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Abstract
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dynamic factor model. We find that the government spending shock is non-fundamental

for the variables commonly used in the structural VAR literature, so that its impulse

response functions cannot be consistently estimated by means of a VAR. Government

spending raises both consumption and investment, with no evidence of crowding out.

The impact multiplier is 1.7 and the long run multiplier is 0.6.
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1 Introduction

Understanding the effects of discretionary fiscal policy actions is key to assessing com-

peting theories of the business cycle and providing guidance to policymakers. Recent

developments in the conduct of fiscal policy in the US and other industrialized countries

have sparked a renewed interest in the topic. Little consensus however has emerged over

the last years: economists disagree about the sign of the response of private aggregate

demand components, in particular consumption, and, as a consequence, the magnitude

of the government spending multiplier. In their seminal paper, Blanchard and Perotti

(2002) use a VAR model and identify a government spending shock by imposing that

government spending is not affected on impact by the other shocks. The main finding is

that government spending leads to a large increase in consumption. Similar results are

obtained by Fatas and Mihov (2001), Gali, Lopez Salido, and Valles (2007), Mountford

and Uhlig (2002), and Perotti (2002, 2007), which may be included in the so-called

“government spending innovation approach”. On the contrary, Ramey and Shapiro

(1998), using a dummy variables identification approach, find that consumption falls,

implying a very small value for the government spending multiplier. Burnside, Eichen-

baum, and Fisher (2004), Cavallo (2005), Edelberg, Eichenbaum, and Fisher (1999)

and Eichenbaum and Fisher (2005) find similar results.

Recently, a few works have convincingly argued that one of the intrinsic character-

istic of fiscal policy actions is that they are anticipated (see e.g. Yang, 2007, Leeper,

Walker and Yang, 2008, Mertens and Ravn, 2009). That is, private agents receive

signals about future changes in taxes and government spending before these changes

actually take place. The reason is the existence of legislative and implementation lags:

it takes time for a policy action to be passed and implemented. The phenomenon is

called “fiscal foresight”; empirical estimates of the lag range from a few months to a

couple of years.

Leeper, Walker and Yang (2008) show that fiscal foresight poses a formidable chal-

lenge to the econometrician. The authors consider a simple neoclassical growth model

with two shocks, a technology and an anticipated tax shock. They show that the MA

representation of any pair of variables among capital, taxes and technology, is non-

fundamental ; that is, the determinant of the MA matrix has roots smaller than one

in modulus. The implication is that the variables do not have a VAR representation

in the structural shocks, so that the true fiscal policy shock and the related impulse

response functions cannot be found by estimating a VAR.

The problem can be reformulated in terms of information sets. Typically, economic

agents can see the structural shocks. By contrast, the econometrician can only observe

the economic variables. Obviously, such variables convey information about the shocks,

but if the impact effects are small and the delayed effects are large, such information
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is not enough to recover the shocks (Lippi and Reichlin, 1993).

Persuasive evidence that the information set used in the VAR fiscal policy literature

is indeed too poor is provided in Ramey (2009). Ramey shows that the fiscal policy

shock obtained by using a VAR similar to the one in Perotti (2007) is not an innovation

with respect to available macroeconomic information, being Granger-caused by the

forecast of government spending from the Survey of Professional Forecasters.

In recent years a few works have tried to overcome the problem posed by fiscal

foresight. Two different strategies have been adopted. On the one hand, Mertens and

Ravn (2009) estimate the effects of government spending shocks using the methodology

proposed by Lippi and Reichlin (1994), based on Blaschke matrices. On the other

hand, some authors augment the VAR with variables presumably conveying better

information about discretionary fiscal policy actions. Ramey (2009) constructs two

series for exogenous government spending shocks: one is based on narrative evidence for

defense spending, the second is based on the Survey of Professional Forecasters. Fisher

and Peters (2009) identify government spending shocks with statistical innovations to

the accumulated excess returns of large US military contractors. Both approaches have

shortcomings. The former requires many restrictions, some of them relying on the

correct specification of the theoretical model; moreover, the structural shocks cannot

be estimated consistently. As for the latter, it is hard to judge whether the additional

variables included in the VAR are fully successful in capturing the relevant information.

In this paper we depart from the VAR approach and use instead a large structural

factor model. The motivation is that, as argued in Forni, Giannone, Lippi and Reich-

lin (2009), large factor models are not affected by the non-fundamentalness problem.

The basic intuition is that these models typically use most of the available macroeco-

nomic information and this helps in closing the gap between the information set of the

econometrician and that of economic agents.

To better understand how non-fundamentalness arises and how the factor model can

avoid the problem, let us start from a vector MA representation, obtained from a DSGE

model. Typically the number of variables is larger than the number of shocks, so that we

have a rectangular, “tall” MA system. As we shall show, for such systems, observing the

variables is equivalent to observing the shocks, and the non-fundamentalness problem

is not there. In the model of Leeper, Walker and Yang (2008), for instance, the tall

system made up by the three state variables and the two shocks is fundamental (see

Section 2).

Unfortunately, a rectangular system cannot be estimated by using standard VAR

techniques. This is because observed series do not have reduced dynamic rank: by

estimating a VAR with n variables, we end up with n linearly independent residuals

and find too many structural shocks. In order to estimate a VAR we have to ignore
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some variables and “cut” the tall system to get a square one. But in such a way we

open the door to non-fundamentalness.

The factor model follows an alternative strategy to handle the reduced rank prob-

lem. It retains all of the variables and adds measurement errors. Since the number

of variables is very large, and the errors are poorly correlated across section, we can

get rid of them by taking suitable linear combinations of the variables (the principal

components). In such a way we end up with a fundamental, rectangular system which

can be estimated consistently by means of a reduced rank VAR technique.

Let us now summarize our main findings.

To begin, we find that the government spending shock is non-fundamental for the

variables commonly used in the structural VAR literature. Precisely, we select a few

square sub-matrices of our tall impulse-response matrix, corresponding to standard

VAR specifications. Then we compute the smallest root of the determinant and find

that in most cases it is smaller than one in modulus.

Then we identify a government spending shock by using sign restrictions (Uhlig,

2005). More specifically, an expansionary government spending shock is defined as a

shock having a positive effect on government expenditure, output, prices, the prime

rate, the government primary deficit and tax receipts (the last inequality is imposed

to distinguish the government spending shock from a tax shock). All restrictions are

imposed only on responses delayed by six months (the third coefficient of the impulse

response functions), so that the impact effect on all variables, and in particular gov-

ernment expenditure, is left unrestricted to avoid the fiscal-foresight criticism.

The main results are the following. First, our estimated shock, unlike the VAR

shock, passes Ramey’s Granger-causation test, i.e. it is not caused by the forecast of

government spending from the Survey of Professional Forecasters. Second, the shape

of the impulse response functions suggests that actually there is a great deal of antic-

ipation. After an immediate and significant increase, government spending gradually

rises and reaches its maximum, which is about two times larger than the initial effect,

after a couple of years. By contrast, the effect on consumption is transitory and reaches

its maximum on impact. Finally, there is no evidence of crowding-out. Consumption

reacts positively to the fiscal shock. More surprisingly, the reaction of total investment

is positive and significant on impact and becomes negative only in the long-run. Our

estimated multiplier is 1.7 on impact, reaches its maximum, 2.2, after 3 quarters and

then declines towards its long-run value, about 0.6.

The remainder of the paper is organized as follows: Section 2 discusses non-fundamentalness;

Section 3 presents the factor model; Section 4 shows results; Section 5 concludes.
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2 Fundamentalness, structural VARs and fiscal foresight

2.1 Fundamentalness in square and tall systems

Let us consider the statistical MA representation

χt = B(L)ut, (1)

where χt = (χ1t · · ·χnt) ′ is an n-vector of weakly stationary variables, B(L) is a (n×q)
matrix of rational functions in the lag operator L, with n ≥ q, and ut = (u1t · · ·uqt) ′ is
a q-dimensional white-noise normalized to have identity variance-covariance matrix.

By equation (1), χt lies in the space spanned by present and past values of ut, i.e.

χt ∈ Hu
t = span(u,j = 1, . . . , q, τ ≤ t). However, the converse does not necessarily

hold. If it does, i.e. ut ∈ Hχ
t , we say that representation (1) is fundamental and ut is

fundamental for χt. In such a case, observing χt is equivalent to observing ut, in the

sense that Hu
t = Hχ

t . Moreover, by the uniqueness of the orthogonal decomposition,

(B(L) − B(0))ut is the projection of χt onto its own past Hχ
t−1 and B(0)ut is the

residual, i.e. the innovation of the information set Hχ
t . 1 A fundamental white noise

is not unique, but it is easily seen that if vt is also fundamental, then it is a linear

transformation of ut. By contrast, non-fundamental white-noise vectors can be obtained

from ut by applying linear filters that involve the future of ut and the so-called Blaschke

matrices (see e.g. Lippi and Reichlin, 1994).

If B(z) is rational, as assumed above, we can characterize fundamentalness in terms

of its rank: representation (1) is fundamental if, and only if, the rank of B(z) is q for

all z such that |z| < 1 (see e.g. Rozanov, 1967, Ch. 1, Section 10, and Ch. 2, p. 76).

In the particular case n = q, such condition reduces to the requirement that detB(z)

does not vanish within the unit circle in the complex plane.2

Our main point here is that, as argued in Forni, Giannone, Lippi and Reichlin

(2009), there is a substantial difference between the case n = q, on one hand, and

n > q, on the other hand. In the former case, the determinant is a rational function,

which generally vanishes somewhere and may well vanish within the unit circle. In

the latter case, B(z) is a “tall”, rectangular matrix; its rank is less than q for some z

only if all of the (q × q) sub-matrices of B(z) are singular. Hence in general B(z) is

“zeroless”, i.e. has rank q for all z, and non-fundamentalness is very unlikely. More

precisely, letting p be the l-vector whose entries are the parameters of B(L) and Π ∈ Rl

the set of all possible p, in the case n > q fundamentalness holds generically (i.e. the

subset of Π where fundamentalness does not hold is meagre), whereas in the case n = q

fundamentalness is not generic.

1Conversely, if B(0)ut is the innovation of Hχ
t , ut is fundamental for χt.

2Observe that invertibility implies fundamentalness, but the converse does not hold, because if the

rank falls for some unit modulus z, we do not have invertibility.
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Consider for instance the simple case n = 2, q = 1, χ1t = ut + b1ut−1, χ2t =

ut + b2ut−1. Now consider the square subsystem made up by the first equation: ut

is non-fundamental for χ1t if and only if |b1| > 1. In this case, the fundamental

representation is χ1t = ηt + b−1
1 ηt−1, ηt =

(
(1 + b1L)/(b1 + L−1)

)
ut.

3 Similarly ut is

non-fundamental for χ2t if and only if |b2| > 1. However, the tall system made up by

both equation is non-fundamental if and only if b1 = b2 and |b1| > 1. Observe that ut

is generally fundamental for χt even if it is non-fundamental for both χ1t and χ2t.

2.2 Fundamentalness and VAR models

Now let us assume that (1) is derived as the solution of a DSGE model, so that the

variables in χt are the macroeconomic variables of interest, the entries of ut are struc-

tural shocks and B(L) is a matrix of impulse-response functions (whose coefficients are

functions of the deep parameters of the model). The number of variables n is typically

larger than the number of shocks q, so that B(L) is a tall matrix and χt is dynamically

singular (i.e. its spectral density matrix has reduced rank q).

ut is the innovation of the information set of economic agents. This is quite reason-

able even if ut is not directly observable, because, as noted above, ut will be fundamental

for χt, except for negligible cases, implying that B(0)ut is the residual of the projection

of χt, which we assume observable, onto its own past Hχ
t−1.

At this stage the economist passes on the baton to the econometrician. The aim is

to estimate B(L) and ut, starting from the information in Hχ
t . Unfortunately, macroe-

conomic series are not dynamically singular, perhaps because χt is observed with error.

By estimating an n-dimensional VAR we would end up with n linearly independent

shocks, in conflict with the theory. The standard strategy is then the following: (i)

selecting a square, q-dimensional subsystem, say

χ∗t = B∗(L)ut; (2)

(ii) estimating the VAR A(L)χ1t = εt to find out the innovations εt = B∗(0)ut and

the MA filter A(L)−1 = B∗(L)B∗(0)−1; (iii) identifying B∗(0), and therefore represen-

tation (2), by imposing the normalization B∗(0)B∗(0)−1 = Σε along with identifying

restrictions derived from theoretical considerations.

However, as argued above, the square subsystem could be non-fundamental, or,

equivalently, the reduced information space used by the econometrician, Hχ∗

t , could be

smaller than the one of the agents, Hu
t . In such a case, ut is not a linear transformation

of εt, so that step (ii) is wrong and the VAR cannot produce the correct result, whatever

be the identification scheme adopted in (iii). Obviously, the choice of the subsystem in

3Observe that the Blaschke factor b(L) =
(
(1 + b1L)/(b1 + L−1)

)
is such that b(z)b(z−1) = 1, so

that the spectral density of ηt is constant and ηt is white noise.
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step (i) may be relevant, but, as shown in the example below, a fundamental subsystem

does not necessarily exist.

2.3 A fiscal foresight example

Leeper, Walker and Yang (2008) show that fiscal shock non-fundamentalness in VAR

models naturally arises in an economy with fiscal foresight.4 Starting with a standard

growth model with log preferences and inelastic labor supply, the authors obtain the

equilibrium capital accumulation equation

kt = λ1kt−1 − λ−1
2

∞∑
i=0

θiEt(ν0at+i+1 − ν1at+i + ψτt+i+1) (3)

where kt, at and τt denote the log of capital, the log of technology and the tax rate,

respectively, in deviation from the steady state. The parameters appearing in the above

equation are functions of the deep parameters of the model; from the theory we know

that |θ| < 1 (θ is a discount rate). Technology and taxes follow the exogenous law of

motions

at = uA,t

τt = uτ,t−2

where uτ,t and uA,t are i.i.d. shocks that economic agents can observe. The second

equation says that the effect of fiscal policy on taxes is delayed by two periods.

Solving for kt we get5

atkt
τt

 =

 0 1
−λ−1

2 ψ(L+θ)
1−λ1L

λ−1
2 ν1

1−λ1L
L2 0

(uτ,t
uA,t

)
= B(L)ut

Let us consider the square subsystem given by the first two rows (technology and cap-

ital): the determinant
λ−1
2 ψ(z+θ)
1−λ1z vanishes for z = −θ, which is less than 1 in modulus.

Similarly, the determinant of the submatrix given by the first and the last rows of B(z)

(technology and taxes) is z2, which vanishes for z = 0. Finally, the determinant of the

subsystem formed by the second and the last row (capital and taxes) also vanishes for

z = 0. In conclusion, ut = (uτ,tuA,t)
′ is non-fundamental for any pair of variables on

the left-hand side, implying that standard VAR techniques are unable to correctly es-

timate the fiscal shock. To better appreciate the role of anticipation, observe that with

4Simple examples of non-fundamentalness in economic models can also be found in Lippi and Re-

ichlin (1993) and Fernández-Villaverde, Rubio-Ramirez, Sargent and Watson (2006).
5Strictly speaking the system is just a block of the model since for simplicity we abstract from

consumption. However the implications discussed later remain unchanged.
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no implementation delay (τt = uτ,t), ut would be fundamental for all of the subsystems,

whereas, with a one-period delay (τt = uτ,t−1), fundamentalness would still hold for the

subsystem with taxes and capital. Intuitively, the variables convey information about

the current values of the fiscal shock, as long as they are contemporaneously affected by

such shock. In presence of implementation delay, taxes are not affected on impact, and

therefore do not provide useful information. Capital is more helpful; however, if the

delay is larger than one period, its contribution is not sufficient to recover the shock.

Let us now consider the whole system. ut is fundamental for χt, since B(z) is

zeroless, i.e. has rank 2 everywhere in the complex plane. In fact, it is easily seen that

χt has the reduced rank VAR representation6
1 0 0

λ−1
2 ψL 1− λ1L 0

ν1(L−θ)L2

ψθ2
(L−θ)(1−λ1L)L2

λ−1
2 ψθ2

1− L2

θ2


atkt
τ̂t

 =

 0 1

−λ−1
2 ψθ λ−1

2 ν1

0 0

(uτ,t
uA,t

)
.

Put differently, present and past values of the three variables, capital, taxes and technol-

ogy, are sufficient to estimate the two shocks. Unfortunately, standard VAR techniques

cannot be used to this end. In the next section we present a structural factor model,

whose core is a tall system like the one above. Such a system can be consistently

estimated through appropriate procedures.

3 The large factor model

3.1 Representation

In the present section we provide a presentation of our model and estimation procedure.

For additional details see Forni, Giannone, Lippi and Reichlin (2009), FGLR from now

on.

A convenient assumption, which is standard in the large factor model literature, is

that there are infinitely many variables xit, i ∈ N. The econometrician observes the

first n of them, and consistency results are obtained for both n and T (the number of

time observation) going to infinity.

Each macroeconomic variable is the sum of two mutually orthogonal unobservable

components, the common component χit and the idiosyncratic component ξit:

xit = χit + ξit. (4)

The idiosyncratic components are poorly correlated in the cross-sectional dimension

(see FGLR, Assumption 5 for a precise statement). They arise from shocks or sources

6Notice that the VAR representation has finite order. Existence of a finite VAR representation is a

general property for zeroless tall rational systems (Anderson and Deistler 2008).
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of variation which considerably affect only a single variable or a small group of variables;

in this sense, we could say that they are not “macroeconomic” shocks. For variables

related to particular sectors, like industrial production indexes or production prices,

the idiosyncratic component may reflect sector-specific variations (with a slight abuse

of language we could say “microeconomic” fluctuations); for strictly macroeconomic

variables, like GDP, investment or consumption, the idiosyncratic component must be

interpreted essentially as a measurement error. With equation (1) in mind it is easily

seen that the factor model can be interpreted as the log-linear solution of a DSGE

model augmented with a measurement error.7

The common components are responsible for the main bulk of the co-movements be-

tween macroeconomic variables, being linear combinations of a relatively small number

r of factors f1t, f2t, · · · , frt, not depending on i:

χit = a1if1t + a2if2t + · · ·+ arifrt = aift. (5)

Such factors can be interpreted as the state variables of the economic system.

The dynamic relations between the macroeconomic variables arise from the fact

that the vector ft follows the relation

ft = N(L)ut, (6)

where N(L) is a r × q matrix of rational functions in the lag operator L and ut =

(u1t u2t · · · uqt)′ is a q-dimensional vector of orthonormal white noises, with q < r.

Such white noises are the structural macroeconomic shocks.8

Since N(L) is tall, the discussion in the previous section motivate the assumption

that N(z) is zeroless, i.e. rankN(z) = q for any z, which implies fundamentalness. This

ensure that ft has the finite order VAR representation (Anderson and Deistler, 2008)

D(L)ft = εt = Rut, (7)

where D(L) is a r×r matrix of polynomials such that D(L)−1R = N(L) and R = N(0).

From equations (4) to (7) it is seen that the model can be written in the dynamic

form

xit = bi(L)ut + ξit, (8)

7See also Altug, 1989, Sargent, 1989, and Ireland 2004 for the link between factor models and DSGE

models.
8In the large dynamic factor model literature they are sometimes called the “common” or “primitive”

shocks or “dynamic factors” (whereas the entries of ft are the “static factors”). Equations (4) to (6)

need further qualification to ensure that all of the factors are loaded, so to speak, by enough variables

with large enough loadings (see FGLR, Assumption 4); this “pervasiveness” condition is necessary to

have uniqueness of the common and the idiosyncratic components, as well as the number of static

factors r and dynamic factors q.
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where

bi(L) = aiN(L) = aiD(L)−1R. (9)

The entries of the q-dimensional vector bi(L) are the impulse-response functions.

Observe that, under appropriate regularity conditions on the factor loadings ai,
9

the linear space spanned by the χ’s includes the factors, so that ut is fundamental

for the χ’s. Moreover, since the idiosyncratic components are poorly correlated across

sections and the x’s are infinite in number, by taking appropriate averages of the x’s

we can kill the idiosyncratic components and obtain the factor without error. We can

restate this by saying that ut is fundamental for the x’s.

3.2 Identification

Representation (8) is not unique, since the impulse-response functions and the related

primitive shocks are not identified. In particular, if H is any orthogonal q × q matrix,

then Rut in (7) is equal to Svt, where S = RH ′ and vt = Hut, so that χit = ci(L)vt,

with ci(L) = bi(L)H ′ = aiD(L)−1S. However, assuming mutually orthogonal struc-

tural shocks, post-multiplication by H ′ is the only admissible transformation, i.e. the

impulse-response functions are unique up to orthogonal transformations, just like in

structural VAR models (FGLR, Proposition 2). As a consequence, structural analysis

in factor models can be carried on along lines very similar to those of standard SVAR

analysis.

To be precise, let us assume with no loss of generality that economic theory implies

a set of restrictions on the impulse-response functions the first m ≤ n variables, n being

the number of variables in the data set. Let us write such functions in matrix notation

as Bm(L) = (b1(L)′b2(L)′ · · · bm(L)′)′. Given any non-structural representation
χ1t

...

χmt

 = Cm(L)vt, (10)

along with the relation

Bm(L) = Cm(L)H, (11)

if theory-based restrictions on Bm(L) are sufficient to obtain H, then Bn(L) is uniquely

determined (global identification). If the researcher, as is the case in the fiscal foresight

literature, is interested in identifying just a single shock, along with the related impulse

response functions (partial identification), the target is to determine the entries of a

single column of the matrix H, say H1, which is enough to get the first column of

Bn(L), say Bn1(L).

9see FGLR, Assumption 4.
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In the present paper we do not identify uniquely the shock and the impulse-response

functions; rather, following Uhlig (2005), we identify a distribution of shocks and re-

lated impulse-response functions by imposing a set of sign restrictions on the impulse-

response functions themselves.10 The first column H1 of the matrix H is a point on

the unit sphere Sq−1. Given the non-structural representation Cn(L)vt, the sign re-

strictions that we impose on Bm1(L) define an admissible region Θ on the unit sphere,

such that for H1 ∈ Θ Bm1(L) = Cn(L)H1 satisfies such inequalities. Following Uhlig

(2005), we assume a uniform a priori probability density in the region Θ. This in

turn implies a density and the associated confidence bounds for each coefficient of the

impulse-response functions.

3.3 Estimation

As for estimation, we proceed as follows. First, starting with an estimate r̂ of the

number of static factors, we estimate the static factors themselves by means of the first

r̂ principal components of the variables in the data set, and the factor loadings by means

of the associated eigenvectors. Precisely, let Γ̂x be the sample variance-covariance

matrix of the data: our estimated loading matrix Ân = (â′1â
′
2 · · · â′n)′ is the n×r matrix

having on the columns the normalized eigenvectors corresponding to the first largest r̂

eigenvalues of Γ̂x, and our estimated factors are f̂t = Â′n(x1tx2t · · ·xnt)′. The intuition

behind this estimation method is that by taking appropriate linear combinations of

a large number of variables (the principal components), the idiosyncratic components

vanish, owing to their poor cross-sectional correlation. Therefore we are left with

r independent linear combinations of the χ’s, which are a basis of the linear space

spanned by the factors.11

Second, we set a number of lags p̂ and run a VAR(p̂) with f̂t to get D̂(L) and ε̂t.

Now, let Γ̂ε be the sample variance-covariance matrix of ε̂t. As the third step, having an

estimate q̂ of the number of dynamic factors, we obtain an estimate of a non-structural

representation of the common components by using the spectral decomposition of Γ̂ε.

Precisely, let µ̂εj , j = 1, . . . , q̂, be the j-th eigenvalue of Γ̂ε, in decreasing order, M̂ the q×
q diagonal matrix with

√
µ̂εj as its (j, j) entry, K̂ the r×q matrix with the corresponding

normalized eigenvectors on the columns. Setting Ŝ = K̂M̂, our estimated matrix of

non-structural impulse response functions is

Ĉn(L) = ÂnD̂(L)−1Ŝ. (12)

Consistency of the above estimation procedure (as both the cross-sectional and the

10The precise set of restrictions that we impose is discussed below.
11Indeed, the factors are identified only up to linear transformations. What we estimate is a basis of

the factor space.
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time dimension go to infinity) is proven in FGLR.

To account for estimation uncertainty, we adopt the following standard non-overlapping

block bootstrap technique. Let X = [xit] be the T × n matrix of data. Such matrix is

partitioned into S sub-matrices Xs (blocks), s = 1, . . . , S, of dimension τ × n, τ being

the integer part of T/S.12 An integer hs between 1 and S is drawn randomly with

reintroduction S times to obtain the sequence h1, . . . , hS . A new artificial sample of

dimension τS × n is then generated as X∗ =
[
X ′h1X

′
h2
· · ·X ′hS

]′
and the correspond-

ing impulse-response functions are estimated. A set of non-structural impulse-response

functions is obtained by repeating drawing and estimation.

Finally, we obtain a distribution of impulse-response functions by imposing our

sign identification restrictions. Precisely, we proceed as follows. For each artificial

sample X∗ we compute the corresponding non-structural impulse response functions

Ĉn(L). Then we draw N times a vector H1 by drawing its q entries from a standard

normal distribution and normalize by dividing by its Euclidean norm and retain the

related vector of impulse response functions B̂n1(L) = Ĉn(L)H1 as long as it satisfies

the sign restrictions. This gives a distribution of estimated B̂n1(L)’s. We get a point

estimate and the related confidence bands by retaining the mean along with the relevant

percentiles of such a distribution.13

3.4 Discussion

FGLR is a special case of the generalized dynamic factor model proposed by Forni,

et al. (2000, 2004, 2005) and Forni and Lippi (2001, 2010). This model differs from

the traditional dynamic factor model of Sargent and Sims (1977) and Geweke (1977) in

that the number of cross-sectional variables is infinite and the idiosyncratic components

are allowed to be mutually correlated to some extent, along the lines of Chamberlain

(1983), Chamberlain and Rothschild (1983) and Connor and Korajczyk (1988). Closely

related models have been studied by Forni and Reichlin (1998), Stock and Watson

(2002a, 2002b, 2005), Bai and Ng (2002, 2007), Bai (2003) and Bernanke et al. (2005).

Factor models impose a considerable amount of structure on the data, implying

restricted VAR relations among variables (see Stock and Watson, 2005 for a compre-

hensive analysis). In this sense, they are less general than VAR models. The advantage

is that factor models are much more parsimonious in terms of parameters to estimate,

so that they can handle a large number of time series. This is crucial in the present

12Note that τ has to be large enough to retain relevant lagged auto- and cross-covariances In the

present paper we set τ = 19.
13Here we impose an upper bound (10) to the number of impulse-response functions to retain for each

step of the bootstrap procedure in order to avoid that a single bootstrap provide a disproportionately

large number of functions.
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context, since, as shown in the previous section, non-fundamentalness arises from in-

formation deficiency. As a matter of fact, large dimensional factor models have proven

useful in solving well known VAR puzzles (Bernanke et al., 2005, Forni and Gambetti,

2010).

To gain some additional insight about the reason why the factor model solves the

non-fundamentalness problem, let us go back to the economic model (1). We have

seen that, if it contains only q variables, χjt, j = 1, . . . , q, fundamentalness of ut is not

ensured, the reason being possible superior information of the agents with respect to

present and past values of χjt, j = 1, . . . , q. However, the informational advantage of the

agents disappears if the econometrician observes additional macroeconomic variables.

Intuitively, this is because, when shifting from a square system to a tall one, we are

enlarging information, without adding sources of uncertainty. The generating processes

of χjt, j = q + 1, . . . , n, have impulse response functions which, in all likelihood, are

sufficiently heterogeneous, with respect to the first q, to prevent the rank reduction

which is equivalent to non-fundamentalness. The χ’s are only observed with error;

however, we also assume that n is large, so that we can get rid of them using large-

dimensional factor-model techniques.

It should be clear from the previous subsection that the core of our estimation

procedure is (i) estimation of the factor space trough principal components and (ii)

estimation of the VAR (7) with the principal components. One may wonder why such

VAR is not affected by the non-fundamentalness problem. The answer is that the VAR

for the principal components is singular (i.e. the residuals are asymptotically singular).

This would not be the case for a VAR with r variables, otherwise we could directly

estimate system (1).

Let us notice here that the FAVAR model proposed by Bernanke et al. (2005),

while being similar in some respects to the factor model used here, assumes r = q.

This feature of the model, besides being at odds with empirical data according to

existing information criteria (see below), is particularly unappealing in light of the

above arguments.

Finally let us stress again that, as already argued in Section 2, the q-dimensional

square submatrices of N(z) = D(z)−1R appearing in equation (6) can be singular for

values of z within the unit circle, without hurting consistency of estimation. Similarly,

if we take a q-dimensional vector of integers I, such that Ii ≤ n, i = 1, . . . , q, then ut

can be non-fundamental for the subvector (χI1t · · ·χIqt)′ = BI(L)ut = AIN(L)ut and

detBI(z) can vanish within the unit circle.

This is interesting because we can estimate the smallest root of some selected square

subsystems and verify whether the corresponding impulse response functions are indeed

non-fundamental, implying a problem for VAR estimation.
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4 Empirics

4.1 Data and model specification

The data set contains 106 quarterly macroeconomic series spanning from 1959:I to

2007:IV. It includes fiscal policy variables, GDP and components, industrial production

indexes, labor market variables, stock market variables, surveys, leading indicators,

price indexes and deflators, money and credit aggregates, long- and short-term interest

rates. The data are transformed to reach stationarity, as required by the model. The

full list of variables along with the corresponding transformations is reported in the

Appendix. All series are taken from FRED Database, Federal Reserve Bank of St.

Louis.

Before estimation we need to specify the number of static factor, r̂, the number of

shocks, q̂, and the number of lags, p̂. To determine r̂ we use the ICp2 criterion of Bai

and Ng (2002), which gives r̂ = 13. We fix p̂ = 3.

As for q̂, Table 1 shows the results of the test proposed by Onatski (2009). Each

cell reports the probability value of the null of just k (columns) shocks against the

alternative of j (rows) shocks, with k + 1 ≤ j ≤ h.14 For instance, the element 2,2 in

the matrix is the p-value of the test of the null of k = 1 against the alternative of j = 2.

The null of k = 1, ..., 5 shocks is rejected at the 10% level against the alternative of six

shocks. For k = 4, 5 the null is rejected even at the 5%. However the null k = 6 is

not rejected against any of the alternatives. These results support a six-shock model

specification.

The number of shocks can also be determined by a few consistent information

criteria. Here we use three groups of criteria, proposed by Amengual and Watson

(2007), Bai and Ng (2007) and Hallin and Liska (2007). The criterion B̂N
ICP

(ŷA) by

Amengual and Watson gives 6 primitive factors in the ICp1 version and 4 primitive

factors in the ICp2 version (with r̂ = 13 and p̂ = 3). The four criteria of Bai and Ng

(2007), namely q1, q2, q3 and q4, give 5, 6, 5 and 4 shocks respectively (with r̂ = 13 and

p̂ = 3).15 Finally, the log criterion proposed by Hallin and Liska gives 3 shocks for all

of the proposed penalty functions (independently of the initial random permutation).

In summary, information criteria do not provide a unique result, the number of shocks

being between 3 and 6. Here we conclude in favor of a six-shock specification, which

results from the Onatski tests and is consistent with the range emerging from available

14The test has two parameters identifying the lower and the upper bound of the frequencies of

interest. Since we are mainly interested in business cycle fluctuations, we set these parameters in such

a way as to include waves of periodicity between 2 and 12 years.
15The Bai and Ng criteria have two parameters. We set δ = .1 for all criteria and m(q1) = 1.1,

m(q2) = 1.9, m(q3) = 1.8, m(q4) = 4. Such values produced good results in our simulations (not shown

here).
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information criteria.

4.2 The smallest root of some selected sub-systems

In this subsection we investigate whether the government spending shock is fundamental

for the variables which have been commonly used in the VAR literature.

We consider seven different variables specifications (listed in Table 2a) correspond-

ing to seven different choices of I (see Section 3.4), denoted Ij j = 1, ..., 6. For each

specification we compute the modulus of the smallest root of the determinant of the

corresponding impulse response functions BIj (L). The roots are computed for the real

data as well as all the bootstrap repetitions, so that the whole distribution is available.

Table 1b shows the mean, the median, a few percentiles of the distribution and the

point estimate. For all j the mean is smaller than one, ranging from 0.57 to 0.89. For

the first three specifications, the probability of the smallest root to be smaller than

one in modulus is higher than 90%. Notice that specification 2 is quite common and

similar to that used in Ramey (2009). For the last two specifications the percentiles

are slightly higher. In particular stock prices seem particularly helpful in capturing the

fiscal shock, since for the specification including this variable (j = 5) the median is

nearly one. Notice also that for j = 5, 6 the point estimate is slightly larger than one.

We also consider two four-variable specifications (recall that q̂ = 4 is within the

range indicated by the information criteria). Both include government spending, output

and taxes. One includes consumption, the other investment. These two specifications

are particularly interesting because correspond to those used in Blanchard and Perotti

(2002) and Gali et al. (2007). In both cases the mean and the median of the modulus of

the smallest root are around 0.5 and the 90th percentile is smaller than one. Moreover

the point estimate is much smaller than one. Again, strong evidence in favor of non-

fundamentalness of the government spending shock for standard VAR specifications

emerges.

We conclude that, first, standard VAR models are unable to properly recover

the effects of government spending shocks, independently of the identification scheme

adopted; second, including forward looking variables like stock prices in the VAR can

be helpful to estimate the shock.

4.3 Identifying restrictions

Identification of the government spending shock is achieved by means of sign restric-

tions (Uhlig, 2005).16 Precisely, an expansionary shock is defined as a shock having a

positive effect on government expenditure, output (GDP and industrial production),

16Sign restrictions for the identification of government spending shocks are used also in Pappa (2009).
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prices (CPI and the GDP deflator), the prime rate, the government primary deficit

and tax receipts. The positive effect on output and prices is imposed to distinguish

the shock from a systematic spending reaction to a recessionary shock stemming from

the private sector. An increasing deficit is imposed to exclude expenditures entirely

financed with additional receipts. The last inequality is imposed to distinguish the

government spending shock from a tax shock. All of the restrictions are imposed only

on the responses delayed by six months (the third coefficient of the impulse response

functions), so that the impact effect on all variables, and in particular government

spending, is left unrestricted to avoid the fiscal-foresight criticism.

Having defined the relevant sign restrictions, we proceeded as explained at the end

of Section 3.2 to get a set of admissible impulse response functions (satisfying the

restrictions) and a set of corresponding fiscal shock series. We obtained 350 admissible

shock series out of 20,000 drawings of the rotation parameters. We took the simple

average of such series as our estimate of the fiscal shock.

Finally we performed the bootstrapping procedure explained at the end of Section

3.3 to get a posterior density distribution for the impulse response functions. We

generated 300 artificial samples X∗ and for each one of them we drew 1,000 rotation

vectors H1. We retained 1,029 admissible sets of impulse response functions. In the

pictures below we show the average along with the 16th and the 84th percentiles of the

related distribution.

4.4 Granger causation and anticipation

Having obtained our estimate of the government spending shock we verify whether

such shock passes Ramey’s Granger-causation test. As already noted, Ramey (2008)

shows that the government spending shock obtained with a VAR similar to that of

Perotti (2007) is Granger-caused by the government spending forecast from the Survey

of Professional Forecasters. Here we perform a similar exercise using our estimated

shock. Specifically, we regress the government spending shock on four lags of the shock

itself and four lags of the government spending forecast. Table 4 shows the results.

None of the parameters is statistically significant. The F-statistic obtained under the

null hypothesis that the parameters of the lags of the forecast variable are jointly zero

is 1.862, which is very much smaller than the 10% critical value. In conclusion, our

government spending shock is not Granger-caused by the government spending forecast

series.

Let us now go deeper into the analysis of government spending anticipation by exam-

ining the estimated impulse response functions. Figures 1-3 depict the reaction profile

of several variables of interest to a government spending shock which raises government

spending by one percent of GDP as the maximum effect (horizon 8). Consistently with
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the existence of implementation lags, government spending increases slowly, reaching

the maximal level after two years. About one half of the total spending takes place

immediately, half is delayed by one quarter or more. By contrast, consumption and

investment reach their maximal level either on impact (consumption), or 1-2 quar-

ters after the shock (GDP and investment). Hence, the spending is spread over time,

whereas economic agents react immediately. This seems to fit the story that agents

receive signals about changes in taxes and government spending, and react to them,

before these changes are fully in place.

4.5 Crowding-out and the multiplier

Now let us look at the reaction of GDP and its components. GDP reacts immediately,

increasing by 2%. The response stays at that level for about one year and starts

decreasing afterward, the effects being no longer significant after 6 quarters. Given

the normalization imposed, the impulse response function represents the government

spending multiplier. The estimated multiplier is 1.7 on impact, reaches its maximum,

2.2, after 3 quarters and then declines towards its long-run value, about 0.6. Confidence

bands show that the multiplier is significantly above one at horizon 2, while is not

different from zero in the long run.

The size and shape of the multiplier can be explained by looking at the response of

private consumption and investment. Both consumption and investment immediately

and significantly increase by about 1% and 3% respectively. The response of consump-

tion is very short-lived, declining and becoming not significant after the second quarter.

On the contrary, the response of investment appears to be more persistent, the effect

vanishing only after about six quarters. In the long run, the point estimate of the

response of both variables is negative, although not significant.

By inspecting the disaggregated components (Fig. 2), it is clear that the response

of aggregate investment is mainly driven by non-residential investment while residential

investment is crowded out after the nearly zero impact effect. As far as consumption is

concerned, the three components react positively and significantly on impact. Govern-

ment spending crowds-in, in the short run, private components of aggregate demand.

Results for consumption stand in sharp contrast with the standard prediction of

RBC models, where government spending shock generate negative wealth effect that

depresses consumption. They are consistent with the evidence in Blanchard and Perotti

(2002), with the remarkable difference that here the response is temporary and short-

lived, with the maximal effects observed on impact.

The response of investment contradicts the standard textbook crowding-out ef-

fect triggered by the increase in the interest rate. A positive response of investment,

however, is the outcome predicted in Baxter and King (1993) after a permanent gov-
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ernment spending shock. There, the increase in investment is caused by an increase in

the marginal productivity of capital following a sharp increase in employment which is

also found here (see Fig. 3).17

4.6 Variance decomposition

Table 2 shows the variance decomposition for several variables of interest. Columns

2-5 report the percentage of forecast error variance of the variables listed in column 1,

accounted for by the shock at various horizons. Column 6 reports the percentage of

the variance of the series, transformed to reach stationarity (e.g. inflation instead of

prices), accounted for by the shock. The shock accounts for about 25% of the variance

of government spending (both federal and total) and about 10% of the variance of

deficit and taxes. At a first sight, these numbers could seem small but recall that (i) we

are ruling out tax shocks; (ii) we are ruling out spending not increasing current deficit;

and (iii) this is discretionary policy, in that it excludes systematic reactions to shocks

stemming from the private sector.

The shock accounts for about 16%, 13% and 16% of the variance of GDP, investment

and consumption, respectively. Interestingly, the shock is more important in the very

short run (on impact it explains 21% 14% and 20% of the three variables, respectively)

than at longer horizons (at horizon 20 percentages are 9%, 8% and 9%, respectively.

4.7 Robustness

This subsection studies the robustness of the results to changes in model specification.

First let us compare the results of our benchmark specification (r = 13, q = 6) with

five alternative specifications: 1) r = 10, q = 6; 2)r = 16, q = 6; 3)r = 10, q = 4;

4)r = 13, q = 4; 5)r = 16, q = 4. Figure 4 displays the impulse response functions

of consumption and investment for the six different specifications. The first column

depicts the responses for the 4 dynamic shock specification, the second those for the

6 dynamic shock specification. Overall the results are remarkably similar both from a

qualitative and from a quantitative point of view. The only minor difference is that the

effects tend to be slightly larger in the 10 static factor specification and slightly smaller

in the 16 factor specification than in our benchmark.

We also made several other checks listed below.

1) We used the federal funds rate and the 10 year bond rate instead of the prime rate

to identify the shock.

2) We used federal government spending instead of and together with total government

17However, unlike Baxter and King (1993), here the persistent increase in labor cannot be caused by

a negative wealth effect, given that consumption increases.
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spending to identify the shock.

3) We did not restrict the interest rate.

4) We used two instead of three lags in the VAR for the factors.

5) We imposed the identifying restriction for periods 4 or/and 5.

6) We used the second (instead of first) differences of the log of prices and other nominal

variables.

7) We used the estimation procedure proposed by Forni and Lippi (2010).

In all these experiments we found the same results obtained in the benchmark model.

Overall results seem to be robust to changes in model specification.

5 Conclusions

This paper studied the effects of government spending shocks in the US using a struc-

tural, large dimensional, dynamic factor model. The main motivation is that in this

model, unlike in VARs, the shocks are fundamental even in presence of fiscal foresight.

We find that the government spending shock is non-fundamental for the variables com-

monly used in the structural VAR literature, so that its impulse response functions

cannot be consistently estimated by means of a VAR. Government spending raises

both consumption and investment, with no evidence of crowding out. The impact

multiplier is 1.7 and the long run multiplier is 0.6.
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Appendix: Data

Transformations: 1=levels, 2= first differences of the original series, 5= first differences
of logs of the original series, 5= second differences of logs of the original series.

no.series Transf. Mnemonic Long Label

1 5 GDPC1 Real Gross Domestic Product, 1 Decimal

2 5 GNPC96 Real Gross National Product

3 5 NICUR/GDPDEF National Income/GDPDEF

4 5 DPIC96 Real Disposable Personal Income

5 5 OUTNFB Nonfarm Business Sector: Output

6 5 FINSLC1 Real Final Sales of Domestic Product, 1 Decimal

7 5 FPIC1 Real Private Fixed Investment, 1 Decimal

8 5 PRFIC1 Real Private Residential Fixed Investment, 1 Decimal

9 5 PNFIC1 Real Private Nonresidential Fixed Investment, 1 Decimal

10 5 GPDIC1 Real Gross Private Domestic Investment, 1 Decimal

11 5 PCECC96 Real Personal Consumption Expenditures

12 5 PCNDGC96 Real Personal Consumption Expenditures: Nondurable Goods

13 5 PCDGCC96 Real Personal Consumption Expenditures: Durable Goods

14 5 PCESVC96 Real Personal Consumption Expenditures: Services

15 5 GPSAVE/GDPDEF Gross Private Saving/GDP Deflator

16 5 FGCEC1 Real Federal Consumption Expenditures & Gross Investment, 1 Decimal

17 5 FGEXPND/GDPDEF Federal Government: Current Expenditures/ GDP deflator

18 5 FGRECPT/GDPDEF Federal Government Current Receipts/ GDP deflator

19 2 FGDEF Federal Real Expend-Real Receipts

20 1 CBIC1 Real Change in Private Inventories, 1 Decimal

21 5 EXPGSC1 Real Exports of Goods & Services, 1 Decimal

22 5 IMPGSC1 Real Imports of Goods & Services, 1 Decimal

23 5 CP/GDPDEF Corporate Profits After Tax/GDP deflator

24 5 NFCPATAX/GDPDEF Nonfinancial Corporate Business: Profits After Tax/GDP deflator

25 5 CNCF/GDPDEF Corporate Net Cash Flow/GDP deflator

26 5 DIVIDEND/GDPDEF Net Corporate Dividends/GDP deflator

27 5 HOANBS Nonfarm Business Sector: Hours of All Persons

28 5 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons

29 5 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments

30 5 ULCNFB Nonfarm Business Sector: Unit Labor Cost

31 5 WASCUR/CPI Compensation of Employees: Wages & Salary Accruals/CPI

32 5 COMPNFB Nonfarm Business Sector: Compensation Per Hour

33 5 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour
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no.series Transf. Mnemonic Long Label

34 5 GDPCTPI Gross Domestic Product: Chain-type Price Index

35 5 GNPCTPI Gross National Product: Chain-type Price Index

36 5 GDPDEF Gross Domestic Product: Implicit Price Deflator

37 5 GNPDEF Gross National Product: Implicit Price Deflator

38 5 INDPRO Industrial Production Index

39 5 IPBUSEQ Industrial Production: Business Equipment

40 5 IPCONGD Industrial Production: Consumer Goods

41 5 IPDCONGD Industrial Production: Durable Consumer Goods

42 5 IPFINAL Industrial Production: Final Products (Market Group)

43 5 IPMAT Industrial Production: Materials

44 5 IPNCONGD Industrial Production: Nondurable Consumer Goods

45 2 AWHMAN Average Weekly Hours: Manufacturing

46 2 AWOTMAN Average Weekly Hours: Overtime: Manufacturing

47 2 CIVPART Civilian Participation Rate

48 5 CLF16OV Civilian Labor Force

49 5 CE16OV Civilian Employment

50 5 USPRIV All Employees: Total Private Industries

51 5 USGOOD All Employees: Goods-Producing Industries

52 5 SRVPRD All Employees: Service-Providing Industries

53 5 UNEMPLOY Unemployed

54 5 UEMPMEAN Average (Mean) Duration of Unemployment

55 2 UNRATE Civilian Unemployment Rate

56 5 HOUST Housing Starts: Total: New Privately Owned Housing Units Started

57 2 FEDFUNDS Effective Federal Funds Rate

58 2 TB3MS 3-Month Treasury Bill: Secondary Market Rate

59 2 GS1 1-Year Treasury Constant Maturity Rate

60 2 GS10 10-Year Treasury Constant Maturity Rate

61 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield

62 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

63 2 MPRIME Bank Prime Loan Rate

64 5 BOGNONBR Non-Borrowed Reserves of Depository Institutions

65 5 TRARR Board of Governors Total Reserves, Adjusted for Changes in Reserve

66 5 BOGAMBSL Board of Governors Monetary Base, Adjusted for Changes in Reserve

67 5 M1SL M1 Money Stock

68 5 M2MSL M2 Minus

69 5 M2SL M2 Money Stock
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no.series Transf. Mnemonic Long Label

70 5 BUSLOANS Commercial and Industrial Loans at All Commercial Banks

71 5 CONSUMER Consumer (Individual) Loans at All Commercial Banks

72 5 LOANINV Total Loans and Investments at All Commercial Banks

73 5 REALLN Real Estate Loans at All Commercial Banks

74 5 TOTALSL Total Consumer Credit Outstanding

75 5 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items

76 5 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food

77 5 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy

78 5 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy

79 5 CPIENGSL Consumer Price Index for All Urban Consumers: Energy

80 5 CPIUFDSL Consumer Price Index for All Urban Consumers: Food

81 5 PPICPE Producer Price Index Finished Goods: Capital Equipment

82 5 PPICRM Producer Price Index: Crude Materials for Further Processing

83 5 PPIFCG Producer Price Index: Finished Consumer Goods

84 5 PPIFGS Producer Price Index: Finished Goods

85 5 OILPRICE Spot Oil Price: West Texas Intermediate

86 5 USSHRPRCF US Dow Jones Industrials Share Price Index (EP) NADJ

87 5 US500STK US Standard & Poor’s Index if 500 Common Stocks

88 5 USI62...F US Share Price Index NADJ

89 5 USNOIDN.D US Manufacturers New Orders for Non Defense Capital Goods (BCI 27)

90 5 USCNORCGD US New Orders of Consumer Goods & Materials (BCI 8) CONA

91 1 USNAPMNO US ISM Manufacturers Survey: New Orders Index SADJ

92 5 USVACTOTO US Index of Help Wanted Advertising VOLA

93 5 USCYLEAD US The Conference Board Leading Economic Indicators Index SADJ

94 5 USECRIWLH US Economic Cycle Research Institute Weekly Leading Index

95 2 GS10-FEDFUNDS

96 2 GS1-FEDFUNDS

97 2 BAA-FEDFUNDS

98 5 GEXPND/GDPDEF Government Current Expenditures/ GDP deflator

99 5 GRECPT/GDPDEF Government Current Receipts/ GDP deflator

100 2 GDEF Governnent Real Expend-Real Receipts

101 5 GCEC1 Real Government Cons. Expenditures & Gross Investment, 1 Decimal

102 5 Real Federal Cons. Expenditures & Gross Investment National Defense

103 2 Federal primary deficit

104 5 Real Federal Current Tax Revenues

105 5 Real Government Current Tax Revenues

106 2 Government primary deficit
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Tables

Table 1:

1 2 3 4 5 6 7

0 0.004 0.007 0.009 0.012 0.014 0.017 0.02

1 0.107 0.192 0.258 0.317 0.085 0.099

2 0.144 0.259 0.345 0.072 0.085

3 0.825 0.821 0.056 0.072

4 0.503 0.041 0.056

5 0.023 0.041

6 0.852

Table 1: Onatsky’s test results.
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j Variables (Ij)(*)

Four shocks:

1 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11)

2 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Inv.(7)

Six shocks:

1 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), Real Wage(33), Inv. (7)

2 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), Hours(27), Inv. (7)

3 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), Real Wage(33), Hours(27)

4 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), Inv.(7), CPI(75)

5 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), Stock Prices(87), CPI(75)

6 GDP(1), Gov. Cons & Inv.(101), Taxes(105), Cons.(11), New Orders(90), Int. Rate(58)

(*) The numbers correspond to those in the Appendix.

Table 2a: Variables

j Mean Median 68% 84% 90% 95% 97.5% Point est.

Four shocks:

1 0.5013 0.472 0.7337 0.9074 0.9741 1.029 1.0599 0.2785

2 0.5878 0.6153 0.7313 0.8501 0.8989 0.9628 0.9894 0.6146

Six shocks:

1 0.5836 0.6197 0.7608 0.8749 0.9277 0.9835 1.0223 0.5274

2 0.5712 0.5919 0.7689 0.8975 0.9516 1.0082 1.0434 0.1428

3 0.6762 0.752 0.8673 0.9619 0.9947 1.0319 1.0615 0.8780

4 0.6779 0.7427 0.9064 1.0157 1.0413 1.0703 1.0919 0.6130

5 0.8963 1.0098 1.0562 1.0832 1.0967 1.1098 1.1208 1.0463

6 0.7739 0.8546 0.9624 1.0309 1.0581 1.084 1.1019 1.0920

Table 2b: Smallest roots
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Variables (*) 0 4 8 20 All

1 21.4561 13.7573 10.9514 8.9521 16.9648

7 14.1079 8.5233 7.6718 8.4006 13.1848

8 11.8079 9.7168 11.2048 13.06 13.3988

9 16.1903 10.5417 8.3779 7.6225 13.2872

11 20.5571 11.0635 9.3388 9.162 16.3087

12 23.0693 12.7522 10.3883 9.3846 17.1243

13 16.9267 10.0162 9.7537 10.7016 15.7915

14 21.7078 14.6437 12.0405 10.9197 15.9382

50 19.1684 14.4823 11.4959 10.0345 13.9778

27 17.1343 10.8643 8.822 8.1776 13.0418

92 18.6997 12.8397 10.6455 9.6934 13.9604

55 18.3024 11.6769 9.0163 8.3928 13.8712

28 17.4842 12.514 10.6369 10.5767 16.0935

33 14.574 12.8693 12.371 12.3721 14.108

36 10.9488 16.1708 17.1008 17.5155 17.2489

38 16.0135 10.7028 8.5468 7.8771 13.7549

75 13.2069 16.7301 17.22 17.3897 16.7211

58 13.2993 16.8603 15.9178 15.2425 15.2697

101 25.6751 27.1914 26.7907 22.9072 23.3843

105 7.0648 6.1469 5.577 5.652 8.997

106 7.2143 4.0555 6.0209 10.2174 9.4434

16 26.1293 28.2298 29.1133 28.7177 24.3966

103 9.6831 6.1579 8.155 12.6393 11.0775

104 7.5744 7.328 7.0476 6.9643 9.3025

(*) The numbers correspond to those in the Appendix.

Table 3: Variance decomposition
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i β̂i γ̂i

1 -0.0553 (0.1090) -0.1488 (0.2695)

2 -0.0548 (0.1105) 0.0080 (0.2567)

3 0.0382 (0.1116) 0.0146 (0.2570)

4 -0.0958 (0.1116) 0.1531 (0.2571)

F-test H0 : γi = 0, i = 1, ..., 4 F=1.862

Table 4: Granger causality. The regression is

shockt = α+
∑4

i=1 βishockt−i +
∑4

i=1 γispft−i + εt. Standard errors in parenthesis.
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Figures

Figure 1: Impulse response functions
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Figure 2: Impulse response functions.
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Figure 3: Impulse response functions.
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Figure 4: Robustness: 13 factors (solid line), 10 factors (dotted line), 16 factors

(dashed line).
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