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1 Introduction

In many contexts where satisfactory strategy-proof mechanisms do not exist, asking for

more becomes redundant. But in domains where that basic incentive property can be met,

it becomes natural to investigate whether there exist mechanisms that are not only immune

to manipulation by individuals, but can also resist manipulation by groups of coordinated

agents.1 This is particularly relevant because individual strategy-proofness per se is a

rather fragile property, unless one can also preclude manipulations of the social outcome

by potential coalitions, especially if these may be su¢ ciently small and easy to coordinate.

In this paper we study the characteristics of group strategy-proof mechanisms to allocate

private goods among sel�sh agents, when no compensatory transfers are possible.

In the context of these allocation problems, it is possible to speak about the partial

compliance of incentive properties: a mechanism may be individually or group strategy-

proof for some of the agents. And indeed, this possibility is heavily exploited by the

literature on matching, where some of the leading mechanisms, including the canonical one

proposed by Gale and Shapley, only satisfy strategy-proofness for one side of the market.

This introduces an apparent asymmetry between the treatment of matching and that of

other similar allocation problems.

We provide a general framework that includes, as special cases, one-to-many matching,

where partial notions of incentive properties prevail, as well as division and house allocation

problems, where all agents abide to the same incentive constraints. In that context, we

identify properties that are su¢ cient to precipitate the group strategy-proofness of those

social choice functions that are individually strategy-proof. Hence, we do not only clarify

the intriguing connection between the two properties, but also prove their link to be quite

independent of whether individual and group strategy-proofness hold for all agents or only

for some.

Although our framework is much more general, we use as leading examples the three

allocation problems that we mentioned, and three well-known allocation mechanisms that

stand out as reference points, thanks to their ability to ful�ll di¤erent lists of attractive

requirements. In the case of matching, we think of the Gale-Shapley mechanism (Gale and

Shapley, 1962, see also Roth and Sotomayor, 1990). In the case of division, the uniform

rule stands out (Sprumont, 1991). For house allocation, it is the top trading cycle (Shapley

and Scarf, 1974).

1We study that question for economies with public goods in Barberà, Berga and Moreno (2011).
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Within the context of each of these particular models and under each of the three refer-

ence rules, there are agents for whom revealing their true preferences is always a dominant

strategy. For these agents we can say that the rule is strategy-proof. In the case of the

Gale-Shapley mechanism, strategy-proofness only holds for one side of the market, while it

applies to all agents in the case of the uniform rule or the top trading cycle.

Our research starts from the observation that, in addition to being strategy-proof for

some set of agents, all three mechanisms are also group strategy-proof for those agents who

cannot manipulate individually. They cannot form any coalition among themselves only and

strictly gain by jointly deviating from truth-telling. Prompted by this remark, we want to

take a deep look at the reasons why, in those and possibly in other cases, some mechanisms

become group strategy-proof as soon as they satisfy individual strategy-proofness. In order

to do that, we �rst provide a general framework that encompasses these three possible types

of models, but also others. Then we identify some general conditions that all of our three

reference models do satisfy, but that can also be asked from many other rules. Finally, we

prove that any individually strategy-proof rule satisfying the speci�c conditions that we

have unearthed must also be group strategy-proof.

Our main result shows that there is a deep link between these two incentive properties,

beyond the fact that individual strategy-proofness is obviously the weaker of the two. The

fact that both hold in our three reference cases is not an accident: rather, it is because

all three mechanisms share the same characteristics, within their respective speci�cations.

In fact, they share these properties with many other possible mechanisms that one can

think of, and all of those strategy-proof mechanism satisfying our properties will be group

strategy-proof as well.

The paper proceeds as follows. We �rst provide a general framework allowing us to

identify the social choice functions that result from applying an allocation mechanism in

our environments, and see that the three types of problems we mention do �t into it

(Section 2). Then we de�ne the speci�c rules that we use as reference points, and identify

several properties that they all share (Section 3). Then we prove (Section 4) our main

result regarding the relationship between individual and group strategy-proofness in our

model, and show that the conditions involved are independent and non-redundant. A set

of comments and conclusions (Section 5) close the paper.
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2 The model and some leading interpretations

We look for a common framework encompassing di¤erent speci�c models where private

goods must be allocated and compensatory transfers are not possible. Before providing

general de�nitions, let us brie�y discuss several models that will �t into our framework,

where we distinguish among alternatives, consequences and preference domains.

Matching: A setW of workers must be allocated to some �rm in the set F of potential

employers, each one able to hire a given amount of workers (say quota q). Each possible

outcome for this allocation problem is a matching, indicating which workers go into what

�rms, and those who remain jobless. The consequence of a matching for each agent is the

�rm where he is attached to, in the case of workers, or else staying unemployed; and in

the case of a �rm, it is the (possibly empty and no larger than its capacity) set of workers

that are made available to it.2 Individuals have sel�sh preferences over matchings: they

rank equally all those that have the same consequences for them. In the case of �rms, we

assume that when ranking sets of workers, their preference relation respects a condition of

responsiveness.3

The matching literature usually describes allocation rules by means of algorithms, which

compute a single matching for each given speci�cation of the preferences of workers over

�rms (and unemployment), and of the preferences of �rms over sets of workers.

In the general language that we are going to use, borrowed from social choice theory,

agents are all the workers and all the �rms involved. Alternatives are matchings. Conse-

quences for an agent are what the agent gets from some matching. Preferences are de�ned

over consequences, but extend to matchings (alternatives) in a natural way. Admissible

pro�les are lists of preferences over alternatives, one for each agent. In our applications to

matching we assume that all rankings of singletons are possible, and that rankings of sets are

only restricted by the requirement of responsiveness. These admissible pro�les constitute

the domain of a social choice function that chooses one alternative at each pro�le.

2A special case of the many-to-one model we have described is that where �rms have only one opening.

It corresponds to the case where matchings are one-to-one, usually called the marriage market.
3In our setting, where agents have preferences over sets, responsiveness requires the following. Assume

that worker s is preferred to worker t, when comparing them as singletons. Then, for any two sets sharing

the same workers, except that one contains s and the other contains t, the former is preferred to the latter.

We concentrate on that domain of preferences because, as we shall see, it guarantees that the Gale-Shapley

algorithm, originally designed for one-to-one matchings, can be used in that more general case and provide

us with a rule satisfying the good properties we are after.
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Division. A setN of n individuals must share a task. An allocation is a vector of n non-

negative real numbers, adding up to one, that indicates what proportion of the total task

is assigned to the individuals. The consequence of the overall allocation for agent i is just

the i-th component of that vector. Individuals have preferences over consequences: there

is a share s� that they prefer most, and they hold any possible single-peaked preferences

around that maximal element.4

Hence, in that case alternatives are vectors of shares, consequences are individual shares,

and the domain of our social choice functions will be the set of sel�sh preferences over

alternatives associated to all single-peaked preferences over individual shares.

House allocation. A set N of individuals must be allocated a maximum of one house

each, out of a set of houses.5 An allocation just designates who gets what house, if any. The

consequence of an allocation for an agent is whether or not she gets a house, and which one.

Individuals have preferences over houses, they typically prefer any house to none, and are

otherwise unrestricted. Houses are not agents, as they are not endowed with preferences.

So now individuals are agents, alternatives are allocations of at most one house to each

agent, and social choice functions are de�ned over the domain of unrestricted rankings of

houses.

The general model

Let N = f1; 2; :::; ng be a �nite set of agents with n > 2. Let Bi be the set of possible
consequences for i, i 2 N . Let A � B1 � ::: � Bn be the set of feasible combinations of
consequences for agents and a = (a1; :::; an) 2 A. A is our set of alternatives.
Each agent i has preferences denoted by Ri on Bi. As usual, we denote by Pi and Ii the

strict and the indi¤erence part of Ri, respectively. For any a 2 A and Ri 2 Ri, the strict

lower contour set of Ri at ai is L(Ri; ai) = fbi 2 Bi : aiPibig and the strict upper contour
set of Ri at ai is U(Ri; ai) = fbi 2 A : biPiaig :
Let eRi be the set of complete, re�exive, and transitive orderings on Bi: From preferences

on Bi we can induce preferences on A as follows: For any a; b 2 A; aRib if and only if aiRibi.
That is, we assume that, when evaluating di¤erent alternatives, agents are sel�sh. Note

that, abusing notation we use the same symbol Ri to denote preferences on A and on Bi.

4That is, given any share s di¤erent than s�, they strictly prefer any s�lying in the interval [s; s�] to the

extreme s.
5Since we are using these models for motivational purposes, we stick to the simplest version of the house

allocation model. More complex cases allow for more than one house to be allocated to the same agents,

the existence of property rights and other possible variations.
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Let Ri � eRi be the set of admissible preferences for agent i 2 N . A preference pro�le,
denoted by RN = (R1; :::; Rn); is an element of �i2NRi. We will write RN = (RC ; RNnC) 2
�i2NRi when we want to stress the role of coalition C in N .

A social choice function (or a rule) is a function f : �i2NRi ! A.

We now turn to conditions regarding the incentives of individuals to reveal their true

preferences, under a given social choice rule.

De�nition 1 A social choice function f on �i2NRi is manipulable at RN 2 �i2NRi

by coalition C � N if there exists R0C 2 �i2CRi (R0i 6= Ri for any i 2 C) such that

f(R0C ; RNnC)Pif(RN) for all i 2 C. A social choice function is H-group strategy-proof if it
is not manipulable by any coalition C � H, and it is H-individually strategy-proof if it is
not manipulable by any singleton fig � H.6

The requirement of individual strategy-proofness demands that revealing one�s pref-

erences is a dominant strategy for all agents in H. Likewise, group strategy-proofness

requires that no subset of agents in H can coordinate their actions and obtain a better

result than by just declaring their preferences. The standard de�nition of individual and

group strategy-proofness refer to the case H = N .

Since the Gale-Shapley mechanism only provides one side of the market with dominant

strategies to reveal the truth, we relax the standard de�nitions in order to also allow for

partial notions of manipulation and of strategy-proofness.

Notice that the three types of allocation problems we have described before do �t well in

that general framework, though they clearly di¤er in the exact form of the alternatives, and

also in the domains of preferences over which the di¤erent social choice rules are de�ned.

In the case of matching, the set of agents consists of two disjoint sets W and F . The

set of consequences for individuals are as follows: For each i 2 W , Bi = F [ fig and for
each j 2 F , Bj = W [ fjg in the case of one-to-one matching (also known as the marriage
model) while Bj = 2W[fjg in the case of many-to-one (also known as the college admissions
problem). The assignment problem consists of matching each agent i in W with at most

one agent j in F and each j with eventually many agents in W . The set of alternatives A

is given in this case by the set of all admissible matchings7.
6Notice that our de�nition requires that in order to jointly manipulate, all agents in a group must derive

a strict gain from their participation. A weaker version of the condition would allow for some of them to

help others, as long as not making losses.
7A matching a 2 A is a mapping from the set N into the set of all subsets of N such that for all i 2W ,

ai 2 Bi and j 2 F , aj 2 Bj and ai = fjg if and only if i 2 aj .
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In the case of division, Bi = [0; 1], and A = fa 2 B1 � ::: � Bn :
nP
i=1

ai = 1g, for each
agent i 2 N .
In the case of house allocation, Bi is a set of individual objects or houses, such that

Bi = Bj for each i; j 2 N and #Bi = #N . The set of alternatives A is given in this case by

the set of possible assignments of houses to agents such that each agent receives a di¤erent

house.

In the next section we de�ne additional conditions that social choice functions may or

may not satisfy, and see that, in fact, these general conditions are met by the best studied

rules that apply to each context.

3 Three representative mechanisms and their com-

mon properties

In this Section, we describe with some detail three allocation rules that play a leading role

in the study of matching, division and house allocation and we identify conditions that they

share.

We begin by the Gale-Shapley mechanism and its associated social choice function.

Given a many-to-one matching problem, one can calculate, for each preference pro�le, a

unique matching, according to the following algorithm, that we �rst describe for the one-

to-one case. That is, for the case where each �rm can only accept one worker at most.

The algorithm starts with all workers applying to their preferred �rms, and �rms tenta-

tively accepting the one worker they prefer among those that applied for it. If that leaves

some workers unmatched, these are then asked to apply for their second best �rms. Once

their applications get in, �rms may accept these new applicants if they are better for them

than the ones they retained in the �rst round, and reject the previously accepted ones.

That leads to a new matching and to a new list of unmatched workers. Again, if some

workers remain unmatched, they may now re-apply to those �rms that are the best among

those they did not yet apply to in preceding rounds. The process continues until no further

changes can occur. In the one-to-one case this method always leads to a unique alternative.8

8The matching thus obtained is stable: that is, it is individually rational and no two individuals, one

from each side of the market, can improve upon it by forming a new pair and leaving their present match.

Discussing the stability of matchings is the main concern of that literature, but since we concentrate here

on incentive properties, we shall not insist on that point.
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Now, to extend the use of the Gale-Shapley mechanism to our many-to-one case, simply

re-de�ne a new set of �rms, so that each original one, with capacity for q workers, becomes

one of q di¤erent �rms with capacity one. Let all these �rms still have the same preferences

over singletons as before. De�ne the preferences of workers in such a way that they still

preserve the ranking among �rms that come from di¤erent original ones, and let all of them

rank the small �rms coming from the same one in an arbitrary, common order. Then, run

the Gale-Shapley mechanism for this well-de�ned one-to-one matching problem, and �nally

assign to the �real� initial �rms all the workers that are matched with any of its small,

instrumental �rms into which it was divided.

The use of the Gale-Shapley mechanism at each preference pro�le generates a social

choice function. We will abuse terminology and call it the Gale-Shapley social choice

function from now on.

Turn next to the uniform rule for the division problem. Again, given a pro�le of single-

peaked preferences over shares of the job, the rule determines a unique alternative, that is,

a vector of shares, as follows.

Ask each agent for its preferred share of the job. If the sum of the desired shares exceeds

one, �nd a number � having the following property. If all agents who demand less than

� are allowed to have their preferred share, and all others are required to accept �, then

the total assignment adds up to one. If the sum of the desired shares is short of one, �nd

a number �� having the following property. If all agents who demand more than �� are

allowed to have their preferred share, and all others are required to accept ��, then the total

assignment adds up to one.

These values for � or ��always exist, and thus the rule based on them determines an

assignment of shares that is always feasible. It therefore de�nes a social choice function on

the set of admissible pro�les.

Finally, for the housing problems we have described before, the top trading cycle mech-

anism also determines a unique alternative, this time an allocation of houses, according

to the following rule. Ask agents to point at their preferred house. There will always be

some set of agents (maybe several) whose demands form a cycle.9 Give those agents in

the cycle their preferred houses and remove them. Now ask the remaining set of agents for

their preferred houses over the remaining ones, and proceed likewise until all houses are

assigned.

Again, this procedure leads to a well de�ned alternative for each preference pro�le, and

9Agents who point at their own house, form a cycle by themselves.

7



thus gives rise to what we call, abusing terminology, the top trading cycle social choice

function.

Notice that all three methods, each one applying to a di¤erent world, do generate

speci�c social choice functions. Because of that, we can investigate the common traits of

these di¤erent functions, if any.

The �rst remarkable coincidence is that all three rules are not only individually but also

group strategy-proof. But there are also other common characteristics, that we emphasize

in turn.

We start by the domains of de�nition. They are clearly di¤erent, and it is not even the

case that the restrictions that make sense when alternatives are matchings would also be

applicable to the case of division, or vice-versa. Yet, here are general requirements on the

pro�les of preferences over consequences that all three domains we consider do satisfy.

De�nition 2 A set of individual preferences Ri is top rich if for any Ri 2 Ri

(1) there exists a unique �(Ri) 2 Bi such that for all xi 2 Bi, �(Ri)Pixi.10 and
(2) for any ai; bi 2 Bi such that biPiai, there exists R0i such that U(Ri; ai) = U(R0i; ai),

L(Ri; ai) = L(R
0
i; ai) and bi = �(R

0
i).

De�nition 3 Let H � N . A domain of preferences �i2NRi is H-top rich if for any
i 2 H, Ri is top rich.

We can argue that the standard domains of de�nition for our three rules satisfy H-top

rich for some H. What are these domains?

In housing problems, no restrictions are imposed on the agent�s preferences over houses,

and therefore the admissible preferences over consequences are top rich for all individuals

in N.

In many-to-one matching models, no restrictions are imposed on the preferences of

the set W of workers other than they are linear orders. Hence, the family of admissible

preferences is also trivially top rich. As for �rms, it is usually assumed in the literature that

their preferences over sets of workers satisfy responsiveness. The family of such preferences

10Notice that the fact that there is a unique top in the preferences over consequences does not imply that

individual preferences over alternatives have a unique top, because of the sel�shness assumption.
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is not top rich.11 But we can still say that the typical domain for many-to-one matching

problems is W -top rich.

As for division problems, the family of all single-peaked preferences is again top rich

because given any ai; bi 2 Bi such that biPiai, one can trivially �nd another single-peaked
preference R0i 2 Ri with bi = �(R0i) and such that U(Ri; ai) = U(R0i; ai), L(Ri; ai) =

L(R0i; ai).

Next we identify two more conditions on social choice functions that are satis�ed by our

leading examples.

The �rst one is a restricted version of non-bossiness. That condition was proposed by

Satterthwaite and Sonnenschein (1981) and requires that no agent can change the conse-

quences for another agent unless the consequences for her also change. In our case this

condition would be unnecessarily strong, because the Gale-Shapley social choice function

does not satisfy it, not even for agents in one side of the market.12

The following concept of H-respectfulness is a mild version of non-bossiness, where the

requirement is limited to changes in consequences induced by a limited type of preference

changes, and is only predicated for some of the agents.

De�nition 4 Let H � N be a subset of agents. A social choice function f on �i2NRi is

H-respectful if

fi(RN) = fi(R
0
i; RNnfig) implies fj(RN) = fj(R

0
i; RNnfig), 8j 2 Hnfig,

for each i 2 H, RN 2 �i2NRi, and R0i 2 Ri such that U(Ri; fi(RN)) = U(R0i; fi(RN)) and

L(Ri; fi(RN)) = L(R
0
i; fi(RN)).

The weakening of standard non-bossiness comes from two sources. In the �rst place, the

de�nition only imposes requirements on some subset H of agents. More important is the

fact that the lack of ability to a¤ect the consequences on others when not a¤ecting one�s

own is restricted to special and limited cases of preference changes.

Indeed, two of our reference methods are quite trivially N-respectful, because the uni-

form rule and the top trading cycle solution are in fact non-bossy. But notice that the
11The following example shows that the set of responsive preferences is not top rich. Let W = f1; 2; 3; 4g

and f 2 F with capacity 2. Let Rf be a responsive preference such that figPfffg, for any i 2 W and

f2gPff3; 4g. Note that for each responsive R0f such that 2 = �(R0f ), L(Rf ; f3; 4g) 6= L(R0f ; f3; 4g) because
ffgP 0ffig, for each i 2Wnf2g.
12Kojima (2010) proves that stability is incompatible with non-bossiness. Since the Gale-Shapley mech-

anism produces stable outcomes it must be bossy.
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Gale-Shapley social choice function is bossy, even if we restrict attention to changes in the

side of the workers/proposers. This is clear from the following example.

Example 1 The Gale-Shapley social choice function is bossy. Let W = f1; 2; 3; 4g and
F = fa; b; c; dg. For each i 2 W , Bi = F [ fig and for each j 2 F , Bj = W [ fjg
(one-to-one matching). The preferences of the agents in W , PW , on Bi are given in the

following table:
R1 R2 R3 R4

c d b b

a c d d

b b c a

d a a c

1 2 3 4

and the preferences of the agents in F , PF , on Bj are given in the following table:

Ra Rb Rc Rd

2 2 3 4

4 4 1 3

3 3 2 2

1 1 4 1

a b c d

Let H = W . The alternative selected by the Gale-Shapley social choice function for RN when

the workers are the proposers is (f1(RN); f2(RN); f3(RN); f4(RN)) = (a; b; c; d). Let R01 be

as follows: aP 01cP
0
1bP

0
1dP

0
11. Note that P

0
1 is such that U(R1; f1(RN)) 6= U(R01; f1(RN))

and L(R1; f1(RN)) 6= L(R01; f1(RN)). Let R
0
N = (R01; R�1). The alternative selected by

the Gale-Shapley social choice function for R0N when the workers are the proposers is

(f1(R
0
N); f2(R

0
N); f3(R

0
N); f4(R

0
N)) = (a; c; d; b). Since f1(R0N) = f1(RN), but fi(R0N) 6=

fi(RN) for any i 2 Fnf1g we have that the Gale-Shapley social choice function is bossy.

Yet, even if bossy, the Gale-Shapley social choice function is W -respectful. To check

that, consider two preference pro�les RN and R0N such that, for each agent i, the upper

and lower contour sets of fi(RN) coincide in RN and R0N . Then, f(RN) will be stable

under pro�le R0N , and f(R
0
N) will be stable under pro�le RN . Since preferences are strict,

and the choice of f is optimal for the workers among all stable outcomes, it must be that

f(RN) = f(R
0
N).
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The second condition is a limited form of monotonicity, that we callH-top monotonicity.

The condition needs to only hold for some group H, and then requires the following. Take

a preference pro�le, and a subset of agents in H. Suppose that the preferences of all agents

in the subset do change, and that the consequences they were getting under the previous

pro�le become now their best choice. Then, these agents should retain the same outcome

at the new pro�le.

Formally,

De�nition 5 Let H � N be a subset of agents. A social choice function f satis�es H-top
monotonicity on �i2NRi if for any RN 2 �i2NRi, C � H, and R0C 2 �i2CRi such that

�(R0i) = fi(RN) for all i 2 C, then fi(R0C ; RNnC) = fi(RN) for all i 2 C.

Let us check that this property is also satis�ed by the social choice functions generated

through our mechanisms. In the case of the top trading cycle this is clear, since agents

endowed with their very best house will just retain it. In the division problem, agents who

did not get their best amount at a certain pro�le and now request that same amount as

being their best will not change the outcome of the uniform rule. Hence, N -monotonicity

is satis�ed. As for the Gale-Shapley social choice function, it will satisfy W -monotonicity,

by the following reasoning. Start from a pro�le RN , and consider another pro�le R0N where

all agents in a subset C of W consider that fi(RN) is their best alternative in R0N . Notice

that f(RN) will also be stable at pro�le R0N . Moreover, since the Gale-Shapley social choice

function selects the W-best stable matching, f(RN) has this property in RN , and clearly it

will also have it in R0N . Thus, f(RN) = f(R
0
N).

4 Individual versus group strategy-proofness

We have observed that, in spite of several important formal di¤erences regarding the space

of alternatives and the domains of preferences, our three reference social choice functions

share a number of properties. In particular, all of them are group strategy-proof. The fol-

lowing theorem proves that the equivalence between that property and individual strategy-

proofness is not a lucky coincidence, but a result of the fact that any strategy-proof social

choice function satisfying the remaining common requisites that we just exhibited, for in-

dividuals in a set H must also be immune to manipulation by subsets of H.

Theorem 1 If f is H-strategy-proof, H-top monotonic, H-respectful and de�ned on an

H-top rich domain, then f is also H-group strategy-proof.
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Proof By contradiction suppose that there exists RN �i2N Ri, C � H, eRC 2 �i2CRi

such that for any agent i 2 C, fi( eRC ; R�C)Pifi(RN). Let b = f( eRC ; R�C) and a = f(RN).
Note that for each i 2 C; fi(RN) 6= � (Ri).
By top richness of Ri where i 2 C, there exists R0C such that U(Ri; ai) = U(R0i; ai),

L(Ri; ai) = L(R
0
i; ai) and bi = �(R

0
i) for each i 2 C. Without loss of generality, assume that

C = f1; 2; :::; cg: Consider the sequence of preference pro�les R0 = RN , R1 = (R01; R�1),

R2 = (R01; R
0
2; R�f1;2g),..., R

c = (R0C ; R�C). By H-strategy-proofness, f1(R
0) = f1(R

1), and

by H-respectfulness, fj(R0) = fj(R1) for each j 2 Hnf1g. Again, by H-strategy-proofness,
f2(R

1) = f2(R
2), and by H-respectfulness, fj(R1) = fj(R2) for each j 2 Hnf2g. Repeating

the same argument, we obtain that aj = fj(R0) = fj(Rc) for each j 2 H.
Finally, since R0C 2 �i2CRi is such that �(R0i) = bi for each i 2 C, then fi( eRC ; R�C) =
fi(R

0
C ; R�C) for each i 2 C by H-top monotonicity.
Thus, we obtain the desired contradiction since, on the one hand fj(R0C ; R�C) = aj and

on the other hand fj(R0C ; R�C) = bj, for each j 2 C.

Our main purpose in this paper is achieved: we have proven that the coincidence between

the two incentive properties in the apparently diverse worlds of matching, division and

house allocation is the consequence of a shared structure that goes beyond the details of

each particular model.

The following examples show that the result is robust in that all assumptions we use

are needed.

Example 2 Violation of Theorem 1 when the domain is not top-rich. Let W = f1; 2; 3g
and F = f4; 5; 6g. For each j 2 F , Bj = W [ fjg and for agent 3 2 W , B3 = F [ f3g
any linear order on Bl is admissible. For agents 2 and 3 2 W , Bi = F [ fig, the set of
admissible preferences are as follows:

R11 R21 R31 R12 R22 R32
4 5 6 4 5 6

5 4 4 5 4 5

6 6 5 6 6 4

1 1 1 2 2 2

De�ne the following rule f where neither �rms nor agent 3 play any role, that is:

12



f(�; R3; RF ) R12 R22 R32
R11 4; 5; 6; 1; 2; 3 4; 5; 6; 1; 2; 3 5; 6; 4; 3; 1; 2

R21 5; 4; 6; 2; 1; 3 5; 4; 6; 2; 1; 3 5; 6; 4; 3; 1; 2

R31 6; 4; 5; 2; 3; 1 6; 4; 5; 2; 3; 1 5; 4; 6; 2; 1; 3

For H = W , the above rule is restricted H-respectful, H-top monotonic, H-strategy-proof,

but it is not H-group strategy-proof (agents 1 and 2 deviates from (R31; R
3
2) to (R

1
1; R

1
2) and

they are strictly better o¤ ).

Example 3 A social choice function de�ned on a top-rich domain that is H-respectful, H-
top monotonic but not H-strategy-proof. The much celebrated Boston mechanism provides

an example. In a �rst round, each student applies to his (reported) top choice and each

school admits applicants one at a time according to its preferences until either capacity is

exhausted or there are no more students who ranked it �rst. In Round k, each unmatched

student applies to his kth choice and schools with remaining capacity admits applicants one

at a time according to its preferences until either the remaining capacity is exhausted or

there are no more students who ranked it kth.

Example 4 A social choice function de�ned on a top-rich domain that is H-top monotonic,
H-strategy-proof but not H-respectful. Let W = f1; 2g and F = f3; 4g. For each j 2 F ,
Bj = W [fjg and any linear order on Bj is admissible. For each i 2 W , Bi = F [fig and
any linear order on Bi is admissible. The latter is as in the following table:

R1i R2i R3i R4i R5i R6i
3 4 3 4 i i

4 3 i i 3 4

i i 4 3 4 3

De�ne the following rule f where �rms do not play any role, that is for any RF 2 RF :

f(�; RF ) R12 R22 R32 R42 R52 R62
R11 3; 4; 1; 2 3; 4; 1; 2 3; 2; 1; 4 3; 4; 1; 2 4; 2; 3; 1 4; 2; 3; 1

R21 4; 3; 2; 1 4; 3; 2; 1 4; 3; 2; 1 4; 2; 3; 1 4; 2; 3; 1 4; 2; 3; 1

R31 3; 4; 1; 2 3; 4; 1; 2 3; 2; 1; 4 3; 4; 1; 2 4; 2; 3; 1 4; 2; 3; 1

R41 4; 3; 2; 1 4; 3; 2; 1 4; 3; 2; 1 4; 2; 3; 1 4; 2; 3; 1 4; 2; 3; 1

R51 1; 3; 2; 4 1; 3; 2; 4 1; 3; 2; 4 1; 3; 2; 4 4; 3; 2; 1 4; 3; 2; 1

R61 1; 3; 2; 4 1; 3; 2; 4 1; 3; 2; 4 1; 3; 2; 4 4; 3; 2; 1 4; 3; 2; 1

.
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For any RF 2 RF , note that f(R51; R
5
2; RF ) = (4; 3; 2; 1). Observe that f1(R51; R

5
2; RF ) =

f1(R
3
1; R

5
2; RF ) = 4, U(R

5
1; 4) = U(R

3
1; 4), L(R

5
1; 4) = L(R

3
1; 4) but f2(R

5
1; R

5
2; RF ) 6= f2(R31; R52; RF ),

violating H-respectfulness.

Example 5 A social choice function de�ned on a top-rich domain that is H-respectful,

H-strategy-proof but not H-top monotonic. Let W = f1; 2; 3g and F = f4; 5; 6g. For
each i 2 W , Bi = F [ fig and any linear order on Bi is admissible. For each j 2 F ,
Bj = W [fjg and any linear order on Bj is admissible. For any R1 2 R1, let � 2(R1) be the

most preferred alternative on B1n�(R1) of R1. De�ne the following rule f where neither
�rms nor agents in Wnf1g play any role:

8R�1, f(RN)
If �(R1) = 5 then 5; 6; 4; 3; 1; 2

If �(R1) = 6 then 6; 5; 4; 3; 2; 1

If �(R1) = 1 then 1; 5; 4; 3; 2; 6

If �(R1) = 4 and � 2(R1) = 5 then 5; 4; 6; 2; 1; 3

If �(R1) = 4 and � 2(R1) = 6 then 6; 4; 5; 2; 3; 1

If �(R1) = 4 and � 2(R1) = 1 then 1; 4; 5; 2; 3; 6

For H = W , the above rule is restricted H-respectful, H-strategy-proof, but it is not H-top

monotonic. To see this consider the following preference pro�le:

bR1 bR2 bR3
4 5 4

1 4 5

5 6 6

6 2 3

For any RF 2 RF , note that f( bR1; bR2; bR3; RF ) = (1; 4; 5; 2; 3; 6). Suppose that the prefer-
ences of agents in H = W change and the consequences they have obtained are now the

most preferred ones eR1 eR2 eR3
1 4 5

4 5 4

5 6 6

6 2 3
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For any RF 2 RF , note that f( eR1; eR2; eR3; RF ) = (1; 5; 4; 3; 2; 6). Observe that f1( eR1; eR2; eR3; RF ) =
f1( bR1; bR2; bR3; RF ) = 1 but fi( eR1; eR2; eR3; RF ) 6= fi( bR1; bR2; bR3; RF ) for i = 2; 3, violating H-
top monotonicity.

5 Conclusions

We have proven that the coincidence between individual and group strategy-proofness in

diverse worlds, where these properties may be satis�ed for all agents, or only by a subset

of them, is the consequence of a shared structure that goes beyond the details of each

particular model.

We have motivated our choice of framework by showing that it encompasses classical

mechanisms to solve a variety of allocation problems. But the result goes well beyond the

three examples we have used. Even within the framework of those problems we have focused

on, alternative mechanisms have been discussed that satisfy group strategy-proofness for

the same reasons we just discussed. This is the case, for the division problem, of the non-

anonymous and non-neutral social choice functions induced by sequential mechanisms, as

described in Barberà, Jackson and Neme (1997), or in Massó and Neme (2001). Solutions

to housing problems as the one discussed by Pápai (2000) are also within the scope of our

results. And so are mechanisms for school choice (Abdulkadiroglu and Sönmez, 2003).

In all these cases, functions satisfying our performance and domain requirements are

presented, and group strategy-proofness holds. But this is often presented as a lucky conse-

quence of the basic quest for individual strategy-proofness, while we have emphasized here

that group strategy-proofness can and should be a fundamental and attainable objective

per se.

Let us also remark that the designer�s choice of mechanism may be guided by other cri-

teria than those we have emphasized here. This is particularly true in the case of matching,

where the basic concern has been to �nd procedures that guarantee stability. Our emphasis

on di¤erent forms of strategy-proofness and their relationship has sidestepped that main

concern, though we have identi�ed conditions that are mild enough to still admit the de-

ferred acceptance procedure proposed by Gale and Shapley as part of our universe. Hence,

our results also apply to possible mechanisms that do not meet the requirement of stability.

For example, you may think of a segmented society with two culturally di¤erentiated groups

h and l, match their men Mh and Ml, and their Wh, Wl, according to the Gale-Shapley

deferred acceptance mechanism. However, the men Ml are the proposers to Wl in group l,
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while the women Wh in h are the proposers to Mh. The composed matchings for these two

segments of society result in an overall matching that clearly does not guarantee overall

stability, but that �ts well in our context. It is easy to see that the induced social choice

function will be strategy-proof relative to the union of Ml and Wh, and satisfy all of our

conditions relative to that set as well.

In our search for a common ground for the classical and attractive mechanisms that

we have highlighted, we have identi�ed the condition of H-respectfulness, and seen that it

is weaker than the property of non-bossiness that has been often used in the mechanism

design literature since its introduction by Satterthwaite and Sonnnschein (1981). The

reader familiar with the preceding literature will be aware that non-bossiness, coupled

with individual strategy-proofness, precipitates a strong form of group strategy-proofness.

Hence, one may have wondered why we did not take that shortcut to explain the link

between these two properties. Our reasons may be apparent by now, after seeing the

results, but let us insist on our logic. On the one hand, we wanted to stay in a world where

comparisons between the classical solution for matching and those for other allocation

problems did coexist. And that required a weakening of non-bossiness, because the Gale-

Shapley social choice function is bossy. On the other hand, notice that our notion of group

strategy-proofness is a mild one, where in order for a group to manipulate, all agents in

it must strictly gain. Indeed, we think that this is an attractive property per se, and the

natural one in our context where the set of alternatives is discrete. A stronger condition

would result from allowing a weaker notion of manipulation, where manipulation by groups

are considered relevant even if some agents do not gain by misrepresenting in favor of

others13. Individual strategy-proofness and non-bossiness in fact precipitate that stronger

form of manipulation, and that may exclude some attractive social choice rule that only

satisfy our milder, and we think more natural condition. For all these reasons, we have

departed from the strong and often ill-justi�ed use of non-bossiness.

Our main message is a plea for consideration of group strategy-proofness as an extremely

attractive property that may be attained in contexts of relevance, then avoiding the fragility

of individually strategy poof rules when those are possibly manipulable by small and easy

to coordinate groups.

13The distinction gets blurred in other contexts where there is a continuum of alternatives and prefer-

ences are continuous, because then both conditions can be proven to coincide, under very mild additional

assumptions. This is, for example the case in exchange economies (see Barberà and Jackson, 1995).
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