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Abstract

Let there be a positive (exogenous) probability that, at each date, the human species will disap-
pear. We postulate an Ethical Observer (EO) who maximizes intertemporal welfare under this
uncertainty, with expected-utility preferences. Varioussocial welfare criteria entail alternative
von Neumann- Morgenstern utility functions for the EO: utilitarian, Rawlsian, and an extension
of the latter that corrects for the size of population. Our analysis covers, first, a cake-eating econ-
omy (without production), where the utilitarian and Rawlsian recommend the same allocation.
Second, a productive economy with education and capital, where it turns out that the recommen-
dations of the two EOs are in general different. But when the utilitarian program diverges, then
we prove it is optimal for the extended Rawlsian to ignore theuncertainty concerning the possible
disappearance of the human species in the future. We conclude by discussing the implications
for intergenerational welfare maximization in the presence of global warming.

Keywords: Discounted utilitarianism, Rawlsian, sustainability, maximin, uncertainty, expected
utility, von Neumann-Morgenstern, dynamic welfare maximization.
JEL Classification Numbers: D63, D81, O40, Q54, Q56.

1. Introduction1

We study the problem of intergenerational welfare maximization when the existence of future2

worlds is uncertain. One of the major examples of this problem today concerns global warming,3

and how to structure resource use intertemporally in its presence. The theoretical issues raised by4

uncertainty are quite complex, and in the interest of clarity, we will study only two simple models5

in this article – and neither of them explicitly models the effect of production on the biosphere6

and global temperature. In a companion paper (Llavador, Roemer, and Silvestre, 2009), we7

study a more complex version of the second model of this article, which does take into account8

the biosphere as a renewable resource: but that paper studies only the case with no uncertainty9

✩We are indebted to a referee for detailed and useful suggestions. Klaus Nehring, Andreu Mas-Colell and Geir
Asheim provided helpful comments. We thank the audiences invarious presentations, in particular in the European
General Equilibrium Workshop in Honor of Andreu Mas-Colell, Barcelona, June 2009. We also thank Cong Huang for
his collaboration on the proof of the Turnpike Theorem. The usual caveat applies. Financial support from the BBVA
Foundation is gratefully acknowledged.

1The author acknowledges the support of the Barcelona GSE, ofthe Government of Catalonia, and of the Spanish
Ministerio de Educación y Ciencia (SEJ2006-09993/ECO).
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concerning the existence of future generations. The conclusions of the present paper suggest10

some inferences for the more complex problem.11

We study several (intergenerational) social welfare functions: utilitarian, Rawlsian, ‘extended12

Rawlsian,’ and ‘Rawlsian with growth.’ The Rawlsian function is identified with the view of13

sustainability, in a model with production.2 Sustainability, in our parlance, means sustaining14

human welfare over time at the highest possible level. This is often called ‘weak sustainability,’15

to be contrasted with ‘strong sustainability’, which advocates sustaining the physical stock of16

bio-resources – species variety, forests, and so on. (See, for instance, Neumayer, 2003, and17

the articles in Asheim, 2007.) In another dimension, it is tobe contrasted with the discounted-18

utilitarian approach, which does not advocate sustaining human welfare over time, but rather the19

maximization of a weighted sum of generational welfare levels.20

There is a literature on Rawlsian social choice in the dynamic context, beginning with Arrow21

(1973), Dasgupta (1974), Solow (1974) and (Phelps and Riley, 1978). As far as we know, how-22

ever, there is no literature on the Rawlsian problem when theexistence of future generations is23

uncertain.24

In the next section, we introduce an Ethical Observer (EO) who has von Neumann – Mor-25

genstern preferences over the future history of the world. These preferences can be utilitarian,26

Rawlsian or extended Rawlsian. We show that the EO’s expected utility, evaluated at the lottery27

which specifies stochastically when the human species will come to an end, gives rise either to28

‘discounted utilitarianism’ or ‘discounted sustainabilitarianism,’ depending on the EO’s prefer-29

ences. We apply these criteria to two alternative economies.30

First (Section 3), we consider a ‘cake-eating’ model: thereis a single non-produced con-31

sumption good that must be allocated over all future generations. The perhaps surprising result32

is that the sustainabilitarian and the utilitarian recommend exactly the same solution to the cake-33

eating problem (Theorem 1). Thus, these two apparently verydifferent social preference orders34

do not differ in their optimal choice in this simple economy.35

We introduce in Section 4 a generalization of the classical Solow economic growth model.36

There are two links between generations: investment, whichdetermines the change in capital37

stock, and education, which determines the transmission ofskill to the next generation. It is38

obvious that the utilitarian and sustainabilitarian cannot in general choose the same path in this39

model, for with some parameter values, the discounted utilitarian program diverges, while the40

discounted sustainabilitarian program always has a (finite) solution. Nevertheless, we show that41

if the discounted utilitarian program converges, and if theinitial capital-labor ratio of the econ-42

omy is sufficiently large, then the two programs do have the same solution (Corollary, Section43

4.4). A fundamental result for this model is a Turnpike Theorem (Theorem 4), which we prove.44

More important, perhaps, is the case when the discounted utilitarian program diverges – in-45

deed, given the characterization of when this occurs (Theorem 5), this may be the empirically46

salient case. The remarkable result is that in this case, thesolutions of thediscountedsustainabil-47

itarian program (in the sense of the extended Rawlsian EO) and undiscountedsustainabilitarian48

program are identical (Theorem 6). This case occurs when theeconomy is sufficiently produc-49

tive, and the result says that great productivity renders itoptimal for the sustainabilitarian EO to50

ignore the uncertainty concerning the possible disappearance of the human species in the future.51

We consider this the most important result of our analysis.52

2Calling the intergenerational welfare function ‘Rawlsian’ may lead to some confusion. We mean ‘maximin’ applied
to the society consisting of an infinite number of generations. It is well known that Rawls himself, however, did not
advocate ‘maximin’ for the intergenerational problem.
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Some readers may find ‘sustainability,’ as we model it, too stark, as it precludes the increase53

in the welfare of the representative generational agent over time. In Section 4.5, we introduce54

growth, and study optimal paths when it is specified that welfare should grow at some exoge-55

nously specified rateg over time.56

As noted above, when the initial capital-labor ratio is above a certain lower bound, the dis-57

counted utilitarian and sustainabilitarian programs havethe same solution. In the Appendix we58

compute an example showing how the optimal paths of these twoprograms differ when the initial59

capital-labor ratio is below this bound and the utilitarianprogram converges.60

In Section 4.6, we focus upon the case when the discounted utilitarian program diverges,61

and we note that, if an overtaking criterion is applied to order divergent paths, then the EO62

would recommend almost starving the early generations. We contrast this with the discounted63

sustainabilitiarian, who in this case recommends equal utility for all future generations. We find64

the latter recommendation much more appealing.65

Section 5 concludes and offers some conjectures about the generalization of our results to the66

problem of intertemporal distribution in presence of global warming.67

2. Ethical Observers68

Consider an economy that will exist for an infinite number of generations; there is one repre-69

sentative agent at each date. Denote the generic utility stream by (u1, u2, . . . ) ≡ {ut}
∞
t=1.70

Let P be an abstract set of feasible infinite utility streams, which may depend on a vector of71

initial conditions. Asocial welfare functionis a real-valued function with domainP. If the social72

welfare function of the planner, whom we call an Ethical Observer (EO), isΩ : P→ℜ, then she73

maximizesΩ(u1, u2, . . . ) onP.74

For example, if the EO isutilitarian, then her maximization program is75

Program U. max
∑∞

t=1 ut subject to (u1, u2, . . . ) ∈ P.76

If the EO is a Rawlsian maximinner (i. e., sustainabilitarian), then her maximization program77

is78

max inf{u1, u2, . . . } subject to (u1, u2, . . . ) ∈ P,

which can also be written:79

Program SUS. maxΛ subject to (u1, u2, . . . ) ∈ P, ut ≥ Λ,∀t ≥ 1.80

“SUS” stands forsustainability: the economy is sustainable if it chooses a path that guar-81

antees a certain level of human welfare forever. Note that inprogramsU andSUSthere is no82

uncertainty concerning the existence of future generations.83

We now introduce uncertainty by assuming that there is an exogenous probabilityp ∈ (0, 1)84

that mankind will become extinct at each date, if it has not done so already.85

The exogeneity ofp is a simplifying assumption: in many realistic applications, such as86

climate change, the policies adopted may well alter the probabilities of survival of mankind.87

Our postulate of an exogenousp implies that the EO cannot influence the lengthT of human88

history, i. e., the size of population across time, allowingus to focus on choosing potential utility89

levels, whileT is randomly variable but exogenous. Whether a generation exists or not is, in our90

model, independent of the choices of the EO, enabling us to sidestep the well-known dilemmas91

of population ethics (see, e. g., Parfit, 1982, 1984).92
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We suppose that the preferences of the EO satisfy the expected utility hypothesis. An out-93

come (or ‘prize’) is defined by a dateT, interpreted as the last date before extinction, and a util-94

ity vector (u1, u2, . . . , uT). Accordingly, her von Neumann-Morgenstern (vNM) utilityfunction95

is defined on outcomes (T; u1, u2, . . . , uT), with vNM utility valuesW(T; u1, u2, . . . , uT). Under96

our assumption of exogenous probabilities, the EO’s choiceof a path (u1, u2, . . . ) ∈ P defines a97

lottery with expected utility98

p W(1;u1) + p (1− p) W(2;u1, u2) + p(1− p)2W(3;u1, u2, u3) + . . .

= p
∞
∑

t=1

(1− p)t−1W(t; u1, u2, ., ut). (1)

The vNM utility of a utilitarian EO if the world lastsT dates and she has chosen the path99

(u1, u2, . . . ) is100

WU(T, u1, . . . , uT) ≡
T

∑

t=1

ut,

and the expected utility of (u1, u2, . . . ) is101

pu1 + (1− p)p(u1 + u2) + (1− p)2p(u1 + u2 + u3) + . . . (2)

By grouping the terms in (2), it becomes102

u1p(1+ (1− p) + (1− p)2 + . . . )+

u2(1− p)p(1+ (1− p) + (1− p)2 + . . . ) +

u3(1− p)2p(1+ (1− p) + (1− p)2 + . . . ) + . . .

=

∞
∑

t=1

(1− p)t−1ut. (3)

This immediately justifies the view that the utilitarian Ethical Observer should be, in the103

presence of uncertain future worlds, adiscounted utilitarian, with the following optimization104

program.105

Program DU. max
∑∞

t=1 ϕ
t−1ut subject to (u1, u2, . . . ) ∈ P, with ϕ ≡ 1− p.106

We believe this is, indeed, the most solid justification for the discounted-utilitarian ethic.3
107

Note, however, that the discount factor,ϕ ≡ 1− p, should be very close to one, assuming thatp is108

very close to zero.4 Indeed, we cannot justify, using this approach, the relatively small discount109

factors that are often used in intergenerational welfare economics.110

3Many economists attempt to justify the use of a discount factor on the grounds that individuals discount the utility
they will receive at a later period in their lives. This fact can only justify using such a (subjective) discount factor inthe
context of a model with an infinite number of generations if weview the problem as isomorphic to a problem in which
there is a single, infinitely lived agent. We cannot accept the plausibility of such an isomorphism. Just because an indi-
vidual may today discount his future utility does not imply that ethical observers, today, are entitled to discount the utility
of future generations. This point was clearly stated by Ramsey (1928) in his pioneering work on the theory of saving,
who wrote, “One point should be emphasized more particularly; we do not discount later enjoyments in comparison with
earlier ones, a practice which is ethically indefensible and arises merely from weakness of the imagination; we shall,
however, in Section II, include such a rate of discount in some of our investigations.”

4Indeed the Stern Review (2007) choosesϕ = 0.999 per annum, which we believe is reasonable. Nordhaus (2008),
on the contrary, uses the low discount factor 0.985.
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On the other hand, suppose that the EO is Rawlsian (or sustainabilitarian): she wishes to111

maximize the minimum utility of all individuals who ever live. In this case her vNM utility112

function is113

WR(T; u1, . . . , uT) = min{u1, u2, . . . , uT}, (4)

and her expected utility associated with the path (u1, u2, . . . ) is p
∑∞

t=1(1− p)t−1 min{u1, . . . , ut}.114

Her optimization program is then the following one.115

Program R. maxp
∑∞

t=1(1− p)t−1 min{u1, . . . , ut} subject to (u1, u2, . . . ) ∈ P.116

Klaus Nehring, Andreu Mas-Colell and Geir Asheim have objected (in private communica-117

tions) to (4) for the following reason. Interpreting the vNMvalues asex postutilities, the EO118

will never ex postprefer a longer time span to a shorter one with the same utility values for119

the dates present in both, i. e., she willex postweakly prefer the outcome (T; ū1, . . . , ūT) to120

the outcome (T + τ; ū1, . . . , ūT , uT+1, . . . , uT+τ), and she will actually prefer the shorter one if121

ut < min{ū1, . . . , ūT} for somet > T. Consider for instance the outcomes (5; ¯u, ū, ū, ū, ū− ε) and122

(4; ū, ū, ū, ū). In the second case, humans disappear at date 5; in the first case, at date 6, and the123

last generation has almost the utility of the previous ones.Yet the EO under formulation (4) must124

ex postprefer the second, shorter outcome. Note that this preference violates the “mere addition”125

desideratum in Parfit’s population ethics (Parfit, 1982).126

As indicated, the difficulty is not critical under our assumption of an exogenousp, because127

our EO chooses,ex ante,lotteries with fixed probabilities, rather than outcomes. For instance,128

under our assumption of constant, exogenous probability, the EO would certainly choose the129

lottery (ū, ū, ū, ū, ū − ε, 0, 0, . . . ) over the lottery (¯u, ū, ū, ū, 0, 0, 0, . . . ). But the problem would130

become serious werep endogenous. Indeed, the well-known criticisms of the maximin approach131

become more telling in the presence of an endogenously variable population.132

Nehring’s suggestion is that we modify the vNM utility function to be133

WN(T; u1, . . . , uT) = T min{u1, u2, ., uT}. (5)

Thus, in the example just given, the EO wouldex postprefer the first outcome as long asε <134

ū
5. Formulation (5) confers a powerful role to the lengthT of human history. But this too could135

be problematic were the probability of extinction endogenous and, accordingly, the EO could136

influenceT: the resulting tradeoff betweenT and the sustainable utility level min{u1, u2, ., uT}137

could then lead to Parfit’s (1984) “repugnant conclusion.”5
138

More generally, the EO may adopt a vNM utility function of theform139

Wβ(T; u1, . . . , uT) = (1+ (T − 1)β) min{u1, u2, ., uT}, (6)

with β ∈ [0, 1], which reduces to (4) whenβ = 0 and to (5) whenβ = 1. An EO with the vNM140

utility function of (6) will be called anExtended Rawlsian EO.141

We study the optimization programs of the various EO’s in twoparticular economic models:142

the cake-eating economy, and the education and capital economy, which yield quite different143

results. We will say that two programs areequivalentif one possesses a solution if and only if144

the other possesses a solution, and when both possess a solution, the solutions are the same.145

5We are indebted to the referee for this comment.
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Our main result in the cake-eating economy is the equivalence between programsDU and146

R: the Rawlsian (or sustainabilitarian) ethical observer and the utilitarian ethical observer make147

identical choices in the presence of uncertain future worlds.148

In the education and capital economy, ProgramDU may diverge or converge: our main result149

there is that, ifDU diverges, then, for anyβ ∈ [0, 1], the EO’s optimization problem under the150

vNM of (6), which, as noted, includes as special case ProgramR, is equivalent to the uncertainty-151

free programSUS: the Extended Rawlsian EO can thenignore uncertainty.152

We conclude this section with a lemma.153

Lemma 1. If “ (uR
1 , u

R
2 , . . . ) solves Program R⇒ uR

t ≥ uR
t+1,∀t ≥ 1” and “ (uDU

1 , uDU
2 , . . . ) solves154

Program DU⇒ uDU
t ≥ uDU

t+1 ,∀t ≥ 1,” then Programs R and DU are equivalent.155

Proof. Note that min{u1, u2, ., ut} = ut, ∀t ≥ 1, if and only ifut ≥ ut+1,∀t ≥ 1, in which case the156

objective function of ProgramR is p
∑∞

t=1(1− p)t−1ut, and ProgramR can be rewritten as157

Program CDU. maxp
∑∞

t=1(1− p)t−1ut subject tout ≥ ut+1,∀t ≥ 1 and (u1, u2, . . . ) ∈ P.158

The objective function of ProgramCDU is that of ProgramDU multiplied by the positive159

constantp. If “( uDU
1 , uDU

2 , . . . ) solves ProgramDU ⇒ uDU
t ≥ uDU

t+1 ,∀t ≥ 1,” then the constraints160

ut ≥ ut+1 can be added to ProgramDU, which then becomes equivalent to ProgramCDU.161

Remark. Lemma 1 cannot cover the Extended Rawlsian EO withβ > 0, who has a different162

objective function.163

3. The cake-eating economy164

Postulate an economy with a single good, non-producible andinitially available in the amount165

ω. A consumption path is written (y1, y2, . . . ), whereyt is the consumption of the agent (or166

generation) alive at datet. For t = 1, 2, . . . , the utility function of Agentt is denoted ˜u : ℜ+ →167

ℜ : yt 7→ ũ(yt), and assumed to be increasing. Hence, a consumption path (y1, y2, . . . ) induces the168

utility path (u1, u2, . . . ) = (ũ(y1), ũ(y2), . . . ). Takingω = 1, the set of feasible consumption paths169

isℑ ≡ {(y1, y2, . . . ) ∈ ℜ∞+ :
∑∞

t=1 yt ≤ 1}, with the set of feasible utility pathsP = {(u1, u2, . . . ) ∈170

ℜ∞ : ∃(y1, y2, . . . ) ∈ ℑ such thatut = ũ(yt),∀t ≥ 1}.171

Thediscounted utilitarianprogramDU specializes to ProgramDU1, as follows, in the cake-172

eating economy.173

Program DU1. max
∑∞

t=1 ϕ
t−1ũ(yt) subject to

∑

yt ≤ 1, yt ≥ 0, ∀t ≥ 1.174

Lemma 2. If (yDU
1 , yDU

2 , . . . ) solves Program DU1, then yDU
t ≥ yDU

t+1 ,∀t ≥ 1.175

Proof. Suppose that for someT, yDU
T+1 > yDU

T . Then switch these two terms, and the new policy176

strictly dominates (yDU
1 , yDU

2 , . . . ), because the coefficients of the objective function ofDU1 are177

strictly decreasing. Contradiction.178

The Rawlsian ProgramRbecomes, in the cake-eating economy, ProgramR1, as follows.179

Program R1.

max
{

pũ(y1) + p(1− p) min{ũ(y1), ũ(y2)} + p(1− p)2 min {ũ(y1), ũ(y2), ũ(y3)} + . . .
}

subject to
∑

yt ≤ 1, yt ≥ 0, ∀t ≥ 1.
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Lemma 3. If (yR
1 , y

R
2 , . . . ) solves Program R1, then yRt ≥ yR

t+1,∀t ≥ 1.180

Proof. Appendix.181

Theorem 1. Programs DU1 and R1 are equivalent, and yt ≥ yt+1,∀t ≥ 1, at any solution.182

Proof. Immediate from Lemmas 1-3.183

Theorem 1, perhaps surprisingly, tells us that the RawlsianEO behaves just like a discounted184

utilitarian –and uses the same discount factor.185

We now analyze the (common) solutions to programsDU1 andR1.186

Theorem 2. Letũ be concave, differentiable onℜ++ and increasing, and suppose thatlimy→0 ũ′(y)187

= ∞ (i. e., ũ satisfies an “Inada condition”). If(yDU
1 , yDU

2 , . . . ) solves Program DU1, then188

yDU
t > 0 for all t.189

Proof. Appendix.190

Example 1 in the Appendix provides a utility function ˜u : ℜ2
++ → ℜ (concave, increasing,191

differentiable) for which programsDU1 andR1 donot possess a solution.192

The next theorem studies the case when the derivative of ˜u at zero is finite.193

Theorem 3. Let ũ be strictly concave, increasing, and differentiable onℜ+, with ũ′(0) = γ < ∞.194

Then Program R1 possesses a unique solution(yR
1 , y

R
2 , . . . ), and there is a date T such that yR

t = 0195

for all t ≥ T.196

Proof. Appendix.197

We may thus summarize as follows, for functions ˜u which are strictly concave, increasing,198

and differentiable except perhaps at zero:199

1. When programsDU1 or R1 have a solution, then the solution is unique and identical: the200

Rawlsian EO and the discounted utilitarian EO make exactly the same recommendation201

(Theorems 1-3).202

2. If ũ′(0) < ∞, then a solution to programsDU1 andR1 does exist. Furthermore, there is a203

T such that the optimal policy awards zero resource to all dates t ≥ T: both the Rawlsian204

EO and the discounted utilitarian EO prescribe zero consumption for all sufficiently distant205

generations (Theorems 1-3).206

3. If limy→0 ũ′(y) = ∞, and if there is a solution to programsDU1 andR1, then the solution207

impliesyt > 0 for all t: both the Rawlsian EO and the discounted utilitarian EO prescribe208

positive consumption for all generations (Theorems 1-2).209

4. There are functions ˜u : ℜ2
++ → ℜ with limy→0 ũ(y) = −∞ for which programsDU1 or R1210

have no solution. But if ˜u′(yt) does not approach infinity too fast asyt approaches zero,211

then a solution exists (see Example 1 and its discussion in the Appendix).212
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4. An economy with education and capital213

4.1. The model214

At datet, the available amount of labor, measured in skill units and denotedxt, is partitioned215

into three parts: leisure (xl
t), labor used in the production of commodities (xc

t ) and labor used216

to educate the next generation (xe
t ). Utility depends on consumption (ct) and leisure, and is217

given by the functionu: when no confusion is likely, we will denoteut = u
(

ct, xl
t

)

. Physical218

capital (sk
t ) and labor produce output according to the production function f (sk

t , x
c
t ): output is219

partitioned into consumption and investment (it). The initial endowment is the pair of stocks220

(xe
0, s

k
0) ∈ ℜ2

++. Given the initial endowment, a path for the economic variables is feasible if it221

satisfies the following inequalities for∀t ≥ 1:222

(1− δ)sk
t−1 + it ≥ sk

t (law of motion of capital), whereδ ∈ (0, 1) is the depreciation rate,

f (sk
t , x

c
t ) ≥ ct + it (technology for the production of output),

ξ xe
t−1 ≥ xe

t + xc
t + xl

t (education technology).

The last inequality models the technology of education: thequantity of skilled labor at the223

next datet is simply a multipleξ of the efficiency units of labor devoted to teaching at datet − 1.224

Thusξ , which will turn out to be a key parameter, is the rate at whichskilled labor can reproduce225

itself intergenerationally, or, in another locution, the student-teacher ratio.226

The problem is non-traditional in one way: utility depends not upon raw leisure but upon227

educated leisure. Thus, we assume that a person’s leisure activities are more fulfilling, if she228

is more highly educated. One might challenge this as an elitist view, but we insist upon it,229

as we believe that education opens up for the individual increasing opportunities for the use of230

leisure. We may think of education as permitting the diversification of the leisure resource, which231

increases its usefulness. In the words of Martin Wolf (2007):232

The ends people desire are, instead, what makes the means they employ valuable.233

Ends should always come above the means people use. The question in education234

is whether it, too, can be an end in itself and not merely a means to some other end235

– a better job, a more attractive mate or even, that holiest ofcontemporary grails, a236

more productive economy.237

The answer has to be yes. The search for understanding is as much a defining char-238

acteristic of humanity as is the search for beauty. It is, indeed, far more of a defining239

characteristic than the search for food or for a mate. Anybody who denies its intrin-240

sic value also denies what makes us most fully human.241

On the role of education in production, we are reminded of therecent work of Goldin and242

Katz (2008), who argue that the main reason for the excellentperformance of the American243

economy in the twentieth century was universal education. Similar points have been made with244

respect to South Korea and Japan. Of course, the Goldin-Katzclaim is somewhat different from245

ours –theirs is based on the growth of consumption, while ours is based on the centrality of the246

educational technology for growth of welfare.247

We impose the following assumption. The Cobb-Douglas hypotheses could be dispensed248

with in some of the results, but we adopt them for convenienceand to shorten some of the249

arguments.250
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Assumption A.251

(a) Cobb-Douglas Utility Function: u(c, xl) = cα(xl)1−α, α ∈ (0, 1);252

(b) Cobb-Douglas Production Function: f (sk, xc) = (sk)θ(xc)1−θ, θ ∈ (0, 1);253

(c) ξ > 1.254

The sustainability programSUSspecializes to ProgramSUS2[xe
0, s

k
0], as follows, in the edu-255

cation and capital economy.256

Program SUS2[xe
0, s

k
0].

maxΛ subject to

(vt) u(ct, x
l
t) ≥ Λ, t ≥ 1,

(at) (1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

(bt) f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

(dt) ξ xe
t−1 ≥ xe

t + xc
t + xl

t, t ≥ 1.

We have written the dual variables in parentheses for futureuse.257

We state a turnpike theorem for theSUS2 program.258

Theorem 4(Turnpike Theorem).259

A. There is a rayΓ ∈ ℜ2
+ such that, if(xe

0, s
k
0) ∈ Γ, then the solution path of Program260

SUS2[xe
0, s

k
0] is stationary.261

B. If (xe
0, s

k
0) < Γ, then along the solution path the sequence((xe

1, s
k
1), (xe

2, s
k
2), . . . ) converges262

to a point inΓ.263

C. Along the solution path, all constraints hold with equality (in particular, utility is constant264

over t).265

D. The solution to SUS2[xe
0, s

k
0] is unique.266

Proof. Appendix.267

Figure 1 illustrates the Turnpike Theorem. The solution path determined by initial conditions268

off rayΓ has constant utility, and it has the property that, along this path, the sequence converges269

to a point inΓ.270

4.2. Discounted utilitarianism: the convergence conditionϕ < 1/ξ271

The discounted utilitarian programDU of Section 2 specializes to programDU2[ϕ, xe
0, s

k
0],272

as follows, for the education and capital economy.273

Program DU2[ϕ, xe
0, s

k
0].

max
∞
∑

t=1

ϕt−1u
(

ct, x
l
t

)

subject to

(1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

f
(

sk
t , x

c
t

)

≥ ct + it, t ≥ 1,

ξ xe
t−1 ≥ xe

t + xc
t + xl

t, t ≥ 1.
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xe
t

sk
t

RayΓ

Initial Condition
(

xe
0, s

k
0

)

t = 0

t = 1

t→ ∞

(

xe
t , s

k
t

)

along

Optimal Path

Figure 1: Convergence to rayΓ

Note that whether or notDU2[ϕ, xe
0, s

k
0] converges depends only onϕ and the initial ‘capital-274

labor ratio’σ = sk
0/x

e
0, by the homogeneity of the program. (The set of feasible paths is a convex275

cone.) We are interested in understanding the set
{

(ϕ, σ) | DU2[ϕ, xe
0, σxe

0] converges
}

.276

Theorem 5.277

A. If ϕξ > 1, then Program DU2[ϕ, xe
0, σxe

0] diverges for all
(

xe
0, σxe

0

)

∈ ℜ2
++.278

B. If ϕξ < 1, then Program DU2[ϕ, xe
0, σxe

0] converges for all(xe
0, σxe

0) ∈ ℜ2
++.279

Proof. Appendix.280

Theorem 5 is important for our theory, and perhaps surprising, for it says that the ‘power’ of281

the economy, in the sense of its capacity to cause theDU2 program to diverge, depends only on282

the efficiency of the educational technology, namely, the coefficientξ. In particular, we need no283

special assumptions on the technologyf other than the standard ones in Assumption A.284

The proof of Theorem 5 is not particularly transparent, and so we provide here a more intu-285

itive argument. Letxe
0 = 1. Suppose we can find positive numbers (σ, c, i, xc, xl) such that the286

following equations hold for some given positiveg:287

(g+ δ)σ = i, (7)

f (σ, xc) = c+ i, (8)

ξ = 1+ g+ xc + xl . (9)

Then, from an initial endowment of (xe
0, s

k
0) = (1, σ), we can produce a balanced growth path288

in which all variables grow by a rateg at each period. Just notice that the investment defined289

by (7) will makesk
1 = (1+ g)σ, that equation (9) says thatxe

1 = (1+ g)xe
0, and that the solution290

10



(c, i, xc, xl) will grow at rateg from date one onwards, invoking the fact that all three equations291

are homogeneous of degree one in the five variables. Now, in order to solve these equations, it is292

obviously necessary that 1+ g < ξ, for otherwise (9) would have no positive solution for (xc, xl).293

The interesting fact is that the converse is true as well: as long as 1+ g < ξ, we can produce294

the required solution, which would support a balanced growth path at growth rateg beginning at295

a capital-labor ratioσ. To see this, eliminatei using (7) (which will surely be positive for any296

positiveσ); then we must find (σ, c, xc, xl) positive such that:297

f (σ, xc) = c+ (g+ δ)σ,

ξ − (1+ g) = xc + xl ,

which is equivalent to finding (σ, xc) such that298

f (σ, xc) > (g+ δ)σ,

0 < xc < ξ − (1+ g).

But this can be accomplished if and only if there existsσ > 0 such that299

f (σ, ξ − (1+ g)) > (g+ δ)σ,

or, invoking the fact thatf is one-homogeneous, if and only if:300

f

(

1,
ξ − (1+ g)

σ

)

> g+ δ.

But sincef increases without bound as we increase its labor argument, we can surely findσ301

sufficiently small that this is true. Let the value of such an admissibleσ be denoted ˆσ.302

Now beginning with an arbitrary positive endowment vector (xe
0, s

k
0), we can reach the capital-303

labor ratioσ̂ in a finite number of steps; from there we take off at any desired growth rateg < ξ−1.304

Since utility is also homogenous of degree one in (c, xl), it grows at that rate too. So the growth305

factor of utility is (1 + g) < ξ. It is now clear that ProgramDU2 diverges if and only ifϕξ > 1.306

The reason the above argument is only an intuition for, rather than a proof of, Theorem 5, is307

that a proof cannot limit itself to studying only balanced growth paths.308

We remind the reader that Theorem 5 depends, as well, on our assumption that the leisure ar-309

gument of the utility function is measured in quality units,one that we strongly defend, although310

it may be somewhat controversial.311

4.3. The divergence of discounted utilitarianism and the sustainability of the extended Rawlsian312

path313

Consider the Extended Rawlsian EO, i. e., with vNM utility function given by (6) above,314

with β ∈ [0, 1]. Her optimization program for the education and capital economy can be written315

as follows.316

Program Rβ[ϕ, xe
0, s

k
0].

max
{

u1 + ϕ(1+ β) min {u1, u2} + ϕ
2(1+ 2β) min {u1, u2, u3} + . . .

}

subject tout ≡ u
(

ct, x
l
t

)

and

(1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

ξxe
t−1 ≥ xe

t + xc
t + xl

t, t ≥ 1.

11



Lemma 4. For any path(u1, u2, . . . ) ∈ ℜ∞+ , the sum
∑∞

t=1 ϕ
t−1 (1+ (t − 1)β) min {u1, . . . , ut}317

converges.318

Proof. Appendix.319

Lemma 5. If (u1, u2, . . . ) solves Program Rβ[ϕ, sk
0, x

e
0], then ut ≥ ut+1 for all t.320

Proof. Suppose to the contrary thatu2 > u1. Then it follows thatu1 = min{u1, u2}. We can321

distribute back a small amount of resources from date 2 to date 1: reduce by a small amountε322

the value ofxe
1, increasexl

1 byε, and decreasexl
2 by ξε, making the date 2 agent take the reduction323

of his skilled labor supply entirely in a reduction of leisure. This will increase the values ofu1324

and (1+ β) min{u1, u2} and will leave all other numbers(1+ (t − 1)β) min {u1, . . . , ut} unchanged325

or possibly greater. Hence, since the objective was finite byLemma 4, it is now increased, a326

contradiction. The general claim follows from an inductionargument.327

We now state our main theorem:328

Theorem 6. Let (xe
0, s

k
0) ∈ Γ. If ϕξ ≥ 1, then forβ ∈ [0, 1], any solution to Program Rβ[ϕ, xe

0, s
k
0]329

is the solution to Program SUS2[xe
0, s

k
0]. Since the solution to SUS2[xe

0, s
k
0] is unique, so is the330

solution to Rβ[ϕ, xe
0, s

k
0].331

Proof. Appendix.332

Combined with Theorem 5, we have that, if ProgramDU2 diverges, then the Extended Rawl-333

sian EO canignore uncertaintyin choosing the optimal path (at least in the case when the initial334

endowment vector lies on the rayΓ). We conjecture that Theorem 6 is true even if the initial335

endowment is not on the rayΓ.336

4.4. The case where discounted utilitarianism converges337

This section focuses on the caseβ = 0, for which ProgramRβ is just the application of the338

Rawlsian ProgramR of Section 2 above to the education and capital economy: let us refer to339

it as ProgramR2[ϕ, xe
0, s

k
0], or simply ProgramR2. We expect that, ifϕξ < 1, then the solution340

to ProgramR2 will not be the solution to ProgramSUS2, which is to say that the inequalities341

ut ≥ ut+1 of Lemma 5 will not all be satisfied with equality. Thus, the solution to the Rawlsian342

EO’s problem under uncertaintyR2 may involve decreasing utilities over time. Indeed this is true343

for ϕ sufficiently close to zero, as the following simple result shows.344

Theorem 7. Given (xe
0, s

k
0), there is a number̄ϕ > 0 such that, ifϕ < ϕ̄, then the solution to345

R2[ϕ, xe
0, s

k
0] entails u1 > u2 on the solution path.346

Proof. Appendix.347

Moreover, a consequence of Theorem 8 below is that, under ourCobb-Douglas assumptions,348

for any ϕ < 1/ξ, if the capital-labor ratiosk
0/x

e
0 is sufficiently high, then utilities are strictly349

monotone decreasing on the optimal path.350

We now ask: If theDU2[ϕ, xe
0, s

k
0] program converges, is its solution the same as the solution351

to R2[ϕ, xe
0, s

k
0]? By lemmas 1 and 5, this will be the case if, at the solution toDU2[ϕ, xe

0, s
k
0],352

utilities are weakly decreasing with time.353
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For an initial condition (sk
0, x

e
0), define the ‘capital-labor ratio’σ0 = sk

0/x
e
0. Recall that354

u(c, x) = cαx1−α, and f (s, x) = sθx1−θ. Define the following variables:355

E = (ϕξ)1/(αθ)(1− δ),

x̃c
1 =

(ξ − E)α(1− θ)
1− αθ

, x̃l
1 =

(ξ − E)(1− α)
1− αθ

, x̃e
t = Et,

c̃1 = σ
θ
0(x̃c

1)1−θ(1− δ)θ,

s̃k
t = (1− δ)tsk

0, x̃c
t = x̃c

1Et−1, x̃l
t = x̃l

1Et−1, c̃t = c̃1((1− δ)θE1−θ)t−1.

Theorem 8. Suppose thatϕξ < 1, and that sk0/x
e
0 = σ0 ≥ σ

∗ whereσ∗ is the root of the equation356

1− θ

(

x̃c
1

(1− δ)σ

)1−θ

=
c̃1

x̃l
1

(ϕξ)1/(αθ) θ (1− α)
σ (1− αθ)

.

Then the solution to DU2[ϕ, xe
0, s

k
0] is given by the geometric sequence: sk

t = s̃k
t xe

0, xe
t = x̃e

t xe
0,357

xl
t = x̃l

tx
e
0, xc

t = x̃c
t xe

0, it = 0 for all t ≥ 1.358

Proof. Appendix.359

Corollary. If ϕξ < 1 andσ0 ≥ σ
∗, then Programs DU2[ϕ, xe

0, s
k
0] and R2[ϕ, xe

0, s
k
0]360

are equivalent.361

Proof. Along the solution to ProgramDU2, we have that362

ũt = ũ1

((

(1− δ)θE1−θ
)α

E1−α
)t−1

,

whereũ1 = c̃α1(x̃l
1)1−α; thus utilities are strictly decreasing with time becauseE < 1. The result363

then follows from lemmas 1 and 5.364

What happens whenσ0 < σ∗? The solution toDU2 will not be the well-behaved solution365

of geometric decay of Theorem 8. Will, nevertheless, utilities still be monotone decreasing on366

the optimal path? Perhaps, surprisingly, the answer is in general negative. Example 2 in the367

Appendix has the property that, along the solution path to ProgramDU2, u2 > u1, whereas the368

utilities from date 2 onwards decay geometrically as in Theorem 8.369

How do the solutions toDU2 andR2 compare when they are different andDU2 converges?370

To see this, we calculate the solution toR2 for Example 2 in the Appendix. There, the Rawlsian371

EO gives higher utility to the first generation than the utilitarian EO, but the reverse is true for all372

dates after that. In fact, the ratio of utilities for the two programs is constant for dates 2 and later373

at 1.015, with the larger utility associated withDU2: this is perhaps a surprise.374

This concludes our discussion of the relationship between the DU2 andR2 programs in the375

case whereDU2 converges. Unlike the cake-eating problem, the solutions to these two pro-376

grams are not always identical –although they are identicalwhen the initial capital-labor ratio is377

sufficiently large.378

Based on Example 2 in the Appendix, we may conjecture what thegeneral solution to379

DU2[ϕ, xe
0, s

k
0] looks like in the convergent case. There will be a sequence of numbersσ̃ >380

σ∗ > σ1 > σ2 > · · · > 0, whereσ∗ is given in Theorem 8, where, ifσT > σ0 > σT+1, the first381

T dates will haveit > 0, and at dateT + 1, the capital-labor ratio will be ˜σ, at which point the382

geometric-decay solution of Theorem 8 takes over. The same pattern should be true in the solu-383

tion to ProgramR2[ϕ, xe
0, s

k
0], except that utility will be equal for all the dates when investment is384

positive.385
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4.5. Growth386

Some may find sustainability, in the sense of programSUS, to be too stark, as it leads to387

a constant level of human welfare until the disappearance ofthe species. If, however, we treat388

resources, such as the biosphere, as of limited capacity, then sustainability may be the best we389

can hope for. Nevertheless, we now introduce a program whichpermits the growth of welfare.390

Program g-SUS[xe
0, s

k
0].

maxΛ subject to

[(rt)] u(ct, x
l
t) ≥ (1+ g)t−1Λ, t ≥ 1,

[(at)] f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

[(bt)] (1 − δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

[(dt)] ξxe
t−1 ≥ xe

t + xc
t + xl

t, t ≥ 1.

Programg-SUSmaximizes date-1 welfare subject to assuring that welfare grows at rateg391

forever. Obviously, Programg-SUSbecomesSUS2 wheng = 0.392

What is the largestg for which Programg-SUSpossesses a solution? We give a partial answer393

with the next theorem.394

Definition. A balanced growth path at rate gis a path satisfying the (at), (bt) and (dt) constraints395

of Programg-SUS[xe
0, s

k
0] such that:396

sk
t = (1+ g)sk

t−1 andxe
t = (1+ g)xe

t−1, for t ≥ 1,

zt = (1+ g)zt−1 for all other variablesz ∈
{

xc, xl , i, c
}

, for t ≥ 2.

Theorem 9. Suppose that0 ≤ g < ξ − 1 and xe0 = 1. Then there exists a value sk
0 such that the397

solution to Program g-SUS[xe
0, s

k
0] is a balanced growth path at rate g. Conversely, if g≥ ξ − 1,398

then there exists no such path for any value of sk
0.6399

Proof. Appendix.400

We expect that a turnpike theorem holds for theg-SUSmodel as well, and so, if and only if401

0 ≤ g < ξ − 1, and given any value ofsk
0, Programg-SUSwill possess a solution at which all402

constraints bind, which converges to a balanced growth pathat rateg.403

4.6. Social choice when DU2[ϕ, xe
0, s

k
0] diverges404

According to Theorem 5,DU2[ϕ, xe
0, s

k
0] diverges whenϕξ > 1. The usual way of choosing405

among paths in the case of divergence is to use a version of theovertaking criterion: the latest406

proposal that we have seen along these lines is that of Basu and Mitra (2007). The utility path407

( ¯̄u1, ¯̄u2, . . . ) is at least as good as the utility path(ū1, ū2, . . . ) according to the overtaking criterion408

if there exists aT such that
∑T−1

t=1 ϕt−1 ¯̄ut ≥
∑T−1

1 ϕt−1ūt andt ≥ T ⇒ ¯̄ut ≥ ūt. This defines a pre-409

order (i. e., an incomplete order) on feasible paths when a program diverges.410

The proof of Theorem 9 showed that balanced growth paths exist for the education and capital411

economy as long asg < ξ − 1. The condition for a divergence of such a path in ProgramDU2 is412

ϕ(1+g) ≥ 1. This condition surely holds wheng is close toξ−1 becauseϕ(1+ (ξ−1))= ϕξ > 1.413

6We are not interested in the problem with negativeg.
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Let (ū1, ū2, . . . ) and (̄̄u1, ¯̄u2, . . . ) be two feasible balanced-growth paths for a given initial414

endowment (xe
0, s

k
0) which grow at ratesg1 andg2, respectively, whereg2 > g1. It is easy to see415

that (̄̄u1, ¯̄u2, . . . ) is better than the utility path (¯u1, ū2, . . . ) according to the overtaking criterion.416

But it is also the case that utility will be smaller for the early date(s) on the preferred path. (To417

grow forever faster requires making early sacrifices.) Thisis interesting, because discounted418

utilitarianism is usually associated with implying that the later generations sustain low utility.419

This, however, is only the case when the program converges. Indeed, as the proof of Theorem 9420

shows, as the growth rateg approaches its unattainable supremum (ξ−1) (and these high-growth-421

rate paths are the most desirable paths according to the overtaking criterion), the utility of the422

first generation approaches zero. We do not take this as a criticism of overtaking: rather, it is a423

criticism of discounted utilitarianism.424

In contrast, as Theorem 6 showed, ifϕξ ≥ 1, then the solution to ProgramR2[ϕ, xe
0, s

k
0]425

entails constant utility for all generations, at the highest possible level at which such a level can426

be sustained. We find this distinctly superior, from the ethical viewpoint, to the recommendation427

of the discounted utilitarian.428

Finally, we note that the case of divergence may be the salient one. By definition,ξ =429

xt/xe
t−1 = xt/ (τext−1), whereτe is the fraction of the labor force of generationt−1 that is devoted430

to teaching. As a rough approximation, assume that population growth is zero and that skill431

growth is zero; thenxt = xt−1 and so, ifτe ≈ 0.05, we haveξ ≈ 20. Since we have suggested,432

following Stern (2007), thatϕ = 0.999 is appropriate, we have thatϕξ is substantially larger than433

one.434

5. Conclusion435

In the cake-eating problem, we showed that two Ethical Observers, facing uncertain possible436

future worlds, who have utilitarian and Rawlsian von Neumann Morgenstern preferences over437

risk, respectively, would recommend the same allocation ofthe exhaustible resource over future438

generations. At first blush, it seems surprising that these two Observers, with apparently very439

different preferences, would agree on the recommended path. Thebest analogy we can think440

of is with the solution to the problem withno uncertaintyconcerning the existence of future441

generations, and afinite horizon. The utilitarian and the Rawlsian will recommend the same442

allocation of the exhaustible resource in this case –namely, split it equally among all generations.443

This solution is unique only ifu is strictly concave –ifu is linear, then the utilitarian is indifferent444

among all possible distributions of the resource.445

We then introduced a generalization of the classical growthmodel, which includes an educa-446

tion sector. Moreover, we postulated that welfare depends on consumption and educated leisure.447

Now, the program of the utilitarian Ethical Observer, in thepresence of uncertainty, does not448

always converge, while the program of the sustainabilitarian (i. e., Rawlsian) does. We charac-449

terized when the former program converges (Theorem 5), and we showed that when it doesnot450

converge, the (extended) sustainabilitarian proposes thesame path as she would if there were451

no uncertainty (Theorem 6). We believe this is an important result, as parameter values in the452

real world are likely to be such that the discounted utilitarian program does not converge (see453

Section 4.6). Moreover, we argued that if this is the case, then the most desirable paths accord-454

ing to the discounted-utilitarian objective would leave the early generations with very low utility.455

(This conclusion is very different from the recommendation of discounted utilitarianism in the456

convergent case.) In contrast, when the discounted utilitarian program diverges, as we said, the457

sustainabilitarian recommends equal welfare for all generations.458
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Finally, we showed that when the discounted utilitarian program converges, it is not generally459

the case that the two Ethical Observers will recommend the same paths, although they do if460

the capital-labor ratio of the initial endowment vector is sufficiently large (Theorem 8 and its461

Corollary).462

In our companion paper Llavador et al. (2009), we study a model which is a ramification of463

the model of Section 4 of the present paper, one which articulates the issue of global warming.464

In that model, production of the consumption-investment good affects negatively the quality of465

the biosphere (carbon emissions increase global temperature), and the quality of the biosphere466

enters into the utility of individuals. As well as a production and education sector, that model467

also contains an R&D sector, where research produces knowledge that both improves the tech-468

nology of commodity production, and enters directly into the utility of people. (Knowledge and469

biospheric quality are global public goods.) We know that with appropriate parameter values,470

the discounted utilitarian program of the more ramified model diverges; we do not know whether471

analogues of the theorems presented here continue to hold. Naturally, we would be interested in472

eventually extending the present analysis to that model: wepropose to think of the central results473

of the model of Section 4 as conjectures concerning the global-warming model. In particular, if474

the discounted-utilitarian objective function diverges on the set of paths defined for the global-475

warming model, then we conjecture that the sustainabilitarian can ignore the kind of uncertainty476

studied in the present paper (Theorem 6). However, we must say that there is another kind of477

uncertainty, not discussed here, which is more the focus of current discussions of global warm-478

ing: the uncertainty about the relationship between atmospheric carbon and global temperature479

(biospheric quality). That kind of uncertainty involves quite different considerations from those480

studied here.481

Appendix A. Proofs and Examples482

Proof of Lemma 3483

We claim that for everyT, yR
T = min{yR

1 , y
R
2 , . . . , y

R
T}. For suppose this were not the case,484

for someT. Then letε = yR
T − min{yR

1 , y
R
2 , . . . , y

R
T−1}. By hypothesis,ε > 0. Define the path485

(ȳ1, ȳ2, . . . ) as follows:486

ȳT = yR
T −

ε

2
,

ȳt = yR
t +

ε

2(T − 1)
, for 1 ≤ t ≤ T − 1,

ȳt = yR
t , for t > T.

Obviously (ȳ1, ȳ2, . . . ) is feasible for ProgramR1. In the move from (yR
1 , y

R
2 , . . . ) to (ȳ1, ȳ2, . . . ),487

the firstT terms in the objective function of ProgramR1 all (strictly) increase. Furthermore, all488

terms greater than theTth term either increase or stay the same. Notice that ¯yT remains at leastε2489

greater than the minimum of{ȳ1, ȳ2, . . . ., ȳt} for all t > T, since that minimum is bounded above490

by min{ȳ1, . . . , ȳT−1}. So ũ(ȳT) is never the minimum in any of the terms of the objective with491

t > T. Consequently, the objective function of ProgramR1 (obviously bounded) attains a higher492

value at (ȳ1, ȳ2, . . . ) than at (yR
1 , y

R
2 , . . . ) , a contradiction.493
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Proof of Theorem 2494

Step 0. Sinceũ(0) is finite, w.l.o.g., we take ˜u(0) = 0.495

Step 1. Let (yDU
1 , yDU

2 , . . . ) solve ProgramDU1. Suppose there is aT such thatyDU
t = 0. Then496

T must be greater than one. For ifyDU
1 = 0, simply define a new path (¯y1, ȳ2, . . . ) by ȳt = yDU

t+1 for497

all t = 1, 2, . . . This path increases the value of the objective function inDU1, an impossibility.498

ThereforeT > 1.499

Step 2. Now letT be the smallest date for whichyDU
t = 0. Then it must be the case that for500

any sufficiently smallε > 0, we have ˜u(yDU
T−1 − ε) + ϕũ(ε) ≤ ũ(yDU

T−1), for otherwise, a transfer of501

ε from dateT − 1 to dateT would increase the value of the objective function in Program DU1.502

But this inequality can be writtenϕũ(ε) ≤ ũ(yDU
T−1) − ũ(yDU

T−1 − ε). Dividing both sides byε and503

letting ε approach zero, this implies thatϕ lim ũ(ε)
ε
≤ ũ′(yDU

T−1). But lim
ε→0

ũ(ε)
ε
= ∞, which gives the504

desired contradiction.505

Example 1506

This is an example of a function ˜u for which ProgramDU1 has no solution. Consider the507

function ũ : ℜ++ → ℜ : ũ(y) =
∫

e1/ydy− y. We have ˜u′(y) = e1/y − 1, ũ′′(y) = − e1/y

y2 . Thus,508

ũ is an increasing, concave function on the positive real line, and the Inada condition holds.509

The functionũ cannot be continuously defined at zero, as it approaches negative infinity asy510

approaches zero.511

If the path
(

yDU
1 , yDU

2 , . . .
)

solves problemDU1 for this ũ, then
(

yDU
1 , yDU

2 , . . .
)

must be strictly512

positive because the domain of ˜u isℜ++. It follows that the first-order Kuhn-Tucker conditions513

hold –there is a numberλ > 0 such thate1/yt = 1 +
(

λ/ϕt−1
)

for all t. But this implies that514

yt = 1/ log
[

1+ λ/ϕt−1
]

, and so it must be the case that
∑∞

t=1

{

1/
(

log
[

1+ λ/ϕt−1
])}

= 1. For515

larget, we can approximate the denominator in the terms in this series by logλ/ϕt−1 = logλ +516

(t − 1) log(1/ϕ). But these terms grow likek(t − 1), wherek = log(1/ϕ), and so the series517

grows like 1/ (k(t − 1)), and therefore it does not converge, a contradiction. Therefore there is no518

solution to programDU1, and hence to the ProgramR1, for this ũ.519

The intuition here is that the derivative of ˜u is increasing too fast (exponentially) asy ap-520

proaches zero. LetVR (y1, y2, . . . ) be the value of the objective function of ProgramR1 at521

path (y1, y2, . . . ). The result is perhaps surprising, because it is easy to see that the function522

VR (y1, y2, . . . ) is bounded on the feasible set. Hence, it must be the case for this ũ that the fi-523

nite supremum of
{

VR(y1, y2, . . . ) | (y1, y2, . . . ) is feasible
}

is never attained. It is easy to check524

that if ũ(y) = yr

r , for anyr ∈ (−∞, 1), then ProgramDU1 has a solution. The Inada condition525

holds for these functions, and the first order-conditions can be solved for a positive path whose526

components sum to unity.527

Proof of Theorem 3528

Step 1. We introduce the following sequence of programs. Define ProgramDUT as:529

max
T

∑

t=1

ϕt−1ũ(yt)

subject to
T

∑

t=1

yt ≤ 1,

yt ≥ 0,∀t ≥ 1.
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Step 2. Note that for sufficiently largeT, it must be the case that the solution (z1, z2, . . . , zT )530

to ProgramDUT , which of course exists, haszT = 0. For if not, and (z1, z2, . . . , zT) >> 0, then531

there are first order conditions of the form:532

ϕt−1ũ′(zt) = λ, some positive numberλ.

Of course it follows, from the usual argument, that (z1, z2, . . . , zT) is a weakly decreasing se-533

quence, and consequently, by choosing a largeT, we can guarantee thatzT is bounded above by534

an arbitrarily small number, because of the cake-eating constraint. Consequentlyλ must be very535

close toϕT−1γ, and hence must be arbitrarily small. But since ˜u′(z1) = λ, this implies thatz1536

becomes arbitrarily large, contradicting the fact that
∑

zt = 1. Thus there is a dateT such that537

the solution to ProgramDUT haszT = 0.538

Step 3. Now letT be the smallest date such thatzT = 0; denote the solution to ProgramDUT
539

by (z1, z2, . . . , zT). We will assume thatzt > 0 for t < T, but the proof can be modified in an540

obvious way if this is not the case. Then the following Kuhn-Tucker (K-T) conditions must hold541

for the (concave) ProgramDUT :542

There are non-negative numbersλ, µT such that:543

ϕt−1ũ′(zt) − λ = 0, for t < T,

ϕT−1γ − λ + µT = 0.

Step 4.We claim that the pathzT+1 ≡ (z1, . . . , zT , 0) is the solution to ProgramDUT+1. To544

see this, write down the K-T conditions for this program, namely:545

There are non-negative numbers (λ, µT , µT+1) such that:546

ϕt−1ũ′(zt) − λ = 0, for t < T,

ϕT−1γ − λ + µT = 0,

ϕTγ − λ + µT+1 = 0.

We note that the values ofλ andµT continue to solve these FOCs, for the vectorzT+1, and547

we define the new shadow price by548

µT+1 = λ − ϕ
Tγ > 0.

Thus, since we have a concave program, we have shown thatzT+1 is its solution.549

Step 5. We continue in this manner to show that the vectorzS = (z, 0, 0, . . . , 0) is the solution550

for ProgramDUS for anyS > T. The new Lagrangian multiplier at each step is defined by:551

µS = λ − ϕ
S−1γ,

and so we note, for use below, that limS→∞ µS = λ.552

Step 6. We now claim that the vector (z∞1 , z
∞
2 , . . . ) ≡ (z, 0, 0, . . . .) solves ProgramDU1.553

We proceed by contradiction. Denote byVDU (y1, y2, . . . ) the value of the objective function554

of ProgramDU1 at the path (y1, y2, . . . ). Suppose the claim were false, and there is a path555

(y1, y2, . . . ) which VDU (y1, y2, . . . ) > VDU
(

z∞1 , z
∞
2 , . . .

)

. Write yt = z∞t + gt for all t; of course,556
∑

gt = 0. We define a functionH : ℜ→ ℜ as follows:557

H(ε) =
T−1
∑

t=1

ϕt−1ũ(z∞t + εgt) +
∞
∑

t=T

ϕt−1ũ(0+ εgt) + λ















1−
∞
∑

t=1

(z∞t + εgt)















+

∞
∑

t=T

µt(0+ εgt).

18



Verify that H(0) = VDU (z∞) and thatH(1) ≥ VDU (y1, y2, . . . ), which follows from the fact558

that (y1, y2, . . . ) is feasible and that the Lagrangian multipliers are all non-negative. Suppose we559

can show thatH is maximized at zero: then we will know thatH(0) ≥ H(1), which implies that560

VDU (z∞) ≥ VDU (y1, y2, . . . ), which is the desired contradiction.561

Step 7. It therefore remains to show that zero maximizesH. Note thatH is a concave562

function, so it suffices to show thatH′(0) = 0. We compute:563

H′(0) =
T−1
∑

t=1

ϕt−1ũ′(z∞t )gt +

∞
∑

t=T

ϕt−1γgt − λ

∞
∑

t=1

gt +

∞
∑

t=T

µtgt.

Grouping together all terms associated with the samegt, we see that fort < T, the coefficient564

of gt is ϕt−1ũ′(z∞t ) − λ = 0, and fort ≥ T the coefficient ofgt is ϕt−1γ − λ + µt = 0. Thus the565

derivative vanishes at zero, as required.566

Step 8. There is a final, transversality condition: We must show that the functionH is well-567

defined on the interval [0,1]. The only term that might cause concern is the last one, which is568

ε
∑∞

t=1 µtgt. But sinceµt → λ andgt → 0 and
∑∞

t=T gt = −
∑T−1

t=1 gt, it follows that
∑∞

t=1 µtgt569

converges, and the proof is complete.570

Step 9. The uniqueness of the solution follows from the strict concavity of ũ.571

Proof of Theorem 4 (The Turnpike Theorem)572

The program573

Recall that we aim at finding the maximum level of sustainableutility for a fairly simple574

infinitely lived economy. Formally:575

ProgramSUS2576

maxΛ subject to

(P1) cαt (xl
t)

1−α ≥ Λ, t ≥ 1,

(P2) ξxe
t−1 ≥ xe

t + xl
t + xc

t , t ≥ 1,

(P3) (sk
t )
θ(xc

t )
1−θ ≥ ct + it, t ≥ 1,

(P4) (1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1.

The initial endowment is a vector (xe
0, s

k
0).577

Thevalue functionof the program maps the initial endowment into the valueΛ; thus we write578

V(xe
0, s

k
0) = Λ.579

DefineFΛ = {(xe
0, s

k
0) | V

(

xe
0, s

k
0

)

= Λ}. This is the set of initial endowments that generate580

the same value forSUS2.581

We define afeasible pathas a set of sequences{xe
t }t=0,1,2...., {sk

t }t=0,1,2.... and all other variables582

beginning att = 1, such that inequalities (P2), (P3), and (P4) hold. Denote the set of feasible583

paths byP.584

Denote the set of feasible paths beginning at a given initialvector (xe
0, s

k
0) by P(xe

0, s
k
0).585

Proposition 1. The setP is a closed convex cone. The set P(xe
0, s

k
0) is closed and convex.586

Proof. Easy.587

Proposition 2. At any solution to Program SUS2, all the constraints (P1)-(P4) bind at all dates.588

The solution to SUS2 is unique.589
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Proof. Step 1. It is obvious that (P2)-(P4) bind. What requires proof is thatu(ct, xl
t) = Λ for all590

t. We first prove this is the case fort = 1. Suppose, to the contrary, that at an optimal solution,591

u(c1, xl
1) > Λ. Reducexl

1 by ε and increase each ofxe
1 andxc

1 by ε
2 so thatu(c1, xl

1− ε) ≡ Λ
′ > Λ.592

Now define
(

i′1, s
k′
1

)

to be the simultaneous solution of the two equations:593

c1 + i′1 = f
(

sk′
1 , x

c
1 +

ε

2

)

,

(1− δ)sk
0 + i′1 = sk′

1 .

Obviously,sk′
1 > sk

1; therefore (xe
1 +

ε
2 , s

k′
1 ) >> (xe

1, s
k
1). It follows that, with this altered vector594

of endowments, (xe
1 +

ε
2 , s

k′
1 ) , for the program beginning at date 2, the value of the program595

beginning at date 2 is greater thanΛ, since the value function of the program is homogeneous596

of degree one in its endowment vector. Let the value of the program, beginning at date 2, be597

Λ∗ > Λ. We have now produced a feasible path where for allt, u(ĉt, x̂l
t) ≥ min(Λ′,Λ∗) > Λ. This598

contradiction proves thatu(c1, xl
1) = Λ.599

Step 2. Assume now that in any optimal solution, for 1≤ t < T, u
(

ct, xl
t

)

= Λ, but there600

is an optimal solution for whichu(cT , xl
T) > Λ. Reducexe

T−1 by ε/ξ and increasexl
T−1 by the601

same amount, increasing utility at dateT − 1, which is now greater thanΛ. This decreases602

xT ≡ xe
T + xl

T + xc
T by ε, and let this decrease be implemented by decreasingxl

T by ε, which603

may be chosen small enough that utility at dateT is still greater thanΛ. We have now produced604

an optimal path for the program for whichu(cT−1, xl
T−1) > Λ, which contradicts the induction605

hypothesis. This proves that for allt, ut = Λ.606

Step 3. We next show that the solution toSUS2 is unique. Any two solutions must have the607

same values of{(ct, xl
t)}: for if not, take any non-trivial convex combination of the two solutions,608

producing another optimal solution for which the constraints (P1) do not bind (using the Cobb-609

Douglas form ofu); this contradicts what has been proved above. In like manner, the values610

{(xe
t , s

k
t )} must be the same in the two solutions, since otherwise a convex combination of them611

would produce an optimal solution in which the constraints (P3) do not bind. But if the dated612

capital-stocks are identical in the two solutions, so must be the dated investments. Since the613

values{(xc
t , x

l
t)} are identical in the two solutions, we see, by iteration, that the values of{xe

t } are614

also identical. This proves the claim.615

Proposition 3.616

A. Let(x̃e
0, s̃

k
0) >> (xe

0, s
k
0). Then V(x̃e

0, s̃
k
0) >> V(xe

0, s
k
0).617

B. Along the optimal path beginning at(xe
0, s

k
0), there is no T such that(xe

T , s
k
T) >> (xe

0, s
k
0).618

C. Let (xe
0 j , s

k
0 j) ∈ Fκ be an infinite sequence of points in Fκ, for some fixedκ, such that619

xk
0 j → ∞. Then sk0 j → 0.620

Proof. A. If ( x̃e
0, s̃

k
0) >> (xe

0, s
k
0), then there is a positive numberδ∗ such that

(

x̃e
0, s̃

k
0

)

>> (1+ δ∗)
(

xe
0, s

k
0

)

.621

SinceP is a cone, and the utility of Generationt is homogenous of degree 1 in its arguments, it622

follows immediately thatV
(

x̃e
0, s̃

k
0

)

> (1+ δ∗) V
(

xe
0, s

k
0

)

.623

B. Suppose that there is aT such that (xe
T , s

k
T) >> (xe

0, s
k
0). Let the value of the program be624

κ. By PartA, the value of the sub-programthat begins at date Tis strictly greater thanκ. This625

contradicts the fact that the constraints (P1) are binding for allt.626
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C. Suppose the premise were false; then there is a subsequencesk
0 j → S > 0, someS. We627

can choose a numberŜ > S and a number ˆx such thatV(x̂, Ŝ) = κ̂ > κ. We can also choose an628

index j such that the program beginning with the endowments (xe
0 j, s

k
0 j) possesses a feasible path629

that, at its first step, has three properties:630

(i) sk
1 > Ŝ,

(ii ) xe
1 > x̂,

(iii ) cα1(xl
1)1−α > κ̂.

(This is obvious from examining the technology.) It therefore follows thatV(xe
1, s

k
1) > κ̂: invoke631

PartA of this proposition. But this is a contradiction, becauseV(xk
0 j , s

k
0 j) = κ < κ̂.632

Since all the constraints ofSUS2 bind, we can write down the Kuhn-Tucker conditions for this633

concave program. It turns out that these conditions imply only three new pieces of information,634

which are:635

(D1)
xl

t

ct
=

1− α
α(1− θ)

xc
t

ct + it
, t ≥ 1;

(D2)
xl

t+1

ct+1
=

xl
t

ct

ξ

1− δ

(

1−
θ(ct + it)

sk
t

)

, t ≥ 1.

(D3)
∑

t

(

1
ξ

)t

xl
t converges.

The other Kuhn-Tucker conditions just define the various Lagrangian multipliers, which are636

all non-negative.637

It follows that: A feasible path and a numberκ for which all the primal constraints bind at638

all t, and for which (D1) ,(D2) and (D3) hold, is an optimal solution.7
639

The stationary ray640

We ask: Is there a ray of initial endowments inℜ2
+ for which the optimal solution isstation-641

ary, that is, for which all variables are constant over time? We study this by writing down the642

primal constraints and equations (D1) and (D2) for a hypothetical stationary ray, and see what643

they imply. Indeed, we can solve them: there is a unique such ray for the initial condition. The644

ray passes through the following point:645

xe
0 = 1, sk

0 = (ξ − 1)

(

ξθ

ξ + δ − 1

)
1

1−θ

xc∗,

wherexc∗ =
α(1− θ)(ξ + δ − 1)

α(1− θ)(ξ + δ − 1)+ (1− α)(ξ + δ − 1− ξδθ)
.

Indeed, we can compute the values of all the variables on thisray. Call these thestationary state646

values.Of course they are defined up to a multiplicative constant. Let us denote this ray byΓ.647

7One may ask, conversely: Does the optimal solution have to satisfy these equations? The answer to this must be
affirmative: there is an infinite dimensional version of the Kuhn-Tucker theorem, using the Hahn-Banach theorem, which
tells us that this is so.
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The Turnpike Theorem648

It is very difficult to actually compute the optimal path, if we begin from anendowment649

vector off the stationary rayΓ. We shall, however, prove (Proposition 4 below) that from any650

initial vector (xe
0, s

k
0), the optimal solution toSUS2 converges to a point onΓ.651

In the following, given any two variablesat andbt, we use the notation for ratios:at
bt
=

(

a
b

)

t
.652

Lemma 6. Suppose that, in the optimal solution, the limit of the sequence
{

(

xl/c
)

t=1,2,...

}

exists653

and is finite. Then the solution converges to the stationary state values.654

Proof. Step 1. Denote the limit of the sequence
{

(

xl/c
)

t=1,2,...

}

by λ̄. We first argue that̄λ , 0. If655

λ̄ = 0, then lim
(

c/xl
)

t
= ∞. By (D1), lim (xc/ (c+ i))t = 0, and so lim

(

xc/sk
)

t
= 0, by invoking656

(P3). Now θ (ct + it) /sk
t = θ

(

xc
t /s

k
t

)1−θ
, so limθ (ct + it) /sk

t = 0, which means, by (D2), that657
(

c/xl
)

t+1

/(

c/xl
)

t
→ ((1− δ) /ξ) < 1 , becauseξ > 1. It is therefore impossible that lim

(

c
xl

)

t
= ∞.658

Thereforeλ̄ > 0.659

Step 2. By (P1), xl
t

(

ct/xl
t

)α
= κ for all t. Therefore limxl

t = κλ̄
α and so limct = κλ̄

α−1. From660

(D2), it also follows that ξ1−δ lim
(

1− θ(ct+it)
sk
t

)

= 1; therefore lim
(

(c+ i) /sk
)

t
has the value of the661

ratio of (c+ i)/sk in the stationary state. Therefore lim
(

xc/sk
)

t
has the same value as the ratio of662

those variables in the stationary state. By (D1) it now follows thatλ̄ is also the ratio ofxl/c in663

the stationary state.664

Step 3. Suppose that there were a subsequence of{sk
t } that diverged to infinity. Since665

lim
(

xc/sk
)

t
is finite, it follows that the same subsequence of{xc

t } diverges to infinity. It fol-666

lows from (P2) that the same subsequence of{xe
t } diverges to infinity. In particular, there exists667

a T such that (xe
T , s

k
T) >> (xe

0, s
k
0). But this contradicts PartB of Proposition 3. Therefore668

the sequence{sk
t } is bounded. It immediately follows that the sequence{xc

t } is bounded, since669

lim
(

xc/sk
)

t
exists and is finite; and since lim

(

(c+ i)/sk
)

t
also exists and is finite, the sequence670

{it} is bounded.671

Thus all the sequences of variables, except possibly for{xe
t }, are bounded. Therefore we672

can choose a single subsequence of all the variables (exceptpossibly of{xe
t }) which converges to673

values (s̄k, x̄c, ī) and we have already shown that{xl
t}, {ct} converge to values ¯xl andc̄. Furthermore674

we know that{sk
t } converges to a positive number, because lim

(

θ(ct + it)/sk
t

)

has the value of the675

same ratio in the stationary state and{ct} converges to a positive number.676

It now follows, by invoking Proposition 3, PartC, that{xe
t } does not diverge to infinity –since677

(xe
t , s

k
t ) ∈ Fκ for all t. So there is a subsequence of the original sequence such thatall variables678

converge.679

We proceed to show that this subsequence of variables converges to stationary state values.680

Denote the limits:681

λ̄1 = lim
ct + it

xc
t
= lim

c̄+ it
xc

t
, (A.1)

λ̄2 = lim

(

sk

xc

)

t

. (A.2)

We have shown that̄λ1 and λ̄2 are the values of the corresponding ratios in the stationary682
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state. Now from (P3) we have:683

xc
t λ̄

θ
2 − it → c̄. (A.3)

Note that equations (A.1) and (A.3) comprise two simultaneous equations, in the limit, for the684

limits of the variablesxc andi. Hence the sequences{xc
t } and{it}must converge, and to stationary685

state values, since these same two equations hold for the stationary state variables. We therefore686

have, by (A.2), that{sk
t } also converges to the appropriate stationary state value. Likewise with687

{xe
t }.688

Finally, indeed thewholesequence of variables converges to the same stationary state: for if689

not, there would be another limit point approached simultaneously by some other subsequence690

of the variables, to a stationary state. But since the stationary ray is unique, that limit of (xe
t , s

k
t )691

must also be on the rayΓ. However, we cannot have two subsequences approaching different692

points on the ray: that would violate Proposition 3, PartB.693

Proposition 4. From any initial vector(xe
0, s

k
0), the optimal solution to SUS2 converges to a point694

onΓ.695

Proof. 8
696

Step 1. On the optimal path, the sequence{( xl

c )t=1,2,...} does not diverge to infinity. Suppose it697

did diverge to infinity. Then from (D1), the sequencexc
t / (ct + it) diverges to infinity also. But,698

invoking (P3), xc
t / (ct + it) =

(

xc
t /s

k
t

)θ
, and soxc

t /s
k
t → ∞. Now θ (ct + it) /sk

t = θ
(

xc
t /s

k
t

)1−θ
, and699

so it follows thatθ (ct + it) /sk
t diverges to infinity. But this contradicts (D2), for it would mean700

that eventually the ratioxl
t/ct is negative.701

Step 2. Hence it follows that, on the optimal path, the sequence{( xl

c )t=1,2,...} has a (finite)702

limit point. If the sequence{( xl

c )t=1,2,...} indeed converges to this limit point, then the theorem is703

proved, by Lemma 6.704

Step 3. Thus, the remainder of the proof will show that the limit point of the sequence705

{( xl

c )t=1,2,...} is unique, and hence it is the limit of the sequence.706

By exploiting equations (D1) and (P3), we can rewrite (D2) as follows:707

(D2∗)

(

xl

c

)

t+1

=

(

xl

c

)

t

ξ

1− δ

















1− θ(
α(1− θ)
1− α

)
1−θ
θ

(

xl

c

)
1−θ
θ

t

















.

It will be convenient to define the function:f ∗(x) = ax(1 − bxr ), wherea = ξ

1−δ , b =708

θ
(

α(1−θ)
1−α

)
1−θ
θ , andr = (1− θ)/θ. Thus (D2∗) says that709

f ∗(
xc

t

ct
) =

xc
t+1

ct+1
for all t.

Compute thatd
2 f ∗

dx2 = −rab(1+ r)xr−1, and sof ∗ is a concave function onℜ+. Let A∗ be the value710

of the ratio xl

c in the stationary state. Then we have:f ∗(A∗) = A∗ and f ∗(0) = 0. The first claim711

follows since the equation (D2∗) holds, of course, at the stationary state as well.712

Finally, note that another root off ∗ is given byx∗ = (1/b)1/r . Concavity implies thatf ∗ has713

only the two fixed points 0 andA∗.714

8Thanks to Cong Huang, who completed and simplified this proof.
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Because
{

(

xl

c

)

t=1,2,...

}

is bounded, it possesses a lim inf and a lim sup. For convenience, denote715

yt =
(

xl

c

)

t
, and define716

σ = lim inf yt, σ∗ = lim supyt.

Since f ∗(yt) = yt+1, we have inff ∗(yt) = σ, and by the continuity off ∗, inf f ∗(yt) = f ∗(inf yt) =717

f ∗(σ) = σ, soσ is a fixed point off ∗. In like manner,σ∗ is a fixed point off ∗.718

If we can establish thatσ , 0, then we must haveσ = A∗ = σ∗, and hence the limit of{yt}719

exists. But this is established by an argument that mimics Step 1 of the proof of Lemma 6, as720

follows.721

If σ = 0, then, by (D1), lim inf (xc/(c+ i))t = 0, and so lim inf
(

xc/sk
)

t
= 0, by invoking722

(P3). Nowθ (ct + it) /sk
t = θ

(

xc
t /s

k
t

)1−θ
, so lim infθ (ct + it) /sk

t = 0, which means, by (D2), that723

lim inf yt+1/yt = ξ/ (1− δ) > 1, becauseξ > 1. But this immediately implies that lim infyt > 0,724

a contradiction. Thereforeσ , 0, and Proposition 4 is proved.725

The proof of the Turnpike Theorem follows from the previous discussion, in particular from726

propositions 2 and 4.727

Proof of Theorem 5728

Part A729

Step 1.Let xe
0 = 1. We claim that for any smallε > 0, we can find valuesσ andi such that:730

i = (ξ − ε + δ − 1)σ,
i = f ((ξ − ε)σ, ε) .

By plotting the graphs of these two functions in (σ, i) space, we can observe that they cross731

at the origin and at some positive value ofi –by assumptionA(b).732

Step 2. Let ε < (ϕξ − 1)/ϕ, and letσ be chosen to satisfy the equations in Step 1, thus733

defining investment at date 1 when734

xc
1 = ε, xe

1 = ξ − ε, c1 = 0 = xl
1.

Note from Step 1 that we may takesk
1 = (ξ − ε)σ. Let V(xe

0, s
k
0) be the value function of735

ProgramDU2[xe
0, s

k
0], if it converges. Then we must have, by consideration of thechoice of date736

1 values above,V (1, σ) ≥ 0 + (ξ − ε) ϕV (1, σ). But (ξ − ε)ϕ > ξϕ − (ξϕ − 1) = 1, implying737

that the last equation stated cannot hold, and hence ProgramDU2 must diverge beginning with738

endowment (1, σ).739

Step 3. It immediately follows that ProgramDU2 diverges forσ̂ > σ. (Just throw away some740

capital at date 1 and reduce the capital-labor ratio toσ.) Moreover, the program must diverge for741

0 < σ̂ < σ as well (at date 1, invest very little in education, thus increasing the capital-labor ratio742

at date 2 to a valuesk
1/x

e
1 ≥ σ).743

Part B744

Step 1. Let xe
0 = 1. The largest possible investment that can be made at date 1 if sk

0 = σ is745

given byI (σ), defined by the equation:746

f ((1− δ)σ + I (σ), ξ) = I (σ),
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becausexc
1 ≤ ξ. Defineσ∗ such that:747

f ((1− δ),
ξ

σ∗
)/(ξ − (1− δ)) = 1− f1((1− δ)σ∗, ξ),

where f1(s, x) = ∂ f
∂s(s, x). A monotonicity argument, invoking the intermediate value theorem,748

shows thatσ∗ exists uniquely.749

Let m= f1((1− δ)σ∗, ξ) and note that 0< m< 1.750

Step 2. The graph of the function751

z(i) = f ((1− δ)σ∗ + i, ξ)

lies everywhere on or below the graph of the function752

y(i) = f ((1− δ)σ∗, ξ) +mi,

andy(0) = z(0) (by the concavity off ). The second graph meets the 45o ray in (i, y) space at the753

point i = f ((1− δ)σ∗, ξ) /(1−m). Therefore754

I (σ∗) ≤
f ((1− δ)σ∗, ξ)

1−m
.

Step 3. Hence, beginning atsk
0 = σ

∗:755

sk
1 ≤ (1− δ)σ∗ + I (σ∗) ≤ (1− δ)σ∗ + f ((1− δ)σ∗, ξ)/(1−m)

≤ (1− δ)σ∗ + σ∗(ξ − (1− δ)) = ξσ∗.

Therefore:756

u(c1, x
l
1) ≤ u( f (sk

1, ξ), ξ) ≤ u( f (ξσ∗, ξ), ξ) ≤ ξN,

whereN ≡ u( f (σ∗, 1), 1).757

Step 4. For any numberψ > 1, we have:758

f ((1− δ)ψσ∗ + ψI (σ∗), ξ) < f ((1− δ)ψσ∗ + ψI (σ∗), ψξ) = ψI (σ∗).

Consider the functionΨ(x) = x − f ((1 − δ)ψσ∗ + x, ξ); note thatΨ′(x) > 0 (sincem < 1).759

We have (from the above) thatΨ(ψI (σ∗)) > 0, and by definition,Ψ(I (ψσ∗)) = 0. It follows that760

I (ψσ∗) < ψI (σ∗).761

Step 5. Now compute that762

sk
2 ≤ (1− δ)sk

1 + I (sk
1) ≤ (1− δ)ξσ∗ + I (ξσ∗) ≤ (1− δ)ξσ∗ + ξI (σ∗),

= ξ((1− δ)σ∗ + I (σ∗)) ≤ ξ2σ∗,

which follows by invoking the definition ofI (·), and steps 3 and 4.763

By induction we havesk
t ≤ ξtσ∗. But xc

t ≤ ξt and xl
t ≤ ξt as well, and sou

(

ct, xl
t

)

≤764

u
(

f
(

sk
t , ξ

t
)

, ξt
)

≤ ξtN. It follows that
∑

ϕt−1ut ≤ ξ
∑

(ϕξ)t−1 N < ∞.765

Step 6. Now suppose thatσ > σ∗; letσ = ψσ∗, ψ > 1. Then beginning atsk
0 = σ:766

sk
1 ≤ (1− δ)σ + I (σ) = (1− δ)ψσ∗ + I (ψσ∗)

< ψ((1− δ)σ∗ + I (σ∗)) [by Step 4]

≤ ψξσ∗ = ξσ.
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And sou(ct, xl
t) ≤ u( f (sk

t , ξ
t), ξt) ≤ ξtu( f (σ, 1), 1), and as before:767

∑

(ϕξ)t−1ut < ∞.

Step 7. ThereforeDU2 converges forσ ≥ σ∗. A fortiori, it converges forσ < σ∗, by the free768

disposal of capital.769

Proof of Lemma 4770

For any (u1, u2, . . . ), min{u1, . . . , ut} ≥ min{u1, . . . , ut+1}. Therefore771

∞
∑

1

ϕt−1 (1+ (t − 1)β) min {u1, . . . , ut} 6 u1

∞
∑

1

ϕt−1 (1+ (t − 1)β)

= u1[ϕ0 + ϕ1 + ϕ2 + ϕ3 + . . .

+βϕ1 + βϕ2 + βϕ3 + . . .

+βϕ2 + βϕ3 + . . .

+βϕ3 + . . .

+ . . .]

= u1















∞
∑

1

ϕt−1 + β[
∞
∑

2

ϕt−1 +

∞
∑

3

ϕt−1 + . . .















= u1

(

1
1− ϕ

+ β

(

ϕ

1− ϕ
+

ϕ2

1− ϕ
+ . . .

))

= u1

(

1
1− ϕ

+
β

1− ϕ

(

ϕ

1− ϕ

))

< ∞.

Hence, the sum
∑∞

t=1 ϕ
t−1[1 + (t − 1)β] min{u1, . . . , ut} of nonnegative terms converges.772

Proof of Theorem 6773

Consider theconstrained discounted utility program CDU2[ϕ, xe
0, s

k
0] (which specializes pro-774

gramCDU in the proof of Lemma 1 to the education and capital economy),as follows.775

Program CDU2[ϕ, xe
0, s

k
0].

max
∞
∑

t=1

ϕt−1u(ct, x
l
t) subject to :

(1− δ)sk
t−1 + it ≥ sk

t ,

f (sk
t , x

c
t ) ≥ ct + it,

ξxe
t−1 ≥ xe

t + xc
t + xl

t,

u(ct, x
l
t) ≥ u(ct+1, x

l
t+1), t ≥ 1.

Note that ProgramCDU2 is not concave, because of the last constraint, which is not quasi-776

concave. (The last constraint is quasi-concave only ifu is linear.) Hence we cannot immediately777

use concave optimization theory to analyze ProgramCDU2.778

Lemma 7. The solution to R2[ϕ, xe
0, s

k
0] is also the solution to CDU2[ϕ, xe

0, s
k
0].779
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Proof. Immediate from Lemma 5.780

But the solution toCDU2 is in generaldifferent from the solution toDU2, the last being781

sometimes unbounded, whileCDU2 is surely bounded.782

Now if DU2[ϕ, xe
0, s

k
0] diverges, then utility is unbounded above over time. It seems reason-783

able to conjecture that, in this case, the last constraint ofCDU2[ϕ, xe
0, s

k
0] will bind at every date.784

But if this is the case, then the solution toCDU2[ϕ, xe
0, s

k
0] is just the solution toSUS2[xe

0, s
k
0],785

which means that the egalitarian ethical observer in the environment with uncertain worlds will786

behave just as if there were no uncertainty.787

We now prove that this conjecture is true. To do so we make use of the following program.788

Program PP[ϕ, xe
0, s

k
0].

max















Λ

1− ϕ
−

∞
∑

2

ϕt−1λt















subject to:

λ1 ≡ 0,

(vt) u(ct, x
l
t) ≥ Λ − λt, t ≥ 1,

(mt) λt+1 ≥ λt, t ≥ 1,

(at) f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

(bt) (1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

(dt) ξxe
t−1 ≥ xc

t + xl
t + xe

t , t ≥ 1.

Dual variables are stated to the left of the constraints. Theprimal variables in ProgramPP789

are all the usual economic variables, plus the variablesΛ, λ2, λ3, . . . . We call the usual economic790

variables of a feasible path in ProgramPP the economic partof the path. Note thatPP is a791

concave program, so it may be solved with traditional methods.792

Lemma 8. Let (xe
0, s

k
0) ∈ Γ.9 If ϕξ ≥ 1, then the solution to Program SUS2[xe

0, s
k
0] forms the793

economic part of the solution to Program PP[ϕ, xe
0, s

k
0].794

Proof.795

Step 1.We first write down the Kuhn-Tucker conditions which characterize the solution to Pro-796

gramSUS2

[

xe
0, s

k
0

]

. These are:797

(SUS1) (∂Λ) : 1 =
∞
∑

1

vt,

(SUS2) (∂ct) : vtu1[t] = at,

(SUS3) (∂xl
t) : vtu2[t] = dt,

(SUS4) (∂sk
t ) : at f1[t] + bt+1(1− δ) − bt = 0,

(SUS5) (∂it) : at = bt,

(SUS6) (∂xc
t ) : at f2[t] = dt,

(SUS7) (∂xe
t ) : ξdt+1 = dt,

9Recall the definition ofΓ in the statement of the Turnpike Theorem.
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where we use the notationu1[t] ≡ ∂
∂ct

u(ct, xl
t), u2[t] ≡ ∂

∂xl
t
u(ct, xl

t), etc. At the solution toSUS2,798

non-negative dual variables satisfying the above conditions exist and all the primal constraints799

are binding. Denote the primal (economic) variables at the solution by
(

Λ̂, {ĉt, x̂t, . . .}
∞
t=1

)

. If800
(

xe
0, s

k
0

)

∈ Γ, then, because the solution is stationary,u1[t] = u1[1] for all t, and likewise for the801

other derivatives ofu. and f .802

Step 2. Defineλ̂t = 0, for all t ≥ 1. We wish to show that̂Φ =
(

Λ̂, {ĉt, x̂t, ...}
∞
t=1 ,

{

λ̂t

}∞

t=1

)

is803

the solution to ProgramPP[ϕ, xe
0, s

k
0]. Let Φ = (Λ, {ct, xt, ...}

∞
t=1, {λt}

∞
t=1) be the purported optimal804

path for ProgramPP[ϕ, xe
0, s

k
0]. Denote the difference between these two paths by:805

∆Λ = Λ − Λ̂, ∆ct = ct − ĉt, ∆xt = xt − x̂t, . . . , ∆λt = λt − λ̂t = λt,

that is, schematically,∆Φ ≡ Φ − Φ̂.806

Define:807

ât = at/(1− ϕ), t ≥ 1,
b̂t = bt/(1− ϕ), t ≥ 1,
v̂t = vt/(1− ϕ), t ≥ 1,
d̂t = dt/(1− ϕ), t ≥ 1.

Now define the following function of a real variable:808

Θ(ε) =
Λ̂ + ε∆Λ

1− ϕ
−

∞
∑

2

ϕt−1(λ̂t + ε∆λt) +
∞
∑

1

v̂t

(

u(ĉt + ε∆ct, x̂
l
t + ε∆xl

t) − (Λ̂ + ε∆Λ) + (λ̂t + ε∆λt)
)

+

∞
∑

1

mt((λ̂t+1 + ε∆λt+1) − (λ̂t + ε∆λt)) +
∞
∑

1

ât

(

f (ŝk
t + ε∆sk

t , x̂
c
t + ε∆xc

t − (ĉt + ε∆ct) − (ît + ε∆it)
)

+

∞
∑

1

b̂t

(

(1− δ)(ŝk
t−1 + ε∆sk

t−1) + (ît + ε∆it) − (ŝk
t + ε∆sk

t )
)

+

∞
∑

1

d̂t

(

ξ(x̂e
t−1 + ε∆xe

t−1) − (x̂e
t + ε∆xe

t ) − (x̂c
t + ε∆xc

t ) − (x̂l
t + ε∆xl

t)
)

.

All the variables in this function are defined except for the sequence of numbers (m1,m2, . . . ).809

Note thatΘ is a concave function, a consequence of the concavity ofu and f . Note thatΘ is810

defined on [0, 1], since the feasible set of ProgramPP is convex. Suppose we can produce a non-811

negative sequence (m1,m2, . . . ) such that the derivative ofΘ exists and is zero atε = 0. ThenΘ812

will be maximized at zero, and so in particular,Θ(0) ≥ Θ(1). Now note thatΘ(0) = Λ̂

1−ϕ , which813

is the value of the objective function of ProgramPP at the pathΦ̂; all the other terms vanish,814

since all the primal constraints of ProgramSUS2 are binding on this path, and̂λt = 0 for all t.815

We also have:Θ(1) = Λ

1−ϕ −
∑∞

2 ϕ
t−1λt+ non-negative terms. It will therefore follow that816

Λ̂

1− ϕ
≥
Λ

1− ϕ
−

∞
∑

2

ϕt−1λt,

proving that the value of the objective function of ProgramPP at Φ̂ weakly dominates the value817

at any other feasible path, and henceΦ̂ is a solution to ProgramPP.818

Step 3. We now evaluateΘ′(0), by taking the derivative ofΘ w. r. t. ε term by term,819

gathering terms together. Indeed, what we are doing is re-deriving the Kuhn-Tucker conditions:820
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we are going through this process because there is a step at which we must deviate from the usual821

procedure. We compute:822

Θ′(0) = ∆Λ















1
1− ϕ

−

∞
∑

1

v̂t















+

∞
∑

1

∆ct (v̂tu1[t] − ât) +
∞
∑

1

∆xl
t

(

v̂tu2[t] − d̂t

)

+

∞
∑

1

∆xc
t

(

ât f2[t] − d̂t

)

+

∞
∑

1

∆xe
t

(

ξd̂t+1 − d̂t

)

+

∞
∑

1

∆it
(

b̂t − ât

)

+

∞
∑

1

∆sk
t

(

(1− δ)b̂t+1 − b̂t + ât f1[t]
)

+















∞
∑

1

mt (∆λt+1 − ∆λt) −
∞
∑

2

ϕt−1∆λt +

∞
∑

1

v̂t∆λt















.

Notice that all terms on the r. h. s. of this equation except the last bracketed term vanish by823

conditions (SUS1)-(SUS7) of Step 1, and the definition of the ˆ dual variables. Furthermore, it is824

legitimate to collect and recombine terms as we have, because all the relevant series converge.825

The point at which care must be taken isnot to attempt to recombine terms in the bracketed term,826

because the series in the bracketed term may not converge.827

Step 4.It follows that we will have shownΘ′(0) = 0 if we can produce a non-negative
sequence (m1,m2, . . . ) such that

∞
∑

1

mt (∆λt+1 − ∆λt) −
∞
∑

2

ϕt−1∆λt +

∞
∑

2

v̂t∆λt = 0,

which is the same equation as:828

∞
∑

1

mt(λt+1 − λt) −
∞
∑

2

ϕt−1λt +

∞
∑

2

v̂tλt = 0, (A.4)

since∆λt = λt for all t ≥ 1.829

If the sequence (λ1, λ2, . . . ) is identically zero, then obviously any choice of (m1,m2, . . . ) will830

guarantee (A.7). So suppose this is not the case. Then for someT ≥ 1, (λT+1 − λT) > 0 (recall831

thatλ1 = 0) and all terms (λt+1 − λt) ≥ 0 (see the constraint in ProgramPP). Consequently, by832

choosingmT ≥ 0 appropriately, andmt = 0 for all t , T, we can make the sum
∑∞

1 mt(λt+1 − λt)833

equalanydesired non-negative number. Hence we can solve (A.4) if (and only if):834

−

∞
∑

2

ϕt−1λt +

∞
∑

1

v̂tλt =

∞
∑

2

λt(v̂t − ϕ
t−1) ≤ 0. (A.5)

Note that both series on the l. h. s. of (A.5) converge, since (λ1, λ2, . . . ) is bounded above by835

Λ (since ifλt > Λ for any t, then one can replaceλt with Λ, and the new path remains feasible836

while the objective function of ProgramPP increases), andv̂t is a geometric series converging to837

zero (see below), so it is permissible to add these two seriestogether term-wise.838

We now invoke the premise that the solutionΦ̂ is stationary. Using this fact, we can solve the839

Kuhn-Tucker conditions in Step 1 and compute that ˆvt =
(

1
ξ

)t ξ−1
1−ϕ .840

Now observe that841

∞
∑

2

(v̂t − ϕ
t−1) =

∞
∑

2

((

1
ξ

)t
ξ − 1
1− ϕ

− ϕt−1

)

=
ξ − 1
ξ(1− ϕ)

1/ξ
1− 1/ξ

−
ϕ

1− ϕ
=

1/ξ
1− ϕ

−
ϕ

1− ϕ
< 0,
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where the last inequality follows becauseϕξ > 1.10 Note that the terms in this sum are surely842

positive for small values oft (at least fort = 1), but eventually they turn negative and stay843

negative forever. This is clear if we note that the sign of thet th term is the same as the sign of844

ξ − 1
(1− ϕ)ξ

− (ξϕ)t−1,

which becomes negative at somet because (ξϕ)t−1 grows without bound.845

Let us denoteζt =

(

(

1
ξ

)t ξ−1
1−ϕ − ϕ

t−1
)

. We have shown that
∑∞

2 ζt < 0. Let T be the largest846

integer for whichζt is non-negative. Then we may write:847

∞
∑

2

λtζt =

T
∑

2

λtζt +

∞
∑

T+1

λtζt ≤

T
∑

2

λTζt +

∞
∑

T+1

λTζt = λT

∞
∑

2

ζT ≤ 0,

where we have invoked the fact that (λ1, λ2, . . . ) is a weakly increasing non-negative sequence.848

This proves (A.5), and hence the lemma, except for the caseϕξ = 1.849

If ϕξ = 1, thenζt = 0 for all t, and (A.5) obviously holds.850

Lemma 9. If the solution to Program SUS2[xe
0, s

k
0]) is the economic part of the solution to Pro-851

gram PP
[

ϕ, xe
0, s

k
0

]

, then it is also the solution to Program CDU2

[

ϕ, xe
0, s

k
0

]

.852

Proof. Denote the solution to ProgramSUS2 by Φ̂, as in the proof of Lemma 8. Denote the853

solution to ProgramCDU2 by Φ̃ = {c̃t, x̃t, . . . }. We can extend the path̃Φ to a feasible path for854

ProgramPP by definingΛ̃ = ũ1 andλ̃t = ũ1 − ũt. The pathΦ̂ is extended in like manner to a855

feasible path for ProgramSUS2 (and in fact its solution path, by the premise) by lettingλ̂t = 0856

for all t. If the solution to ProgramCDU2 were not the economic part of the solution to Program857

PP, then we would have:858

û1

1− ϕ
>

ũ1

1− ϕ
−

∞
∑

2

ϕt−1(ũ1 − ũt) =
∞
∑

1

ϕt−1ũt,

for the left-hand side of this inequality is the value ofPP, by the premise of the lemma, and the859

right-hand side is the value of the objective ofPP at a non-optimal, feasible solution. But note860

that this inequality says:861

û1

1− ϕ
>

∞
∑

1

ϕt−1ũt.

However the solution toSUS2 –pathΦ̂– is a feasible path forCDU2; thus, the last equation862

contradicts the optimality of thẽΦ path forCDU2 . This contradiction proves the lemma.863

Lemma 10. Let (xe
0, s

k
0) ∈ Γ. If ϕξ ≥ 1, then the solution to Program R2[ϕ, xe

0, s
k
0] is the solution864

to Program SUS2[xe
0, s

k
0].865

Proof. Follows immediately from lemmas 7-9.866

10We deal with the boundary caseϕξ = 1 below.
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We now proceed to the proof of Theorem 6.867

Step1. From Lemma 5, we can write ProgramRβ as follows:868

max
∞
∑

t=1

ϕt−1 (1+ (t − 1)β) ut

subject tou ∈ P,

ut ≥ ut+1, for t ≥ 1.

Since the value of the program is finite (by Lemma 4), we can break up the series in the869

objective function, and write it as:870

u1 + ϕu2 + ϕ
2u3 + ϕ

3u4 + . . .

+βϕu2 + βϕ
2u3 + βϕ

3u4 + . . .

+βϕ2u3 + βϕ
3u4 + . . .

+βϕ3u4 + . . .

=

∞
∑

1

ϕt−1ut + β















∞
∑

2

ϕt−1ut +

∞
∑

3

ϕt−1ut +

∞
∑

4

ϕt−1ut + . . .















.

(A.6)

Step 2. Suppose, contrary to the claim, that (u∗1, u
∗
2, . . . ) solves ProgramRβ[ϕ, xe

0, s
k
0] but871

not ProgramSUS2[xe
0, s

k
0], whose solution has constant utilities at the level denoted byΛ∗. Be-872

cause ProgramDU2[xe
0, s

k
0] diverges, we know by lemmas 4 and 10 that the solution to Program873

SUS2 is the same as the solution to programR2, which, by Lemma 5, is equivalent to Program874

CDU2[xe
0, s

k
0]:875

max
∑∞

1 ϕ
t−1ut

subject tou ∈ P,
ut ≥ ut+1.

Hence, the solution to ProgramCDU2 is (Λ∗,Λ∗, . . . ). The assumption that (u∗1, u
∗
2, . . . ) is876

not the solution to ProgramSUS2 then implies that (u∗1, u
∗
2, . . . ) is not the solution to Program877

CDU2[xe
0, s

k
0] either, i. e.,878

∞
∑

1

ϕt−1u∗t <
∞
∑

1

ϕt−1Λ∗ =
Λ∗

1− ϕ
(A.7)

(since (u∗1, u
∗
2, . . . ) is feasible for ProgramSUS2 and the solution to that program is unique), i. e.,879

the first term in (A.6) evaluated at (u∗1, u
∗
2, . . . ) is less thanΛ

∗

1−ϕ .880

Step 3. The proof will be completed after showing that (A.7) implies that the value of the881

objective function ofRβ at (Λ∗,Λ∗, . . . ) is higher than at (u∗1, u
∗
2, . . . ), and, hence, (u∗1, u

∗
2, . . . )882

does not solveRβ, contrary to hypothesis. Ifβ = 0, then from (A.6) the value of the objective883

function ofRβ at (u∗1, u
∗
2, . . . ) is

∑∞
1 ϕ

t−1u∗t , by (A.7) less than
∑∞

1 ϕ
t−1Λ∗, which is the desired884

contradiction. So letβ > 0. Again by (A.7), the first term of (A.6) is less thanΛ
∗

1−ϕ . Suppose now885

that the second term in (A.6) evaluated at (u∗1, u
∗
2, . . . ) is greater thanβ ϕ

1−ϕΛ
∗, which, because886

β > 0, implies that887

∞
∑

2

ϕt−1u∗t >
∞
∑

1

ϕtΛ∗. (A.8)
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If we had thatu∗1 ≥ Λ
∗, then, by (A.8),u∗1+

∑∞
2 ϕ

t−1u∗t > Λ
∗+

∑∞
1 ϕ

tΛ∗ = Λ∗+
ϕ

1−ϕΛ
∗ = 1

1−ϕΛ
∗,888

contradicting (A.7). Thus,u∗1 < Λ
∗ and, therefore, by Lemma 5,u∗t ≤ u∗1 < Λ

∗ for all t, and889

so (A.8) would be false. Therefore the second term of (A.6) when evaluated at (u∗1, u
∗
2, . . . ) is890

β
∑∞

t=2 ϕ
t−1u∗t , which is less than or equal toβ ϕ

1−ϕΛ
∗. By induction, we see that for all values891

τ ≥ 2:892

β

∞
∑

t=τ

ϕt−1u∗t ≤ β
∞
∑

t=τ

ϕt−1Λ∗.

Hence, (Λ∗,Λ∗, . . . ) dominates (u∗1, u
∗
2, . . . ) in ProgramRβ while satisfying its constraints, a893

contradiction which establishes the theorem.894

Proof of Theorem 7895

Step 1. It is obvious that ifϕ = 0, then the solution to ProgramR2 requires simply maximiz-896

ing the utility of the first generation. In particular, this will require xe
1 = 0 and henceu2 = 0.897

Step 2.More generally, suppose that in the solution to ProgramR2, we haveu1 = u2 > 0.898

Then if we reducexl
2 by ξε, we can increasexl

1 by ε. This leaves all variables after date 2899

unchanged, since Generation 2 continues to pass down the same endowment to Generation 3. It900

therefore must be the case that this change does not increasethe value ofu1 + ϕu2; therefore we901

must have:902

∂u(c1, xl
1)

∂xl
1

− ϕ
∂u(c2, xl

2)

∂xl
2

ξ ≤ 0.

Choosing903

ϕ̄ =
∂u(c1, xl

1)

∂xl
1

/











∂u(c2, xl
2)

∂xl
2

ξ













therefore proves the theorem.904

Proof of Theorem 8905

Step 1. Without loss of generality, we assume thatxe
0 = 1, and sosk

0 = σ0. Since the set of906

feasible paths is a convex cone, the primal variables at the solution of the general problem where907

xe
0 , 1 are simply the ones computed here, multiplied byxe

0.908

We write theDU2 program with its dual variables:909

max
∞
∑

1

ϕt−1u
(

ct, x
l
t

)

subject to

(C1) : (1− δ)sk
t−1 + it ≥ sk

t , (at)

(C2) : f (sk
t , x

c
t ) ≥ ct + it, (bt)

(C3) : ξxe
t−1 ≥ xe

t + xl
t + xc

t , (dt)

(C4) : it ≥ 0. (et)
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The Kuhn-Tucker conditions for a solution to this program where all the constraints bind are:910

(KT1) (∂ct) : ϕt−1u1[t] = bt,

(KT2) (∂xl
t) : ϕt−1u2[t] = dt,

(KT3) (∂xe
t ) : dt = (1/ξ)t−1d1,

(KT4) (∂xc
t ) : bt f2[t] = dt,

(KT5) (∂sk
t ) : (1− δ)at+1 = at − bt f1[t],

(KT6) (it) : at = bt − et,

where all equations hold fort = 1, 2, 3, . . . . Again,u j [t] and f j [t] are the jth partial derivatives911

of the utility functionu and the production functionf for j = 1, 2.912

We will show that there exist non-negative dual variables such that the proposed path satisfies913

all the Kuhn-Tucker constraints. All the relevant infinite series converge, so that the satisfaction914

of the K-T constraints suffices to prove optimality of this infinite program.915

Step 2. Our method will be to substitute the values on the proposed solution path into the916

primal and dual constraints, and to show that non-negative values of all dual variables can be917

computed. To this end, the educational constraint (C3) gives us:918

ξ − E = xl
1 + xc

1, (A.9)

recalling thatxe
0 = 1.919

Step 3.The dual K-T constraints imply the following:920

u2[t] = f2[t]u1[t], (A.10)

ϕξu2[t + 1] = u2[t], (A.11)

et − (1− δ)et+1 = (1− f1[t])bt − (1− δ)bt+1. (A.12)

The remaining dual constraints simply define (non-negative) values of the dual variables.921

Step 4. Equation (A.11) says that922

1− α
α

ct

xl
t

= (1− θ)

(

(1− δ)tσ0

Et−1xc
1

)

;

substituting ˜ct for ct allows us to reduce this equation to:923

(1− α)xc
1

α(1− θ)
= xl

1. (A.13)

Equations (A.12) and (A.13) comprise two linear equations in (xc
1, x

l
1), which solve to give924

xc
1 = x̃c

1, xl
1 = x̃l

1,

as required.925

Step 5. We next analyze equation (A.12), which says:926

(ϕξ)













ct+1

xl
t+1













α (

xl
t

ct

)α

= 1.
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Substituting in the values ˜ct andx̃l
t gives us an equation in the variableE:927

ϕξ

(

1− δ
E

)αθ

= 1,

which solves to give the prescribed value forE. Note thatE < 1 sinceϕξ < 1.928

Step 6. The prescribed values of all primal variables have been verified. The Kuhn-Tucker929

equations (KT1-3) give us non-negative solutions forbt anddt. It is left only to solve foret and930

to show that for allt, bt ≥ et, which will give non-negative values forat.931

Step 7. Define the new variables:932

mt = (1− f1[t])ϕt−1u1[t] − (1− δ)ϕtu1[t + 1].

We show in this step that there exists a number ˆσ such that ifσ0 ≥ σ̂, thenmt ≥ 0 for all933

t ≥ 1. The desired result is equivalent to:934

(∀t ≥ 1) 1− θ













x̃c
1Et−1

σ(1− δ)t













1−θ

≥? (1− δ)ϕ
( E
1− δ

)(1−α)θ

. (A.14)

Since E
1−δ < 1, the l. h. s. of (A.14) is increasing int; thus we need only verify (A.14) fort = 1,935

which is to say, to verify that:936

1− θ

(

x̃c
1

σ(1− δ)

)1−θ

≥? (1− δ)ϕ
( E
1− δ

)θ(1−α)

,

an inequality which holds for sufficiently largeσ if and only if:937

1 > (1− δ)ϕ
( E
1− δ

)θ(1−α)

,

which is immediately seen to be true from the definition ofE.938

Step 8. Now note that equation (A.12) can be written939

et − (1− δ)et+1 = mt, t ≥ 1.

This system of difference equations yields the following solution:940

eT =
e1

(1− δ)T−1
−

T−1
∑

t=1

mt(1− δ)t−T , T = 2, 3, . . .

Now choosee1 =
∑∞

t=1(1 − δ)t−1mt. (We note that this series converges.) To verify thateT ≥941

0 for all T ≥ 1 we must show that942

T ≥ 2⇒ e1 ≥

T−1
∑

t=1

mt(1− δ)t−1,

a fact which follows from the definition ofe1 and the fact that (m1,m2, . . . ) is a non-negative943

sequence.944
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Step 9. The final step is to show thatat ≥ 0 whereat = bt − et. It suffices to show that for all945

T ≥ 1, (1− δ)T−1bT ≥ (1− δ)T−1eT , or that:946

(1− δ)T−1bT ≥
?
∞
∑

t=T

mt(1− δ)t−1.

The r. h. s. of this inequality can be shown (with some algebra) to equal947

((1− δ)ϕ)T−1(1− f1[T])u1[T] −
∞
∑

T+1

f1[t]((1 − δ)ϕ)t−1u1[t];

sincebT = ϕ
T−1u1[T], our desired inequality reduces to showing that948

((1− δ)ϕ)T−1u1[T] ≥? ((1− δ)ϕ)T−1(1− f1[T])u1[T] − a positive term,

which is surely true. This concludes the demonstration thatall the K-T conditions hold with the949

dual variables as defined.950

Step 10. Finally, we derive the critical valueσ∗. The infinite-series expression fore1 can be951

expanded and reduced (with much algebra) to show that952

e1(σ0) = (1− f1[1])u1[1] −













c̃1

x̃l
1













α
αθ

σ0
(ϕξ)

1
αθ

1− α
1− αθ

, (A.15)

which we write as a function of the initial capital-labor ratio. The reader should note, from953

the K-T conditions (KT1-6) in Step 1 that the dual variables are functions only of the marginal954

utilities and productivities at the various dates, which are, for the Cobb-Douglas case, functions955

of ratiosof the primal variables. Therefore the dual variables are independent of the scale of the956

endowment vector (i. e., the value ofxe
0).957

The critical value ofσ0 is that numberσ∗ for which e1(σ∗) = 0: for if e1(σ0) > 0 then a958

slight decrease inσ0 will still deliver a positive value ofe1, and all the otheret. But this would959

mean that investment is identically zero on the optimal path. The zero of equation (A.15) is the960

solution to the equation in the statement of the theorem, which concludes the proof.961

Example 2962

This is an example of an education and capital economy where,along the solution path to963

ProgramDU2, u2 > u1, whereas the utilities from date 2 onwards decay geometrically. The964

example is presented in lemmas 11 and 12 below.965

Lemma 11. Let (α, θ, δ, ξ, ϕ) = (0.66, 0.25, 0.1, 1.1, 0.9) and (xe
0, s

k
0) = (1, 0.15). In particular,966

ϕξ < 1. Thenσ∗ = 0.186198and soσ0 = 0.15 < σ∗. The solution to DU2 is given by(c1,967

xl
1, xc

1, xe
1, i1, sk

1) = (0.192294, 0.0482943,0.870989,0.154375,0.0746361, 0.114795). We have968

σ1 = 0.1979> σ∗ and the variables from date 2 onwards are given by:969

t ≥ 2 : it = 0, sk
t = xe

1s̃k
t , xt = xe

1x̃t, ct = xe
1c̃t. In particular, u1 = 0.1138and u2 = 0.1169> u1.970

The utilities from date 2 onwards decay geometrically as in Theorem 8.971

Proof. Step1. We will produce the example by finding an initial endowment vector (xe
0, s

k
0) such972

thatσ0 < σ∗ and the solution toDU2[ϕ, xe
0, s

k
0] has the following property: on the optimal path,973

at date 1, we haveσ1 = sk
1/x

e
1 > σ∗. For we then know what the optimal path is from date 1974

onwards: it is just the path stipulated in Theorem 8. Our strategy will be to find such values of975

(xe
0, s

k
0), where, on the optimal path, we haveu1 < u2.976

We write down the program we wish to solve, where (xe
0, s

k
0) is now an unknown endowment.977
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Program PP∗[ϕ, xe
0, s

k
0].

max
∞
∑

1

ϕt−2u(ct, x
l
t) subject to :

(at) (1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

(bt) f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

(dt) ξxe
t−1 ≥ xt ≡ xe

t + xl
t + xc

t , t ≥ 1,

(et) it ≥ 0, t ≥ 1.

Note that we have factored outϕ from the usual statement of the objective function. Of978

course this makes no difference to the solution. The reason for doing so will become apparent979

momentarily.980

We are searching for a solution such thatσ1 > σ∗, i1 > 0, and it follows (by Theorem 8)981

that it = 0, t ≥ 2. Hence all constraints of programPP∗ will bind except for the first investment982

constraint. This gives the following K-T conditions:983

(∂ct) : ϕt−2u1[t] = bt, t ≥ 1,

(∂xl
t) : ϕt−2u2[t] = at, t ≥ 1,

(∂xc
t ) : bt f2[t] = dt, t ≥ 1,

(∂xe
t ) : ξdt+1 = dt, t ≥ 1,

(∂it) : a1 = b1,

at = bt − et, t > 1,

(∂sk
t ) : (1− δ)at+1 = at − bt f1[t], t ≥ 1.

Step 2. In Theorem 8, we solved theDU2 problem with the normalizationxe
0 = 1, σ0 = sk

0.984

Recall from Step 10 of the proof of Theorem 8 that the values ofthe dual variables of that985

program are functionsonly of σ0: that is, they depend only on the capital-labor ratio at date0,986

not on the scale of the initial endowment vector.987

Step 3. ProgramPP∗ beginning at date 1 (not date 0) isexactlythe program solved in The-988

orem 8. (That is why we factored outϕ from the objective.) Sinceσ1 > σ∗ in the solution989

we are looking for, it follows that the dual variables from date 1 on in ProgramPP∗ are exactly990

the dual variables computed in Theorem 8, where the initial capital – labor ratio isσ1, and the991

primal variables from date 1 are exactly the tilde primal variables of Theorem 8, multiplied by992

xe
1, whatever that turns out to be.993

Denote the dual variables computed in the proof of Theorem 8 with tildes –ãt(σ), b̃t(σ), etc.,994

whereσ is the initial capital-labor ratio of that program.995

Step 4. We now compute what information is contained in the K-T constraints for Program996

PP∗. First, we know thatd2 = d̃1(σ1): this follows from the above discussion. Butd2 =
1
ξ
d1 =997

ϕ−1u2[1] and therefore:998

u2[1] = ϕξd̃1(σ1). (A.16)

From Theorem 8, we know that̃d1(σ1) = ũ2[1] = (1 − α)
(

c̃1(σ1)
x̃l

1(σ1)

)α

, and we therefore can999
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write, manipulating equation (A.16):1000

c1

xl
1

= (ϕξ)1/α













c̃1(σ1)

x̃l
1(σ1)













, (A.17)

wherec1, xl
1 are the date 1 values on the optimal path for ProgramPP∗.1001

Our second equation is1002

u2[1]
u1[1]

= f2[1],

which comes from the first three K-T constraints of ProgramPP∗. This gives:1003

1− α
α

c1

xl
1

= (1− θ)
f (sk

1, x
c
1)

xc
1

= (1− θ)













sk
1

xc
1













θ

. (A.18)

The next three equations simply restate the primal constraints:1004

(1− δ)sk
0 + i1 = sk

1, (A.19)

ξxe
0 = xe

1 + xl
1 + xc

1, (A.20)

f (sk
1, x

c
1) = c1 + i1. (A.21)

Equation (A.21) comes from the (∂sk
1) K-T condition. As before, we know thatb2 = b̃1(σ1)1005

ande2 = ẽ1(σ1) and soa2 = b2 − e2 = b̃1(σ1) − ẽ1(σ1). Thus, we may write that K-T condition1006

as:1007

(1− δ)(b̃1(σ1) − ẽ1(σ1)) = αϕ−1













xl
1

c1













1−α 













1− θ













xc
1

sk
1













1−θ












. (A.22)

The six equations (A.17)-(A.22) are equations in the six unknownsxe
1, xl

1, xc
1, i1, c1, sk

1 when1008

the endowment (xe
0, s

k
0) is given. Of course,σ1 = sk

1/x
e
1. We know the expressions for all the tilde1009

variables from Theorem 8, as functions ofσ1.1010

Indeed, these six equations contain all the new informationabout the solution to ProgramPP∗1011

–the remaining K-T conditions simply emulate the solution of the program from date 1 onwards,1012

which we know from Theorem 8.1013

We now show how to solve these six equations. Define two new variables:1014

A =
c1

xl
1

, B =
sk
1

xc
1

Note that equations (A.17), (A.18) and (A.22) above are simultaneous equations in the three1015

unknownsA, B andσ1. Hence we can solve for these three variables (which we will do in an1016

example, given below). Now, knowing these three variables,we can write all the information re-1017

maining in the six equations as the following system of six linear equations in the six unknowns:1018

sk
1 = σ1xe

1,

(1− δ)sk
0 + i1 = sk

1,

xc
1 f (B, 1) = c1 + i1,

c1 = Axl
1,

ξxe
0 = xe

1 + xl
1 + xc

1,

sk
1 = Bx1

c.
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We write these equations in matrix formMz= Q, where1019

M =



















































0 0 0 −σ1 0 1
0 0 0 0 −1 1
−1 0 f (B, 1) 0 −1 0
−1 A 0 0 0 0
0 1 1 1 0 0
0 0 B 0 0 −1



















































,Q =



















































0
(1− δ)sk

0
0
0
ξxe

0
0



















































.

(The order of the variables is (c1, xl
1, x

c
1, x

e
1, i1, s

k
1).) Hence we can compute the solutionz =1020

M−1Q. If we insert an endowment vector(xe
0, s

k
0) with σ0 < σ∗ and the solution Q generated is1021

a positive vector, and
sk
1

xe
1
≥ σ∗, then we have a solution to PP∗ of the required form.For it will1022

immediately follow that all the dual variables are non-negative, from the K-T conditions, and so1023

we have produced a path where all the K-T conditions hold —by again invoking Theorem 8.1024

Step 5. Examine theMathematicaprogram (available from the authors) which calculates this1025

solution for several numerical values. In particular, an instance is provided in whichu1 < u2 on1026

the optimal path, which proves the lemma.1027

Lemma 12. The solution to R2[ϕ, xe
0, s

k
0] with the data of the premise of Lemma 11 is given1028

by:
(

sk
1, i1, c1, xe

1, x
c
1, x

l
1, σ1

)

= (0.167583, 0.0325828, 0.131227, 0.847974, 0.162572, 0.894544,1029

0.197627)and for t> 1: i t = 0, sk
t = xe

1s̃k
t , xt = xe

1x̃t, ct = xe
1c̃t. At the solution, u1 = u2. Indeed,1030

the utilities at the solutions of DU2 and R2 for this economy are given by:1031

u1 u2 ut, t > 2
DU2 0.1138 0.1169 geometric decay
R2 0.1152 0.1152 geometric decay

1032

Proof. Step 1. We will find a solution to ProgramPP[ϕ, xe
0, s

k
0]: this will also be a solution to1033

CDU2[ϕ, xe
0, s

k
0] and hence toR2[ϕ, xe

0, s
k
0]. Recall that ProgramPP[ϕ, xe

0, s
k
0]is:1034

max















Λ

1− ρ
−

∞
∑

2

ϕt−1λt















subject to

(vt) u(ct, x
l
t) ≥ Λ − λt, t ≥ 1,

(mt) λt+1 ≥ λt, t ≥ 1,

(bt) f (sk
t , x

c
t ) ≥ ct + it, t ≥ 1,

(at) (1− δ)sk
t−1 + it ≥ sk

t , t ≥ 1,

(dt) ξxe
t−1 ≥ xc

t + xl
t + xe

t , t ≥ 1,

(et) it ≥ 0, t ≥ 1,

whereλ1 ≡ 0. For the specified economy, we conjecture a solution whereu1 = u2 > u3 > . . .1035

and where the geometric-decay solution begins at date 2. Thus, of the set ofmt constraints, only1036

them1 constraint will bind, and somt = 0 for t > 1. Thee1 constraint will be slack, since we1037

conjecture thati1 > 0. All other constraints will bind at the solution. The K-T conditions are1038
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therefore:1039

(∂Λ) :
1

1− ϕ
=

∞
∑

1

vt,

(∂λ2) : −ϕ +m1 + v2 = 0,

(∂λt) : vt = ϕ
t−1, t > 2,

(∂ct) : vtut = bt, t ≥ 1,

(∂xl
t) : vtut = dt, t ≥ 1,

(∂xc
t ) : bt f2[t] = dt, t ≥ 1,

(∂xe
t ) : ξdt+1 = dt, t ≥ 1,

(∂sk
t ) : at+1(1− δ) − at + bt f1[t] = 0, t ≥ 1,

(∂i1) : a1 = b1,

(∂it) : at = bt − et, t > 1.

Step 2. We can reduce the first three dual K-T conditions to the equations:1040

v2 = 1+ ϕ − v1, m1 = v1 − 1,

thus eliminating the variablesv2 andm1. We must, after finding a value forv1, check thatv2 and1041

m1 are non-negative.1042

For t ≥ 2, we define all the dual variables to equal the dual variablesof the geometric-decay1043

solution which begins at date 2 with the endowment (xe
1, s

k
1), multiplied byλ. Denoting the latter1044

variables with tildes, we therefore define fort ≥ 2:1045

at = ϕãt−1, bt = ϕb̃t−1, dt = ϕd̃t−1, et = ϕẽt−1.

Then all the dual constraints which involve these variablesare satisfied where the primal1046

variables for datest ≥ 2 are given by the geometric-decay solution to Theorem 8. Forthis to1047

be a solution, we must check thatσ1 ≡ sk
1/x

e
1 ≥ σ

∗. We are left only with the dual constraints1048

associated with date 1, which are:1049

v1u1[1] = b1,

v1u2[1] = d1,

u2[1] = f2[1]u1[1],

ξd2 = d1,

a2(1− δ) = b1(1− f1[1]).

The first two of the above constraints simply defineb1 and d1. Thus we are left with three1050

substantive equations. Substituting in for the values ofd2 anda2, these become:1051

u2[1] = f2[1]u1[1], (A.23)

ϕξd̃1 = v1u2[1], (A.24)

ϕ(b̃1 − ẽ1)(1− δ) = v1u1[1] (1− f1[1]) . (A.25)
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Recall from the proof of Theorem 8 that the expressions ford̃1, b̃1, ẽ1 are known functions of1052

σ1 ≡ sk
1/x

e
1. In particular, we have:1053

b̃1 = α













c̃1(σ1)

x̃l
1













α−1

, d̃1 = (1− α)













c̃1(σ1)

x̃l
1













α

,

while the expression for ˜e1 is given as equation (A.15) in Step 10 of the proof of Theorem 8.1054

In addition we have the primal constraints:1055

u(c1, x
l
1) = xe

1u (c̃1(σ1) , x̃l
1) (i. e. , u1 = u2), (A.26)

xc
1 f (sk

1/x
c
1, 1) = c1 + i1, (A.27)

(1− δ)sk
0 = sk

1 − i1, (A.28)

ξxe
0 = xe

1 + xc
1 + xl

1. (A.29)

The seven equations (A.23)-(A.29) define a system of seven equations in the seven unknowns1056
(

sk
1, i1, c1, xe

1, x
c
1, x

l
1, v1

)

.1057

Step 3. We proceed to solve these equations as follows. Recall thatA = c1/xl
1, B = sk

1/x
c
1.1058

Rewriting equation (A.23) as1059

1− α
α

A = (1− θ)Bθ, (A.30)

allows us expressA as a function ofB:1060

A[B] =
α(1− θ)
1− α

Bθ. (A.31)

We define the following mapping. Begin with an arbitrary positive value forB. Then compute1061

A by (A.31). Now equations (A.24) and (A.25) comprise two simultaneous equations in (σ1, v1).1062

Solve them. This leaves us with the four equations (A.26)-(A.29), which are now linear equations1063

in the primal variables, onceA, B andσ1 are specified constants. To these, append the equations:1064

σ1xe
1 = sk

1, Axl
1 = c1.

We now have a linear system of six equations in the six date-one primal variables. Solve1065

them, and definêB = sk
1/x

c
1. A fixed point of the mappingB → B̂ generates a solution to the1066

seven equations (A.23-A.29) in the six primal variables plusv1.1067

We find the fixed point of this mapping for the stipulated economy. (See the availableMath-1068

ematicaprogram.) We find thatv1 = 1.01304, and it follows thatv2 andm1 are positive and1069

σ1 = 0.1976> σ∗. Hence we have a solution to all the Kuhn-Tucker conditions,and hence,1070

sincePP is a concave program, to ProgramPP. The solution is reported in the lemma’s state-1071

ment.1072

Proof of Theorem 91073

Step 1.We first write down the Kuhn-Tucker conditions for a solutionto Programg-SUS.1074

(∂Λ) : 1 =
∑∞

1 rt(1+ g)t−1,

(∂ct) : rtu1[t] = at,

(∂xl
t) : rtu2[t] = dt,

(∂xe
t ) : ξdt+1 = dt,

(∂xc
t ) : at f2[t] = dt,

(∂sk
t ) : at f1[t] + (1− δ)bt+1 = bt,

(∂it) : at = bt.
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In addition, let all the primal constraints hold with equality. We shall attempt to solve all1075

these equations for a balanced growth path.1076

On such a path,u j [t] = u j [1] and f j [t] = f j [1] for j = 1, 2 andt ≥ 1. The primal and dual1077

equations yield the following substantive relations on a balanced growth path for the economic1078

variables:1079

i1 = (g+ δ)sk
0, (A.32)

ξ − (1+ g) = xc
1 + xl

1, (A.33)

f2[1] =
u2[1]
u1[1]

, (A.34)

ξ =
1− δ

1− f1[1]
, (A.35)

f ((1+ g)sk
0, x

c
1) = c1 + i1. (A.36)

The other dual constraints simply define non-negative dual variables in terms of the primal1080

variables, with one exception: we must verify that the series in the (∂Λ) constraint converges.1081

Thus, giveng, if we can solve the five equations (A.32)-(A.36) for (sk
0, x

c
1, x

l
1, c1, i1) and the series1082

in (∂Λ) converges, then the balanced growth path at rateg defined by these values, along with the1083

associated dual variables, solves the Kuhn-Tucker constraints. Modulo transversality conditions,1084

which we will comment upon below, and sinceg-SUSis a concave program, the theorem will be1085

demonstrated.1086

Step 2. From the dual K- T conditions, we deduce thatrt =
d1

u2[1]

(

1
ξ

)t−1
. Consequently the1087

series in the (∂Λ) K- T condition defines a value ford1 if and only if 1+g
ξ
< 1. This is true because1088

by hypothesis,g < ξ − 1.1089

Step 3. Thus, it remains to solve the five equations (A.32)-(A.36).Specializing to Cobb-1090

Douglas, we re-write the five equations as follows.1091

i1 = (g+ δ)sk
0, (A.37)

ξ − (1+ g) = xc
1 + xl

1, (A.38)

(1− θ)













(1+ g)sk
0

xc
1













θ

=
(1− α)c1

αxl
1

, (A.39)

θ













xc
1

(1+ g)sk
0













1−θ

=
ξ − (1− δ)

ξ
, (A.40)

((1+ g)sk
0)θ(xc

1)1−θ = c1 + (g+ δ)sk
0. (A.41)

Step 4. Now denoteX =
xc

1

sk
0
, Y = c1

xl
1
. Solve (A.39) and (A.40) forX andY:1092

X = (1+ g)
(

ξ−(1−δ)
θξ

)1/(1−θ)
,

Y = α(1−θ)
1−α

(

ξ−(1−δ)
βξ

)−θ/(1−θ)
.

Next, divide equation (A.41) through bysk
0, giving:1093

c1

sk
0

= (1+ g)θX1−θ − (g+ δ), (A.42)
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which generates anecessary condition:1094

(1+ g)θX1−θ > (g+ δ). (A.43)

Now, noting thatXY= c1

sk
0

xc
1

xl
1
, and using (A.43), we have:1095

Z
xc

1

xl
1

= XY, whereZ ≡ (1+ g)θX1−θ − (g+ δ),

or xc
1 =

xl
1XY
Z . Using (A.38), and substituting this value forxc

1, we can solve forxl
1:1096

xl
1 =

Z
Z + XY

(ξ − (1− δ)).

Consequently, from (A.38),xc
1 =

XY
XY+Z (ξ − (1− δ)). Thus bothxc

1 andxl
1 are positive numbers.1097

We can now use the equations to solve quickly for positive values ofsk
0, i1 andc1.1098

Step 5. We now verify (A.43). Define the functionΥ(g) = (1 + g) ξ−(1−δ)
θξ
− (g + δ). Check1099

thatΥ(0) > 0 if and only if ξ > 1−δ
1−θδ ; but this is true becauseξ > 1. Check thatΥ(ξ − 1) =1100

(ξ − (1 − δ)) 1−θ
θ

> 0. SinceΥ is linear, it follows thatΥ(g) > 0 on the interval [0, ξ − 1],1101

demonstrating (A.43).1102

Step 6. We finally remark that all the transversality conditions hold because each sequence of1103

dual variables (e. g.,(a1, a2, . . . )) converges to zero geometrically. This proves the first direction1104

of the theorem.1105

Step 7. To prove the converse, letg = ξ−1. On a balanced growth path, we therefore require1106

xe
1 = (1 + g)xe

0 = ξxe
0, which implies thatxc

1 = xl
1 = 0. So no balanced growth path can be1107

supported at the rateg = ξ−1. It is obvious,a fortiori, that no such path exists forg > ξ−1.1108
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