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Abstract. We offer complete characterizations of the equilibrium outcomes

of two prominent agenda voting institutions that are widely used in the demo-

cratic world: the amendment, also known as the Anglo-American procedure,

and the successive, or equivalently the Euro-Latin procedure. Our axiomatic

approach provides a proper understanding of these voting institutions, and al-

lows comparisons between them, and with other voting procedures.
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1. Introduction

A proper understanding of the democratic institutions that are used in practice

is a prime concern in the social sciences. In this paper we focus on two promi-

nent voting procedures that are used extensively in parliamentary, legislative,

and committee decision-making, world-wide: the amendment and the successive

agenda procedures. While the amendment procedure is extensively used in the

Anglo-American world, such as in the US Congress, the successive procedure is in

place in many European countries as well as the European Parliament. In a nut-

shell, in this paper we offer for the first time foundations of these two procedures

that enhance our understanding of these key voting institutions.
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Both, the amendment and the successive procedures are voting institutions

used to collectively select one alternative from a set of alternatives. They repre-

sent natural extensions of simple majority voting to cases where there are more

than two alternatives. In both cases, the alternatives are ordered, forming an

agenda, and are considered sequentially, taking at each step in the sequence bi-

nary decisions using majority voting. In the particular case of the amendment

procedure, two alternatives are jointly considered at each step, and the binary

choice consists in deciding by majority voting which alternative is eliminated,

and hence which alternative is confronted with the next one in the agenda. For

the sake of illustration consider three alternatives, ordered as (a, b, c). Then in

this case a is voted against b, and the winner against c. The winner of this last

confrontation is declared elected. See Figure 1(a) for a graphical representation.

a

a c

b

b c

a ¬a

b c

(a) Amendment procedure (b) Successive procedure

Figure 1. Structure of amendment procedure and successive pro-
cedure with the agenda (a, b, c).

In the successive procedure, an alternative is considered at each step in the

sequence, and the binary choice made by majority voting is whether to select it,

or to reject it, and in the event of rejection, to consider the next alternative in the

sequence. For instance, in the above example, voters must in fact decide between

accepting a or rejecting it, in which case they confront the problem of selecting

an alternative from {b, c}. If they prefer a to the alternatives in {b, c} then the

voting ends. Otherwise they compare the next alternative in the sequence, which

is b, with the remaining one, alternative c. Figure 1(b) provides a graphical

representation.
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It turns out that versions of these voting procedures are extensively used in

committee decision-making, as well as in parliamentary institutions world-wide.

Moreover, there seems to be a geographical concentration of the type of agenda

voting institution in use. While the amendment procedure is prevalent in the

Anglo-American world, European countries adopt the successive procedure. See

Table 1 for an illustration.1

Amendment Successive
Anglo-American Euro-Latin

USA Austria, Belgium, Czech Republic, Denmark

Canada France, Germany, Greece, Hungary, Iceland

UK Ireland, Italy, Luxembourg, Netherlands

Sweden Norway, Poland, Portugal

Finland Slovakia, Slovenia, Spain

Switzerland European Parliament

Source: Rasch (2000).

Table 1. Agenda voting procedures by country.

Given, then, the practical importance of these voting procedures, it is not

surprising that they have been subject to substantial theoretical and empirical

research, that has led to the clarification of important aspects. Specifically, there

is now a good understanding of the nature of the elected outcomes when voters

vote either strategically or naively (see Farquharson, 1969; Miller, 1977, 1980;

McKelvey and Niemi, 1978; Plott and Levine, 1978; Moulin, 1979, 1986; Shepsle

and Weingast, 1984; Banks, 1985; Eckel and Holt, 1989; and Bag, Sabourian and

Winter 2009). The effect of the agenda on the final elected outcome has also been

the subject of intense research (see McKelvey, 1981; Shepsle and Weingast, 1982;

Ferejohn, Morris Fiorina and McKelvey 1987; Dutta, Jackson and Le Breton,

2002; and Bernheim, Rangel and Rayo, 2006). Finally, there are papers that study

which voting procedure maximizes in expectation the well-being of society (see

Moser, 2007; see also Apesteguia, Ballester and Ferrer, 2011). These questions

1Black (1948) represents the first formal treatment of agenda voting institutions. Riker (1958)
and Farquharson (1969) study the agenda voting procedures actually used in the US Congress.
See also Shepsle and Weingast (1982), Ordeshook and Schwartz (1987), and Schwartz (2008).
See Rasch (2000) for a treatment of the European case.
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are of prime importance for the understanding of the voting institutions with

which we are concerned.

Here we take a different approach, and offer, for the first time, complete charac-

terizations of these voting institutions that uniquely identify them. We establish

the sets of properties that when imposed on a decision rule give the same outcome

as the one obtained with strategic voters in the corresponding voting procedure.

We show that the two procedures are characterized by two systems of three prop-

erties each, sharing a common intuition. The two systems of three properties are

formed by (i) a Condorcet-type property, (ii) a property that guides the election in

the presence of cycles generated by binary majority voting, and (iii) a consistency

property imposing structure on the elections across related sets of alternatives.

These characterizations allow a deep understanding of the properties satisfied by

the voting institutions, and facilitate comparisons between them, and with other

voting procedures. Furthermore, the identification of the characterizing proper-

ties of the voting institutions allows us to evaluate their normative appeal, and

encourages the study of the consequences of relaxing or strengthening some of

these properties.2

The first two properties are both Condorcet-type, but follow different direc-

tions. While in the case of the Euro-Latin procedure it is the classical Condorcet

Consistency property, in the case of the Anglo-American procedure it is a Con-

dorcet Loser Consistency property. That is, in the former case it is imposed that

if there is an alternative that is preferred to every other alternative by a majority

of voters, this is the alternative that should be selected. This is typically regarded

as a fundamental property to be desired in any sensible voting procedure. In the

Anglo-American case, on the other hand, the Condorcet property dictates that if

there is an alternative that is ranked below every other alternative by a majority

of voters, not only should this alternative not be elected, but it should not affect

the final election either. This is clearly another desirable property.

The second type of properties discriminate between alternatives in the presence

of cycles generated by majority voting. Cycles give rise to a difficult problem:

2In section 5.2 we illustrate the sort of voting institutions that emerge when we relax each of
the characterization properties, one at a time.



5

which alternative in the cycle should be elected. This is a fundamental prob-

lem in political economy that we show, through this second set of properties, to

be addressed simply and naturally by both voting institutions. The two voting

procedures approach the problem from the same angle, that is, by systematically

identifying an alternative as especially prominent. However, as in the above Con-

dorcet case, they follow logically opposed directions. While the Euro-Latin pro-

cedure involves identifying a prioritarian alternative, one that is chosen whenever

it is part of a triple of alternatives forming a cycle, the Anglo-American procedure

identifies an antiprioritarian alternative, an alternative that is never chosen when

it is part of a triple of alternatives forming a cycle, and that identifies the alter-

native to be selected: precisely that alternative that is preferred by a majority

to the antiprioritarian alternative.

The third and last pair of properties imposes consistency requirements in the

elections between related sets of alternatives. In both cases, the properties impose

structure on the elected outcomes so that the latter do not depend capriciously

on the set of alternatives to vote upon.

The rest of the paper is organized as follows. Section 2 formally presents the

environment, gives the definitions of the voting procedures, and introduces the

equilibrium notion used thereafter. Section 3 is devoted to the characterization of

the Euro-Latin procedure, while Section 4 does the same for the Anglo-American

procedure. Finally, Section 5 discusses the nature of the properties used in the

characterizations of the procedures, shows the independence of the axioms by

studying alternative voting institutions, and establishes the connection between

our exercise and implementation theory. All the proofs are contained in the

Appendix.

2. Basic Definitions

Let X be a finite set of m alternatives and let n denote the number of voters.

For convenience we assume that n is odd. A decision problem is a pair (P,A),

where P = (P1, . . . , Pn) is a profile of preferences, with each Pi being a complete,
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transitive, and asymmetric binary relation on X , and A ⊆ X is a set of alter-

natives to vote for. A decision rule v assigns to each decision problem (P,A) an

outcome v(P,A) ∈ A.3

An agenda ~X = (x1, . . . , xm) is an ordered list of all the elements in X . Given

the agenda ~X, the associated successive procedure or equivalently the associated

Euro-Latin procedure assigns to any set of alternatives A, the alternative that sur-

vives the following process. The first alternative in A according to the agenda is

voted for approval. If the alternative is approved by a majority of individuals, the

process stops and this alternative is implemented. If the alternative is rejected,

the second alternative of A in the agenda is voted for approval. If the alternative

is approved by a majority of individuals, the process stops and this alternative is

implemented. Otherwise, the next alternative of A in the agenda is considered,

and the process is repeated. If the final alternative in the agenda is reached, it

is approved without voting. Consider the extensive game representation of the

Euro-Latin procedure restricted to the set of alternatives A when voters have

preferences P , and denote by γEL(P, ~X,A) its strategic form representation.

Given the agenda ~X, the associated amendment procedure or equivalently the

associated Anglo-American procedure assigns to any set of alternatives A the

alternative that survives the following process. The first pair of alternatives of A

in the agenda is voted upon with the one obtaining a majority of votes advancing

to the next stage. There, it is paired against the next alternative of A in the

agenda, and the process is repeated until the final alternative in the agenda

is reached. Consider the extensive game representation of the Anglo-American

procedure restricted to the set of alternatives A, and denote by γAA(P, ~X,A) its

strategic form representation.

Clearly, both procedures are subject to strategic manipulation by sophisticated

voters. In the Euro-Latin procedure voters may approve an early alternative in

the agenda in order to avoid the selection of a later one. In the Anglo-American

procedure voters may pass an alternative only because it can defeat a posterior

one, and not because it is preferred to the one with which it is competing. The

3Dutta, Jackson, and Le Breton (2001, 2002) also consider decision rules in the domain of all
the subsets of X .
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characterization of the equilibrium outcomes under the two procedures signifies

a challenge that we address in this paper.

One drawback with sophisticated behavior is that Nash equilibrium may yield

absurd outcomes. For example, in a simple two-alternative setting, if all players

vote for the same alternative, independently of their preferences, we have a Nash

equilibrium. The refinement that rules out this sort of behavior is the use of

undominated strategies. Clearly, in the former two-alternative example, voting

for the less preferred alternative is weakly dominated, and hence would be elimi-

nated. It is well known that binary voting procedures like the one we study here

are dominance solvable. That is, the iterated elimination of weakly dominated

strategies in the strategic form representation leads to a unique Nash equilibrium

outcome (see Moulin 1979, McKelvey and Niemi 1978, and Austen-Smith and

Banks 2005). The use of Nash equilibrium in undominated strategies is, there-

fore, standard practice in voting settings like ours, and this is the one we adopt

here. We denote by UNE[γEL(P, ~X,A)] and UNE[γAA(P, ~X,A)] the correspond-

ing equilibria in undominated strategies of the Euro-Latin and Anglo-American

procedures respectively.

3. Characterization of the Euro-Latin Procedure

Given a decision problem (P,A), a Condorcet winner is an alternative in A such

that, for any other alternative A, a majority of voters ranks the former above

the latter. In other words, the Condorcet winner majority dominates all other

alternatives in A. The properties of a Condorcet winner make it highly desirable

as the social outcome of any political problem. This leads us to consider the

classical Condorcet Consistency property.

Condorcet Consistency (CC). The decision rule selects the Condorcet winner

whenever this alternative exists.

It is well known that Condorcet winners do not always exist. The simplest

situation in which Cordorcet winners fail to exist involves three alternatives x, y

and z, with x majority dominating y, y majority dominating z, and z majority

dominating x. We refer to this three-alternative situation as a Condorcet cycle.
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The presence of a Condorcet cycle immediately raises the problem of selecting

one alternative from the triple forming the cycle. A possible approach to this

problem entails identifying an alternative that for certain reasons is given prior-

ity over the rest of the alternatives. This may be so because it represents the

status quo, for example. In any event, this alternative is always selected in every

Condorcet cycle that includes it. More formally, we say that a is prioritarian in A

if, for any preference profile P , and for any triple TA of alternatives in A forming

a Condorcet cycle that involves alternative a, we have v(P, TA) = a.

Condorcet Priority (CP). The decision rule admits a prioritarian alternative

for any set of alternatives.

It is advisable to explore in more detail two simple implications of CP that

contribute to a better understanding of the property. First, note that CP implies

that for every A with at least three alternatives there is a unique prioritarian

alternative. This is easy to see. Suppose on the contrary that a and b are

prioritarian in A. Then, there exist a preference profile P and alternative c ∈ A

such that a, b and c form a Condorcet cycle. It follows that whatever the outcome

from v(P, {a, b, c}) it leads to a contradiction. Second, it is also immediate that

if alternative a is prioritarian in A, then a is prioritarian in every B ⊆ A such

that a ∈ B. That is, there is a great deal of consistency across menus of options

in the determination of prioritarian alternatives.

Let us now consider the third and last characterizing property of the Euro-Latin

procedure. Suppose that the collectivity of voters has to select an alternative from

a set A. A natural process involves dividing the scrutiny of alternatives in A into

three stages. In stage 1 the collectivity of voters, say the committee, decides over

a subset of A, say B, in stage 2 the committee decides over the remaining alter-

natives in A, say C, and in stage 3, the committee decides over the selection from

B and that from C. More formally, we say that a non-empty partition (B,C)

of A constitutes a division of A if, for any D ⊆ A and for any preference profile

P , v(P,D) = v(P, {v(P,D ∩ B), v(P,D ∩ C)}). Notice that in the definition of

a division we implicitly admit the possibility that some alternatives in A may be
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dropped in the process.

Division Consistency (DC). The decision rule admits a division for any set

of alternatives.

Note that Division Consistency immediately implies that if (B,C) is a division

of A, (B∩S, C∩S) is a division of S, whenever S is contained in A. We now show

that the three properties described above completely and uniquely characterize

the equilibrium outcome of the Euro-Latin procedure.

Theorem 1. A decision rule v satisfies CC, CP and DC if and only if there

exists an agenda such that v is the undominated Nash equilibrium outcome of the

Euro-Latin procedure.

The intuition of the ‘if’ part is simple. The ‘only if’ part of the proof proceeds

as follows. Condorcet Priority guarantees that there is a single prioritarian alter-

native in each set of alternatives. We use this to construct an agenda ~X placing

later those alternatives that are prioritarian in bigger sets. We then show that

the outcomes of the decision rule coincide with the result in the Anglo-American

procedure with agenda ~X , when voters vote sincerely, that is when voters truth-

fully reveal their actual preferences. In order to do so we prove that for any set

of alternatives A and a prioritarian alternative h of A, the sets A \ {h} and {h}

form the unique division of A. That is, we show that the prioritarian alternative

of a set can always be separated from the set, without further consequences for

the selection. Finally we use the well-known relationship by which the result

of sincere voting in an Anglo-American procedure with agenda ~X is exactly the

Nash equilibrium in undominated strategies of the Euro-Latin procedure with the

agenda following the opposite order to the one in ~X (see Miller 1977). Then, we

conclude that for the Euro-Latin procedure the construction of the agenda places

the prioritarian alternative in X , x1, first in the ordered list, followed by the

prioritarian alternative in X \ {x1}, and so on. Intuitively, therefore, under so-

phisticated voting in the Euro-Latin procedure, the strongest alternatives, those

that are selected in each Condorcet cycle, are considered first in the agenda.
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4. Characterization of the Anglo-American Procedure

Given a decision problem (P,A), a Condorcet loser is an alternative in A such

that, for any other alternative A, a majority of voters places the former below

the latter. Notice that the Condorcet loser, whenever it exists, is unique. The

Condorcet loser is a highly undesirable alternative and hence not only would it

be absurd to select it as the outcome of a decision problem, but also it is natural

that any sensible voting procedure be robust to the presence or absence of such

an alternative. This leads us to the following consistency property.4

Condorcet Loser Consistency (CLC). v(P,A) = v(P,A \ {a}) whenever a is

a Condorcet loser in (P,A).

In the presence of a Condorcet cycle in the triple {x, y, z}, our first approach

above identifies an element that is given priority. An alternative approach con-

sists in identifying an alternative that is never prioritized in such situations. This

may encourage changes if the alternative is the default one, or avoid risky out-

comes when decisions are unclear or controversial. More formally, we say that a

is antiprioritarian in A if, for any preference profile P , and for any triple TA in A

that forms a Condorcet cycle involving alternatives a and x, we have v(P, TA) = x

if and only if v(P, {x, a}) = x, with x 6= a. That is, alternative a is antiprior-

itarian if (i) it is never selected when being part of a Cordorcet cycle TA, and

(ii) the alternative selected from TA is precisely the one that is preferred to a

by the majority. That is, the alternative a that is considered as antiprioritarian

identifies in each case the alternative to be selected.

Condorcet Antipriority (CA). The decision rule admits an antiprioritarian

alternative for any set of alternatives.

As in the case of prioritarian alternatives, in every A with |A| ≥ 3, there is a

unique antiprioritarian alternative, and also if a ∈ B ⊆ A is antiprioritarian in A,

4Indeed, in the Discussion section below we argue that Euro-Latin and Anglo-American proce-
dures satisfy both this consistency property and Condorcet Consistency.
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a is also antiprioritarian in B. One relevant distinction in the structure of the two

properties is the relevance of the direction of Condorcet cycles. For Condorcet

Priority, if alternative a is prioritarian in A and a is part of a Condorcet cycle TA

in A, the direction of the cycle is immaterial for the outcome from v(P, TA). For

Condorcet Antipriority the direction of the cycle is however relevant. Clearly, if

a is antiprioritarian and majority preferred to b, b majority preferred to c, and

c majority preferred to a the outcome from {a, b, c} is option c. However, if the

direction of the cycle is the opposite, then the outcome is b.

Our final property establishes a consistency requirement across sets of alter-

natives. Having identified one antiprioritarian alternative in a set A, one should

be able to remove those alternatives dominated by the antiprioritarian one, since

one can argue that they are not natural candidates for election, and concentrate

on the rest. The election in this subset must coincide with the election in the

original set.

Elimination Consistency (EC). If a is an antiprioritarian alternative in A and

v(P, {a, y}) = a, then v(P,A) = v(P,A \ {y}).

We now show that Condorcet Loser Consistency, Condorcet Antipriority and

Elimination Consistency completely and uniquely characterize the equilibrium

outcome of Anglo-American procedures.

Theorem 2. A decision rule v satisfies CLC, CA and EC if and only if there

exists an agenda such that v is the undominated Nash outcome of the Anglo-

American procedure.

We now provide the intuition for the ‘only if.’ We first construct the agenda

~X as follows. Consider first the antiprioritarian alternative x1 in X , and place

it at the end of the agenda. Then, consider the antiprioritarian alternative x2 in

X \ {x1} and place it in the second to last position in the agenda, and so on.

If we interpret antiprioritarian alternatives as the most controversial ones, this

means that the Anglo-American procedure places these alternatives at the very

end of the agenda.
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The second step in the proof involves showing that for every P and A, the

election from a decision rule satisfying the properties is the limit x∗ of a sequence

of stepping stones in the agenda. This sequence is formed by: (i) the last alterna-

tive of A according to the agenda ~X , (ii) the last alternative of A that majority

dominates the alternative in (i), (iii) the last alternative of A that majority domi-

nates the alternatives in (i) and (ii), etc. The proof of this step uses the following

idea. The last alternative is antiprioritarian, and thus, by EC and CLC, we can

concentrate exclusively on those alternatives that dominate it. A recursive ar-

gument concludes the proof. Finally, we show through an inductive argument,

along the lines of Shepsle and Weingast (1984), that the UNE[γAA(P, ~X,A)] is

exactly the limit of this sequence.

5. Discussion

5.1. Comments on the Axiomatic Structures of the Euro-Latin and

Anglo-American Procedures. We have shown that while Euro-Latin proce-

dures are fully characterized by Condorcet Consistency, Condorcet Priority and

Division Consistency, Anglo-American procedures are fully characterized by Con-

dorcet Loser Consistency, Condorcet Antipriority, and Elimination Consistency.

It is illuminating to note the shared structure of the two systems of properties

characterizing the two voting procedures.

First, both Condorcet Consistency for Euro-Latin procedures and Condorcet

Loser Consistency for Anglo-American procedures follow the fundamental princi-

ple of Condorcet-type reasoning. While the former imposes selecting the alterna-

tive that majority dominates all others whenever it exists, the latter imposes that

the outcome should not depend on the presence of the alternative that is majority

dominated by all others, whenever it exists. Furthermore, given the desirability

of the two properties, one may wonder whether Condorcet Loser Consistency is

satisfied by Euro-Latin procedures and the same is true for Condorcet Consis-

tency and Anglo-American procedures. The answer to both questions is clearly

yes. In fact we can prove that we can replace Condorcet Consistency by Con-

dorcet Loser Consistency in our characterization of the Euro-Latin procedure.

When Division Consistency holds, then both properties are indeed equivalent.
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Proposition 1. A decision rule v satisfying DC satisfies CC if and only if it

satisfies CLC.

Second, properties Condorcet Priority in the Euro-Latin case and Condorcet

Antipriority in the Anglo-American case again follow the same type of logic, with

opposite directions. Both properties apply in the presence of cycles, and while

the former identifies an alternative that gains prevalence whenever it is present,

the latter identifies an alternative as unchoosable. These two properties shape

the order of the agenda. While in the Euro-Latin case the prioritarian alterna-

tives come first in the agenda, in the Anglo-American case the antiprioritarian

alternatives come last in the agenda.

Finally, Division Consistency and Elimination Consistency both impose struc-

ture on the outcomes selected by the voting procedures across sets of alternatives.

5.2. Other Voting Procedures and the Independence of the Axioms.

We now suggest other voting institutions than the Anglo-American and Euro-

Latin ones, with the purpose of exploring the consequences of relaxing each of

the properties we have studied, one at a time. This illustrates the power of the

axioms, that is, the structure they are imposing, and at the same time it shows

the independence of the properties.

Consider first a decision rule that completely ignores the preferences of the vot-

ers, and follows some external order over the alternatives, say a virtue book. More

specifically, the virtue book establishes a linear order over the set of alternatives

and the decision rule selects in each decision problem the maximal alternative

according to the book. The rule trivially satisfies Condorcet Priority, the prior-

itarian alternative in a set being the most virtuous alternative in the set. Also,

given the maximizing nature of the rule, Division Consistency holds since any

division of the set of alternatives is inessential for the final selection. However,

since the virtue book completely disregards the views of individuals, it might be

the case that all individuals in society prefer the least virtuous alternative in a set

to the most virtuous one and yet the rule chooses the latter alternative, violating

Condorcet Consistency.

Alternatively, a modified version of the virtue decision rule would aim to block

the least virtuous alternative, and in so doing would attend the views of the
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individuals by selecting the alternative that presents the highest resistance to

it. That is, the modified virtue book rule selects the alternative with the largest

margin with respect to the least virtuous alternative (and, say, it respects the

selection of the virtue book in the event of a tie). The rule satisfies Condorcet

Antipriority. To see this, note that the antiprioritarian alternative in a set is the

least virtuous alternative. Then, in the event of a cycle, it follows immediately

that the alternative that dominates the antiprioritarian one has a larger margin

than the other alternative. The rule also satisfies Elimination Consistency since

no alternative is dominated by the least virtuous one. However, the rule fails to

satisfy Condorcet Loser Consistency since it may be the case that the Condorcet

loser is the alternative with the largest margin to the least virtuous one, and

hence it would be selected by the modified virtue decision rule.

More democratic versions of the above two rules would involve attending the

views of society when these are consistent with Condorcet notions. The Condorcet

virtue book would select the Condorcet winner whenever it exists, and would

follow the virtue book rule otherwise. This rule trivially satisfies Condorcet

Consistency. It also satisfies Condorcet Priority since the virtue book is applied

in the presence of cycles. However, it fails to satisfy Division Consistency. To

see this, consider a three-element set, and following a similar analysis to the

one adopted in the proof of Theorem 1, note that the only possible division

involves the separation of the prioritarian alternative from among the other two.

It might be the case that there is a cycle involving the three alternatives and

hence the prioritarian alternative is selected in the three-element set, and that

the alternative selected from among the non-prioritarian ones majority dominates

the prioritarian, causing the latter not to be selected in the three-stage process,

thus violating Division Consistency.

The Condorcet modified virtue book would similarly rule out Condorcet losers,

applying successively the property of Condorcet Loser Consistency, whenever this

is possible, and behaving like the modified virtue book when Condorcet losers do

not exist. This, apart from obviously satisfying Condorcet Loser Consistency,

satisfies Condorcet Antipriority since the modified virtue book is applied in the

presence of cycles. However, it violates Elimination Consistency. Consider a

set of alternatives {a, y, z} over which a is the antiprioritarian alternative and
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suppose that a majority dominates alternative y, and y dominates z. It might

be the case that, by focussing on the largest margin against a, the rule selects

alternative y, violating Elimination Consistency.

Finally, consider a binary game tree where (i) all alternatives appear once as

terminal nodes of the tree and (ii) there exists at least one node with two non-

terminal successors.5 Define, then, the generalized agenda rule as the rule that

selects the undominated Nash equilibrium of the normal form game induced by

the binary game. This rule obviously satisfies Condorcet Consistency and Con-

dorcet Loser Consistency. Now, consider one of the special nodes in point (ii) and

four alternatives that are successors of it, two from each of the two non-terminal

successors. It is immediate to see that for any subset of three alternatives involv-

ing a Condorcet cycle, the selection of the rule is the alternative that branches

away on its own from the other two. Consequently, there is no prioritarian alter-

native in the set of four alternatives. Hence, Condorcet Priority does not hold in

general. A similar reasoning shows that Condorcet Antipriority is also violated.

Finally, the rule satisfies Division Consistency by the equilibrium nature of the

rule and Elimination Consistency since no antiprioritarian alternative exists.

5.3. Connection to Implementation Theory. We would like to note here

that our exercise can be related to classical implementation theory.6 In the lan-

guage of implementation, our exercise might be restated as follows. Decision

rules satisfying CC, CP and DC, or alternatively satisfying CLC, CA and EC

can be implementable via the undominated Nash solution. In particular, our

analysis shows that we can use simple mechanisms for the implementation, since

the former is implemented using the Euro-Latin procedure and the latter by the

Anglo-American procedure.

The main difference between our approach and the one typically used in im-

plementation theory is that, in our case, a decision rule is defined not only over

all possible preference profiles but also over all possible subsets of alternatives,

while implementation theory typically works over the grand set of alternatives

only.

5Some of the conclusions on the independence of the axioms require at least four alternatives,
such as the argument that follows.
6See Jackson (2001) for a survey on implementation theory.
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Appendix A. Proofs

Proof of Theorem 1: We first prove that the Nash equilibrium in undominated

strategies of a Euro-Latin procedure satisfies the properties. Clearly, CC is im-

mediate. To check CP, we just need to observe that the first alternative of the

set according to the agenda is prioritarian. The reason for this is that, if such an

alternative is involved in a Condorcet cycle, its rejection would imply the election

of the majoritarian winner alternative from among the other two. Because of the

Condorcet cycle structure, that alternative is majority inferior to the first one.

Finally, any set of alternatives admits a division in which all the alternatives but

the first one, according to the agenda, are separated from the first alternative.

We now prove the converse statement using a lemma.

Lemma 1. For any A with |A| ≥ 3 let h be the prioritarian alternative of A,

then (A \ {h}, {h}) is the unique division of A.

Proof of Lemma 1: We proceed by contradiction. Suppose that (B,C) is

a division of A, with h ∈ B and |B| ≥ 2. Let b ∈ B \ {h} and c ∈ C

and consider a profile P where: (i) alternatives b, c and h are preferred to

any other alternative in A by every individual, and (ii) alternatives b, c and h

form a Condorcet cycle such that c is majority preferred to h, h to b and b

to c. By DC, since {b, h} is a subset of B and {c} is a subset of C, we have

v(P, {b, c, h}) = v(P, {v(P, {b, h}), c}). Given the structure of P , CC implies

v(P, {b, h}) = h and v(P, {b, c, h}) = v(P, {h, c}) = c. This is a clear contradic-

tion with h being prioritarian in A. �

Now we define an agenda ~X . By CP, there exists a prioritarian alternative in

X . Let xn be such an alternative and let it be placed at the end of the agenda.

Recursively, given xk+1, . . . , xn, we can use CP to define xk as a prioritarian

alternative of X \ {xk+1, . . . , xn}.

Next, we prove that v is the outcome of Anglo-American voting over the agenda

~X when voters vote sincerely, that is truthfully reporting their preferences. We

prove it by induction on the cardinality of set A. By CC, if |A| = 2, the decision

rule selects the majoritarian alternative, and hence the claim follows. Suppose

the claim is true for any set of alternatives with cardinality lower than or equal
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to p ≥ 2. We now prove that the claim is true for any set of alternatives A with

|A| = p+ 1. Let xm be the last element of A in the agenda. Given the induction

hypothesis, v(P,A\{xm}) is the outcome of sincere voting in the Anglo-American

procedure γAA(P, ~X,A \ {xm}). Clearly, by CC v(P, {v(P,A \ {xm}), xm}) is the

outcome of sincere voting in the Anglo-American procedure restricted to this pair

of alternatives. Given that xm is the last element of A, it is straightforward that

v(P, {v(P,A \ {xm}), xm}) is also the outcome of sincere voting for the Anglo-

American procedure γAA(P, ~X,A). To conclude the claim, we only need to show

that v(P, {v(P,A\{xm}), xm}) = v(P,A). By construction, xm is the prioritarian

alternative of {x1, x2, . . . , xm} and hence it is also the prioritarian alternative of

A. Hence, by Lemma 1 we know that (A \ {xm}, {xm}) is the only division of A

and hence v(P, {v(P,A \ {xm}), xm}) = v(P,A).

To conclude the proof, we use the well-known result on the equivalence be-

tween the outcomes of sincere voting in Anglo-American procedures with a given

agenda ~X and the outcome of the Nash equilibrium in undominated strategies of

the Euro-Latin procedure where the order of the agenda ~X is reversed, given the

preference profile P (see Miller 1977; see also Moulin 1979).�

Proof of Theorem 2: We first prove that the Nash equilibrium in undomi-

nated strategies of an Anglo-American procedure satisfies the properties. CLC

is immediate. To check CA, we just need to observe that the last alternative of

the set according to the agenda is antiprioritarian. Suppose there exists a Con-

dorcet cycle involving alternatives x, y and a, where x majority dominates y, y

majority dominates the last alternative in the triple a and a majority dominates

x. Since the outcomes from {x, a} and {y, a} are a and y respectively, and y

majority dominates a, the outcome of the first election, namely between x and y,

will be y, which will be confirmed in the final election. Hence, a is antiprioritar-

ian, as announced. Finally, we prove that the Nash equilibrium in undominated

strategies of an Anglo-American procedure satisfies EC. The claim is trivial for

sets involving two alternatives. Notice that for any set A with at least three

alternatives, the antiprioritarian alternative must be the last alternative of A in

the agenda, say a. This follows immediately from our previous argument on CA.

Let y be majority dominated by a. Clearly, y cannot be the selected alternative
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in A since y reaching the final election against a would entail the election of a.

Then, it follows that at equilibrium the outcome from A must be the same as the

outcome from A \ {y}, as desired. We now prove the converse statement.

Let v satisfy CLC, CA and EC. We first construct an agenda ~X . By CA,

there exists one alternative which is antiprioritarian in X . Denote it by x1.

Suppose we have defined x1, . . . , xk. By CA, there exists one alternative which

is antiprioritarian in X \ {x1, . . . , xk}. Denote it by xk+1. This process defines

an ordered list of alternatives x1, . . . , xn. We construct the agenda by setting

~X = (xn, xn−1, . . . , x1).

Now, given the agenda ~X , we associate with each pair (P,A) a sequence of

alternatives in A, t1(P,A), t2(P,A), . . . as follows. t1(P,A) is the last alternative

in A according to the agenda ~X . t2(P,A) is the last alternative in A, according

to the agenda ~X , that majority dominates alternative t1(P,A), if it exists. Oth-

erwise, t2(P,A) = t1(P,A). Given t1(P,A), . . . , ts(P,A), denote by ts+1(P,A) the

first alternative from A in the agenda ~X that majority dominates all alternatives

t1(P,A), . . . , ts(P,A), if it exists. Otherwise, ts+1(P,A) = ts(P,A).

Lemma 2. Given A and P , v(P,A) = lim ti(P,A).

Proof of Lemma 2: Notice that by construction, t1(P,A) is antiprioritarian in

A = A1. Thus, by EC, v(P,A1) = v(P,A′

1), where A′

1 contains exactly the alter-

native t1(P,A) and the set of alternatives that are majority dominated by t1(P,A)

in A1. If A
′

1 = {t1(P,A)}, we are done. Otherwise, t1(P,A) is a Condorcet loser

in A′

1 by construction. By CLC, v(P,A′

1) = v(P,A2) where A2 = A′

1 \ {t1(P,A)}.

By construction, t2(P,A) is the last alternative in A2 according to the agenda ~X .

Hence, t2(P,A) is antiprioritarian in A2, and by EC, v(P,A2) = v(P,A′

2) where

A′

2 is the set of alternatives that are majority dominated by t2(P,A) in A2, and

that contains t2(P,A). If A
′

2 = {t2(P,A)}, we are done. Otherwise, t2(P,A) is a

Condorcet loser in A′

2 by construction. Then, again t3(P,A) is the last alternative

in A3 = A′

2 \ {t2(P,A)} according to the agenda and given the finiteness of X ,

the iteration of this process proves the lemma.�

Lemma 3. Given A and P , UNE[γAA(P, ~X,A)] = lim ti(P,A).
7

7Shepsle and Weingast (1984) proved an analogous result. We include Lemma 3 here for
completeness.
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Proof of Lemma 3: We prove this lemma by induction on the cardinality of

A. If A contains two alternatives, the claim follows immediately. Suppose that

the claim is true for sets containing up to k alternatives, and consider A with

k + 1 alternatives. Take the first and second alternatives in A with respect to

the agenda, say x and y. If the alternative x (resp. y) is voted off, then by the

induction hypothesis, the outcome of the equilibrium in undominated strategies is

the limit l1 = lim ti(P,A\{x}) (resp., l2 = lim ti(P,A\{y})). By construction, the

outcome of the Nash equilibrium in undominated strategies in A is the alternative

that is majority preferred among these two alternatives, l1 and l2. We now show

that this coincides with the lim ti(P,A). We distinguish between the following

cases:

• l1 6= y and l2 6= x. Then l1 = l2 and this element is different from x and

y. By construction of l1, l1 is majority preferred to both x and y. Hence,

l1 is the limit of the sequence associated with A.

• l1 = y, l2 6= x. By construction, y majority dominates l2 and hence y is

the outcome of the Nash equilibrium in undominated strategies in A. But

clearly, y belongs to the sequence in A, and since x does not belong to

the sequence in A \ {y}, it does not belong to the sequence in A either.

Hence, y is the limit of the sequence of A, as desired.

• l1 6= y, l2 = x. By construction, x majority dominates l1 and hence x is

the outcome of the Nash equilibrium in undominated strategies in A. But

clearly, y does not belong to the sequence in A since y does not belong to

the sequence in A \ {x}. As a consequence, x belongs to it, and it is the

limit of the sequence in A.

• l1 = y and l2 = x. The outcome of the Nash equilibrium in undominated

strategies in A is the alternative in {x, y} that majority dominates the

other. But notice that y belongs to the sequence in A, and x is in the

sequence if and only if x majority dominates y. Hence, the limit of the

sequence is the alternative in {x, y} that majority dominates the other,

as desired.�

The two lemmata together conclude the proof.�
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Proof of Proposition 1: We first prove that a decision rule v satisfying DC

and CC also satisfies CLC. Consider (P,A) and suppose that the Condorcet loser

cl(P,A) exists. We need to prove that v(P,A) = v(P,A \ {cl(P,A)}). We define

iteratively a finite family of nested sets Ai each containing the Condorcet loser

cl(P,A). Let A1 = A. Given the sets A1, A2, . . . , Ai containing cl(P,A), by DC,

there exists a division of Ai, Bi (which without loss of generality we assume to

contain cl(P,A)) and Ci. Define Ai+1 as Bi whenever Bi contains some alternative

in addition to the Condorcet loser. Otherwise, the family stops at Ai.

Now, from the constructed family, we know that:

(1) v(P,Ai) = v(P, {v(P,Bi), v(P,Ci)}) and

(2) v(P,Ai \ {cl(P,A)}) = v(P, {v(P,Bi \ {cl(P,A)}), v(P,Ci)}).

Hence, v(P,Ai) = v(P,Ai \ {cl(P,A)}) if v(P,Bi) = v(P,Bi \ {cl(P,A)}). That

is, v(P,Ai) = v(P,Ai \ {cl(P,A)}) if v(P,Ai+1) = v(P,Ai+1 \ {cl(P,A)}). The

conjunction of all these relationships leads to v(P,A) = v(P,A \ {cl(P,A)}) if

v(P,Ak) = v(P,Ak \ {cl(P,A)}), where Ak is the last set in the family. In this

case, Bk = {cl(P,A)} and given that cl(P,A) is majority dominated by all alter-

natives in Ak \ {cl(P,A)} we have that v(P,Ak) = v(P, {v(P,Bk), v(P,Ck)}) =

v(P, {cl(P,A), v(P,Ak \ {cl(P,A)})}) = v(P,Ak \ {cl(P,A)}), as desired.

We now prove that a decision rule v satisfying DC and CLC also satisfies CC.

We prove it by induction on the cardinality of the set of alternatives. Suppose

that the set has two alternatives. Then, the Condorcet winner is selected by

direct application of CLC. Now suppose that, if they exist, Condorcet winners are

always selected for the corresponding sets, which are supposed to have cardinality

smaller than or equal to k. Let (P,A) with cardinality of A be equal to k + 1

and suppose that the Condorcet winner cw(P,A) exists. By DC, there exists

a division (B,C) of A. Suppose without loss of generality that cw(P,A) ∈ B.

Hence, v(P,A) = v(P,B ∪ C) = v(P, {v(P,B), v(P,C)}). Since cw(P,A) =

cw(P,B) = cw(P, v(P,C) ∪ {cw(P,A)}), by the inductive hypothesis we know

that v(P, {v(P,B), v(P,C)}) = v(P, {cw(P,A), v(P,C)}) = cw(P,A). Hence,

v(P,A) = cw(P,A), and CC holds.�
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