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Abstract
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1 Introduction

Over the past two decades, technological progress has been biased towards making

skilled labor more productive. The evidence for this finding is based on the marked

increase in the skill premium in the US and many other industrialized countries starting

in the early 1980s, which coincided with a substantial rise in the average education

level of the workforce. This parallel increase in the price and quantity of skill points

towards an increase in the demand for skilled workers that exceeded the increase in their

supply, suggesting that newly developed production technologies require relatively more

educated and fewer uneducated workers (Katz and Murphy (1992); Autor et al. (1998);

Acemoglu (2002); Autor et al. (2005) and Autor et al. (2008)).

This paper documents a set of stylized facts about the implications of skill-biased

technological change for business cycle fluctuations. To our knowledge, this paper is

the first to undertake this task. The lack of interest in skill-biased technology in the

business cycle literature is surprising given the large number of studies dedicated to

the effect of this type of technological progress on growth and inequality. Our results

show that allowing for skill bias in technological change is important to understand

business cycles and in particular speak to two important debates in the macroeconomics

literature. First, traditional identifying restrictions, which are justified in models with

homogeneous labor, may give a misleading picture of the effect of technology shocks on

the economy. In particular, we show that the fall in hours in response to improvements

in technology is due at least in part to a compositional shift in labor demand from

unskilled to skilled workers. Second, we show that the response of the economy to skill-

biased technology shocks implies restrictions on the production technology that are of

interest to macroeconomists studying growth as well as business cycles. In particular,

we find that investment-specific technological change reduces the skill premium. These

results reject the hypothesis that there is capital-skill complementarity in the aggregate

production function.
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Following previous studies on skill-biased technological progress, we identify skill-

biased technology shocks from their effect on the skill premium. To this end, we con-

struct a time series for the skill premium, which was so far not available at a quarterly

frequency. Using the Current Population Survey (CPS) outgoing rotation groups, we

calculate the skill premium as the log ratio of wages of college graduate equivalent work-

ers over high school graduate equivalents, controlling for experience and other observable

worker characteristics. In combination with comparable measures for the relative hours

of skilled workers, these series give a good picture of the high frequency movements in

the price and quantity of skill in the US over the 1979:I-2006:II period.

We use a structural vector autoregression (VAR) to estimate the response of the

economy to technology shocks, identifying technology shocks using long-run zero and

sign restrictions. We find evidence for substantial skill bias in technological change at

business cycle frequencies. This finding is novel and somewhat surprising, given that

the skill premium is roughly acyclical over our sample period, which seems to suggest

that skill-biased technological change is not relevant for business cycle fluctuations.1

However, in the presence of multiple shocks, unconditional correlations are the result of

a mixture of responses, which obscures the effects of changes in technology.2 The struc-

tural VAR allows us to estimate the response of the economy conditional on technology

shocks. This exercise delivers two sets of results.

For our first set of results, described in more detail in section 3, we propose a long-run

restriction to separately identify skill-biased technology shocks. Part of this restriction

is a long-run zero restriction, as in Blanchard and Quah (1989): we argue that skill-

biased technology shocks are the only shocks that affect the skill premium in the long

1This interpretation seems to be supported by the fact that the skill premium is negatively correlated
with the relative supply of skilled labor at business cycle frequencies. For example, Acemoglu (2002)
and Autor et al. (2005) argue this observation indicates that fluctuations in the skill premium are driven
by fluctuations in the supply of skill rather than its demand.

2Lindquist (2004) reaches a similar conclusion, although from a completely different exercise.
Lindquist argues that skill bias in technology shocks, generated by investment-specific technology shocks
and capital-skill complementarity in the aggregate production function, explains the cyclical behavior
of the skill premium. We discuss his argument in more detail in section 4.3.
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run. We complement this zero restriction with two sign restrictions. First, we require

that skill-biased technology shocks, which are shocks to the demand for skill, affect the

skill premium and the relative hours of skilled labor in the same direction. This rules

out shocks to the supply of skilled labor, which also affect the skill premium in the long

run. Second, we require that skill-biased technology shocks affect the skill premium and

productivity in the same direction. This rules out technology shocks biased towards

unskilled labor, which increase productivity but decrease the skill premium (or vice

versa). We identify all other technology shocks as the remaining shocks that permanently

change labor productivity, following Gaĺı (1999). These other technology shocks include

skill-neutral as well as unskill-biased shocks. We find that skill-biased improvements in

technology cause a decline in total hours worked. This finding suggests that the fall

in hours in response to technology shocks, which has been interpreted as evidence for

price rigidities, is due at least in part to a compositional shift in labor demand towards

skilled workers.

Our second set of results, described in Section 4, concerns the following question:

What kind of changes in the aggregate production function best describe the skill-biased

improvements in technology we observe over the past two decades? In a production func-

tion that takes capital, skilled and unskilled labor as inputs, a change in productivity

must be either a change in total factor productivity (TFP) or capital, skilled labor

or unskilled labor augmenting technological change. Whereas changes in TFP are al-

ways skill-neutral, both capital and skilled labor augmenting technological change may

increase the relative demand for skilled labor, depending on the elasticities of substitu-

tion between the different inputs. Krusell et al. (2000) argue that capital and skill are

complements in the aggregate production function, and that skill-biased technological

change is the result of an increase in the relative productivity of the investment-goods

producing sector.3 Our results cast doubt on this hypothesis.

3It is a well-documented fact that, over the same period that the skill premium has risen, the relative
price of investment goods (software, equipment structures) has fallen substantially, providing evidence
for investment-specific technological change (Gordon (1990); Greenwood et al. (1997); Cummins and
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In order to explore the issue of capital-skill substitutability, we include both the

skill premium and the relative price of investment goods in the VAR. We use the latter

to identify investment-specific technology shocks, following Fisher (2006), as the only

shocks that affect the relative price of investment in the long run. An investment-

specific improvement in technology lowers the relative price of investment goods. The

remaining shocks that affect labor productivity in the long run, are then investment-

neutral technology shocks. We find that investment-specific technology shocks reduce

the skill premium, while investment-neutral technology shocks have a positive effect on

this variable. Using a simple two-sector real business cycle model that is consistent

with our identifying restrictions, we explore what value of the elasticity of substitution

between capital and high skilled labor corresponds to these estimates. For different

values of the elasticity of substitution, we simulate data from the model and use those

to estimate our structural VAR. We obtain the best match of the response of the skill

premium to investment-specific shocks in the model-simulated data to the response

estimated from actual data, if we assume capital and skill are substitutable.

The remainder of this paper is organized as follows. Section 2 describes our empirical

approach. We define the different shocks to the production technology that we consider

and discuss how to identify the effects of these shocks using long-run restrictions. We

also describe the data that are necessary to estimate these effects and present some

descriptive statistics on the cyclicality of our quarterly series for the skill premium and

the relative supply and employment of skill. In Section 3 we describe the properties of

skill-biased technology shocks using the structural VAR analysis. Section 4 discusses

our evidence against capital-skill complementarity in aggregate production. Section 5

concludes.

Violante (2002)). Krusell et al. (2000) show that if capital and skilled labor are sufficiently complemen-
tary, investment-specific technological progress can explain the increasing trend in the skill premium,
because the increase in the capital-labor ratio makes skilled labor relatively more productive.
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2 Empirical Approach

In this section, we outline our approach to estimate the implications of skill-biased

technological progress for the business cycle. We start by defining different types of

of technological change, discussing various specifications for the aggregate production

function. Next, we explain how to identify these different technology shocks from the

data using either the functional form of the production function or a VAR with long-

run restrictions. Finally, we describe the data needed for the identification, including

quarterly series for the skill premium and the relative supply and employment of skilled

labor, which we construct from micro data.

2.1 Shocks to the production technology

Consider an aggregate production function for output Yt that takes capital Kt, high

skilled labor Ht and low skilled labor Lt as inputs. The production function satisfies the

standard conditions: it is increasing and concave in all its arguments and homogenous of

degree one so that there are constant returns to scale. Shocks to total factor productivity

are neutral technology shocks, in the sense that they affect the productivity of all inputs

in the same proportion. To allow for skill-biased technological change, the literature has

typically assumed an aggregate production function of the following form (see e.g. Katz

and Murphy (1992), Katz and Autor (1999), Autor et al. (2008)).

Yt = AtK
α
t

[

β (BH,tHt)
σ−1
σ + (1− β) (BL,tLt)

σ−1
σ

]

(1−α)σ
σ−1

(1)

There are three technology parameters in this production function: At is neutral, BH,t

skilled labor augmenting and BL,t unskilled labor augmenting technology. Increases in

At are improvements in skill-neutral technology (SNT). Increases in BH,t and BL,t can

be skill or unskill-biased, depending on the elasticity of substitution between skilled and

unskilled labor σ > 0. If high and low skilled labor are substitutes rather than com-

plements (σ > 1), the substitution effect of improvements in skilled labor augmenting
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technology dominates the income effect so that an increase in BH,t increases the demand

for skill and therefore the skill premium (assuming the supply curve for skill is downward

sloping) and an increase in BL,t decreases the skill premium. The consensus estimate

for σ is around 1.5 (see Katz and Murphy (1992), Ciccone and Peri (2006), Teulings

and van Rens (2008)), so that we can think of skill-biased technology (SBT) shocks as

changes in BH,t and unskill-biased technology (UBT) shocks as changes in BL,t. Note

that both positive SBT shocks and negative UBT shocks increase the skill premium, but

the two shocks are conceptually different. Positive technology shocks, whether to At,

BH,t or BL,t represent improvements in technology that raise total factor productivity,

whereas negative technology shocks of all types reduce productivity.

There are two ways to interpret skill-biased technology shocks to an aggregate pro-

duction function as in (1). If the production function for all goods in the economy is

the same, then we can think of an increase in BH,t as a technological development that

makes skilled labor more productive in all sectors. Alternatively, we may think that the

production in different sectors i requires skilled labor in different proportions βi of total

labor input. In this case, even if skilled and unskilled labor are neither substitutes nor

complements within each sector,4 a sector-specific technology shock to a skill-intensive

sector would still increase the skill premium.

A particularly interesting case is an economy that consists of a consumption goods

producing sector and an investment goods producing sector. In this economy there are

two mechanisms, by which sector-specific shocks may affect the skill premium. First,

the input shares for skill might be different across the two sectors as explained above.

Second, because investment goods are used to build up capital, which is an input in the

production process, sector-specific shocks affect the capital-labor ratio used in produc-

tion. If capital and skill are complements, as argued by Krusell et al. (2000), then a

higher capital labor ratio increases the relative demand for skilled labor and therefore

the skill premium.

4This is the case where σi = 1 for all i. In the limit for σ → 1, production function (1) becomes
Cobb-Douglas, so that changes in BH,t and BL,t are indistinguishable from changes in At.
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Suppose the two sectors have identical production functions except for a difference

in total factor productivity. In this case, as shown among others by Fisher (2006) and

Krusell et al. (2000), the economy can be aggregated to a one-sector economy, where

total output is divided between consumption and investment,

Yt = Ct + ptIt (2)

where decreases in the relative price of investment goods pt reflect technological improve-

ments in the investment goods producing sector or investment-biased technology (IBT)

shocks. An aggregate production function that allows for capital-skill complementarity

is a slightly generalized version of (1), where At now denotes not only skill-neutral but

also investment-neutral technology (INT).

Yt = At

[

β

(

γK
ρ−1
ρ

t + (1− γ) (BH,tHt)
ρ−1
ρ

)
ρ

ρ−1
σ−1
σ

+ (1− β) (BL,tLt)
σ−1
σ

]
σ

σ−1

(3)

The elasticity of substitution between skilled and unskilled labor σ now also measures the

elasticity of substitution between capital and unskilled labor, whereas ρ is the elasticity

of substitution between capital and skilled labor. As shown by Krusell et al. (2000),

improvements in investment-specific technology (positive IBT shocks) increase the skill

premium if and only if the elasticity of substitution between capital and skilled labor ρ

is lower than the elasticity of substitution between capital and unskilled labor σ, i.e. if

there is capital-skill complementarity in production.

2.2 Identification and estimation

Under the assumption that workers’ wages are proportional to their marginal prod-

uct, we can calculate the skill premium directly from the production function. Using
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aggregate production function (1), we get the following expression,

log

(

wH,t

wL,t

)

= log

(

β

1− β

)

−

1

σ
log

(

Ht

Lt

)

+
σ − 1

σ
log

(

BH,t

BL,t

)

(4)

where wH,t and wL,t are the wages of high and low skilled workers respectively. This

equation can be interpreted as a demand curve for skill. The skill premium is decreasing

in the relative demand for high skilled workers, log (Ht/Lt), where the elasticity of

demand depends on the elasticity of substitution between high and low skilled workers.

Changes in skill-biased technology BH,t or unskill-biased technology BL,t represent shifts

of the skill demand curve or skill demand shocks.

The first, and easiest, way to estimate shocks to the relative demand for skill is a type

of production function decomposition. Since the skill premium and the relative quan-

tity of skill are observable, these shocks can be calculated directly from equation (4),

using an estimate for the elasticity of substitution between low and high skilled workers

σ.5 This approach, the results of which are described in Section 3.1, has two disadvan-

tages. First, we cannot separately identify skill-biased and unskill-biased improvements

in technology. This is problematic, because the effects of an improvement in skill-biased

technology and a deterioration in unskill-biased technology on the economy are likely to

be quite different, even though both lead to an increase in the skill premium. Second,

the estimates for the skill-biased technology shocks obtained this way are identified from

the assumption that wages are proportional to marginal products. This assumption is

not problematic if labor markets (and product markets) are perfectly competitive and

the wage of all workers equals their marginal product. If there are frictions in the labor

market, the weaker assumption that wages are proportional to marginal products still

holds approximately. However, if there are frictions in the wage determination process,

then wages may deviate from marginal products in the short run. In order to address

the second issue, we will use only long-run effects to identify skill-biased technological

5An estimate for the share parameter β is unnecessary since this parameter affects only the level of
BH,t and BL,t, and we normalize the mean and variance of the shocks to zero and one respectively.
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progress. To address the first issue, we use the additional restriction that improvements

in technology increase productivity.

We implement our identification strategy using a structural VAR with long-run re-

strictions. Consistent with equation (4), we identify skill-biased and unskill-biased tech-

nology shocks as the only shocks that affect the skill premium in the long run, conditional

on the supply of skill. Since the identifying restriction is an assumption on the long-run

effects of the structural shocks on the variables in the VAR, it is a weaker assumption

than assuming that (4) holds in each period and makes the estimates robust to, for

example, wage rigidities. In addition, the long-run identification does not depend on

the exact functional form of the production function and we no longer need to use an

estimate for σ.6 In Section 3.2, we compare the estimated technology shocks using long-

run restrictions to the estimated shocks using the production function decomposition

described above and find that the differences are small.

To separately identify skill-biased and unskill-biased technology shocks, we use a

long-run sign restriction on the response of productivity in addition to the long-run zero

restriction on the response of the skill premium.7 In addition, we use a second long-run

sign restriction to separate skill-biased technology shocks from exogenous changes in the

supply of skilled labor, which may also affect the skill premium in the long run. We

implement these additional restrictions, which are described in more detail in Sections

3.3 and 3.4, only in the structural VAR, because it would be impossible to do in the

context of a production function decomposition. The results, described in Section 3.5,

show that the sign restrictions affect the results substantially, indicating that there were

skill-biased as well as unskill-biased technology shocks and skill supply shocks over the

6Of course the assumption is not valid for all production functions. For example, with capital-skill
complementarity, as in (3), any shocks that affect the capital stock also affect the skill premium in the
long run. However, the restriction can easily be modified to incorporate this case, see section 4.

7Alternatively, we could have exclusively used sign restrictions, imposed on a broader range of
frequencies, as in Uhlig (2005) and Dedola and Neri (2007). We opt for a long-run zero restrictions in
combination with a sign restriction because we believe that any assumption on the short run behavior
of the skill premium would be more problematic than the assumption that only skill-biased technology
shocks affect the premium in the long run.
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sample period.

The estimation of structural shocks using long-run zero and sign restrictions is im-

plemented in two steps. First, we estimate a reduced form VAR in the variables labor

productivity, total hours worked, the skill premium, relative hours of skilled workers

and in some specifications also the relative price of investment goods. Second, we map

the reduced form coefficients and residuals into structural coefficients by means of our

identifying restrictions.8 Our baseline VAR includes 8 lags and is estimated on quarterly

data from 1979:I to 2006:II. All variables are used in first differences in order to allow

for unit roots.9 The baseline specification includes labor productivity, hours worked,

skill premium and relative hours of skilled workers. In Section 3.7, we show that our

results are robust to adding other variables, such as consumption and investment. In

order to identify investment-specific technology shocks, we further include the relative

price of investment goods into the VAR in Section 4.

We use a Bayesian VAR to estimate the reduced form and employ a prior on the

coefficients of the lagged variables, similar to Canova et al. (2010). This prior is a

type of Minnesota or Litterman prior, reflecting the belief that the true data generating

process for each variable is a univariate unit root, so that in first differences the variables

are serially uncorrelated. It is implemented as a prior that the lag coefficients in the

VAR are close to zero, where the strength of the prior increases with the lag order.10

The prior makes our estimation results more stable in the presence of high frequency

variation in the skill premium that is due to measurement error. The prior does not

affect the long-run restrictions in any way and we show that our results are robust to

8Please refer to the Technical Appendix for details on the implementation of these restrictions.
9In the context of the identification of neutral technology shocks, there has been a debate in the

literature whether hours worked should be included in levels (Christiano et al. (2003)) or in first
differences (Gaĺı and Rabanal (2004)). Canova et al. (2010) show that once the very low frequencies
are purged out from the data, the results of Gaĺı (1999) are robust to using hours worked in levels. We
show in section 3.7 that our results are robust to using hours worked in levels even if we do not filter
out the low frequencies.

10The strength of the prior increases with lag length to reflect the belief that the higher order lags
are less likely to matter. This is imposed in form of a harmonic decay of the prior variance on the lag
coefficients. Apart from the decay, the prior employed is quite loose. The Technical Appendix provides
more information on the specification.
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the strength of the prior and to estimating the reduced form VAR using ordinary least

squares.

2.3 Data

We construct quarterly series for the skill premium and the relative hours worked and

supply of skill using individual-level wage and education data from the CPS outgoing

rotation groups. This survey has been administered every month since 1979 so that our

series runs from 1979:I to 2006:II.11 Wages are usual hourly earnings (weekly earnings

divided by usual weekly hours for weekly workers) and are corrected for top-coding and

outliers. We limit our sample to wage and salary workers between 16 and 64 years old

in the private, non-farm business sector and weight average wages by the CPS-ORG

sampling weights as well hours worked in order to replicate aggregate wages as close as

possible. Education is measured in five categories (less than high school, high school

degree, some college, college degree, more than college) and made consistent over the

full sample period following Jaeger (1997).12 We use these data to construct the skill

premium as the log wage differential between college graduates and high school grad-

uates, controlling for other sources of observable heterogeneity. In an average quarter,

we have wage and education data for about 35,000 workers.13

The other data series we use in our analysis are the following. Output is non-

farm business output per capita of all persons from the national income and product

accounts (NIPA). Hours per capita are hours of non-supervisory workers in the non-farm

business sector from the Current Employment Statistics establishment survey, corrected

11The BLS started asking questions about earnings in the outgoing rotation group (ORG) surveys in
1979. The March supplement goes back much further (till 1963), but does not allow to construct wage
series at higher frequencies than annual. The same is true for the May supplement, the predecessor of
the earnings questions in the ORG survey.

12The most important change in the education question occurs in 1992. Until 1991, educational
attainment is coded as years of schooling. From 1992, the coding is based on the degree. As a result,
there are some jumps in the fractions of workers in each educational category in this year. We correct
these jumps by imposing that the fractions of workers in each of the 5 categories do not change from
1991:IV to 1992:I beyond what may be expected based on seasonal effects and a slow-moving trend.

13Please refer to the Technical Appendix for details on the construction of the skill premium.
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to be representative for the entire workforce including supervisors. Labor productivity

is output per hour. All three series are available from the Bureau of Labor Statistics

(BLS) productivity and cost program. As the relative price of investment goods, we

use a quarterly intrapolation of the quality adjusted NIPA deflator for producer durable

equipment over the consumption deflator. These data were constructed by DiCecio

(2009), extending the series by Fisher (2006) and based on the annual data constructed

by Gordon (1990) and Cummins and Violante (2002).14

Table 1 shows business cycle statistics for the skill premium, the relative hours worked

and supply of skill, output, hours, productivity and the relative price of investment goods

for our estimation sample 1979:I to 2006:II. The skill premium is basically acyclical: it

is only very mildly positively correlated with output and productivity. This finding

is consistent with previous studies (Keane and Prasad (1993); Lindquist (2004)). The

relative supply of skill is acyclical as well, but the relative hours of skill are higher in

recessions than in booms, indicating the presence of a composition bias in employment

as argued by Solon et al. (1994). The correlation of the skill premium with the relative

investment-price is negative and insignificant. This is a first indication that capital-

skill complementarity does not seem an important feature of the data at business cycle

frequencies.

3 Skill-biased technology shocks

In this section, we present our results for the effects of technology shocks on aggregate

variables. We start with a simple production function decomposition, which allows

estimating shocks that affect the skill premium, but not for separately identifying skill

demand shocks (technology shocks) versus skill supply shocks, and skill-biased versus

unskill-biased technology shocks. We then estimate the same shocks again, this time

14We thank Ricardo DiCecio for making these data available to us. The Technical Appendix de-
scribes the time-series properties of the data that are relevant for the specification of the VAR such as
autocorrelations, integration and cointegration properties.
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using a structural VAR with long-run restrictions and find that the estimates are very

similar. The structural VAR framework allows for additional restrictions to separate

out skill supply shocks and unskill-biased technology shocks. Imposing these restrictions

gives rise to our baseline estimates in Section 3.5. Finally, we report responses to skill-

biased technology shocks for some additional variables and explore the robustness of our

results.

3.1 Production function decomposition

Our first estimates of skill and unskill-biased shocks are constructed using a simple

decomposition based on the production function, as described in Section 2.2. This

decomposition is similar in spirit to a Solow residual and requires a value for the elasticity

of substitution between high and low skilled workers σ. We use σ = 1.5, which is the

consensus estimate from the literature based on several different data sources (Katz and

Murphy (1992), Ciccone and Peri (2006), Teulings and van Rens (2008)). With this

value, we can use equation (4) to retrieve changes in skill and unskill-biased technology

log (BH,t/BL,t) from our data on the skill premium and the relative hours of skill. For

comparability with the identified shocks from a structural VAR in the continuation of

this section, we demean these changes and normalize their variance to unity.

In order to obtain impulse responses of aggregate variables to skill and unskill-

biased technology shocks, we regress these variables on lags of the estimated shocks,

as suggested by Basu et al. (2006). This is a direct estimate of the moving average

representation of the impulse response functions and the results are comparable to the

impulse responses from a VAR. Since the impulse responses seem to flatten out after

about 6 quarters, we use 6 lags of the shocks. The results are presented in the first row

of Figure 1. Not surprisingly, skill and unskill-biased technology shocks estimated in

this manner increase the skill premium. On average, these shocks seem to have little

effect on productivity and hours worked.

The finding that skill and unskill-biased shocks do not increase labor productivity
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seems inconsistent with our interpretation of these shocks as technology shocks. How-

ever, it is important to remember that there are two types of technology shocks that

affect the skill premium. Positive skill-biased technology shocks, i.e. increases in BH,t,

and negative unskill-biased technology shocks, i.e. decreases in BL,t, both increase the

skill premium, but have opposite effects on productivity. Our estimates indicate that

over the sample period, both types of shocks were present, and the increase in produc-

tivity driven by positive SBT shocks was compensated by a decrease in productivity

driven by UBT shocks.15 In Section 3.3, we describe an additional restriction to sep-

arately identify skill-biased technology shocks BH,t. Since this restriction can only be

imposed in the context of a structural VAR, we first make sure we can replicate the re-

sults from the production function decomposition in a VAR with long-run restrictions.

3.2 Long-run restrictions

Identifying skill and unskill-biased technology shocks from their long-run effects on the

relative price of skill is consistent with skill demand equation (4), but more general

because we do not require this equation to hold true in each period. The long-run

restriction we use is similar in spirit to the identification of investment-biased technology

shocks as shocks that affect the relative price of investment goods proposed by Fisher

(2006). Skill and unskill-biased technology shocks identified in this manner may or may

not affect labor productivity. Skill-neutral technology shocks, following Gaĺı (1999),

are all remaining shocks that affect labor productivity in the long run. We implement

these assumptions by ordering the respective variables subsequently in the VAR. Our

identification scheme is strictly speaking is not a decomposition of technology shocks into

skill and unskill-biased versus skill-neutral shocks. In principle, there might be shocks

that affect the skill premium but not labor productivity in the long run. However, as

explained in Section 2.1, it is hard to imagine non-technology shocks other than changes

15The Technical Appendix discusses this issue in more detail and argues that UBT shocks were
particularly important in the post-2000 period.
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in the skill supply that affect the skill premium in the long run (we address the issue of

skill supply shocks in Section 3.4).

For comparability with the results from the production function decomposition, we

first regress the skill premium, labor productivity and total hours worked on 6 lags of

the identified skill and unskill-biased shocks from the structural VAR. The responses

obtained in this manner are presented in row 2 of Figure 1. By the identifying assump-

tion, positive skill-biased and negative unskill-biased shocks drive the skill premium up

in the long run. The estimates indicate that this effect is realized immediately on im-

pact. The response of labor productivity to skill and unskill-biased shocks identified

using long-run restrictions is very similar to its response to the same shocks estimated

from a production function decomposition as well. This result indicates that equation

(4) is a good description of skill demand at all frequencies, not only in the long run. It

also shows that the structural VAR identifies the same skill and unskill-biased shocks

as a decomposition using the production function, mirroring a similar equivalence result

for neutral technology shocks in Basu et al. (2006).

Rows 3 and 4 in Figure 1 show the responses of the skill premium, productivity

and hours worked to one-standard deviation skill and unskill-biased and skill-neutral

technology shocks, calculated directly from the coefficient estimates of the VAR. Here,

as in all graphs that will follow, we present the median as well as the 16th and 84th

percentiles of the posterior distribution of the structural impulse-response coefficients,

following Uhlig (2004). The responses to skill and unskill-biased shocks estimated in

this manner are again very similar to the responses to shocks from production function

decomposition. Skill-neutral technology shocks have no significant effect on the skill

premium at any horizon (by assumption, there is no effect in the long run). The response

of productivity and hours to these shocks looks very similar to the response of these

variables to identified technology shocks from a VAR without skill-biased shocks, as in

Gaĺı (1999).16

16In the Technical Appendix, we replicate the estimates in Gaĺı (1999) and show that the results are
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3.3 Unskill-biased technology shocks

How to separately identify skill-biased from unskill-biased technology shocks? From skill

demand equation (4) it is clear that improvements in skill-biased technology BH,t and

deteriorations in unskill-biased technology BL,t raise the price of skill in the same way. It

is not possible, therefore, to separately identify each type of technological change using

data on the skill premium alone. However, using data on labor productivity, the sign

of technology shocks is observable: positive technology shocks increase and negative

technology shocks decrease productivity, see production function (1). We implement

this observation as a sign restriction. For the same reasons as set out in Section 3.2, we

impose this sign restriction only on the long-run response of labor productivity, although

the results change very little if we impose the restriction at other horizons as well. We

identify skill-biased technology shocks as those shocks that affect the skill premium in

the same direction as labor productivity in the long run. Other technology shocks, which

affect labor productivity in the long run, may be unskill-biased or skill-neutral.

Because skill-biased, unskill-biased and skill-neutral technology shocks are linearly

dependent, it is not possible to identify all three shocks separately. For example, an

increase in unskill-biased technology BL,t, which increases productivity and decreases

the skill premium, is observationally equivalent to the combination of a decrease in

skill-biased technology BH,t, which decreases the skill premium, and an increase in skill-

neutral technology At, which increases productivity. Therefore, we separately identify

skill-biased technology shocks and refer to the remaining technology shocks as ‘other’

technology shocks, which include both unskill-biased and skill-neutral shocks.

We implement this identification scheme by assuming that only technology shocks

may affect labor productivity and the wage premium in the long-run (usual long-run

zero restrictions). We then impose sign restrictions on the long-run variance between

these two variables in order to separate skill-biased technology from other technology

robust to changing the sample to our time period and to adding the skill premium as an additional
variable, and that they differ very little from the responses presented here.
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shocks. The Technical Appendix provides more details on this procedure.

3.4 Shocks to the supply of skill

In the identification of technology shocks, we have so far assumed that skill-biased and

unskill-biased technology shocks are the only shocks that affect the skill premium, and

technology shocks are the only shocks that affect productivity in the long run. Neither

assumption is valid in the presence of exogenous changes in the relative supply of skill,

log (Ht/Lt), because of the standard simultaneity problem in estimating demand and

supply equations, see equation (4).

Suppose a preference shock causes college enrollment to increase permanently or

cheaper child care makes market work more attractive for highly educated parents.

In both cases, the supply of skill increases for reasons unrelated to the production

technology. The increase in skill supply must decrease the skill premium because skill

demand is not affected. Productivity may be affected as well, although the direction of

the effect is ambiguous. On the one hand, the lower skill premium leads firms to employ

relatively more skilled workers, which tends to raise average labor productivity if skilled

workers are more productive than unskilled workers. On the other hand, diminishing

returns in skilled labor push down productivity.

To make sure that our estimates for skill-biased technology shocks do not include

shocks to the supply of skill, we separately identify skill supply shocks using a second

sign restriction. As opposed to skill-biased technology shocks, which are skill demand

shocks, skill supply shocks affect the price and the quantity of skill in opposite directions.

We exploit this property to identify these shocks. For this purpose, we include a measure

of the relative hours worked of skilled workers in the VAR.
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3.5 Identified skill-biased technology shocks

Figure 2 shows the responses of the skill premium, relative hours worked of skilled

workers, labor productivity and total hours worked per capita to skill-biased and other

technology shocks from our baseline specification using long-run zero and sign restric-

tions. Rows 1 and 2 present the responses if we separately identify skill-biased and

unskill-biased technology shocks, as described in Section 3.3, but ignore shocks to the

supply of skill. In rows 3 to 5 we separately identify these shocks as well, as in Section

3.4. By the identifying assumption, skill-biased technology shocks raise the skill pre-

mium, the relative hours of skilled workers as well as productivity in the long run. In

both cases, the increase is significant and fully realized on impact, indicating that all

technology shocks are close to permanent. The effect of skill-biased and other technol-

ogy shocks on productivity is roughly of the same magnitude. Other technology shocks

reduce the skill premium, indicating that these shocks now include improvements in

unskill-biased technology.

Hours worked fall strongly and significantly in response to skill-biased improvements

in technology, but not in response to other technological improvements.17 The finding

that hours fall after a positive technology shocks, first documented by Gaĺı (1999), is

typically interpreted as evidence for price rigidities. Rigid prices dampen the substi-

tution effect on impact and thus make the income effect of higher productivity, which

increases the demand for leisure, dominant in the short run.18 Our results suggest, how-

ever, that part of the fall in hours may be related to the skill bias in these shocks. If high

skilled workers are much more productive than low skilled workers, then it is possible

that by substituting low skilled for high skilled workers in response to an SBT shock,

firms may increase effective labor input in their production process, while reducing total

hours or employment. In Section 3.6, we explore this mechanism in more detail.

17This finding is qualitatively unchanged and quantitatively stronger if we separately identify
investment-specific technology shocks as in Section 4.4.

18An alternative explanation that has been suggested is the combination of habit formation in con-
sumption and adjustment costs in investment, see Francis and Ramey (2005).
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The finding that hours fall in response to skill-biased but not in response to other

technology shocks only becomes apparent when we separate skill supply shocks from

skill-biased technology shocks. The reason is that a decrease in the supply of skill,

which raises the skill premium and therefore satisfies the identifying restriction of skill-

biased technology shocks, shifts employment towards unskilled workers. Since unskilled

workers are on average less productive than skilled workers, firms need to increase overall

hours worked in order to achieve the desired level of production.

Table 2 shows a decomposition of the forecast error variance of the VAR at business

cycle frequencies with periodicities from 8 to 32 quarters. Separating out skill-biased and

other technology shocks increases slightly the overall contribution of technology shocks

to fluctuations. Skill-biased and other technology shocks together explain about 11% of

the business cycle variance of output, compared to about 5% if we identify technology

shocks as in Gaĺı (1999).19 Technology shocks explain about 18% of the volatility in

hours worked, compared to about 9% in the Gaĺı (1999) specification. Skill-biased

technology shocks are relatively more important for hours worked, but unskill-biased

and skill-neutral shocks explain a larger fraction of fluctuations in output. Fluctuations

in the skill premium are due to skill-biased technology shocks, unskill-biased technology

shocks and skill supply shocks in roughly equal proportions. Skill supply shocks also

explain a sizable share of the variance of output and total hours worked. Overall, we

find strong evidence that skill-bias plays an important role in technological change at

business cycle frequencies.

3.6 Wages and hours of high and low skilled workers

By adding additional variables to the VAR, we can evaluate their response to skill-

biased technology shocks. Here, we explore the response of the wages and hours worked

of skilled and unskilled workers separately, in order to provide supportive evidence for

our interpretation for the fall in total hours worked in response to skill-biased technology

19These results are available in the Technical Appendix.
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shocks as a compositional shift in labor demand. Figure 3 presents these responses.

The first row in Figure 3 replicates the increase in the skill premium in response to

skill-biased improvements in technology as in Figure 2, and decomposes this increase into

the responses of wages of skilled and unskilled workers. In response to an SBT shock,

the wage of skilled workers increases substantially, while the wage of unskilled workers

almost does not change. According to the point estimate, unskilled workers still benefit a

little from a skill-biased improvement in technology, different from what we would expect

if unskilled and skilled workers are more substitutable than complementary. However,

the increase in the wage of unskilled workers is small and insignificant, consistent with

our interpretation of a compositional shift in labor demand.

In the second row of Figure 3, we look directly at the quantity of labor of each

type that is employed in equilibrium. By our identifying restriction, the relative hours

of skilled workers with respect to unskilled workers increase in response to skill-biased

improvements in technology. This increase is driven by a strong fall in hours of unskilled

workers. Hours of skilled workers respond very little to a skill-biased improvement

in technology. To understand this result, we argue that skill-biased improvements in

technology lead to a shift in the composition of labor demand towards skilled workers.

This compositional shift tends to increase hours of skilled workers and decrease hours

of unskilled workers. In addition, skill-biased technology shocks have the same effect

as other improvements in technology, which is a mild decrease in hours worked. The

combination of the two effects is a sharp drop in hours of unskilled workers, and virtually

no effect on hours of skilled workers.

3.7 Robustness

We now explore the robustness of our estimates to changes in the estimation specification

and the construction of the data. The results of this exercise are summarized in Table

3. The fall in hours after a skill-biased technology shock is robust across specifications.

In response to other technology shocks hours worked sometimes rise and sometimes fall,
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but always less than in response to skill-biased technology shocks, consistent with our

interpretation that part of the fall in hours in due to a compositional shift in labor

demand.

To explore whether our results may be driven by low frequency movements in the

data that may not be well described by the model we have in mind, we try various way of

detrending hours worked per capita. We employ a dummy broken at 1997:I, as suggested

by Fernald (2007), filter the series with a low-pass filter excluding frequencies above 52

quarters, as in Canova et al. (2010), and include a deterministic polynomial trend (up to

a third order polynomial) into the equation for hours worked. We also check robustness

to including hours worked in levels and to using a shorter sample ending in 2000:IV.

In all of these cases, the results are qualitatively unchanged and largely quantitatively

unchanged.

In our baseline estimates, we impose a prior on the decay of the lag coefficients, see

Section 2.2, in order to be able to include a larger number of lags. However, our results

are not driven by this prior. The responses of productivity and the skill premium to

skill-biased technology shocks are virtually unaltered when we vary the strength of the

prior or when we estimate the VAR using ordinary least squares (OLS).

We also re-estimated the VAR using total hours worked instead of total hours per

capita, and using hours worked from the CPS rather than the usual series from the

establishment survey. The CPS series is much noisier than the baseline series because

the underlying micro-data sample is much smaller, but it is more consistent with our

skill premium series. All results are robust to these alternative series for hours worked.

Next, we explore to what extent the way we constructed our measure for the skill

premium matters for the results. Using a ‘naive’ measure of the skill premium that

does not take into account the heterogeneity over and above two skill types weakens the

results but does not change them qualitatively.

Finally, as shown by Fernandez-Villaverde et al. (2007), it is important to include a

proper set of variables in order to have a mapping between the VAR and the underlying
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DSGE model.20 Therefore, we try including additional and potentially omitted variables

in the VAR: the relative price of investment goods; consumption, measured as real

personal consumption expenditures from the NIPA; investment, measured consistent

with the series for the relative price; and the interest rate, measured as the return on a

3-month T-bill as in Fisher (2006). Including these variables does not significantly alter

any of our results.

4 Capital-skill substitutability

The relative price of investment goods fell substantially over our sample period. This

finding has been interpreted to mean that technological progress has been faster in in-

vestment goods producing sectors than in consumption goods producing sectors (Green-

wood et al. (1997), Cummins and Violante (2002)). Fisher (2006) argued that this

investment-specific or investment-biased technological change is important not only for

long-run trends, but also for business cycle fluctuations. Because the increase in the

skill premium roughly coincided with the decrease in the relative price of investment

goods, Krusell et al. (2000) argue that investment-specific and skill-biased technological

change might be one and the same. If capital and skill are complements in the aggregate

production function, technological innovation in the investment-sector will necessarily

lead to an increase in the demand for skill. If this is the case, then investment-biased

technology shocks should lead to business cycle fluctuations in the skill premium. In

this section, we explore this hypothesis and find no evidence for it.

4.1 Skill bias in investment-specific technology

Consider the alternative aggregate production function (3), as in Krusell et al. (2000),

which allows for complementarity or substitutability between capital and skill. Assuming

20Including additional variables may also alleviate the problem of finite lag length, see Erceg et al.
(2005).
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as before that wages are proportional to marginal products in the long run, expression

(4) for the skill premium changes to the following.
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Since investment-specific technological progress raises the long-run capital-labor ratio,

it is clear that such technological change will also raise the skill premium if σ > ρ,

i.e. if capital and skill are complements rather than substitutes in production. As a

result, our identifying restriction that skill-biased technology shocks are the only shocks

that affect the skill premium in the long run is no longer valid unless we control for

investment-specific shocks. In addition, it is interesting in itself to assess the skill bias

in investment-specific shocks, because it allows us to assess the degree of capital-skill

complementarity in aggregate production.

We follow Fisher (2006) in identifying investment-biased and investment-neutral

technology shocks using the relative price of investment goods. Investment-biased tech-

nology shocks are the only shocks that affect the relative price of investment goods in

the long run. Investment-neutral technology shocks are all remaining shocks that drive

labor productivity in the long run. For implementation, we include the relative price of

investment in the VAR, ordering it first, before labor productivity.

Figure 4 shows the responses of the the skill premium, labor productivity, hours

worked and the relative price of investment goods to investment-biased and investment-

neutral technology shocks. After an improvement in investment-specific technology, the

relative price of investment falls, productivity rises and hours worked increase. An

investment-neutral technology shock, has no effect on the relative price of investment,

increases productivity and leads to a fall in hours worked.21

21Since productivity increases after an investment-specific technology shock in our specification, we
do not need to use an additional assumption on this effect as in Fisher (2006).
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The skill premium falls in response to an improvement in investment-specific tech-

nology. Thus, we find no evidence for complementarity between capital and skill in the

production technology. If anything, capital and skilled labor seem to be more substi-

tutable than capital and unskilled labor. Investment-neutral technology shocks increase

the skill premium, suggesting that these shocks are more often skill-biased than unskill-

biased. We further decompose these shocks into skill-biased and other technology shocks

in Section 4.4 below. There, we also show that the relative hours of skilled workers de-

crease after an investment-specific improvement in technology, again consistent with

capital-skill substitutability rather than complementarity. Total hours per capita still

fall after skill-biased technology shocks when we include the relative price of investment

into the specification.

4.2 Relation to previous literature

Our findings are in striking contradiction with the argument in Krusell et al. (2000). To

explain the difference, we need to understand what drives identification in their paper

and in ours. From the skill demand equation (5), we see that the skill premium depends

directly on skill-biased and unskill-biased technology as well as on the capital-labor ratio,

which in turn depends on investment-biased technology. Let πt = log (wH,t/wL,t) denote

the skill premium, bt = log (BH,t/BL,t) the combination of skill-biased and unskill-biased

technology shocks and dt investment-biased technology. Then, using a hat to denote

the deviation of a variable from its mean, this relation can be expressed in log-linear

approximation as π̂t = ωbb̂t + ωdd̂t, where ωb = (σ − 1) /σ > 0 and ωd > 0 if σ > ρ,

i.e. if the production function exhibits capital-skill complementarity. Suppose we were

to estimate this relation as a univariate regression. Technological change b̂t and d̂t is

of course unobserved, but investment-biased technology is closely related the relative

price of investment goods, d̂t = −p̂t, so we could regress π̂t = β1p̂t + β2t + εt. In

this regression, β1 = −ωd < 0 indicates capital-skill complementarity and the remaining

time trend and short-term fluctuations measure the effect of skill-biased but investment-
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neutral technological change, β2t+ εt = ωbb̂t.

The baseline estimates in Krusell et al. (2000) do not allow for skill-biased but

investment-neutral technological change. Imposing β2 = 0, the coefficient β1 is identified

largely off the trends in p̂t and π̂t. Since we know that over the sample period p̂t trends

down while π̂t trends up, we estimate β1 < 0 and conclude there is evidence for capital-

skill complementarity in this case, as Krusell et al. (2000) do. Of course, the particular

estimation method is not important for this result: whether we estimate the comovement

in p̂t and π̂t in a univariate regression, in a structural model, as in Krusell et al. (2000),

or in a structural VAR, as in this paper, it is clear that β1 < 0 is necessary to match

the trends in these variables if we impose β2 = 0. However, if we do not impose this

restriction and allow for skill-biased but investment-neutral technological change, then

β1 is no longer identified off the trends but off the higher frequency comovement. Since

after detrending p̂t and π̂t are positively rather than negatively correlated, we would

now find β1 > 0 and conclude that there is evidence for capital-skill substitutability

instead of complementarity, as we do in this paper.22

Lindquist (2004) argues that capital-skill complementarity explains not only the

trends, but also the business cycle fluctuations in the skill premium. He develops a

business cycle model with neutral and investment-specific technology shocks and eval-

uates this model by comparing its predictions for the (unconditional) moments to the

data, in particular the fact that the skill premium is volatile but acyclical. Lindquist

argues that strong capital-skill complementarity is necessary to explain these facts. In

his model, investment-specific technological improvements increase the skill premium

whereas neutral improvements in technology decrease the skill premium, in both cases

because of capital-skill complementarity. Since business cycles are driven by both types

of shocks in the model, this makes the skill premium volatile, but roughly acyclical.

22Krusell et al. (2000) estimate a version of their model that allows for a trend in b̂t and find that
this model can also “account for changes in the skill premium”. They argue, however, that the implied
difference in the growth rate of productivity of skilled versus unskilled workers of 11%-points per
year makes this interpretation of the data “less compelling than that of capital-skill complementarity”
(p.1047).
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It is crucial for Lindquist’s argument that the model has at least two shocks, the

effects of which on the skill premium roughly cancel out against each other. If business

cycles were driven exclusively by investment-specific shocks, the skill premium would be

strongly procyclical in his model. Although Lindquist presents impulse responses of the

premium to each shock separately from the model, he does not compare the conditional

moments to the data. Our estimated impulse responses show that his model implies

the wrong response of the skill premium to investment-specific shocks. Another way

to say that is that although the model with capital-skill complementarity captures the

volatility of the skill premium, the implied correlation of the premium with the relative

price of investment goods has the wrong sign. In Section 4.3, we show that Lindquist’s

model can replicate the empirical response of the skill premium to investment-specific

shocks if we recalibrate the model such that capital and skill are mild substitutes rather

than strong complements in the production function.

4.3 A model with capital-skill substitutability

Our finding that the skill premium falls in response to investment-specific shocks suggest

that capital and skill are substitutes rather than complements in the aggregate produc-

tion function. But these responses are measured with error. This raises the question

what range of parameters of production function (3) are consistent with our estimates.

To answer this question, we simulate a simple business cycle model with a production

function as in (3) and compare the estimated impulse response functions from the actual

data to those from simulated data for different values of the substitution parameters.23

This procedure also allows us to see whether the structural VAR performs well in cap-

turing the conditional moments of the variables in a model that is consistent with our

23Alternatively we could estimate the model, which would provide a more precise estimate of the
degree of complementarity or substitutability between capital and skill in the production function.
However, in order to do this we would have to make additional assumption about parts of the economy
that are unrelated to the production function. Our test for capital-skill complementarity would then
be a joint test together with these auxiliary assumptions. Therefore, we prefer to focus on the impulse
response that is likely to be most informative about the degree of capital-skill complementarity and
estimate this response with minimal assumptions on the structure of the rest of the economy.
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interpretation of the results.24

The model is a simple real business cycle model with high and low skilled work-

ers. The model is taken from Lindquist (2004) and combines the two sector model of

Greenwood et al. (1997), in which output can be used for consumption or accumulation

of capital equipment, with the model of Krusell et al. (2000) with two skill types and

capital-skill complementarity. Business cycle fluctuations in the model are driven by

shocks to total factor productivity and the relative price of investment goods.

For the calibration of the structural parameters of the model we also follow Lindquist

(2004), but we assume that the two technology shocks are highly persistent and uncor-

related with each other.25 The substitution parameters in the aggregate production

function (3) are σ = 1.67 and ρ = 0.67. These values were estimated by Krusell et al.

(2000) to be consistent with the trends in the relative price of investment goods and

the skill premium. Since ρ < σ in this calibration the aggregate production function

exhibits capital-skill complementarity. In alternative calibrations, we keep σ constant,

because the value of the elasticity of substitution between high and low skilled workers is

well documented, and change ρ to vary the degree of capital skill complementarity. We

consider the cases of capital-skill complementarity (ρ = 0.67), weak complementarity

(ρ = 1.17), neither complementarity nor substitutability (ρ = σ = 1.67), weak sub-

stitutability (ρ = 2.17), substitutability (ρ = 2.67), strong substitutability (ρ = 3.17)

and very strong substitutability (ρ = 5). In each case, we recalibrate the other model

parameters to keep the calibration targets constant.

We simulate the model 1000 times for 110 quarters, the same sample length as in our

24In particular, it allows us to check whether our VAR includes sufficiently many lags to properly
identify the true model impulse responses, addressing the potential problem with the VAR approach
pointed out by Chari et al. (2008).

25We assume shocks in the model are uncorrelated in order to be consistent with the identifying
assumptions of our VAR. In addition, we are not sure how to interpret the predictions of a structural
model with correlated shocks, which introduce comovement outside of the model. Similar to Uhlig
(2004) we assume persistent, but not permanent, autoregressive processes for the shocks because the
production function does not imply balanced growth. These changes in the calibration with respect
to Lindquist change the simulated data very little, and none of our conclusions change if we follow
Lindquist’s calibration exactly.
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data. In each simulation, the model is first simulated for 200 periods, which are then

discarded, in order to remove dependence on the initial conditions. We add measurement

error to the simulated variables as we seek to identify two shocks out of four variables

in the VAR. We then estimate the VAR for each sample of 110 quarters and average

the impulse responses across the 1000 simulations. Figure 5 illustrates this for the case

that capital and skill are neither complements nor substitutes. For better comparison,

the responses are normalized such that they match the responses in the actual data of

the investment price and labor productivity to the two technology shocks respectively

10 quarters after the shock has hit. The estimated responses from the simulated data

closely match the theoretical ones from the model.

Figure 6 shows the impulse responses of the skill premium to an investment-biased

shock according to the model for different degrees of capital-skill complementarity or

substitutability, as well as the response estimated from the actual data. Comparing

the response of the skill premium to investment-specific shocks in the actual data to

the responses in the model, we find that our estimates are consistent with capital-skill

substitutability or with capital and skill being neither substitutes nor complements.

However, we can reject even weak capital-skill complementarity. Our point estimate

for the long run response of the skill premium suggests an elasticity of substitution

between capital and high skilled labor ρ between 2.67 and 5 which corresponds to strong

substitutability between the two inputs in production.

4.4 Contribution to business cycle fluctuations

When we allow for investment-biased technology shocks, our estimates replicate the

finding in Fisher (2006) that investment-specific technology is an important source of

business cycle fluctuations, whereas investment-neutral technology shocks contribute

only a small fraction of fluctuations in output and hours. However, our results indicate

that investment-neutral shocks include technology shocks of different types, with distinct

implications for the comovement of aggregate variables: skill-biased, unskill-biased and
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skill-neutral technology shocks. In addition, we emphasize the potential importance of

shocks to the supply of skilled labor. With the identifying restrictions discussed above,

it is not possible to separately identify all these different shocks simultaneously. Recall

that both investment-biased and investment-neutral technology shocks may affect the

skill premium. Similarly, both skill-biased and skill-neutral or unskill-biased technology

shocks may affect the relative price of investment goods.

To separately identify as many shocks as we can, we use a recursive identification

scheme, identifying first investment-biased technology shocks as all shocks that affect the

relative price of investment goods. Then, skill supply shocks, skill-biased and other tech-

nology shocks are identified as all remaining shocks that affect the skill premium in the

long run and satisfy their respective sign restrictions, excluding shocks that affect both

the relative price of investment and the skill premium. Therefore, the estimated fraction

of the variance in aggregate variables that is due to skill supply shocks and skill-biased

technology shocks should be interpreted as a lower bound on the actual contribution of

these shocks to business cycle fluctuations. Figure 7 shows the impulse responses to the

various technology shocks from this joint identification strategy. Comparing the results

in this figure to the responses to skill-biased and other technology shocks in Figure 2, it

is clear that the results do not change much, with hours worked still falling significantly

in response to investment-neutral, skill-biased technology shocks.

Table 4 shows the variance decomposition of the forecast error variance in output,

hours, the skill premium and relative hours of skilled workers. Investment-specific tech-

nology shocks explain between 30 and 40% of the volatility in output at business cycle

frequencies, consistent with earlier findings in the literature (Fisher (2006), Canova et

al. (2010)). Although investment-neutral technology shocks explain only a small frac-

tion of about 5% of the forecast variance of output, these shocks are important for

fluctuations in hours worked, explaining about 23% of the volatility of hours per capita,

about two thirds of which is due to skill-biased technology shocks. Skill supply shocks

also explain a non-negligible part of about 10% of fluctuations in hours. Investment-
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specific technology shocks explain only about 8% of the volatility of hours, less than

skill-biased but investment-neutral shocks. Investment-specific shocks play virtually no

role for fluctuations in the skill premium, with skill-biased technology shocks and skill

supply shocks together explaining over 60% of the variance in that variable and other

technology shocks (including unskill-biased shocks) about 10%.

5 Conclusion

In this paper, we explored the implications of skill bias in technological change for

business cycle fluctuations. We constructed a quarterly time series for the skill premium

using micro-data from the Current Population Survey (CPS) outgoing rotation groups,

and used it to identify skill-biased technology shocks in a structural VAR with long-

run zero and sign restrictions. We documented two main differences between skill-

biased and other technology shocks. First, the fall in hours in response to investment-

neutral improvements in productivity is driven at least in part by the skill-bias in these

shocks. Second, investment-specific improvements in technology are biased towards

unskilled labor, indicating that capital and skill are substitutes rather than complements

in the aggregate production process. Both findings have important implications for the

interpretation of well-known results in the literature.

The fall in hours worked in response to technology shocks, as documented by Gaĺı

(1999), has typically been interpreted as evidence for price rigidities. Having access to

an improved production technology, which reduces marginal costs, a firm would like to

reduce prices in order to increase sales. If prices are rigid however, the firm adjusts

labor input in order to produce the amount it can sell. Our results cast doubt on

this interpretation. We document a drop in hours worked in response to skill-biased

technological improvements. This finding suggests that at least part of the fall in hours

is driven by a compositional change in labor demand. In response to a skill-biased

improvement in technology, firms increase their relative demand for skilled labor. Since
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high skilled workers are on average more productive than low skilled workers, effective

labor input may increase even if total hours worked fall.

Our conclusion that capital and skill are substitutes in the aggregate production

function, is based on our finding that the skill premium falls in response to investment-

biased technology shocks. If capital and skill are complements, as Krusell et al. (2000)

argue, we would expect the demand for skill and therefore the skill premium to increase

in response to investment-biased improvements in technology.

Is it reasonable to think that capital and skill are complements, substitutes or nei-

ther? Clearly, the answer depends on the type of capital and therefore the time period

under consideration. In the industrial revolution, new production technologies often

involved machines that could be operated by unskilled workers and replaced skilled la-

borers.26 Regarding more recent technological developments, Autor et al. (2003) make

the point that computer capital complements workers performing nonroutine problem-

solving tasks, but substitutes labor in “cognitive and manual tasks that can be accom-

plished by following explicit rules.” Since both nonroutine and routine tasks may be

performed by either skilled or unskilled workers, the aggregate elasticity of substitu-

tion between capital and skill may vary with the task composition of the workforce.

Our results indicate that over the last 20 years, technological improvements in capital

substituted skilled workers more than unskilled workers. The reason that the skill pre-

mium nevertheless increased over this period, is due to investment-neutral technological

progress, which was biased towards skilled labor.

Finally, it is important to emphasize that we use a broad interpretation of what

constitutes ‘technological’ change. For example, Philippon and Reshef (2010) show

that financial deregulation dramatically increased the demand for skilled labor in the

financial sector over the 1980-2010 period. In our estimates, this change in regulation

is indistinguishable from a skill-biased change in technology. Moreover, if deregulation

26For example, hand weavers, a skilled profession, opposed the adoption of weaving machinery, going
so far as destroying these machines, because many of them lost their jobs and the others were forced
to accept lower wages (Noble et al. (2002), p.701).
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affected not only the type, but also the total amount of services provided by the financial

sector, then it may even look like there is capital-skill substitutability in aggregate

production (assuming the financial sector uses less capital than rest of the economy),

because the relative demand for skilled labor rises while the relative demand for capital

goods falls.
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Table 1: Business cycle moments

Std Correlation with
Output Hours Productivity Price

Baseline measure

Skill premium .0066 0.1131 0.0114 0.1763 -0.1535
Relative hours .0183 -0.4124* -0.2917* -0.2591* 0.5838*
Naive measure

Skill premium .0071 0.0962 0.1989* -0.1853 0.0852
Relative hours .0161 -0.4242* -0.3533* -0.1688 0.5418*
Relative supply .0111 -0.0220 0.0400 -0.0761 0.2756*

Notes: Data series are constructed as explained in section 2.3 and seasonally adjusted using

X-12-ARIMA. The series are HP-filtered with λ=1600. The * indicates significance of at least 5%.



Table 2: Variance decomposition with skill-biased and
other technology shocks

Horizon 8 16 32

output

SBT shock 3.09 3.09 3.09
(0.5,15.8) (0.4,16.2) (0.4,16.3)

other T shock 8.29 7.51 7.38
(0.8,29.1) (0.8,27.8) (0.7,27.5)

supply shock 23.94 23.09 22.84
(7.2,6.8) (6.8,44.3) (6.6,44.2)

total hours

SBT shock 14.11 12.83 12.24
(2.3,34.6) (1.9,32.9) (1.8,32.5)

other T shock 5.83 5.41 5.32
(0.9,19.8) (0.7,18.8) (0.6,18.6)

supply shock 19.62 19.50 19.44
(5.2,39.5) (5.1,39.8) (5.0,39.8)

premium

SBT shock 24.69 22.38 20.81
(3.6,71.6) (2.3,69.2) (1.5,67.7)

other T shock 17.80 19.47 20.09
(1.8,58.8) (1.6,60.4) (1.3,61.9)

supply shock 32.93 36.32 38.29
(3.1,66.0) (3.3,70.6) (3.2,73.1)

relative hours

SBT shock 10.82 10.35 10.20
(1.8,44.3) (1.3,45.0) (1.0,46.5)

other shock 32.83 34.17 34.26
(3.5,73.5) (3.3,77.7) (3.0,79.9)

supply shock 32.02 35.07 36.77
(4.9,74.3) (5.4,79.1) (5.5,81.3)

Notes: Numbers are in percents; the contribution of all shocks, including the (omitted)

residual shock, adds up to 100% at each horizon. We report posterior medians and 68%

Bayesian confidence bands from the posterior distribution.



Table 3: Robustness of the response of hours to skill-biased and other
technology shocks

SBT shock other technology shocks

Baseline specification
-, insignificant -, sign. before 5th quarter

with supply shocks -, significant -, insignificant

Variation of the baseline specification with supply shocks
Taking into account low frequency variation in hours
dummy1 -, significant - on impact, insign.
low-pass trend -, significant - on impact, insign.
polyn. trend -, significant - on impact, insign.
hours in levels -, insignificant +, significant
subsample stability
1979:I-2000:IV -, significant +, sign. after 5th quarter
Minnesota prior with 8 lags changed to
2 lags -, significant - on impact, insign.
4 lags -, significant -, insignificant
12 lags -, significant -, significant
weaker prior2 -, significant -, insignificant
Flat prior (OLS equivalent)
2 lags -, significant -, insignificant
4 lags -, insignificant -, insignificant

Alternative and additional variables
CPS hours -, sign. on impact -, insignificant
total hours -, significant -, insignificant
Naive wage premium -, significant -, insignificant
Baseline + invest. price -, significant -, insignificant
the above + investment -, significant - on impact, insign.
the above + consumption -, significant - on impact, insign.
the above + interest rate -, sign. on impact -, significant

Notes: 1) dummy break at 1997:I; 2) Decay parameter d = 1 instead of d = 3 as in the baseline.



Table 4: Variance decomposition with investment-biased,
skill-biased and other technology shocks

Horizon 8 16 32

output

IBT shock 41.57 33.94 28.97
(21.6,57.5) (15.9,51.4) (10.6,47.6)

SBT shock 2.8 3.4 3.8
(0.4,11.1) (0.5,13.9) (0.5,15.9)

other T shock 2.0 2.3 2.5
(0.4,7.5) (2.3,8.6) (0.3,9.6)

supply shock 8.09 8.22 8.75
(2.0,19.3) (1.9,20.6) (1.9,22.3)

total hours

IBT shock 11.66 8.26 6.85
(2.4,30.2) (2.9,18.7) (2.4,17.5)

SBT shock 14.2 14.6 14.9
(1.7,34.3) (1.8,34.6) (1.8,35.2)

other T shock 8.6 8.0 7.9
(1.2,25.2) (1.0,24.7) (0.9,25.1)

supply shock 10.50 10.46 10.54
(1.5,29.1) (1.4,29.2) (1.4,29.8)

premium

IBT shock 2.41 4.93 8.00
(0.9,7.3) (1.3,14.3) (1.1,19.3)

SBT shock 37.37 32.7 27.8
(8.44,81.55) (6.10,77.70) (4.29,74.80)

other T shock 9.34 9.97 10.06
(0.95,50.55) (0.87,51.59) (0.69,51.69)

supply shock 27.52 29.72 31.01
(2.0,55.5) (2.3,56.5) (2.5,56.9)

relative hours

IBT shock 38.15 48.84 50.72
(26.48,50.3) (33.02,59.5) (33.52,63.0)

SBT shock 8.04 7.52 7.52
(1.18,33.3) (1.01,29.7) (0.98,29.5)

other T shock 15.02 12.04 10.58
(1.96,42.2) (1.43,36.9) (1.16,35.5)

supply shock 18.22 16.56 16.14
(3.16,43.1) (2.96,38.9) (2.93,38.1)

Notes: Numbers are in percents; the contribution of all shocks, including the

(omitted) residual shock, adds up to 100% at each horizon. We report

medians and 68% Bayesian confidence bands from the posterior distribution.



Figure 1: Impulse-responses to technology shocks from the production
function decomposition and from a VAR with long-run restrictions
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Notes: All responses are in percent to a positive one-standard-deviation shock.

The first two rows show impulse-responses from regressing the variables on six lags of the production

function residual and the SBT and UBT shock from the SVAR. The black dotted line repeats the

estimate from the first row. Confidence intervals are one standard error bands.

The third and fourth row show the responses to SBT and UBT as well as SNT shocks estimated

within the SVAR. Here, confidence intervals are 68% Bayesian bands.



Figure 2: Impulse-responses to technology shocks from a VAR with
long-run zero and sign restrictions
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Notes: Percent responses to a positive one-standard-deviation shock. Confidence intervals are 68%

Bayesian bands. The first two rows show the results from the identification without supply shocks,

the last three rows from the identification with supply shocks



Figure 3: Impulse-responses to skill-biased technology shocks for
additional variables
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Notes: Percent response to a positive one-standard-deviation shock. Confidence intervals are 68%

Bayesian bands.



Figure 4: Impulse-responses to investment-biased technology shocks
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Notes: Percent responses to a positive one-standard-deviation shock. Confidence intervals are 68%

Bayesian bands.



Figure 5: Impulse-responses from the model
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Notes: Percent responses to a positive one-standard-deviation shock. The dashed lines represent

the theoretical responses from the model with ρ = σ = 1.67. The solid lines are the estimated

responses from 1000 simulations of 110 quarters each of the same model. The responses are

normalized to match the responses of the investment price and labor productivity in the

actual data in the longer run (20 quarters).



Figure 6: Capital-skill substitutability?
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structural VAR with actual data together with the Bayesian 68% confidence

bands (red dotted lines). The dashed lines show the responses from the

model with ρ = 0.67, ρ = 1.17, ρ = 2.17, ρ = 2.67 and ρ = 5 respectively.



Figure 7: Impulse-responses to investment- and skill-biased and other technology shocks
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Notes: Percent responses to a positive one-standard-deviation shock. Confidence intervals are 68% Bayesian bands.


