
 

 

 

 

 

 

 

 

Barcelona Economics Working Paper Series  

Working Paper nº 443 

 

Are Agent-Based Simulations Robust? 
The Wholesale Electricity Trading Case 

 
Albert Banal-Estañol 

Augusto Rupérez-Micola 
 

March 2010 

 



Are agent-based simulations robust?
The wholesale electricity trading case∗

Albert Banal-Estanol† Augusto Rupérez Micola‡

March 30, 2010

Abstract

Agent-based computational economics is becoming widely used in practice. This paper
explores the consistency of some of its standard techniques. We focus in particular on prevailing
wholesale electricity trading simulation methods. We include different supply and demand
representations and propose the Experience-Weighted Attractions method to include several
behavioural algorithms. We compare the results across assumptions and to economic theory
predictions. The match is good under best-response and reinforcement learning but not under
fictitious play. The simulations perform well under flat and upward-slopping supply bidding,
and also for plausible demand elasticity assumptions. Learning is influenced by the number of
bids per plant and the initial conditions. The overall conclusion is that agent-based simulation
assumptions are far from innocuous. We link their performance to underlying features, and
identify those that are better suited to model wholesale electricity markets.
Keywords: Agent-based computational economics, electricity, market design, experience-

weighted attraction (EWA), learning, supply functions, demand aggregation, initial beliefs.

1 Introduction

Companies and government agencies increasingly make use of simulation techniques, as part of an
“engineering” approach in which game theory, experimental and computational economics comple-
ment each other (Roth, 2002). Examples of leading corporations using simulations include eBay,
Google, IBM and Unilever. Simulations have also been crucial for designing the US National Res-
ident Matching Program (Roth and Peranson, 1997), radio spectrum auctions (Rothkopf et al.,
1998), kidney exchange mechanisms (Roth et al. 2004), school choice programmes (Abdulkadiroglu
et al., forth.) and the electricity trading arrangements in many countries.

Agent-based computational economics (ACE) is becoming an important part of those market
simulation efforts. In the ACE paradigm, markets are modelled as dynamic systems of interacting,

∗Versions of this paper have been presented at the EURO (2009, Bonn) and INFORMS (2009, San Diego) con-
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boundedly-rational, learning agents. ACE has been used to model situations as diverse as compet-
itive strategy (e.g. Denrell, 2004), innovation (e.g. Adner and Levinthal, 2001), financial markets
(e.g. Noe et al. 2003; Pouget, 2007), business organisation (e.g. Rivkin and Siggelkow, 2001), or
electricity trading.1

One of the advantages of ACE is that the models are tailored to closely fit each situation.
However, this is a disadvantage when it comes to understanding the factors driving the results.
ACE models are often not comparable to each other (Fagiolo et al., 2007) and, probably as a
consequence, ACE is struggling to reach its full potential. Leombruni et al. (2006) reveal that only
eight papers among over 40,000 published in a list of well-regarded economics journals use it, and
argue that this is due to the difficulty in interpreting and generalising the simulation outcomes and
the lack of consensus on the techniques suitable for each situation.

This paper explores the consistency and the reliability of agent-based simulation techniques. For
our case in point, we focus on wholesale electricity markets. ACE is prominent in electricity because
wholesale electricity markets are huge and especially awkward for analytical methods. They feature
imperfect competition, very low demand elasticity, discontinuously convex supply functions, high-
frequency repeated trading, heterogeneous agents and high potential for collusion (Wilson, 2002).
The ACE electricity literature documents several models commissioned by large energy players (e.g.
Gaz de France, E.ON, Shell) and the UK’s Competition Commission as well as some calibrations
of the US market, like the “Electricity Market Complex Adaptive System” (EMCAS) (Macal and
North, 2005) and the “Agent-based Modeling of Electricity Systems” (AMES) (Sun and Tesfatsion,
2007).

Unfortunately, and despite the large electricity simulations literature (see Marks, 2006; Weidlich
and Veit, 2008 for surveys), there is still little consensus on which techniques are most appropriate.
First, some papers assume that agents learn according to the reinforcement model while other
papers use more complex forms of behaviour like fictitious play or best response. Second, few
papers specify the initial conditions of the models. Third, demand is assumed to be elastic in some
cases and inelastic in others. Finally, several papers use stepwise schedules to model the supply
part of the market, while in others sellers bid linearly increasing functions.

We investigate the effects of these assumptions on simulation outcomes and how these outcomes
compare to simple, empirically-supported, theoretical predictions. Specifically, we cast light on
whether the simulations are consistent with the standard claim that pivotal dynamics determines
the relationship between competition and prices. A firm is pivotal if the quantity demanded exceeds
the sum of production capacities of all other firms and, as a result, it is necessary to fulfill demand.
There is wide consensus on the importance of pivotal dynamics in spot electricity markets (see e.g.
Rothkopf, 2002, for a discussion).2 In our setting, all firms are pivotal when there are few of them
but none of them is pivotal if there are many of them. As a consequence, our theoretical results
predict that prices will be high under monopoly, will decrease with competition, drastically change
at a pivotal dynamics “switching point”, and will approach marginal costs beyond that point.

1See Tesfatsion and Judd (2006) and Leigh Tesfatsion’s website for extensive information sources about ACE
(http://www.econ.iastate.edu/tesfatsi/ace.htm).

2Many authors have noted, for example, that no single supplier in California had a 20% market share during the
California crises, although one (or few) firms could have exercised monopoly power in half of the hours (Blumsack et
al. 2002). Bushnell et al. (1999) developed the Pivotal Supplier Index (PSI) for a supplier at a point in time, defined
as a binary indicator which is set equal to one if the supplier is pivotal, and zero if it is not. The Federal Energy
Regulatory Commission (FERC) has adopted a similar indicator as a market power screening device.
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We adopt a stylised setting that allows us to include alternative implementations of demand,
supply and agent behaviour, which yield many of the literature’s models as particular cases. De-
mand can be inelastic or price-sensitive, with a wide range of levels and elasticity specifications.
Firms are allowed to submit either flat bids or increasing supply schedules, with single or multiple
bids per plant. Agents’ behaviour is governed by Camerer and Ho’s (1999) Experience-Weighted At-
traction algorithm (EWA) which includes reinforcement learning, fictitious play and best-response
as particular cases and allows for the specification of different initial conditions.

Simulation outcomes are consistent with our theoretical predictions under flat and supply func-
tion bidding, and under several plausible elasticities. However, we show that not all simulations
exhibit the predicted breaking points. The performance of fictitious play is poor, and it is clearly
outperformed by best-response and reinforcement learning. The performance of the simulations are
influenced by the number of bids per plant and the initial conditions. The results call into ques-
tion a large part of the extant ACE electricity research and can potentially enhance the practical
implementation of these techniques.

This paper is part of a new literature examining the consistency of ACE in various market
settings (e.g. Fagiolo et al., 2007; Leombruni et al., 2007; Marks, 2007; and Midgley et al., 2007).
In the electricity industry, we are only aware of two related working papers. Li et al. (2009)
check the robustness of several reinforcement learning parameters, elasticity, and price caps in the
AMES model, and Kimbrough and Murphy (2009) compare step and supply function bidding in
a stylised setting. The question of validation, that is which models best fit real market data, is
complementary to ours. Our approach focuses on theoretical reliability, and includes comparisons
of demand, supply, and behavioural specifications.

The remainder of the paper is organised as follows. In part 2 we discuss the literature. In part
3, we present our framework and the alternative implementations of demand, supply and agent
behaviour. In part 4 we derive the theoretical prediction. Part 5 includes the simulation results
and we conclude in part 6. All proofs are in the Appendix.

2 Agent-based electricity modelling alternatives

The three main sets of assumptions in ACE electricity models are the representation of supply,
demand, behavioural rules. This section is a survey of the choices made in previous work. In Table
1 we classify some of the most relevant papers.

<<Table 1: Published papers>>

2.1 Supply bidding

Bertrand and Bertrand with capacity constraints are generally not considered suitable in the ACE
electricity literature because they do not fit the uniform pricing prevalent in power pools. Cournot
quantity bidding is sometimes used as an alternative (e.g. Bunn and Oliveira, 2007 and 2008; Veit
et al., 2006). However, a recurrent argument is that Cournot is also unsuitable because in real
pools generators are allowed to submit multiple flat bids for sections of their capacity. Hence, most
papers use either von der Fehr and Harbord’s (1993) stepwise auctions, or Green and Newbery’s
(1992) adaptation of the “supply function" (SF) equilibrium due to Klemperer and Meyer (1989).
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In the stepwise approach, the market is a sealed-bid, multiple-unit auction. Generators simul-
taneously submit single prices at which they are willing to supply sections of their capacity. An
independent auctioneer ranks the bids according to their offer prices, intersects the demand and
supply and determines the system marginal price.

The stepwise literature includes both per plant and overall firm bidding models. Stepwise
auction papers with one bid per generator are more parsimonious and comparable to the theoretical
literature. Nicolaisen et. al. (2001) and Richter and Sheblé (1998) create models similar to those
of auction theory to study the structure and efficiency of electricity markets. Closer to industrial
organisation, Rupérez Micola and Bunn (2008) and Rupérez Micola et al. (2008) examine how
horizontal and vertical integration influence the firms’ ability to exert market power. Nanduri and
Das (2007) add a simple electricity network. Bagnall and Smith (2005) study how their model
replicates human behaviour in the England and Wales market.

Other papers allow one bid per plant rather than per firm. Bower and Bunn (2000, 2001)
simulate the transition between the England and Wales pool and the New Electricity Trading
Arrangements (NETA) discriminatory auction and how this could affect market prices. Bunn and
Martoccia (2005) also replicate the UK market and Bower et al. (2001) focus on Germany. Only
García et al. (2005) and Banal-Estanol and Rupérez Micola (2009) include abstract models with
multiple stepwise bids per plant.

Inherent inflexibilities in the operation of nuclear assets (e.g. safety concerns, very low marginal
costs and high start-up and loss of volume costs) prompt generators to submit flat schedules at
very low prices for each plant. However, the assumption is quite restrictive in comparison to most
bid-based electricity markets where they can submit many bid steps per plant. Multi-bidding
leads to the well-known “hockey stick” shape of the supply curve, with base-load plants submitting
flat schedules and peak-load generators offering steeper step functions. Accordingly, a number of
simulations include several bids per plant. For example, Day and Bunn (2001) and Bunn and Day
(2009) developed detailed models of the England and Wales pool between 1990 and 2001. Bunn
and Oliveira (2001, 2003) look into the related effect of NETA’s introduction and test whether the
incumbents could influence prices. However, these models are often computationally cumbersome
fo two reasons. First, the algorithm’s operations grow with the number of bids. Second, agents’
coordination is more difficult, which complicates learning and the convergence to a steady state.

The SF approach approximates actual bids with increasing supply functions relating quantities
and prices. This is a compromise between providing realism and simplifying the simulation me-
chanics. Banal-Estanol and Rupérez Micola (2009) include an SF model with two stepwise bids
per firm. Cincotti et al (2005) study the effect of market microstructure and costs on prices, and
Visudhiphan and Ilic (1999) focus on dynamic learning. Day and Bunn (2001, 2009) propose an
even more flexible approach in which firms submit several SF sections per plant.

However, the presence of multiple Nash equilibria complicates the comparison of ACE and
equilibrium results. For example, the SF model has little predictive value if the range of variation
in demand is small because almost anything between the Cournot and the competitive solution
can be supported in equilibrium (see Bolle 1992). Further, the solution is undefined if there is no
short-run demand elasticity (von der Fehr and Harbord, 1998). Similarly, there are often many
non-Pareto ranked equilibria in stepwise auction settings (for discussions, see e.g. von der Fehr and
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Harbord, 1993; Crawford et al., 2006).3

2.2 Demand representation

The current literature mostly represents demands with double-sided call auctions or fixed aggre-
gated curves.

First, double-sided call auctions consist of supply and demand bidding and common valuations
bounded between marginal cost and redemption values. Bids represent the price at which firms
are willing to sell and buy all their capacity in a double version of the stepwise auction setting.
Examples include the papers by Richter and Sheblé (1998), Nicolaisen et. al. (2001), Bunn and
Oliveira (2001, 2003) and Rupérez Micola and Bunn (2008).

However, many ACE simulations use aggregate demands. The literature often models short-run
electricity demand as inelastic, in part due to the lack of real-time metering systems (e.g. Stoft,
2002). Examples include Bagnall and Smith (2005), Bunn and Martoccia (2005), Cincotti et al
(2005), García et al. (2005), Nanduri and Das (2007), Rupérez Micola et al. (2008) and Sun and
Tesfatsion (2007).

At first glance, this may seem like an appropriate representation of reality, but there are several
reasons why relaxing that assumption can add value. First, markets have some level of bid-in
demand, or implicit elasticity provided through the actions of system operators who may take out-
of-market actions to effectively reduce demand when prices rise. Second, most volume is traded
outside of balancing markets, either in exchanges or bilaterally. Third, financial derivatives increase
demand elasticity. Finally, inelastic demand models tend to present a large number of non-Pareto
ranked pure strategy equilibria. Papers with elastic demands include several by Derek Bunn and
coauthors (e.g. Bower and Bunn, 2000, 2001; Bower et al., 2001; Bunn and Oliveira, 2007, 2008;
Day and Bunn, 2001), and also Veit et al. (2006).

To our knowledge, only Banal-Estanol and Rupérez Micola (2009), Li et al. (2009) and Visud-
hiphan and Ilic (1999) use both elastic and inelastic demands. Still, they do not seek to explicitly
explore the implications of the elasticity assumption.

2.3 Behavioural algorithm

ACE models require rules to govern agent behaviour. One of their main intentions is to realistically
represent human decision-making, and its proponents frequently argue that existing deductive
mechanisms often do poorly in experiments (Camerer and Ho, 1999, Roth and Erev, 1995; and
van Huyck et al., 1990, are regularly used to support this claim). The electricity ACE literature is
based on adaptive learning algorithms mainly derived from psychology.

Some previous work uses reinforcement learning (RL). In RL, agents tend to repeat actions
that led to positive outcomes and avoid those that were detrimental. Several papers have used
modified versions of the Roth and Erev (1995) algorithm, e.g. Banal-Estanol and Rupérez Micola

3Economic theory offers refinements to single out unique supply function equilibria. Klemperer and Meyer (1989)
show that if outcomes with infinite demand occur with positive probability and there are no capacity constraints, then
there is a unique SF equilibrium. Green and Newbery (1992) focus on the highest profit equilibrium. Baldick and
Hogan (2002) rule out unstable equilibria and add a price cap and capacity constraints. Newbery (1991) considers
entry and assumes bid-coordination. More recently, Holmberg (2007, 2008) shows that a unique SF equilibrium exists
with binding capacity constraints.
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(2009), Li et al. (2009), Nanduri and Das (2007), Nicolaisen et al. (2001), Rupérez Micola and
Bunn (2008), Rupérez Micola et al. (2008), Sun and Tesfatsion (2007) and Veit et al. (2006). It
is based on the law of effect, whereby actions that result in more positive consequences are more
likely to be repeated in the future, and on the law of practice, whereby learning curves tend to
be steep initially and then flatten out. These are robust properties observed in the literature on
human learning. One of RL’s main strengths is that one does not need to make assumptions on the
information that players have about each other’s strategies, history of play and the payoff structure.
This is consistent with the fact that, in many cases, electricity traders cannot observe one another’s
current strategies, and only imperfectly infer them from volatile prices. However, RL might be too
simplistic to fully capture the strategic opportunities available to humans (Erev et al., 2007; Ert
and Erev, 2007).

It is likely that players in real electricity markets attempt to engage in more sophisticated
behaviour like best response to their competitors’ actions. There are two main types of best
response algorithms: fictitious play (FP) and "Cournot" best response (BR).4 In FP (Brown,
1951), each player assumes that her opponents play stationary, possibly mixed, strategies. In each
round, the player best responds to her opponent’s empirical frequency of play. Electricity studies
using FP include those by Bunn and Oliveira (2001, 2003) and García et al. (2005). BR implies
that the player only responds to her opponents’ move in the directly precedent period. BR papers
include those by Bunn and Oliveira (2007, 2008) and Day and Bunn (2001) and Bunn and Day
(2009).5 To our knowledge, there is no research on whether the results obtained with RL, FP and
BR differ substantially in the electricity context.6

Finally, most papers do not provide details about initial conditions. In those that do, the
standard approach is to use a uniform initial probability distribution for all elements of the action
space. Examples include Rupérez Micola and Bunn (2008), Rupérez Micola et al. (2008) and
Banal-Estanol and Rupérez Micola (2009). We are not aware of any papers explicitly exploring the
impact of alternative starting conditions.

3 Modelling specifications

Our model incorporates key features of electricity markets in the short-run. Although it could be
easily extended to become more complex, it is stylised to facilitate the exposition as well as the
comparison between theoretical predictions and simulation results. We first present the market
structure and trading rules that form our framework. Then, we describe the alternative parameter
implementations of demand, supply and agent behaviour, which yield many of the literature’s

4The term "Cournot" in this context does not refer to quantity bidding but to the classic tatônnement best-
response process leading to market equilibrium. To avoid confusion, given that we do not use quantity bidding in our
simulations, we refer to this behavioural algorithm as "best response" (BR).

5 In addition, there are a number of papers who depart in varying degrees from those models. Bower and Bunn
(2000, 2001), Bower et al. (2001) and Bunn and Martoccia (2005) all use an adjustment based on locally improving/not
deteriorating the profit and of a desired level of market share, and Cincotti et al (2005) use a different version of
reinforcement learning. Bagnall and Smith (2005) use hierarchical classifier systems and Richter and Sheblé (1998)
use genetic algorithms.

6Pouget’s (2007) analysis is similar to ours, but focuses on financial markets. A different aspect is the parameter
choice within a learning paradigm. Banal-Estanol and Rupérez Micola (2009) test the robustness of their results to
nine reinforcement learning paramater combinations and, more systematically, Li et al. (2009) use intensive parameter
sweeps to determine suitable settings for two potentially critical learning parameters.
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models as particular cases.

3.1 Market structure and trading rules

Let there be n symmetric generators, i = 1, ..., n, with constant marginal production costs, c, up
to capacity. Denoting the market capacity as K, the individual capacity of each firm is kn = K/n.
For a given K, n parametrises the degree of competition in the market, as the individual capacities
decrease with the number of generators.

Prices are bounded between marginal costs and Ψ, with Ψ being the maximum “reasonable”
price cap (e.g. Lin et al., 2009). This can be understood as a limit triggering regulatory intervention
or the cost of alternative, expensive load fuels to which the system administrator could switch at
short notice. It also reflects high cost back-up power generation facilities owned by many industrial
users. There are no grid constraints. Although relevant in the long term, we do not deal with
capacity expansion, long-term contracts, ancillary and capacity payments.

Trading takes place through a compulsory, uniform-price auction. Suppliers simultaneously
submit individual schedules. An independent auctioneer adds them horizontally and creates an ad
hoc market supply function. Then she intersects it with the market demand and determines the
uniform price bp. Finally, she assigns individual quantities, qi, to each of the bidders. Profits for
each firm are

πi = (bp− c) · qi for i = 1, ..., n. (1)

3.2 Demand representations

We use alternative parameters to accommodate different demand levels and elasticities. Demand,
Q(p), can be inelastic or price-sensitive. In the inelastic case, demand is equal to a constant
quantity Q̄ for any price between zero and Ψ, i.e. a vertical line at Q̄, Q(p) ≡ Q̄. We rotate this
curve to obtain linear functions with different elasticities at the same point. We denote the vertical
coordinate of the rotation point as v (0 ≤ v ≤ Ψ) and the deviation to the left of Q̄ at the price
cap level as u (0 ≤ u ≤ Q̄). Thus, all demand curves are linear, pass through (Q̄, v) and (Q̄−u,Ψ)
and can be written as

Q(p) ≡ Q̄− u

(Ψ− v)
(p− v).

In all cases, market demand is assumed to lead to system overcapacity, i.e. Q(p) < K for all p.
Figure 1 shows examples of demand with Q̄ = 80, Ψ = 200, v = 100 and u = 0, 5, 10. The three

demands are Q(p) = 80 (u = 0, in purple), Q(p) = 80 − 5
100(p − 100) (u = 5, in magenta), and

Q(p) = 80− 10
100(p− 100) (u = 10, in red).

<<Figure 1: Examples of alternative demands and supply schedules>>

3.3 Supply representations

Supply schedules vary along two dimensions. First, firms are allowed to submit either flat bids
(“stepwise bidding” case) or increasing supply schedules (“SF bidding” case). Second, in line with
other papers (e.g. Day and Bunn, 2001, and Hobbs and Pang, 2007), we consider the implications
of allowing firms to submit multi-step schedules. To that purpose, we divide each firm’s capacity
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intom equally-sized capacity bins, kn/m. We use alternative values ofm in the stepwise and supply
bidding cases. In the former, firms submit flat bids for each segment, while in the latter, they use
supply functions for each segment.7

We now provide details for each case and explain the market clearing process.

Stepwise bidding The feasible price offer domain is approximated by a discrete grid. Generators
choose from S possible bids, equally spaced between c and Ψ, at which they are willing to supply
each bin’s capacity. That is, the set of possible bids is

Sm(q) ≡ {c+ s (Ψ− c) /S | s = 1, ..., S } .

Each possible bid corresponds to an “action” or choice variable s. Bids generated from lower actions
are closer to c, i.e. more competitive. The individual schedules for each bin are flat but firms can
submit multi-step schedules if m > 1.

Supply function bidding Supply schedules are non-decreasing. For each bin, the generators
choose among S possible angles, s = 1, ..., S, equally spaced between zero and ninety degrees (or
π/2 radians). The schedules consist of the set of linear curves from the coordinates (0, c) until
(kn/m, b(s)), capped at Ψ,

Sm(q) ≡
½
min(c+

b(s)− c

kn/m
q,Ψ) | s = 1, ..., S

¾
,

where

b(s) = c+
sin(s (π/2) /S)

cos(s (π/2) /S)
kn/m.

The angle of the plant’s supply schedule, s, is the “action” and therefore the choice variable.
Schedules generated from lower actions are more competitive because they are flatter. The supply
function for the lowest action (s = 1) is almost flat at c. The supply function when s = S is the
result of capping a vertical linear function at the origin.8 Schedules generated from high actions
become flat at Ψ. Note that the amounts sold by each firm are always strictly positive.

Market clearing The auctioneer sets bp by intersecting the market demand and supply functions.
Under stepwise bidding, she gives full capacity to bids below bp; the remaining capacity to those
equal to bp (in case of a tie, the selling bin is selected randomly); and zero sales to the bids abovebp. Under SF bidding, she assigns full capacity to the parts of each schedule below bp. Parts abovebp receive nothing. Appendix A includes a formal derivation of the market clearing process for each
treatment.

The two panels in Figure 1 show hypothetical bidding examples with n = 2, m = 1, K = 100,
Ψ = 200, and c = 0. The market supply function (black line) is the horizontal addition of the

7The models by Day and Bunn (2001 and 2009) are more elaborate because agents submit fixed slope and changing
intercept, fixed intercept and changing slope, and changing both slope and intercept functions in a non-continuous
supply function setting.

8 In the simulations we add a marginal amount to the angle of the denominator to avoid the indeterminacy when
s = S.
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individual functions (blue and green).

3.4 Agent behaviour representations

We adopt the Experience-Weighted Attraction (EWA) adaptive learning mechanism put forward
by Camerer and Ho (1999). This is a general learning model that nests RL, FP and BR as special
cases. EWA assumes that each feasible action of each bin has a numerical attraction. The numerical
attractions of all the actions of the same bin generate a bin-specific probability distribution. In each
round, generators submit supply schedules according to these bin-specific probability distributions.
Once the auctioneer determines the price and individual quantities, the attractions are adjusted
with the behavioural rule and mapped into new probability distributions. This process is repeated
until the simulation converges.

We now describe how agents use experience to update the attractions, and how these lead to
choice probabilities. Then we specify the initial attractions and the convergence definition.

Updating rules and choice probabilities Each action s for bin j in generator i has an “at-
traction” Aj

i,s(t) > 0 after period t (≥ 1). Attractions are updated according to

Aj
i,s(t) =

φN(t− 1)Aj
i,s(t− 1) +

h
δ + (1− δ)I(s, rji )

i
πi(s, r

−j
i )

N(t)
, (2)

where rji and r−ji denote the action taken in period t by bin j of firm i and by the rest of the bins,
respectively; I(x, y) is an indicator function with value 1 if x = y and 0 if x 6= y; N(t) = ρN(t−1)+1
with N(0) = 0, representing the number of “observation-equivalents” of past experience; and the
EWA parameters δ, φ, and ρ denote the weight placed on foregone payoffs, a discount factor to
depreciate previous attractions, and a discount factor that weights the impact of previous against
future experience, respectively.

When δ = 0 and ρ = 0, EWA behaves like the widely used class of RL models (e.g. Roth-Erev,
1995). RL models are based on the law of effect, whereby actions that result in more positive
consequences are more likely to be repeated in the future, and on the law of practice, whereby
learning curves tend to be steep initially and then flatten out. When δ = 1, and ρ = φ, EWA
is equivalent to the standard weighted belief-based models. In particular, it produces BR when
ρ = φ = 0 and FP when ρ = φ = 1. In BR dynamics, players actions are determined by the best
response to what her opponents did in the immediately preceding period, so that only the most
recent observation counts. In FP, each player best responds to the empirical frequency of play of
her opponents since the beginning of the game, and all observations count equally.

The algorithm linearly maps attractions into action choice probabilities. The probability of
selecting an action in the next period is its attraction divided by the sum of attractions for all
actions. That is, for t ≥ 0,

P j
i,s(t+ 1) =

Aj
i,s(t)

ΣSk=1A
j
i,k(t)

. (3)
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Prior beliefs and initial conditions The probabilities in the first period, P j
i,s(1), are generated

from prior values of the attractions, Aj
i,s(0). As explained by Camerer and Ho (1999), the prior

values of the attractions may reflect pre-game experience. We construct Aj
i,s(0) from four repre-

sentative assumptions on prior beliefs. We assume that agents believe that the others will initially
(i) choose the highest possible bid (s = S), (ii) choose the mid-point of the range (s = S/2), (iii)
choose the lowest possible action (s = 1), or (iv) use a uniform distribution over all their actions.
In each of the four treatments, Aj

i,s(0) for all i and j is defined as the hypothetical profit that each
action s would render if prior beliefs about the opponents were correct.

Figure 2 reports the impact of prior beliefs on the initial probabilities for any agent in markets
with one and twelve agents (assuming stepwise bidding, m = 1, K = 100, Ψ = 200, S = 50

and c = 0). Actions are identified on the horizontal axis, with numbers ranging from 1 for the
more competitive to 50 for the highest possible bid. Agents will use mixed strategies unless the
probability of playing all but one action is zero. Probabilities concentrated on higher actions result
in less competitive bids and vice-versa.

<<Figure 2: Initial probability distributions>>

By definition, prior beliefs on others have no impact when there is only one agent. Take the case
of twelve agents. In treatment (i), that is when agents believe that their opponents will initially
bid Ψ, they think that any bid below Ψ would allow them to sell full capacity at Ψ. Hence all
the actions below S have initial attractions equal to the maximum profits, i.e. Aj

i,s(0) = Ψkn for

all s < S, and the same initial probability, P j
i,s(1) ≈ 1

S−1 .
9 In treatment (ii), when agents believe

that others will initially bid the minimum price (s = 1), any bid above the minimum would be
out-of-the-money and earn them zero profits. Therefore, the initial attractions are concentrated on
s = 1 and therefore P j

i,1(1) = 1 and P j
i,s(1) = 0 for s > 1. In treatment (iii), when agents assume

the others will initially bid in the middle of the distribution, they randomise over their lower half
and assign zero probability in the upper half. Finally, in treatment (iv), when players assume that
the others will initially follow a uniform distribution, they bid more competitively than the diagonal
to sell with higher probability their full capacity at the bp set by an opponent.

To our knowledge, the literature only includes uniform initial probability distributions over all
the elements of the action space, which implicitely implies that agents believe that their opponents
will bid Ψ. In this paper, we use that assumption as a reference and study whether the results are
sensitive to the alternatives.

Convergence Following the theoretical literature on learning (see Fudenberg and Levine, 1998,
for an overview), we define convergence in terms of strategy profiles. We say that a simulation
run has converged if the maximum per-period change in the probability of playing any strategy is
below a (small) threshold.

9To be precise,

P j
i,s(1) =

Ψkn
Ψkn/n+ (S − 1)Ψkn

=
n

1 + n(S − 1) for s < S and P j
i,Ψ(1) =

Ψkn/n

Ψkn/n+ (S − 1)Ψkn
=

1

1 + n(S − 1) .

If the number of firms is high, then P j
i,s(1) ≈ 1

S−1 and P j
i,Ψ(1) ≈ 0.
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Definition 1 For a given τ (small), a simulation run has converged to a mixed strategy profile z
in period t if for any potential action profile a in period t+1, the probability distribution adjustment
of any action s of any bin j of any generator i is such that¯̄̄

P j
i,s(t+ 1)− P j

i,s(t)
¯̄̄
< τ. (4)

The simulation price is computed from the agents’ mixed strategy profile z.

In practice, we select the action with the lowest probability in period t. Then, we compute
the hypothetical probability that would result from assigning maximum profits to this action and
minimum profits to all the other actions. The simulation has not converged as long as the difference
between present and future probabilities is higher than τ . It has converged when it is lower. The
smaller τ , the more stringent the threshold and the higher the necessary t.

Once there is convergence, we calculate expected end-of-simulation prices from the individual
probability distributions. Note that convergence is compatible with the survival of several feasible
trading actions, as in mixed strategies. Price volatility may not be equal to zero even if there is a
steady state. Moreover, EWA bidding depends on the stochastic process and, as a result, simulation
runs for the same parameters might lead to different end prices, i.e. the standard deviation of mean
prices across simulations is not necessarily zero.

4 Theoretical predictions

We now derive predictions on the effect of competition on market prices. The predicted market
prices shall depend on the number of “pivotal” plants (see e.g. Genc and Reynolds, 2005; Entriken
and Wan, 2005; Perekhodtsev et al., 2002, and Banal-Estanol and Ruperez Micola, 2009). A firm
is pivotal if it is necessary to satisfy the quantity in demand. In the inelastic case, the definition is
straightforward as the demand is constant, but in the elastic case, the quantity demanded depends
on the supply bids. In general, one has to define pivotality for an exogenous demand level.

Definition 2 A firm i is pivotal for a given level of demand Q0 if this level exceeds the sum of
production capacities of all other firms, i.e. if Σj 6=ikn = (n− 1)kn < Q0.

Pivotal dynamics are simple in symmetric settings. In markets with few firms, they are all
pivotal. In those featuring many firms, none is pivotal. We next define the level of competition at
which the number of pivotal firms changes.

Definition 3 A level of competition n̂l is a lower switching point if (i) all firms are pivotal at
the minimum demand (Q0 = Q(Ψ)) for n < n̂l and (ii) none of them is for n ≥ n̂l.

Definition 4 A level of competition n̂u is an upper switching point if (i) all firms are pivotal
at the maximum demand (Q0 = Q(c)) for n < n̂u and (ii) none of them is for n ≥ n̂u.

If demand is inelastic, the upper and lower switching points coincide and, for simplicity, we call
them “the switching point”. For example, if Q(p) = 80 for any p and K = 100, the switching point
is n̂u = n̂l = 5 because if n < 5, (n− 1)kn < 80, and all firms are necessary to fulfill demand but
no firm is pivotal when n ≥ 5, (n− 1)kn ≥ 80.
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In the elastic case, the upper and lower switching points are different. Take for instance the
case in which Ψ = 200, v = 100, Q = 80, u = 10, c = 0 and K = 100. The minimum and
maximum demands are Q(200) = 70 and Q(0) = 90. There is a lower switching point at n̂l = 4

since (n − 1)kn < 70 = Q(200) for n < 4 and (n − 1)kn ≥ 70 = Q(200) for n ≥ 4 and an upper
switching point at n̂u = 10 because (n− 1)kn < 90 = Q(0) for n < 10 and (n− 1)kn ≥ 90 = Q(0)

for n ≥ 10. Now, the equilibria.

Proposition 5 (a) For each K, Q(p), there exists a unique upper switching point, n̂u = K/ (K −Q(c)).
(b) If the number of firms is lower than this threshold (n < n̂u), then any given firm i bidding p∗m(n),
where p∗m(n) is the monopoly price of the residual demand curve, p

∗
m(n) ≡ argmax0≤p≤Ψ{(p −

c) [Q(p)− (n− 1)kn]}, is part of any equilibrium. The equilibrium price is p∗m(n).
(c) If the number of firms is higher than this threshold (n ≥ n̂u), then all firms bidding c is an
equilibrium. The equilibrium price is c.

The equilibrium price drops from the monopoly price of the residual demand to competitive
levels at n̂u. The equilibrium is unique if n = 1 < n̂u (monopoly pricing) and if n > n̂u (marginal
cost pricing). If 1 < n < n̂u, however, there are multiple pure strategy equilibria with many payoff-
equivalent actions as part of each of them.10 Consider, for example, the case of two firms, inelastic
demand, one bin and stepwise bidding. A generator bidding Ψ and the other bidding close to c, or
vice versa, are both equilibria in which one obtains a low profit and the other gets the maximum.
The situation is similar to the standard “battle of the sexes” game. Experimental evidence shows
that coordination in this game can be low (Cooper et al., 1990), and especially difficult due to
the payoff asymmetry in each of the equilibrium (Crawford et al., 2008). In sum, if 1 < n < n̂u,
market prices are expected to be at most p∗m(n) but can be substantially lower because of multiple
equilibria and coordination problems.

The next corollary shows that a higher n decreases the equilibrium price p∗m(n) and increases
equilibrium profit asymmetries. This will further reduce the agents’ incentive to be the price-setter,
and induce them to submit lower bids.

Corollary 6 If the number of firms below the threshold (n < n̂u),
(a) the equilibrium price (p∗m(n)) is non-increasing in n

(b) the relative profits of a price-setting firm with respect to a non-price setting firm in the equilibria
((p∗m − c) [Q(p∗m)− (n− 1)kn] / [(p∗m − c)kn]) decrease in n.

The proposition and the corollary allow us to sketch predictions about the effect of competition
on prices. Monopoly prices should be equal to p∗m(1) as this leads to maximum profits. Prices
should decrease in n as long as the firms are pivotal at the minimum demand, n < n̂u, due to lower
equilibrium prices and growing profit asymmetries. Prices should drastically decrease at the upper
switching point (n̂u) because the unique prediction is that prices are equal to marginal costs for
n > n̂u.

Prediction 7 The dynamics pre- and post-switching point result in nonlinearities in the influence
of n on prices. Pre n̂u, prices decrease with n from the monopoly price, p∗m(1). Post n̂

u, prices are
drastically reduced to c.
10There are also many mixed strategy Nash equilibria.
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Note that this prediction is not specific to any of the supply, demand, and behavioural as-
sumptions that we explore in this paper. Further, there is wide consensus on the importance of
pivotal dynamics in real electricity markets (for a discussion on the role of pivotal dynamics, see
e.g. Rothkopf, 2002). The prediction is so standard that any combination of agent-based modelling
assumptions aiming to reproduce spot electricity markets should be able to fulfill it.

5 Simulations

This section presents the simulation results. We first introduce the simulation parameters. Then
we graphically compare the simulation outcomes with the theoretical predictions. Following that,
we formally test whether the data for each demand, supply and behavioural specification fea-
tures breaking points at the predicted locations and, whether the predicted switching point is the
best-fitting breaking point. Finally, we present some results on the impact of the behavioural
assumptions on the stationary bidding strategies.

5.1 Parameters

We allow the number of firms, which parametrises the degree of competition, to vary from one to
twelve, 1 ≤ n ≤ 12. Marginal costs are set to zero, c = 0. Total capacity is K = 100, so individual
capacities decrease from k1 = 100 to k12 = 8.33. The price ceiling is Ψ = 200, with a grid of S = 50
possible actions and a demand rotation point v = 100.

To clarify the exposition, we focus on the demand, supply and behaviour assumptions in turn.
We use as a reference specification an inelastic demand with 20% excess capacity (u = 0 and
Q̄ = 80), firms using stepwise bidding with one bin (m = 1), and agents learning following RL with
a uniform initial distribution (which, as shown in Section 3.4 (Figure 2), is equivalent to assuming
prior beliefs equal to the maximum bid, Ψ).

To study the effect of the demand assumptions, we fix the reference supply representation
(stepwise bidding and m = 1) and the reference behavioural algorithm (RL and uniform initial
distribution). We run simulations for the combinations of expected demand levels Q̄ = {80, 85, 90}
and elasticity parameters u = {0, 5, 10}. We perform 50 simulations for each n and for each com-
bination of demand level and elasticity parameters. The data set includes 3 · 3 · 12 · 50 = 5, 400

observations.
When we focus on the supply side, we fix the reference demand specification (Q̄ = 80 and

u = 0) and the reference behavioural algorithm (RL and uniform initial distribution). We perform
simulations for each, the stepwise and supply function bidding, and for one, two and three bins.
The resulting data includes 2 · 3 · 12 · 50 = 3, 600 observations.

For the behavioural analysis, we fix the reference supply and demand specifications (stepwise,
m = 1, Q̄ = 80 and u = 0). We perform simulations for each, BR, RL and FP, and for prior beliefs
equal to Ψ, 0, Ψ/2 and random. In total, there are 3 · 4 · 12 · 50 = 7, 200 observations in the data
set.

Substituting into Proposition 5, the monopoly prices are equal to the maximum price, p∗m(1) =
Ψ = 200, in all the specifications. The upper switching points are bnu = {5, 6, 10}, respectively for
Q̄ = {80, 85, 90}, if u = 0 (inelastic demand), and bnu = {7, 10, 12} if u = 5 and bnu = {10, 12, 12} if
u = 10.
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5.2 Simulation results

Figures 3, 4 and 5 compare the impact of competition on prices for the different demand, supply
and behavioural specifications. Each panel plots the long-run average price (p) and two standard
deviations across the 50 simulation runs for each n. Since the theoretical price predictions are
corner solutions, the intervals sometimes exceed the simulation boundaries. The upper-left panel
in each figure corresponds to the same reference specification (Q̄ = 80, u = 0, stepwise bidding,
m = 1, RL and a uniform initial distribution).

Demand specifications Figure 3 reports the demand assumption results. Simulations use as
demand levels Q = 80, 85 or 90 (in columns one, two and three, respectively) and, as elasticity
assumptions, u = 0, 5, or 10 (in rows one, two and three). In all the panels, the supply and
behavioural assumptions are one-bin stepwise bidding and RL with uniform initial distribution.

<<Figure 3: The influence of demand specifications on prices>>

As predicted, simulated monopoly prices are close to Ψ(= 200) in all instances and the relation-
ship between n and p is decreasing. In the inelastic cases (u = 0, first row), p drops rapidly in n but
flattens out around n = 5, n = 6 and n = 10, respectively for Q̄ = {80, 85, 90}, as predicted by the
theory. More competition has a small effect beyond those values, as we predicted, but p remains
clearly above c, particularly in the case of tight capacity (Q̄ = 90, third column).

In the elastic cases (second and third rows), our theoretical section predicted a break at the upper
switching points: bnu = {7, 10, 12} for u = 5 and bnu = {10, 12, 12} for u = 10 for Q̄ = {80, 85, 90},
respectively. That is, as elasticity increases, we predict a break for higher levels of n. Instead, the
results seem to show a lower breaking point as the elasticity increases, particularly in the case of
tight capacity. As we will see in the following subsection, this is consistent with a break at the
lower switching point.

Comparing simulation results across specifications, the impact of the elasticity seems to be,
at best, modest. Indeed, simulations are similar across rows, both in terms of price levels and in
terms of the shape of the relationship between n and p. In the case of tight capacity, however, a
higher elasticity seems to make the price more sensitive to n. Across demand levels, p tends to
be less sensitive to n as the levels of demand increase. Higher demand levels also lead to higher
overall prices. This is also consistent with Proposition 5, which predicts that equilibrium prices are
increasing in Q̄ (higher bnu and higher p∗m).

Overall, the demand results are quite, but not perfectly, consistent with the theory. First,
although monopoly prices are close to Ψ and the relationship between n and p is decreasing, post-
threshold prices are far from c. Second, inelastic simulations fit the break predictions better than
those with elasticity. Third, smaller excess capacity (K−Q̄) results in higher prices. Fourth, results
do not vary too much within our elasticity ranges, which are comparable to those in the literature.

Supply specifications Figure 4 reports the bidding assumption results. Simulations use stepwise
(first row) or SF bidding (second row) with one, two or three bins (columns one, two and three).
We use Q̄ = 80 and u = 0 and RL with uniform initial distribution in all cases.

<<Figure 4: The influence of supply specifications on prices>>
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As predicted, the relationship between n and p monotonously decreases both for the stepwise
and the SF assumptions. Its shape changes around n = 5, consistent with the prediction of a
switching point at bnu = 5. In the stepwise case, however, prices remain above the competitive
levels after the threshold. p’s sensitivity to n decreases with the number of bins and therefore the
deviation from theory grows. When m = 1, post-switching point prices are around 40, when m = 2

around 75 and when m = 3 around 100. If there are multiple bins, agents are able to use some of
their bins to keep prices high while recouping some of the benefits of high prices with the other
bins.

Although the price variability increases, SF yields a better fit in terms of average prices. This
is probably because its higher “expressiveness” overcomes the difficulties to coordinate in the the-
oretical prediction. The standard deviation grows in m, especially around the switching point.
Under SF, bids above the equilibrium price may be reinforced because they also obtain substantial
profits. It is therefore more difficult for agents to tell good from bad bids and dispersion grows.
In comparison, stepwise bids are either on- or out-of-the-money. Hence it is easier to identify the
good bids and the simulations become crisper.

Overall, prices are less sensitive to n under stepwise bidding and SF is better at capturing the
extreme monopoly and competitive predictions. Still, SF’s price dispersions increase substantially
around the pivotal breaks.

Behavioural specifications Figure 5 reports simulation results for the different behavioural
specifications (assuming stepwise bidding with m = 1, and Q̄ = 80 and u = 0). RL is on the top,
BR in the middle and FP in the bottom panel. The four columns correspond to the four prior
belief assumptions in the following order: (i) the maximum price, (ii) randomly, (iii) the minimum
price, and (iv) the medium point. As shown in Section 3.4 (Figure 2), this implies that the initial
probability distributions are uniform, lower than the diagonal, concentrated in the lowest action,
and uniform over the bottom half, respectively.

<<Figure 5: The influence of behavioural assumptions on prices>>

The panels consistently show that the relationships between n and p are decreasing. All con-
fidence intervals are narrow. In reinforcement learning (first row), monopoly prices are close to
Ψ, decrease until the theoretical switching point (bnu = 5) and approach c after it. The break at
the switching point, however, is striking only if the prior is competitive (third column). In best
response (second row), monopoly prices are instead far from Ψ (at about 140), but there is a clear
breaking point for n = 5, after which they converge exactly to c. Initial conditions do not have an
impact under BR due to the algorithm’s lack of memory.

The differences between RL and BR results can be traced back to the algorithms’ features.
Under BR, prices have been shown to be competitive when no agent is pivotal. This is because
under BR, the attractions of all the actions above those used by the other agents in the previous
period are reduced to zero. Therefore agents choose lower actions and p can only stay constant
or decrease. The resulting unravelling yields p = c. When all agents are pivotal, equilibrium
forces tend to increase p so that agents choose high actions with some probability. Simultaneously,
unravelling prevents p from staying very high. On balance, p never reaches Ψ, not even in monopoly.
In RL, instead, there is no in-built unravelling. Actions above those of the opponents are still played
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because they might have generated profits in earlier periods. Thus, p is higher than under BR for
all n.

The fictitious play specification (third row) departs substantially from the predictions. Monopoly
prices are around 140, decrease slowly in n and stay patently above competitive levels. FP keeps
most of the initial noise as it weights heavily initial periods where outcomes are quasi-random.
Hence, agents assign propensities to inadequate actions, adaptation slows down and there is strong
path dependence. There are two countervailing forces at work. On the one hand, the higher n the
more likely it is that there will be unravelling as in the case of best response. On the other hand,
initial random prices are more likely to be high if there are more agents, so that reductions start
from a higher base. Monopoly prices are far from Ψ because of unravelling. Prices when no firm is
pivotal are far from zero owing to high initial prices. On balance, the n to p relationship decreases
slowly and stays far from the theory extremes.

Overall, RL best matches the theory but is not as reactive to market conditions as BR. FP
performs worst. Competitive prior beliefs render by far the most homogeneous post-switching
prices across behavioural assumptions. This is because beliefs are self-fulfilling. Everyone’s best
response is to bid c when they believe that the others will bid c. BR and FP lock themselves up in
that value while experimentation in RL is not powerful enough to depart from it. The theoretical
soundness of RL with competitive initial beliefs is strikingly good and the best of the twelve.
Monopoly prices are only slightly below Ψ, and decrease clearly in n for n < 5, so that prices are
above 100. For n > 5, prices converge to c. These results are to our knowledge the first on the
robustness of ACE techniques to behavioural choices in electricity markets.

5.3 Threshold regressions

In this section, we formalise the previous visual inspection with threshold regressions. Specifically,
we carry out tests of whether the data features switching points in the predicted locations. To
that purpose, we estimate a piecewise linear model between n and p for each demand, supply and
behavioural combination. The models are uniquely specified by a dummy variable associated with
the upper switching point bnu,

pi = β0 + β1Di + β2αi + β3Dini + ui, where Di = 0 if ni < bnu, Di = 1 when ni ≥ bnu. (5)

The pre- and post-breaking points regression estimates are specified by

E(pi|Di = 0, ni) = β0 + β2ni and E(pi|Di = 1, ni) = (β0 + β1) + (β2 + β3)ni.

We test the null hypothesis of linearity against the alternative of structural breaks at the pivotal
switching points bnu. Evidence supporting the existence of a breaking point can come either from
significant intercept or slope change coefficients, i.e. β1 and β3 different from zero.

Table 2 reports the results on the demand, supply and behavioural assumptions. On the left-
hand side of each block, we specify the parameters used in each specification, together with the
implied upper switching point. The parameters changing in each block are in boxes. The right-hand
side reports regression estimates. The coefficients correspond to equation (5).

<<Table 2: Hypotheses’ tests of breaking point regression estimates>>
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In all cases, either β1 or β3 (or both) is significant at standard levels. There are three non-
significant coefficients (one β1, two β3) but the other coefficient in the same specification is always
significative. The tests provide preliminary support for the hypotheses. One could therefore con-
clude that all simulations are consistent with the pivotal breaking point’s theory.

However, simple hypothesis tests might not be enough as there might be several points which
can be identified as significant breaking points. This could explain why the tests identify breaks
also in cases in which they are not visually identifiable (e.g. under fictitious play). One way to
discriminate across breaking points is to single out those producing best-fitting models.

5.4 Identification of best-fitting breaking points

We create a procedure to select the “optimal” data breaking point and establish whether it is
statistically equivalent to the theoretical one. We start by providing a definition for the optimal
breaking point.

Definition 8 An optimal breaking point n̄ satisfies F (n̄) ≥ F (n) for any threshold n, where F (n)
denotes the F-statistic obtained from a piecewise linear regression with threshold n.

We compute the optimal breaking point for each specification. We approximate the distribution
of the optimal breaking points through a subsampling procedure.11 For each specification, we
extract 99 random subsamples of 240 observations stratified for n (i.e. twenty observations out of
the fifty available for each n). Then, we use Definition 8 to obtain the subsamples’ optimal breaking
points.

Figure 6 reports the comparison between the upper and lower theoretical switching points and
the optimal data breaking points (subsamples’ mean, together with two standard deviations) for
each specification. The upper panel (6a) provides results for the effects of the demand assumptions.
In the inelastic case (u = 0), simulation results match the theoretical switching point if demand
is low but are lower than the predicted switching points if demands are higher. Interestingly, in
the elastic cases (u > 0), the simulated breaking points perfectly match the lower switching point
(except in one case), instead of the upper switching point, as predicted by the theory.

<<Figure 6: Comparison of simulated and theoretical switching points>>

The middle panel (6b) reports breaking points for each of the supply assumptions. All combi-
nations match the theoretical prediction well. Still, the confidence intervals for the supply function
bidding cases are larger. The number of bins do not seem to have any effect on the simulated
breaking points.

The lower panel (6c) includes the results for each of the behavioural assumptions. BR and RL
match the theoretical prediction, independently of the initial condition used. FP, instead, generates
much higher break point locations, except for one assumption on prior beliefs.

To summarise, the pivotal breaking point prediction is one of the simplest and most widely
accepted in electricity markets. RL and BR specifications identify it well, but not FP. Notice that

11One of the main complications in this type of models arises in the case when there are an unknown number of
change points. However, the problem is easier when (like in our case) there is prior theory suggesting the number of
breaking points (one in our case).
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the optimal breaking point results do not coincide with the simple hypotheses tests of the previous
subsection. Subsampling appears to be a good way to discriminate between several possible breaking
points.

5.5 Latent intensity of competition

In a simulation environment, we can inspect the probability distributions from which agents choose
their bids. Thus, it is possible to study how the parameters influence the agents’ “competitive
attitude” and not only market outcomes.

Figure 7 depicts end-of-simulation individual latent probability distributions. It reports cumu-
lative probabilities for one agent when n = 1 and n = 12 for the three behavioural assumptions,
averaged across simulation runs (assuming Q̄ = 80, u = 0, stepwise bidding with one bin). The
convergence definition implies that the probability distribution is largely invariant beyond the
convergence point, so that these distributions are a good approximation of the agents’ long-term
strategies.

<<Figure 7: Latent intensity of competition>>

The figure offers a number of general insights linking market structure, trading behaviour and
prices. Distributions for n = 1 stochastically dominate those for n = 12, so that monopolist bids are
less competitive than those of competitive agents. For a given n, there are substantial differences
across behavioural algorithms. When n = 12, trading probabilities are extremely competitive under
BR and RL. FP induces less competition. In contrast, when n = 1, BR and FP lead to the same
probability distribution, which is more competitive than for RL.

We can also compare this end-of-simulation probability distributions with the initial probabil-
ities, represented in Figure 2 (the case in which agents prior beliefs are the maximum). When
n = 1, the final probability of distribution for BR and FP is the same as the initial one. In RL,
instead, the monopoly agent learns to increase bids substantially. When n = 12, agents start from
a uniform distribution but learn to submit more competitive bids in all cases, but particularly in
BR and FP.

Overall, the figure provides solid support for the mechanisms underpinning the influence of each
behavioural model on p. It also shows that RL is more sensitive to n than the others, but also that
it leads to less competitive outcomes than BR. As expected, n does not have a strong influence on
FP distributions.

6 Discussion and conclusions

Firms and regulators alike have started to use agent-based computational economics (ACE) to
study the properties of many markets. However, the literature has advanced little in creating a set
of standards. This paper is an attempt to advance in that direction. We study the properties of
different ACE techniques and how they compare to each other and to economic theory. As a case
in point, we focus on a well-established claim in the wholesale electricity trading literature. Any
model should be able to replicate it.

The demand, supply, and, particularly, behavioural comparisons call into question an important
part of the extant ACE literature on electricity markets. Best-response and reinforcement learning

18



perform quite well, but fictitious play does not. Prior beliefs and initial conditions have an influence
on the performance of the simulations. Competitive pre-game beliefs render the best match to
theory. Flat and upward slopping supply functions yield similar results, and also several plausible
elasticity assumptions. The simulations are influenced by the number of bids per plant. Simulations
perform best when they combine inelastic demand, reinforcement learning, competitive initial beliefs
and single-bin bids.

The paper has several implications. First, some preceding work makes choices that are not
consistent with economic theory in our simple setting. There might be an important venue for
research in checking the robustness of previous findings to alternative assumptions. Second, fu-
ture modelling efforts should also incorporate more systematic robustness tests. Just as much as
Cournot, Bertrand, Stackelberg or Supply Function Equilibria are widely used despite yielding dif-
ferent results, it might be appropriate for ACE researchers to use different algorithms. This paper
underlines the need to understand, justify, and even sometimes exploit what each modelling choice
entails.

Still, we have not included all possible assumptions. For example, we have left out variable
marginal costs and behavioural rules like genetic algorithms and Q-learning that are also prominent,
and we have not compared the implications of different convergence definitions. Furthermore, our
strongest result relates to fictitious play. Its main difference with best response is mainly one of
memory, so that how much memory to retain and how it should decay, are intriguing, and still
unresolved, algorithmic questions.

Furthermore, this paper focuses on electricity markets. We should continue doing similar ex-
ercises in other settings, as in Fagiolo et al. (2007), Leombruni et al. (2007), Marks (2007) and
Midgley et al. (2007). Finally, the question of which models fit best to real data is complementary
to our research and deserves future attention both in the behavioural laboratory (e.g. Duffy, 2006)
and empirically if ACE is to be more commonly used.

Appendix A: Supply functions

We show here how one can construct the market supply functions. For simplicity we assume that
marginal costs are zero (c = 0) and firms can only use one bin (m = 1). First take the case of
stepwise bidding. We proceed as follows. First, we order the “bids” from lowest to highest. Abusing
of the notation, we denote them here as b1, b2, ...bn. The horizontal sum of the individual supply
functions S(q) can be defined as

S(q) ≡ bi for κi−1 < q < κi (i = 1, ..., n) where κi ≡ i kn and κ0 ≡ 0.

Market clearing occurs at where this equation and the demand intersect. The market price bp is
given by bp = bj where j is the unique index which satisfies κj−1 < Q(bj) < κj .

Second, take the case of supply function bidding. Again, order the “bids” (b(s)) from lowest to
highest and abusing of the notation, denote them as b01, b

0
2, ...b

0
n. As shown in the text, the linear

supply schedule for each firm i is given by min{ b0i
kn
q, Ψ}, which is an increasing linear function

from (0, 0) until (kn, b0i) capped at Ψ. Denoting b
0
0 = 0, the horizontal sum of the individual supply
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functions S0(q) can be defined as

S0(q) ≡ min{
¡
b0i − b0i−1

¢
q + b0i−1κ

0
i − b0iκ

0
i−1

κ0i − κ0i−1
,Ψ} for κ0i−1 < q < κ0i (i = 1, ..., n),

where

κ0i ≡
Ã
i− 1 +

nP
j=i

b0i
b0j

!
kn and κ00 ≡ 0.

Market clearing occurs at where this equation and the demand intersect. The market price bp can
be found by solving the following implicit equation

bp = ¡
b0i − b0i−1

¢
Q(bp) + b0i−1κ

0
i − b0iκ

0
i−1

κ0i − κ0i−1
.

Appendix B: Proofs

Proof of Proposition 5

For part (a) note that bnu = K/ (K −Q(0)) is the unique solution to (n− 1)kn = Q(0).
For part (b), suppose first that firms can only use one bin and they bid using stepwise bidding

functions. Suppose that all but firm i are bidding equal to the marginal costs and firm i is bidding
at p∗m. Firm i has no incentive to deviate since it is setting the monopoly price given the actions
of the others. The other firms do not have an incentive to deviate either (1) at a price equal to the
monopoly price because they would sell less at the same price; or (2) at a price below the monopoly
because they would earn exactly the same. If p∗m < Ψ, the remaining firms could set a price above
the monopoly price. The optimal deviation should then be at a price marginally above p∗m, but the
deviator would sell less at the corresponding price.

For part (c), it is not profitable to unilaterally deviate because the remaining firms would serve
the demand. Standard Bertrand arguments imply that this equilibrium is unique.

The equilibria is the same if firms can use multiple step bids per firm. Given the uniform
pricing, the price-setting firm(s) cannot do better if the other firms submit the lowest bid for all
their bins. The equilibria in the case of supply function bidding are essentially the same. Firms
can again submit (almost) flat bids at the marginal cost level and almost flat bids at the price cap
level.

Proof of Corollary 6

For part (a), substituting,

p∗m = arg max
0≤p≤Ψ

(p− c)

∙
Q̄− u

(Ψ− v)
(p− v)− (n− 1)K

n

¸
.

Clearly, p∗m is never binding from below. The Kuhn-Tucker conditions,

Q̄− u

(Ψ− v)
(p− v)− (n− 1)K

n
− (p− c)

u

(Ψ− v)
− λ = 0 and λ(Ψ− p) = 0

20



and the second derivative is negative (and therefore a maximum). If λ = 0, then

p∗ =
(Ψ− v)

2u

µ
Q̄+

u(v + c)

(Ψ− v)
− (n− 1)K

n

¶
,

whereas if λ > 0 then p∗ = Ψ. Deriving, in the interior case,

∂p∗

∂n
= −K

n2
1

2 u
(Ψ−v)

< 0.

For part (b), evaluating the demand at p∗, we have

Q(p∗) =
1

2

µ
Q̄− u(c− v)

(Ψ− v)
+
(n− 1)K

n

¶
=

Q(c) + (n− 1)kn
2

,

and deriving with respect to n
∂Q(p∗m)

∂n
=

K

2n2
=

kn
2n

.

Now, we have that the derivative of the relative quantities sold (and therefore profits) of a price-
setting with respect to a non-price setting firm are

∂ [Q(p∗m)/kn − (n− 1)]
∂n

=
∂Q(p∗m)

∂n kn − ∂kn
∂n Q(p

∗
m)

k2n
− 1

and given that ∂kn
∂n = −kn/n, we have

∂ [Q(p∗m)/kn − (n− 1)]
∂n

=
Q(c) + nkn
2nkn

− 1 = Q(c)− nkn
2nkn

< 0

since Q(p) ≤ K = nkn for all p, and in particular that Q(c) ≤ nkn.
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No. Paper Journal Research question Wholesale supply 
representation

Wholesale demand 
representation

Behavioural algorithm

1 Bagnall and Smith (2005) IEEE-Trans Replication of human behaviour in the 
UK market

Single price bid per firm Inelastic demand Hierarchical classifier 
systems

2 Banal and Rupérez Micola 
(2009)

ManSci Technological diversification and 
pivotal dynamics

Single price bid per plant 
and supply functions

Inelastic and elastic 
demands

Reinforcement learning 
(Roth-Erev)

3 Bower and Bunn (2000) EnJor Uniform price and discriminatory 
auctions

Single price bid per plant Elastic demand Reinforcement learning

4 Bower and Bunn (2001) JEDC Uniform price and discriminatory 
auctions

Single price bid per plant Elastic demand Reinforcement learning

5 Bower et al. (2001) EnPol Industrial consolidation in Germany Single price bid per plant Elastic demand Reinforcement learning
6 Bunn and Martoccia (2005) EnEcon Tacit collusion Single price bid per plant Inelastic demand Reinforcement learning
7 Bunn and Oliveira (2001) IEEE - Trans Provide pricing and strategic insights, 

ahead of NETA's introduction in the 
Price / quantity bid per plant Double-sided call auction Best-response dynamics 

(Fictitious-play) with 
8 Bunn and Oliveira (2003) Annals of OR Test whether two dominant generators

could profitably influence wholesale 
price in the UK

Price / quantity bid per plant Double-sided call auction Combination of best-
response dynamics 
(Fictitious-play) and 
reinforcement learning

9 Bunn and Oliveira (2007) EJOR Co-evolution of plant portfolios and 
spot prices

Quantities bidding Elastic demand Best-response dynamics 
(Cournot)

10 Bunn and Oliveira (2008) OR Co-evolution of plant portfolios and 
spot prices

Quantities bidding Elastic demand Best-response dynamics 
(Cournot)

11 Cincotti et al (2005) Proc. SPIE Effect of market microstructure and 
costs on prices

Supply functions Inelastic demand Reinforcement learning

12 Day and Bunn (2001) JRE Analyse divestures and their impact of 
market power in the UK pool

Piecewise supply functions Elastic demand Best-response dynamics 
(Cournot)

13 Day and Bunn (2009) JEDC Analyse market power in the UK pool Piecewise supply functions Elastic demand Best-response dynamics 
(Cournot)

14 García et al. (2005) OR Dynamic price formation and 
hydropower behaviour

Single price bid per plant Inelastic demand Best-response dynamics 
(Fictitious-play)

15 Nanduri and Das (2007) IEEE-Trans Test of model on a simple electricity 
network

Single price bid per firm Inelastic demand Reinforcement learning 
(Roth-Erev)

16 Nicolaisen et. al. (2001) IEEE-Trans Market structure, market power and 
efficiency

Single price bid per firm Double-sided call auction Reinforcement learning 
(Roth-Erev)

17 Richter and Sheblé (1998) IEEE-Trans Wholesale market simulation Single price bid per firm Double-sided call auction Genetic algorithm
18 Rupérez Micola and Bunn JEBO Horizontal cross-holdings Single price bid per firm Double-sided call auction Reinforcement learning 
19 Rupérez Micola et al. (2008) JEBO Vertical integration Single price bid per firm Inelastic demand Reinforcement learning 

(Roth-Erev)
20 Sun and Tesfatsion (2007) CompEcon Interplay among market structure, 

protocols in relation to performance
Inelastic demand Reinforcement learning 

(Roth-Erev)

21 Veit et al. (2006) IJMEM Dynamics in forward and spot 
electricity markets

Quantities bidding Elastic demand Reinforcement learning 
(Roth-Erev)

22 Visudhiphan and Ilic (1999) IEEE meetings Dynamic learning in power markets Single price bid per firm and 
supply functions

Inelastic and elastic 
demands

Best-response dynamics

Table 1. Published papers 
The table includes an alphabetical list of electricity agent-based modelling papers published as journal 
articles, with the year of publication and abbreviated journal title. In addition, the Table briefly summarises 
the research issue in each paper together with their supply bidding, demand representation and behavioural 
algorithm assumptions. Full citations appear in the references.  



Demand assumptions
Parameters Estimates

Behaviour Bid type No. bins u Qbar
Upper sw. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat
RL Stepwise 1 0 80 5 226,87*** 136,73 -154,95*** -76,13 -38,70*** -50,38 35,13*** 45,00 8212,06***
RL Stepwise 1 0 85 7 214,96*** 215,35 -135,23*** -69,86 -26,59*** -88,34 24,37*** 69,50 8761,81***
RL Stepwise 1 0 90 10 197,31*** 254,29 -73,75*** -15,47 -13,30*** -86,59 9,69*** 20,57 4928,32***
RL Stepwise 1 5 80 7 206,12*** 134,84 -155,16*** -52,35 -33,73*** -73,20 32,61*** 60,74 3672,02***
RL Stepwise 1 5 85 10 178,75*** 107,08 -112,55*** -10,97 -17,54*** -53,06 16,40*** 16,18 1340,62***
RL Stepwise 1 5 90 12 173,95*** 128,05 -66,17** -2,04 -10,99*** -50,22 8,33** 2,95 1027,05***
RL Stepwise 1 10 80 10 155,58*** 70,59 -116,80*** -8,62 -17,06*** -39,08 17,32*** 12,94 663,89***
RL Stepwise 1 10 85 12 150,84*** 78,53 -107,04** -2,33 -11,64*** -37,60 12,63*** 3,16 541,47***
RL Stepwise 1 10 90 12 160,69*** 102,99 -53,49 -1,43 -10,16*** -40,43 7,44** 2,29 634,33***

Supply assumptions
Parameters Estimates

Behaviour Bid type No. bins u Qbar
Upper sw. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat
RL Stepwise 1 0 80 5 228,00*** 145,26 -156,18*** -81,11 -39,09*** -53,80 35,54*** 48,12 9246,67***
RL Stepwise 2 0 80 5 221,17*** 162,13 -113,89*** -68,06 -34,58*** -54,76 31,22*** 48,64 6105,71***
RL Stepwise 3 0 80 5 205,16*** 161,18 -83,90*** -53,73 -24,35*** -41,32 21,61*** 36,09 4301,83***
RL SF 1 0 80 5 223,84*** 61,97 -154,39*** -34,84 -22,90*** -13,70 16,32*** 9,60 3705,21***
RL SF 2 0 80 5 219,10*** 35,21 -75,89*** -9,94 -20,85*** -7,24 6,94** 2,37 1208,01***
RL SF 3 0 80 5 209,95*** 31,60 -77,35*** -9,49 -14,75*** -4,79 1,70 0,54 1106,47***

Behavioural assumptions
Parameters Estimates

Behaviour Bid type No. bins u Qbar
Upper sw. 

point Beta0 t-stat. 0 Beta1 t-stat. 1 Beta2 t-stat. 2 Beta3 t-stat. 3 F - stat
BR Stepwise 1 0 80 5 149,14*** 34.16 -88,99*** -16.61 -17,66*** -8.74 11,85*** 5.77 1028,69***
RL Stepwise 1 0 80 5 227,27*** 141.33 -156,57*** -79.37 -38,55*** -51.79 35,14*** 46.44 8817,67***
FP Stepwise 1 0 80 5 136,34*** 112.09 -7,92*** -5.31 -2,33*** -4.14 0.3 0.52 586,02***

Table 2: Hypotheses’ tests of breaking point regression estimates 
The parameters considered in each simulations batch are marked with boxes. The parameters outside those boxes stay 
constant. The estimates correspond to the threshold equation specified in eq. 5. Beta1 and Beta3 estimate the post-
breaking point changes in intercept and slope. They support the existence of a breaking point when they are statistically 
significant: **significant at the 0.05 level; ***significant at the 0.01 level.
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Figure 1: Examples of alternative demand and supply schedulesThree potential demands with no, low and high elasticity (purple, magenta, red, respectively)and two individual bids (green and blue) and their horizontal aggregation (black)are included in each panel. The left one is for stepwise bidding ant the right one supply function bidding
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Figure 2: Initial probability distributionsInitial cumulative distributions if prior beliefs are that opponents will initially bid (i) maximum price,(ii) minimum price,(iii) middle of the distribution, and (iv) randomly. Competition cases: n = 1 and n = 12
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Figure 3: The influence of demand specifications on pricesMean (+/- two standard deviations) of prices when demand levels areQ = {80, 85, 90} (columns 1,2,3) and elasticities u = {0, 5, 10} (rows 1,2,3)
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Figure 4: The influence of supply specifications on pricesMean (+/- two standard deviations) of prices in the stepwise (upper)and supplyfunction (lower row) cases with number of bins m = {1, 2, 3} (columns 1,2,3).
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Figure 5: The influence of behavioral assumptions on pricesMean (+/- two standard deviations) of prices in reinforcement learning (row 1), best-response (row 2),and fictitious play (row 3) assuming that prior beliefs are maximum price (column 1), random (column 2),minimum bid (column 3) and middle of the distribution (column 4)
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Figure 6: Comparison of theoretical and simulated switching pointsOptimal breaking point (+/- two standard deviations) for the demand (upper panel),supply (middle panel) and behavioural alternatives (lower panel)
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Figure 7: Latent intensity of competitionEnd of simulation cumulative distribution of probabilities if agents learn according to reinforcementlearning, best response and fictitious play. Competition cases: n = 1 and n = 12
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