; t�i) is discontinuous at z and

f j[a;z)�ft�ig � x
f j(z;2z�x]�ft�ig � 2z � x:

Proof Let i 2 N , x 2 [a; b), and t�i 2 SSPNnfig be such that conditions (3.1) and
(3.2) hold for f . First note that the interval [b; x+y

2
] is not empty since b � x+y

2
. If
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b > x+y
2
then b would be closer to y than to x and for a small enough � > 0, i would

manipulate f at (b� �; t�i) via 1.
De�ne z = supfti 2 [0; 1] j f(ti; t�i) = xg. The supremum is well de�ned because,

condition (3.1) holds and, by Lemma 1, f is increasing. Obviously z � b > x and,

by the monotonicity of f , limti!z� f(ti; t�i) = x and f j[a;z)�ft�ig � x. We now prove

that limti!z+ f(ti; t�i) = 2z � x. Suppose that limti!z+ f(ti; t�i) < 2z � x. Then, there
exists � > 0 such that f(z + �; t�i) + 2� < 2z � x and f(z � �; t�i) = x. But then,

f(z + �; t�i) � (z � �) < (z � �) � x = (z � �) � f(z � �; t�i), and hence, i would
manipulate f at (z � �; t�i) via z + �. Similarly, if limti!z+ f(ti; t�i) > 2z � x, there
exists � > 0 such that f(z + �; t�i) � 2� > 2z � x and f(z � �; t�i) = x. But then

f(z+ �; t�i)� (z+ �) > (z+ �)�x = (z+ �)�f(z� �; t�i) and hence, i would manipulate
f at (z+ �; t�i) via z� �. Thus, limti!z+ f(ti; t�i) = 2z�x and f(�; t�i) is discontinuous
at z. Now by (R4.3), f j(z;2z�x]�ft�ig � 2z�x. Finally, by monotonicity of f , 2z�x � y,
and hence, z 2 [b; x+y

2
]: �

Lemma 30 Let f : SSPN �! [0; 1] be a strategy-proof social choice function with the

property that there are i 2 N , x 2 (a; b] � [0; 1], and t�i 2 SSPNnfig such that
(3.10) f(ti; t�i) = x for all ti 2 (a; b] and
(3.20) f(0; t�i) = y < x.

Then, there exists z 2 [x+y
2
; a] such that f(�; t�i) is discontinuous at z and

f j(z;b]�ft�ig � x
f j[2z�x;z)�ft�ig � 2z � x.

Proof Omitted since it is symmetric to the proof of Lemma 3. �

4.3 Proof of Theorem 1

It is easy to check that any disturbed minimax social choice function is strategy-proof

on the symmetric single-peaked domain.

Let f : SSPN �! [0; 1] be a strategy-proof social choice function. To show that

f is a disturbed minmax we �rst have to identify its associated monotonic family of

�xed ballots fpSgS22N , family I = fImgm2M of discontinuity jumps compatible with

fpSgS22N , and family of tie-breaking sets fXmgm2M of M . Then, we will show that f

coincides with the disturbed minmax social choice function obtained by (4) in De�nition

6, applied to all of them.

For each S 2 2N , de�ne its associated �xed ballot by setting

pS � f(0S; 1NnS); (5)
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i.e., pS is the image of f at the pro�le where all agents in S have their top at 0 and all

agents not in S have their top at 1.

Consider the diagonal function �f : SSP �! [0; 1] associated to f . By (R4.2) and

Lemma 1, �f is strategy-proof and increasing. Hence, it has at most a countable number

of discontinuities. Denote by fdmgm2M the discontinuity points of �f , where M is a

countable set. For each m 2 M , de�ne am = limx!d�m �f (x), and bm = limx!d+m �f (x).

Since �f is discontinuous at dm and increasing on [0; 1], am and bm exist and am < bm.

Moreover, since �f is strategy-proof, dm must be the middle point of Im � (am; bm);

i.e., dm = am+bm
2
. Notice that the family of discontinuity jumps I = fImgm2M is

compatible with fpSgS22N since, by (5) and Lemma 2, for each S 2 2N , pS 2 rf = r�f ,
rf \ (am; bm) = r�f \ (am; bm) = ; and by the monotonicity of �f and the de�nition of

am and bm, Im \ Im0 = ; for any m0 2Mnfmg. In fact,

rf = r�f = [pN ; p?]nf
[
m2M

Img: (6)

If M is empty (i.e., �f is continuos and its range is equal to [pN ; p?]), the statement

of Theorem 1 follows because f is a generalized median voter scheme de�ned on the

minimally rich domain SSPN (see Theorem 1 in Berga and Serizawa (2000)).14

Assume M is non-empty and �x m 2 M . To identify the element Xm in the family

of tie-breaking sets of M , remember that 
m = fS 2 2N j pS < dmg and consider �rst
the previously de�ned discontinuity set

Dm = ft = (t1; :::; tn) 2 SSPN j min
S2
m

max
i2S

ftig = dmg;

the set of pro�les of extreme votes that induce dm through the minmax

EV (Dm) = fevm 2 f0; dm; 1gN j there exists S 2 
m such that (i) evmi = dm for some
i 2 S, (ii) evmj 2 f0; dmg for all j 2 S and (iii) for all
T 2 
mnS; there exists j 2 T such that evmj 2 fdm; 1gg;

and its associated preorder �m. Then, de�ne

Xm = fevm 2 EV (Dm) j f(evm) > dmg: (7)

14Observe that all results in Berga and Serizawa (2000) refer only to onto social choice functions.
More precisely, the restriction of SSP on the interval [pN ; p?] is a symmetric single-peaked domain
(on [pN ; p?]) and it is a minimally rich domain (on [pN ; p?]). Denote it by SSP j[pN ;p?] : Thus, we
can identify the notation of Berga and Serizawa (2000) for the image set Z = [�; �] with our identi�ed
interval [pN ; p?] and apply their Theorem 1 to the social choice function f� : (SSP j[pN ;p?])N �!
[pN ; p?]. Finally, observe that their generalized median voter schemes (de�ned through a left-coalition
system) satisfy voter sovereignty and hence, rf� = [pN ; p?].
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By Lemma 1, f is increasing and therefore Xm coincides with its upper contour set

relative to �m; i.e., Xm = U(Xm):

So far we have identi�ed from f the monotonic family of �xed ballots fpSgS22N ,
the family I = fImgm2M of discontinuity jumps compatible with fpSgS22N (we are now
assuming that M 6= ?), and the family fXmgm2M of tie-breaking sets of M (and hence,

its corresponding family of tie-breaking functions fgXm : Dm �! fam; bmggm2M). Given
all of them, let F be the social choice function de�ned by condition (4) in De�nition 6.

We want to show that f = F:

Let t = (t1; :::; tn) 2 SSPN be arbitrary. To show that f(t) = F (t) de�ne q =

minT22N maxi2Tfti; pTg. We distinguish between the case where q =2 ft1; :::; tng and the
remaining case where q 2 ft1; :::; tng:
First assume that q = minT22N maxi2Tfti; pTg =2 ft1; :::; tng. Then, S = fi 2 N j

ti < qg satis�es that pS = q. To see that observe that if pS < q then maxi2Sfti; pSg < q
contradicting the de�nition of q. On the other hand, since q = minT22N maxi2Tfti; pTg =2
ft1; :::; tng, there exists �T 2 2N , such that p �T = q and tj < p �T for all j 2 �T . But then,
�T � S and, by the monotonicity of p = fpTgT22N , pS � p �T . Therefore, by the de�nition
of q, pS = p �T = q.

By de�nition of S and the assumption that q =2 ft1; :::; tng, tj > pS for all j =2 S.
Then, t 2 C(0S ;1NnS);pS and, by (R4.3) and the de�nition of pS, f jC(0S;1NnS);pS � pS:

Therefore,

f(t) = pS: (8)

Moreover, by (6), pS =2 [m2MIm. Hence, by (4) in De�nition 6 and the de�nition of �I

in (3),

F (t) = �I(min
T22N

max
i2T

fti; pTg) = min
T22N

max
i2T

fti; pTg = pS:

Thus, f(t) = F (t).

Assume now that q = minT22N maxj2Tftj; pTg = ti for some i 2 N . We distinguish
between two cases.

Case 1: f(t) = ti. Then, ti 2 rf and therefore, by (6), ti =2
S

m2M
Im. By (4) in

De�nition 6 and the de�nition of �I in (3),

F (t) = �I(min
T22N

max
j2T

ftj; pTg) = �I(ti) = ti:

Thus, f(t) = F (t):

Case 2: f(t) � x 6= ti. De�ne S<i = fj 2 N j tj < tig; S=i = fj 2 N j tj = tig
and S>i = fj 2 N j tj > tig: We will denote S�i = S<i [ S=i and S�i = S>i [ S=i .
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Because ti = minT22N maxj2Tftj; pTg, the following condition holds: ti 2 [pS�i ; pS<i ]: If
ti < p

S�i
then, since for any coalition S ( S�i it holds that ti < p

S�i
� pS, we have a

contradiction with ti = minT22N maxj2Tftj; pTg. On the other hand, if pS<i < ti, then
maxj2S<i ftj; pS<i g < ti again contradicting ti = minT22N maxj2Tftj; pTg. We now show
that

f(tNi ) 2 [pS�i ; pS<i ]: (9)

If f(tNi ) < pS�i � ti then, N manipulates f at tNi via (0
S�i ; 1S

>
i ) since f(0S

�
i ; 1S

>
i ) = p

S�i
;

and if ti � pS<i < f(t
N
i ) then, N manipulates f at tNi via (0

S<i ; 1S
�
i ) since f(0S

<
i ; 1S

�
i ) =

pS<i :

Suppose �rst that ti =2 [m2Mfdmg. We prove in Claim 1 below that in this case

f(t) = f(tNi ) must hold.

Claim 1 Assume ti =2 [m2Mfdmg. Then, f(tNi ) = x.15

-

6

v
S�i
i0

vS<i

�
�
�
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�
�
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�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

pS<ix ti

tS<i

rtNi r(zS�i ; tS<ii )

r
(t
S�i
i ; tS<i )

x x pS<i

z 2z � x

2z-x

Figure 5

15Along the proof of Claim 1 it will be useful to look at Figure 5 where the argument is shown in two
dimensions. On the axes, v represents a generic pro�le of tops whereas t is the pro�le of tops we are
looking at. Bold letters represent the value of the social choice function at the corresponding preference
pro�le whereas italic letters represent preferences, preference pro�les and alternatives.
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Proof of Claim 1 To obtain a contradiction, suppose f(tNi ) 6= x. By (9), either

x < f(tNi ) � pS<i or pS�i � f(t
N
i ) < x.

Case 2.1: x < f(tNi ) � pS<i . Condition x < f(tNi ) implies x < ti since we are

assuming that x 6= ti holds and if x > ti then, N would manipulate f at tNi via t. By

(R4.3), the de�nition of S�i and f(t) = x,

�
S�i
f (� ; tS<i ) = x for all � 2 [x; ti]:

16

On the other hand, since tj < ti � pS<i for all j 2 S
<
i , (�

S�i ; tS<i ) 2 C(0S<i ;1S�i );p
S<
i

for all

� 2 [pS<i ; 1], and therefore by (5) and (R4.3),

�
S�i
f (� ; t�S�i

) = pS<i for all � 2 [pS<i ; 1]:
17

By Lemma 3, applied to the strategy-proof social choice function�S�i
f : [0; 1]�[0; 1]S<i �!

[0; 1], where [a; b) = [x; ti) and y = pS<i , there exists z 2 [ti;
x+p

S<
i

2
] such that �S�i

f (�; tS<i )
is discontinuous at z and

�
S�i
f j[x;z)�ftS<

i
g � x and �

S�i
f j(z;2z�x]�ftS<

i
g � 2z � x:

Applying (R4.3) again, for all � 2 (z; 2z � x] and for all t0j 2 [tj; 2z � x], for all j 2 S<i ,

�
S�i
f (� ; t

0
S<i
) = 2z � x:18 (10)

Note that z is a discontinuity point of �f as well. To see that observe that by (10),

f(wN) = 2z� x for all w 2 (z; 2z� x]. On the other hand, f(t) = x; and hence, x 2 rf
and by (R4.1), f(xN) = x. Assume that there exists ŵ 2 (x; z) such that f(ŵN) 6= x: By
monotonicity of f , x < f(ŵN) � 2z�x. Then, either f(ŵN) = 2z�x andN manipulates

f at ŵN via xN , or f(ŵN) < 2z � x and for any 0 < � < z � ŵ, N manipulates f at

(z + �)N via ŵN : Thus, f(ŵN) = x: Therefore, �f has the property that

�f (w) =

(
x if w 2 [x; z)
2z � x if w 2 (z; 2z � x]:

This means that �f is discontinuous at z and hence there exists m 2 M such that

dm = z. By the hypothesis of Claim 1, ti 6= z and therefore, by the de�nition of z,

ti < z.

16In Figure 5 this corresponds to the horizontal line [x; ti]S
�
i � ftS<i g:

17In Figure 5 this corresponds to the horizontal line [pS<i ; 1]
S
�
i � ftS<i g:

18In Figure 5 this corresponds to the rectangle [z; 2z � x]S
�
i � (

Q
j2S<i

[tj ; 2z � x]):
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By monotonicity of f and (10), f(tNi ) � �
S�i
f (z + �; t

S<i
i ) = 2z � x for all su¢ ciently

small � > 0 (later on we will �nd an upper bound for such ��s). We want to show that

the inequality is strict; i.e., f(tNi ) < 2z � x holds. Suppose f(tNi ) = 2z � x; then, since
ti < z, ti�x < 2z�x� ti holds and N would manipulate f at tNi via t which contradicts

strategy-proofness of f .

To sum up, we have shown that x < f(tNi ) < 2z�x and lim�!z+ �
S�i
f (� ; t

S<i
i ) = 2z�x.

But then it is easy to see that for a small � > 0, S�i manipulates f at ((z+ �)
S�i ; t

S<i
i ) via

t
S�i
i . Namely, if 0 < � <

f(tNi )�x
2

, then�(2z�x�(z+�)) < f(tNi )�(z+�) < 2z�x�(z+�)
where the �rst inequality follows from the fact that � < f(tNi )�x

2
implies 2�+x� (z+ �) <

f(tNi )� (z + �) and this, in turn, implies �(2z � x� (z + �)) < f(tNi )� (z + �); and the
second inequality follows from f(tNi ) < 2z � x. Therefore,��f(tNi )� (z + �)�� < 2z � x� (z + �);
which means that S�i manipulates f at ((z + �)

S�i ; t
S<i
i ) via t

S�i
i ; a contradiction. Thus,

f(tNi ) = x:

Case 2.2: p
S�i
� f(tNi ) < x:

We omit its proof because it is symmetric to the previous one using Lemma 30 instead

of Lemma 3. This concludes the proof of Claim 1. �
Continuing with the main proof, we have shown that if f(t) = x 6= ti and ti =2

[m2Mfdmg then f(tNi ) = �f (ti) = x 6= ti. By strategy-proofness of f , �f is strategy-

proof and hence, by (R4.1), ti =2 r�f . By (6), there existsm 2M such that ti 2 (am; bm).
By (R4.1), �f (am) = am and �f (bm) = bm. Since, by (R4.2), �f is strategy-proof,

x = �f (ti) =

(
am if am < ti < dm
bm if dm < ti < bm;

(11)

which coincides with the value of F (t) = �I(minT22N maxj2Tftj; pTg = �I(ti) = x.

Thus, F (t) = f(t):

The last case to be considered is when f(t) = x 6= ti and ti = dm for some m 2
M ; that is, when ti is a discontinuity point of �f . Denote by Im = (am; bm) the

discontinuity jump corresponding to dm. Denote S=m = fj 2 N j tj = dmg, S<m =

fj 2 N j tj < dmg and S>m = fj 2 N j tj > dmg; and let � be such that 0 < � <

minj2S<m; k2S>mfdm � am; dm � tj; tk � dmg. Given this � > 0, consider the two pro�les

of tops t�� = (tS<m ; (dm � �)S
=
m ; tS>m) and t

�+ = (tS<m ; (dm + �)
S=m ; tS>m): By construction of

t��, t�+, the fact that ti = minT22N maxj2Tftj; pTg; and since pT =2 Im for all T 2 2N ,
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minT22N maxj2Tft��j ; pTg = dm � � and minT22N maxj2Tft�+j ; pTg = dm + �: Both dm � �
and dm + � belong to Im and therefore they do not belong to rf . Moreover, since

Im \ Im0 = ;, neither dm� � nor dm + � are discontinuity points of �f : We are therefore

under the assumptions of Claim 1, which says that

f(t��) = �f (dm � �) = am
f(t�+) = �f (dm + �) = bm;

where the second equality in both statements follow from the strategy-proofness of �f :

By monotonicity, f(t��) � f(t) � f(t�+); which together with (6) implies that f(t) 2
fam; bmg: Thus, we have shown that if t is such that minT22N maxj2Tftj; pTg = ti = dm
for some m 2M then,

f(t) 2 fam; bmg: (12)

To show that f(t) = F (t); assume �rst that t is such that evm(t) =2 Xm: By def-

inition of F; F (t) = am: Since evm(t) =2 Xm; by (7), f(0S
<
m ; d

S=m
m ; 1S

>
m) � dm which

means, by (6), that f(0S
<
m ; d

S=m
m ; 1S

>
m) � am. Moreover, t0 = (0S

<
m ; d

S=m
m ; 1S

>
m) is such that

minT22N maxj2Tft0j; pTg = dm and, by (12), f(0S
<
m ; d

S=m
m ; 1S

>
m) = am: By (R4.3),

f(0S
<
m ; dS

=
m
m ; tS>m) = am: (13)

If S<m = ?; then (0S<m ; dS
=
m
m ; tS>m) = t; and f(t) = am: If S<m 6= ? then f(t) = am or

otherwise S<m manipulates f at t via 0
S<m. Thus, we have shown that f(t) = am = F (t):

Symmetrically, we can show that if t is such that evm(t) 2 Xm then f(t) = F (t) = bm:

This �nishes the proof of Theorem 1.

5 Final remarks

As direct consequences of Theorem 1, Corollaries 1, 2 and 3 below characterize three

relevant subclasses of strategy-proof social choice functions on the domain of symmetric

single-peaked preferences.

5.1 Anonymity and e¢ ciency

Corollaries 1 and 2 characterize two nested subclasses: the class of strategy-proof and

anonymous social choice functions (Corollary 1) and the class of strategy-proof, anony-

mous and e¢ cient social choice functions (Corollary 2).

To state Corollary 1 we �rst need to translate the de�nitions of extreme votes and

tie-breaking sets of M to the anonymous case. Consider the family of n+1 �xed ballots
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0 � pn � ::: � p1 � p0 � 1 associated to a median voter scheme and let m 2 M: The
set of pro�les at which the median voter scheme will select dm is

eDm = ft = (t1; :::; tn) 2 SSPN j medft1; :::; tn; pn; :::; p0g = dmg:

By anonymity, we only need to track the number of agents with tops strictly bellow,

equal, and strictly above dm. Hence, for each t = (t1; :::; tn) 2 SSPN ; de�ne the triple
lm(t) = (lm< (t); l

m
= (t); l

m
> (t)) where:

(1) lm< (t) = #fi 2 N j ti < dmg;
(2) lm= (t) = #fi 2 N j ti = dmg; and
(3) lm> (t) = #fi 2 N j ti > dmg:
Observe that lm< (t) + l

m
= (t) + l

m
> (t) = n and since �xed ballots do not belong to any

discontinuity jump, if t 2 eDm then, there is i 2 N such that ti = dm (i.e., lm= (t) � 1).
Let rn = f(x; y; z) 2 f0; 1; :::; ng3 j x + y + z = n and y � 1g be the set of triples with
positive integer components adding up to n and whose middle component is equal or

larger than 1 and de�ne L( eDm) = flm(t) 2 rn j t = (t1; :::; tn) 2 eDmg; namely, L( eDm)

describes all anonymous distributions of tops (number of tops strictly below dm, number

of tops at dm, number of tops strictly above dm) at which the median voter selects dm.

De�ne the preorder e� on f0; 1; :::; ng3 as follows: for all (x; y; z); (x0; y0; z0) 2 f0; 1; :::; ng3;
(x0; y0; z0)e�(x; y; z), z0 � z and x0 � x:

Denote the restriction of the preorder e� on the set L( eDm) by e�m and let eYm be a non-
empty subset of L( eDm). Denote by eXm = U(eYm) the upper contour set of eYm (according
to e�m) as the set of triples in L( eDm) such that they are more rightist than some triple

in eYm; namely,
eXm = U(eYm) = f(l<; l=; l>) 2 L( eDm) j (x; y; z)e�m(l<; l=; l>) for some (x; y; z) 2 eYmg:

By convention, set U(?) = ?. Given eXm � L( eDm) with the property that eXm =

U( eXm); de�ne g
eXm : eDm �! fam; bmg as follows: for every t 2 eDm,

g
eXm(t) =

(
bm if lm(t) 2 eXm

am otherwise.

Given a family of discontinuity jumps I = fImgm2M we say that f eXmgm2M is an anony-

mous family of tie-breaking sets of M if for allm 2M , eXm � L( eDm) and eXm = U( eXm).

De�nition 7 A social choice function f : SSPN �! [0; 1] is a disturbed median if

there exist:
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(1) a family of n+ 1 �xed ballots 0 � pn � ::: � p1 � p0 � 1;
(2) a family of discontinuity jumps I = fImgm2M compatible with pn; :::; p1; p0; and

(3) an anonymous family of tie-breaking sets f eXmgm2M of M

such that, for all t = (t1; :::; tn) 2 SSPN ,

f(t) =

(
�I(medft1; :::; tn; pn; :::; p0g) if medft1; :::; tn; pn; :::; p0g 6= dm for all m 2M
g
eXm(t1; :::; tn) if medft1; :::; tn; pn; :::; p0g = dm for an m 2M:

Corollary 1 A social choice function f : SSPN �! [0; 1] is strategy-proof and anony-

mous if and only if it is a disturbed median.

Corollary 2 A social choice function f : SSPN �! [0; 1] is strategy-proof, anony-

mous, and e¢ cient if and only if it is a median voter scheme with the property that

pn = 0 and p0 = 1.

E¢ ciency requires that f respects unanimity and hence, rf = [0; 1]. Thus, (i) its

associated family of n+1 �xed ballots has the property that 0 = pn � pn�1 � ::: � p0 = 1
and (ii) the family of discontinuity sets M is empty. Observe that since pn = 0 and

p0 = 1 they cancel each other out in the computation of the median at any pro�le t

and therefore, the generalized median voter scheme can also be described as the median

of the n tops and the n � 1 �xed ballots pn�1 � ::: � p1. This corresponds to Moulin

(1980)�s characterization of the class of strategy-proof, anonymous and e¢ cient social

choice functions on the domain of single-peaked preferences. Thus, the reduction of the

domain does not generate in this case new strategy-proof, anonymous and e¢ cient social

choice functions.

5.2 Feasibility constraints

Our result has important implications for the design of strategy-proof social choice func-

tions on the domain of symmetric single-peaked preferences under feasibility constraints.

Often, some subsets of alternatives (although conceivable) can not be chosen due to

feasibility constraints. Then, discontinuities are compulsory rather than pathological

because discontinuity jumps on the range of strategy-proof social choice functions are

necessary. Our result precisely describes their nature and how the strategy-proof social

choice function may select its value at these discontinuity points. However, if f is a

strategy-proof and discontinuous social choice function then, rf ( [0; 1] and hence, f

will not be e¢ cient; in particular, f will not respect unanimity. Social choice functions
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that are not e¢ cient but they are e¢ cient relative to the feasible set of alternatives are

specially interesting. Thus, let A ( [0; 1] be a closed set of feasible alternatives.19 A

social choice function f : SSPN �! [0; 1] is e¢ cient relative to A if rf � A and for all
R 2 SSPN there is no z 2 A such that, for all i 2 N , zRif(R) and zPjf(R) for some
j 2 N: The following result follows from Theorem 1.

Corollary 3 Let A be a closed subset of [0; 1]. A social choice function f : SSPN �!
[0; 1] is strategy-proof and e¢ cient relative to A if and only if it is a disturbed minmax

with rf = A:

Note that the requirement rf = A imposes certain conditions on the family of �xed

ballots fpSgS22N and on the discontinuity jumps. For instance pN = minfx 2 Ag,
p? = maxfx 2 Ag and pS 2 A for all S 2 2N : Moreover since A is closed the set

[pN ; p?]nA is open and therefore it can be written as a countable and disjoint union of
open intervals: [pN ; p?]nA = [m2MIm where Im is an open interval for all m 2 M and

Im \ Im0 = ? for all m;m0 2 M . This representation is unique up to permutations in
M , and in fact the requirement rf = A implies that the family of discontinuity jumps

compatible with fpSgS22N is exactly I = fImgm2M .
As an illustration of Corollary 3, suppose that the set of feasible alternatives is

A = f0g [ f0:1g [ [0:2; 0:8] [ f0:9g. In that case the only general requirements on the
�xed ballots are that pN = 0; p? = 0:9 and pS has to belong to A for all S 2 2N . The
family of discontinuity jumps is given by I1 = (0; 0:1); I2 = (0:1; 0:2); and I3 = (0:8; 0:9),

and therefore the discontinuity points are d1 = 0:05, d2 = 0:15 and d3 = 0:85. To

proceed with the illustration and in order to design a particular strategy-proof and

anonymous social choice function f whose range rf be equal to A let N = f1; 2; 3g
be the set of agents and let p3 = p2 = 0 and p1 = p0 = 0:9 be the family of four �xed

ballots. In this particular case the ballots cancel each other and hence, for all (t1; t2; t3) 2
SSPf1;2;3g, medft1; t2; t3; 0; 0; 0:9; 0:9g = medft1; t2; t3g. For each discontinuity point dm
the set L( eDm) consists of four triplets: L( eDm) = f(1; 2; 0); (0; 3; 0); (1; 1; 1); (0; 2; 1)g
where for example, the triplet (1; 2; 0) means that one top is strictly below dm and the

remaining two tops are exactly equal to dm. Note, that in all the four cases the median

of the tops coincides with dm, and hence all the pro�les of tops that are represented by

L( eDm) result in discontinuity points. Moreover, and since L( eD1) = L( eD2) = L( eD3),e�1 = e�2 = e�3 as well. Denote it by e�0 and observe that (1; 2; 0)e�0(1; 1; 1)e�0(0; 2; 1),
(1; 2; 0)e�0(0; 3; 0)e�0(0; 2; 1) and that (1; 1; 1) and (0; 3; 0) are not comparable by e�0. To
assign a value to the social choice function on these discontinuity points preserving the

19Remember that, by Lemma 2, strategy-proof social choice functions have a closed range.
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monotonicity of the social choice function f we need to select for each dm a tie-breaking

set eXm such that eXm = U( eXm): Given L( eDm), there are six di¤erent ways of doing so:eXm 2 f;; f(0; 2; 1)g; f(1; 1; 1); (0; 2; 1)g; f(0; 3; 0); (0; 2; 1)g; f(1; 1; 1; ); (0; 3; 0); (0; 2; 1)g;
L( eDm)g: For instance, choose eX1 = f(1; 1; 1); (0; 2; 1)g; eX2 = f(0; 2; 1)g; and eX3 =

L( eDm). Thus, the disturbed median f that we may de�ne applying De�nition 7 to the

family of four �xed ballots 0 = p3 = p2 < p1 = p0 = 0:9, the family of discontinuity

jumps I1 = (0; 0:1); I2 = (0:1; 0:2); and I3 = (0:8; 0:9); and the anonymous family of

tie-breaking sets eX1 = f(1; 1; 1); (0; 2; 1)g; eX2 = f(0; 2; 1)g; and eX3 = L( eD3) has range

equal to A and it is e¢ cient relative to A: The disturbed median f could also be de�ned

as follows. For all t = (t1; t2; t3) 2 SSPf1;2;3g, and after setting y � medft1; t2; t3g;

f(t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0 if y < 0:05 or y = 0:05 and #fi j ti � 0:05g = 3
0:1 if y = 0:05 and #fi j ti � 0:05g < 3 or 0:05 < y < 0:15

or y = 0:15 and either 9j s.t. tj < 0:15 or t1 = t2 = t3 = 0:15
0:2 if y = 0:15 and #fi j ti � 0:15g = 3 and 9j s.t. tj > 0:15

or 0:15 < y < 0:2

y if 0:2 � y � 0:8
0:8 if 0:8 < y < 0:85

0:9 if y � 0:85:

The complexity of this description indicates the usefulness of Theorem 1�s characteriza-

tion.

Finally, by Remark 1, the four statements above (Theorem 1 and Corollaries 1, 2

and 3) also hold after replacing strategy-proofness by group strategy-proofness.
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