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Abstract

Using the assignment of students to schools as our leading example, we study many-to-one

two-sided matching markets without transfers. Students are endowed with cardinal preferences

and schools with ordinal ones, while preferences of both sides need not be strict. Using the

idea of a competitive equilibrium from equal incomes (CEEI, Hylland and Zeckhauser (1979)),

we propose a new mechanism, the Generalized CEEI, in which students face di¤erent prices

depending on how schools rank them. It always produces fair (justi�ed-envy-free) and ex ante

e¢ cient random assignments and stable deterministic ones with respect to stated preferences.

Moreover, if a group of students are top ranked by all schools, the G-CEEI random assignment

is ex ante weakly e¢ cient with respect to students� welfare. We show that each student�s

incentive to misreport vanishes when the market becomes large, given all others are truthful.

The mechanism is particularly relevant to school choice since schools� priority orderings can

be considered as their ordinal preferences. More importantly, in settings where agents have

similar ordinal preferences, the mechanism�s explicit use of cardinal preferences may signi�cantly

improve e¢ ciency. We also discuss its application in school choice with a¢ rmative action such

as group-speci�c quotas and in one-sided matching.
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1 Introduction

Two-sided matching in which indivisible positions at a set of institutions are assigned to agents with

unit demand is commonly observed in real life. Examples include (i) many-to-one matching such

as school choice (student placement in public schools), college admission, and �rms�employment

of workers; and (ii) one-to-one matching, e.g., o¢ ce assignment and college dormitory allocation.

The former includes the latter as a special case where each institution has one position available.

Taking school choice as our leading example where monetary transfers are precluded, this paper

studies how to match agents with institutions e¢ ciently and fairly in many-to-one matching. We

assume that students are endowed with von Neumann-Morgenstern (vN-M) utilities and schools

with possibly weak ordinal preferences. Students thus belong to di¤erent preference groups at each

school. As the literature on two-sided matching usually considers strict ordinal preferences on both

sides, our approach opens another dimension for possible e¢ ciency gain, in particular when schools�

ranking over students is not strict and students have similar ordinal preferences over schools.1

Each seat at a school is treated as a continuum of probability shares, and we focus on ran-

dom assignments that are probability distributions over deterministic allocations. Every random

assignment can be resolved into deterministic assignments with some lotteries (Birkho¤ (1946), von

Neumann (1953), and Kojima and Manea (2010)).

Building upon a competitive equilibrium from equal incomes (CEEI, Hylland and Zeckhauser

(1979)), we propose a Generalized CEEI mechanism (G-CEEI).2 It elicits ordinal preferences from

schools and cardinal ones from students, and then computes a random assignment as an equilibrium

outcome from a pseudo competitive market such that at the market-clearing prices, the random

assignment of each student is a solution to her expected-utility maximization problem if students,

as price-takers, are endowed with an equal arti�cial income. Given the random assignment, the

mechanism conducts a lottery and implements a deterministic assignment.

The unique feature of the G-CEEI mechanism is that students in di¤erent preference groups at

1For a textbook treatment of and a survey of the literature on two-sided matching, please see Roth and Sotomayor
(1990).

2Hylland and Zeckhauser (1979) consider the original CEEI mechanism in a setting of one-to-one, one-sided
matching.
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a school face di¤erent prices of that school. Fix a school, if some students in a given preference

group at that school can obtain positive probability shares of that school, the school must be free to

those who are more preferred by that school. In addition, if a school has been consumed completely

by students who are more preferred by that school, a student must face an in�nite price of that

school. Therefore, the mechanism respects schools�preferences in the sense that more preferred

students at a school have the right to be assigned to that school earlier.3

We establish the existence of equilibrium prices given any reported preferences in the mechanism

and further reveals its links with two widely used mechanisms: the Boston (Abdulkadiroglu and

Sonmez (2003)) and the Gale-Shapley mechanisms (Gale and Shapley (1962)).4 ;5 Given a random

assignment prescribed by the G-CEEI, if every student has strict preferences and consumes a bundle

which includes at most one school with a positive and �nite price, the assignment must also be a

Nash equilibrium outcome of the Boston mechanism. When both sides have strict preferences, the

assignment of the Gale-Shapley are always equilibrium outcomes of the G-CEEI.

We further consider several commonly used criteria to evaluate the performance of the G-CEEI

mechanism. A key property in the two-sided matching literature is stability. A deterministic

assignment is stable if and only if there is no student-school pair in which both can be strictly

better o¤ by leaving the current match and being re-matched together. Our mechanism always

delivers stable deterministic assignments with respect to stated preferences.

Another desirable property is Pareto e¢ ciency. In the context of strict preferences, it is well-

known that stability is a su¢ cient condition for Pareto e¢ ciency (Erdil and Ergin (2006)). Given

the possibly weak preferences on both sides, we instead de�ne ex ante (Pareto) e¢ cient random

assignments as those which are not Pareto dominated by any other assignment with respect to both

students�vN-M utilities and schools�ordinal preferences.6

3For each school, there exists a "cuto¤" preference group such that students ranked below them by the school can
never be accepted. This is similar to the concept, thresholds, as de�ned in Azevedo and Leshno (2012).

4 In the Boston mechanism which is commonly used in school choice, students submit rank-order lists of schools.
Each school �rst considers students who rank it �rst, and assigns seats in order of their priority at that school. Then,
each school that still has available seats considers unmatched students who rank it second. This process continues
until the market is cleared.

5The Gale-Shapley mechanism, also known as the deferred-acceptance mechanism, can be student-proposing or
school-proposing, while both are similarly de�ned. In the former, students apply to their most-preferred schools,
while schools hold the most preferred applicants up to their capacities and reject the rest. In the second round, those
who are rejected apply to their second-preferred schools, and schools pool them with those who are held from the
previous round and again only keep the most preferred up to their capacities. This process continues until there is
no new rejections, and then the matching is �nalized.

6A student is better o¤ if there is an increase in her expected utility, and schools�welfare is evaluated in terms of
�rst-order stochastic dominance: A school is better o¤ if students matched with this school in the new assignment
�rst-order stochastically dominate those of the old one. For schools�preferences, our approach is the same as ordinal
e¢ ciency introduced by Bogomolnaia and Moulin (2001).
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Our de�nition of ex ante e¢ ciency deviates from the traditional ones as it integrates both sides�

welfare. However, one may be more interested in the welfare of one side, say students. We therefore

introduce another concept, ex ante weak student-e¢ ciency. A random assignment is ex ante

weakly student-e¢ cient if it is not strongly dominated by any other feasible random assignment

with respect to students�vN-M utilities. When all schools top rank the same group of students,

the G-CEEI random assignment is ex ante weakly student-e¢ cient. Weak e¢ ciency is not a loose

concept in assignment economies. In the absence of monetary transfers, students who do not obtain

a strictly positive bene�t in terms of expected utility from a Pareto-improvement are unlikely to

have incentives to accept it.

We also consider fairness criterion in terms of justi�ed-envy-freeness, i.e., no one envies

those who are in the same or lower preference groups at all schools. If both sides do report their

preferences truthfully, the random assignment prescribed by the G-CEEI mechanism is shown

to be ex ante e¢ cient and justi�ed-envy-free, and therefore it always leads to a Pareto optimal

deterministic assignment.

The incentive compatibility for both sides is another important property in the literature.

Unfortunately, the G-CEEI mechanism is not strategy-proof, i.e., stating the true preferences is

not always a dominant strategy for every agent.7 Roth (1982) shows there is no strategy-proof

mechanism that always produces stable matching. For example, schools may have incentives to

misreport their capacity and/or preferences, as Roth (1982) and Sonmez (1997) show under the

Gale-Shapley mechanism. In the following, we assume schools are always truthful and focus on

the strategic behavior of students. We show that when the market becomes large, each student�s

incentive to misreport goes to zero, given that everyone else is truth-telling. More precisely, the

market grows in the sense that the number of students goes to in�nity, while the number of seats

at each school goes to in�nity proportionally, given a constant number of schools.

Given these desirable properties, the G-CEEI mechanism is particularly applicable to school

choice and other resource allocation problems based on priorities. For example, housing allocation

may give priorities to current tenants, and schools usually have priority ordering over students. In

the Boston public school system, there are four priority groups in the following order (a) students

who have siblings at the school (siblings) and are in the school�s reference area (walk zone), (b)

siblings, (c) walk zone, (d) other students. The priority structure is usually determined by gov-

7Hylland and Zeckhauser (1979) give an example showing there are sometimes incentives for students to misreport
their preferences when schools do not have preferences.
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ernment or local laws and requires that higher-priority students obtain that school �rst, ceteris

paribus.

Although schools�priority rankings over students are not their preferences, we may treat them

as ordinal preferences and the G-CEEI mechanism respects the priority structure appropriately:

It gives students with higher priorities at a school the right to be assigned to that school earlier.

Moreover, given how the priorities are determined, the G-CEEI leaves little room for schools to

misreport.

One may nonetheless care only about students�welfare in these settings, and the G-CEEI is still

a good candidate mechanism. In particular, many priority structures, such as seniority rights and

low-income priority, top rank the same group of students at all schools, and the G-CEEI random

assignment is then ex ante weakly student-e¢ cient. There exists at least one student who cannot

strictly better o¤ ex ante from any di¤erent random assignment.

The mechanism can also be applied to the case where some schools have group-speci�c quotas.

This corresponds to the "controlled choice" constraints in school choice under which schools must

balance their student bodies in terms of gender, ethnicity, socioeconomic status, or test scores.

For example, the Racial Imbalance Law discourages schools from having a minority enrollment

that is �substantially�above or below the level of that of the school district overall. Given these

group-speci�c quotas, we can split the schools into sub-schools corresponding to each group and

give the group the highest priority/preference. With these sub-schools, we may apply the G-CEEI

and the properties of its random assignments are similar to the above. Besides priority structure

and group-speci�c quotas, one may allow unequal incomes in the G-CEEI mechanism.8 This can be

a form of a¢ rmative action to help certain groups of students, and, more importantly, the resulting

matching is still stable.

One-sided matching is a special case of our two-sided setting. If schools do not rank students, the

G-CEEI mechanism is equivalent to the CEEI mechanism as proposed by Hylland and Zeckhauser

(1979). The ex ante e¢ ciency now only considers students�welfare since schools have no preferences,

and justi�ed-envy-freeness is strengthened to be envy-free as all students have equal "rights" at

any school. Hylland and Zeckhauser conjecture that students�incentive to misreport vanishes when

the market grows, but no proof is provided. Our results therefore �ll this gap, as the asymptotic

incentive compatibility still holds in one-sided matching.

In the following, we give a brief review of related literature in Section 2. Section 3 sets up

8We thank Jordi Massó who brought this observation to our attention.
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the model for two-sided matching, and Section 4 de�nes the G-CEEI mechanism and investigates

its properties. In Section 5, we consider applications of the G-CEEI in school choice and one-

sided matching. The case of group-speci�c quotas and a¢ rmative action are also discussed in this

section. The paper concludes in Section 6 where we also point out some potential concerns and

open questions regarding the mechanism.

2 Literature Review

Our analyses extend the two-sided matching literature in two directions: (i) weak preferences

on both sides are allowed, and (ii) cardinal preferences are explicitly considered in the matching

process.

In the two-sided matching literature, it has been a standard assumption that both sides have

strict ranking over the other side, despite the existence of weak orderings in various real-life set-

tings. Moreover, matching mechanisms usually elicit ordinal preferences of agents. Recently, it

has been noted in the literature that when preferences are weak, some issues arise; for example,

stability no longer implies Pareto e¢ ciency (Erdil and Ergin (2006)). In several school choice dis-

tricts in the United States, the student proposing Gale-Shapley mechanism is applied after schools

using exogenous tie-breakers to form strict priority ordering over students. Although such a tie-

breaking procedure arti�cially makes preferences/priorities strict, it adversely a¤ects the welfare

of the students since it introduces arti�cial constraints. Abdulkadiroglu, Pathak, and Roth (2009)

empirically document the extent of potential e¢ ciency loss associated with stability, while Erdil and

Ergin (2008) propose an algorithm for the computation of student-optimal stable matching when

priorities are weak. Noting that students may di¤er in their cardinal preferences, Miralles (2008),

Abdulkadiroglu, Che, and Yasuda (2008), and Abdulkadiroglu, Che, and Yasuda (2011) emphasize

the importance of eliciting signals of cardinal preferences of students in matching mechanisms.

By using cardinal preferences directly, the G-CEEI mechanism breaks the ties in schools�pref-

erences endogenously. Students with higher cardinal preferences for a school obtain seats at that

school before those who are in the same preference group and of the same ordinal preferences. The

use of cardinal preferences is particularly important in settings like school choice, where agents

usually have similar ordinal preferences.

Recently, the original CEEI mechanism by Hylland and Zeckhauser (1979) has regained some

attention in one-sided matching. For example, Miralles (2008) reveals the connection between the
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CEEI mechanism and the Boston mechanism, given that schools do not rank students.9 Besides,

both Budish (2011) and Budish, Che, Kojima, and Milgrom (Forthcoming) extend the CEEI mech-

anism to the multi-unit demand setting in which the leading example is assigning course schedules

to students. There, every student can register for several courses, and thus they have multi-unit

demand. The latter paper also considers additional constraints on the multi-unit demand, such

as scheduling and curricular constraints. However, both generalizations are in one-sided matching,

i.e., objects do not rank agents and thus agents face the same prices. In contrast, our paper ex-

tends the CEEI mechanism to the case of two-sided matching where both sides rank the other side.

Moreover, we explicitly study the mechanism�s asymptotic incentive compatibility which is omitted

in the two papers.

Our proof of asymptotic incentive compatibility is closely related to the classic literature on

the price-taking behavior in exchange economy, e.g., Roberts and Postlewaite (1976) and Jackson

(1992). Our setting is di¤erent in that students have unit demand that restricts their reactions to

price changes and, more importantly, in that students may face di¤erent prices.

In the matching literature, asymptotic incentive properties of other matching mechanisms have

also been studied, e.g., Kojima and Pathak (2009), Che and Kojima (2010), and Kojima and

Manea (2010). Besides, as a mechanism design desideratum, Azevedo and Budish (2012) propose

a criterion of approximate strategy-proofness which the (Generalized) CEEI mechanism satis�es.

3 Two-Sided Matching

We consider the following many-to-one matching problem, � = fI;S; Q; V;%g, where:

(i) I = figIi=1 is a set of students;

(ii) S = fsgSs=1, S � 3, is a set of schools;10

(iii) Q = [qs]
S
s=1 is a capacity vector, and qs 2 N, 8s;

PS
s=1 qs = I, i.e., there are just enough

seats to be allocated to students;11

(iv) V = [vi]i2I , where vi = [vi;s]s2S and vi;s 2 [0; 1] is student i�s von Neumann-Morgenstern

(vN-M) utility associated with school s.

(v) % = [�s]s2S , where �s is the ordinal preference of school s over individual students. Namely,

i �s j means i is at least as preferred as j by s. Moreover, >s is the strict relation implied by �s.
9Our result on the relationship between the two mechanisms is stronger and more general, as it considers two-sided

matching.
10When there are two schools, the problem is trivial. Many solutions are available to achieve e¢ cient outcomes.
11The extension to

PS
s=1 qs 6= I is straightforward.
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According to each school�s ordering over students, we further de�ne ks;i as the preference group of

student i at school s and ks;i 2 K �
�
1; 2; :::; k

	
with k 2 N and k � I being the maximum number

of preference groups. Therefore, ks;i � ks;j if and only if i �s j.12

This paper assumes complete information in the sense that every student knows the realization

of her own preferences, vi, other students�preferences, v�i, and schools�preferences %. The terms,

"students" and "schools", can be interpreted more generally as "agents" and "institutions/objects",

respectively.

We do not rule out the case that vi;s = vi;s0 for some i and s 6= s0 unless stated otherwise. We also

assume that all schools and students are acceptable to the other side, i.e., every school/student is

better than the outside option, although the analysis can be extended to the case with unacceptable

schools/students. Students are assigned to schools under the unit-demand constraint that each

student must be matched with exactly one school.

Similarly, schools�preferences, %, need not be strict. Therefore, schools�preferences can be

interpreted as their priorities over students, and our setting can naturally be applied to priority-

based allocation problems such as school choice in which schools have weak orderings over students.

Subsection 5.1 discusses school choice in detail.

If schools do not rank students, or their preferences are not considered, the two-sided problem

is then reduced to one-sided matching which is considered in Subsection 5.2.

3.1 Random Assignment and Some Criteria: De�nitions

A random assignment is a matrix � = [�i]i2I 2 A, where A is the space of all possible random

assignments; �i = [�i;s]s2S and �i;s 2 [0; 1] is student i0s probability shares in school s, or the

probability that student i is matched with school s;
P
s2S �i;s = 1 for all i, and

P
i2I �i;s = qs for

all s.

If there exists si for every i such that �i;si = 1 and �i;s = 0, 8s 6= si, � is a deterministic

assignment. Every random assignment can be decomposed into a convex combination of determin-

istic assignments and can therefore be resolved into deterministic assignments (Kojima and Manea

(2010)).13

Stability
12Given %, the construction of [ks;i]i2I;s2S may not be unique, but our results remain the same for any given

[ks;i]i2I;s2S . Besides, it is innocuous to assume that every school has the same number of preference groups, as there
might be no student in a particular preference group at a school.
13This result generalizes the Birkho¤-von Newmann theorem (Birkho¤ (1946) and von Neumann (1953)). Notice

that the convex combination may not be unique in general.
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The arguably most important ex post property in two-sided matching that has been studied in

the literature is stability. A deterministic assignment is stable if and only if there is no student-

school pair (i; s) such that either (i) student i prefers school s to her current assignment and school

s has empty seats, or (ii) student i prefers school s to her current assignment and is more preferred

by school s than at least one of the students who are currently matched with s. It has been

shown in the literature that stability is a key to a mechanism�s success in many two-sided matching

problems (Roth (1991)), as it is always possible for students and schools break their current match

and rematch with each other.

E¢ ciency Criteria

A random assignment �0 2 A is ex ante Pareto dominated by another random assignment

� 2 A if

X
s2S

�i;svi;s �
X
s2S

�0i;svi;s;8i 2 I,X
i2fks;i�kg

�i;s �
X

i2fks;i�kg
�0i;s; 8s 2 S;8k 2 K

and at least one inequality is strict. That is, every student has a weakly higher expected utility

in �, and for each school s the assignment � �rst-order stochastically dominates the assignment

�0 with respect to [�s]s2S . A random assignment is ex ante e¢ cient if it is not ex ante Pareto

dominated by any other random assignment.

A random assignment �0 2 A is ex ante strongly Pareto dominated for students by

another random assignment � 2 A if

X
s2S

�i;svi;s >
X
s2S

�0i;svi;s;8i 2 I

A random assignment is ex ante weakly student-e¢ cient if it is not ex ante strongly Pareto

dominated for students by any other feasible random assignment.

The set of ex ante weakly student-e¢ cient assignments is not necessarily a subset of the set of

ex ante e¢ cient assignments. For each assignment �0 2 A, if a random assignment � 2 A ex ante

Pareto dominates the former, the same assignment may not ex ante strongly Pareto dominate it

for students, since not all students may obtain strictly higher utility under � than under �0.

A deterministic assignment is Pareto optimal if it is not Pareto dominated by any other

deterministic assignment. Every deterministic assignment in any decomposition of an ex ante
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e¢ cient random assignment is Pareto optimal.

Remark 1 If one treats schools� preferences as priority constraints as in school choice and only

considers students� welfare, the priority need to have a particular structure to achieve e¢ ciency

(Ergin (2002) and Kesten (2006)). Unlike others, our �rst de�nition of e¢ ciency takes into ac-

count the welfare of both sides, although we also study e¢ ciency from the students�viewpoint. As

schools are endowed with ordinal preferences, we focus on ordinal e¢ ciency for schools as in Bogo-

molnaia and Moulin (2001). Moreover, McLennan (2002) shows that any ordinally e¢ cient random

assignment maximizes the sum of expected utilities for some vector of vN-M utility functions that

are consistent with the given ordinal preferences.

Fairness Criterion

A random assignment � is justi�ed-envy-free if with respect to her expected utility, every

student prefers her own random assignment to that of any other student who is weakly less preferred

by every school, i.e.,

X
s

�i;svi;s �
X
s

�j;svi;s;8i; j, s.t. i �s j; 8s 2 S.

3.2 Matching Mechanism

In the following, we assume that schools do not behave strategically and therefore their preferences

and capacities can be elicited truthfully. We brie�y discuss schools�strategic behavior in Subsection

4.2.

Given schools�preferences, a matching mechanism � (�j %) is a mapping from students�reported

preferences to the space of random assignments, A. We focus on the case that students�cardinal

preferences are elicited, i.e., � (uj %) : [0; 1]I�S ! A, where u = [ui]i2I = [ui;s]i2I;s2S and ui;s 2

[0; 1] is student i�s reported vN-M utility associated with school s.

A matching mechanism is strategy-proof, if it is a weakly dominant strategy for each student

to report true cardinal preferences when vN-M utilities are elicited, or true ordinal preferences

when ordinal preferences are elicited. Strategy-proofness is a desirable feature. However, it is

incompatible with ex ante e¢ ciency and envy-freeness. The following lemma is a corollary of the

impossibility theorem in Zhou (1990) and its proof is therefore omitted.

Lemma 1 If S � 3 and thus I � 3, no strategy-proof mechanism can always deliver a random

assignment that is ex ante e¢ cient and justi�ed envy-free.

10



Zhou (1990) shows that strategy-proofness, ex ante e¢ ciency, and symmetry are not compat-

ible in one-to-one one-sided matching. Symmetry requires that any two students with the same

preferences receive the same level of utility, and thus it is implied by justi�ed-envy-freeness.

4 The Generalized CEEI Mechanism

The Generalized CEEI (G-CEEI) mechanism works as follows:

(i) Schools (truthfully) report their ordinal preferences, %, and capacities, [qs]s2S .

(ii) Students report their cardinal preferences, u.

(iii) The mechanism calculates a random assignment, [�i]i2I , following three steps:

(a) Every student is arti�cially given an equal income which is normalized to be 1.

(b) Given P = [ps;k]s2S;k2K 2 P �[0;+1]
S�k where ps;k is the price of school s for students

in preference group k at school s, the mechanism constructs the demand of student i for

school s, �i (ui; P ), 8i, by solving her utility maximization problem,14

�i (ui; P ) 2 argmax
�i;s

X
s2S

�i;sui;s,

s:t:
X
s2S

�i;s = 1; �i;s � 0;8s 2 S;
X
s2S

ps;ks;i�i;s � 1:

If there are multiple bundles maximizing her expected utility, the cheapest ones are

chosen.

(c) The mechanism �nds an equilibrium price matrix P � such that

X
i2I

�i;s (ui; P
�) = qs, 8s 2 S,

and that 8s, p�s;k = 0 if
X

i2I, ks;i�k
�i;s (ui; P

�) < qs, and p�s;k = +1 for all k < k0 ifX
i2I, ks;i�k0

�i;s (ui; P
�) = qs.

(iv) Given
h
��i;s

i
i2I;s2S

= [�i;s (ui; P
�)]i2I;s2S , the mechanism conducts a lottery and implements

a deterministic assignment.
14 If ps;k = +1, we de�ne +1 � 0 = 0 and +1 � �i;s = +1 if �i;s > 0.
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Remark 2 In equilibrium, there must exist a pivotal preference group, k� (s), at each school s

such that p�s;k�(s) 2 [0;+1); p
�
s;k = 0 if k > k

� (s); and p�s;k = +1 if k < k� (s). Therefore, if s is

consumed completely by students in preference groups k� (s) and higher, students in s�s preference

groups lower than k� (s) face an in�nite price, while those in preference groups higher than k� (s)

face a zero price.

Remark 3 In the G-CEEI mechanism, schools�preferences are students�rights to obtain a school

at a lower and sometimes zero price. More precisely, whenever some less preferred students can

get some shares of a school, a more preferred student can always get it for free. More importantly,

students can choose not to exercise the right if they do not like that school, but they cannot trade

it. This interpretation is similar to the consent in Kesten (2010) which allows students to consent

to waive a certain priority/preference at a school, while it is di¤erent from the treatment in a top-

trading-cycle mechanism which allows students to trade schools�priority/preference (Abdulkadiroglu

and Sonmez (2003)).

In summary, the G-CEEI mechanism has the following properties.

Theorem 1 Given any reported preferences, there always exists an equilibrium price matrix in the

G-CEEI mechanism. If students are truth-telling, its random assignment is ex ante e¢ cient and

justi�ed-envy-free, and any corresponding deterministic assignment is stable.

We have stronger results when we impose restrictions on schools�preferences.

Proposition 1 If all schools top rank the same group of students, the G-CEEI random assignment

is also ex ante weakly student-e¢ cient.

To show the intuition of the proposition, we consider an example with two students and two

schools both with one seat. Student i is more preferred than student j by all schools, and she is

indi¤erent between schools s and t. However, j strictly prefers s to t. A G-CEEI assignment is

such that i is assigned to s and j to t, and a Pareto improvement is to exchange their assigned

seats. As a result, j is better o¤, while i�s welfare remains the same.

The G-CEEI mechanism is closely linked with two commonly used mechanisms, the Boston

mechanism and the Gale-Shapley mechanism.15

15The formal de�nitions of the two mechanisms are available in Appendix 1.
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Proposition 2 Given a random assignment prescribed by the G-CEEI when both students and

schools are truth-telling, if every student has strict preferences and consumes a bundle which in-

cludes at most one school with a positive and �nite price, the assignment is also a Nash equilibrium

assignment of the Boston mechanism.

Our conditions in the proposition are also necessary. That is, when students do not have strict

preferences, or at least one of them spends her income on more than one schools with positive

and �nite prices, in general, the G-CEEI assignment is not an equilibrium outcome of the Boston

mechanism. The above proposition does not imply that any equilibrium outcome of the Boston

mechanism is a G-CEEI outcome, although it may be satis�ed almost surely if one imposes some

conditions on the joint distribution of students�preferences.

When both sides have strict preferences, it must be that k = I and that there is exactly one

student in each preference group at any school. In this case, we have the following proposition.

Proposition 3 If both students and schools have strict preferences, every stable deterministic as-

signment is an equilibrium assignment of the G-CEEI, so are the student-optimal (school-optimal)

stable assignments prescribed by the student-proposing (school-proposing) Gale-Shapley mechanism.

Given the impossibility result in Lemma 1 and the example in Hylland and Zeckhauser (1979),

we know that students may sometimes have incentives to misreport their preferences. In the

following, we investigate the mechanism�s incentive property in a sequence of economies.

4.1 Incentive Compatibility for Students

4.1.1 Per Capita Demand for Each Preference Group

We de�ne a sequence of economies and per capita demand functions, while taking into account

that students in di¤erent preference groups face di¤erent prices, and thus the per capita demand

is preference-group-speci�c.

Let Fi (P ) be the augmented set of feasible consumption bundles for student i,

Fi (P ) �

8>>>>>>><>>>>>>>:

8<:�i = [�i;s]s2S
������ �i;s � 0, 8s,

P
s2S �i;s = 1,

and
P
s2S �i;sps;ks;i � 1

9=; , if ps;ks;i � 1 for some s;8><>:�i = [�i;s]s2S
�������
�i;s � 0, 8s,

P
s2S �i;s =

1

mint=1;:::;S

n
pt;kt;i

o ,
and

P
s2S �i;sps;ks;i � 1

9>=>; , if ps;ks;i > 1, 8s:
13



When there is no a¤ordable bundles such that
P
s2S �i;s = 1, the second part of the de�nition

assumes that every student is allowed to spend all their money on the cheapest school(s). Fi (P ) is

then non-empty, closed, and bounded.16

Let Ui =
P
s2S �i;svi;s be i�s expected utility function. De�ne Gi (P; vi) as the set of bundles

that i would choose from Fi (P ) to maximize Ui. Formally,

Gi (P; vi) =

8<:�i 2 Fi (P )
������ 8�0i 2 Fi (P ) ; Ui (�i) > Ui (�0i) ;

or Ui (�i) � Ui (�0i) and
P
s2S �i;sps �

P
s2S �

0
i;sps

9=; :
Since Gi (P; vi) is obtained from the closed, bounded, and non-empty set Fi (P ) by maximizing

(and minimizing) continuous functions, Gi (P; vi) must be non-empty. Gi (P; vi) is a convex set,

because Ui (�i) and
P
s2S �i;sps;ks;i are linear functions of �i.

De�ne G (P; v) as the set of per capita demand for each preference group of each school that

can emerge when prices equal P and each student i chooses a vector in Gi (P; vi), that is, 8P 2 P:

G (P; v) =

8<:D = [ds;k]s2S;k2K

������ ds;k =
1
jIj
P
fi2Ijks;i=kg �i;s, 8s;8k

[�i;s]s2S 2 Gi (P; vi)

9=; :
It can be veri�ed that G (P; v) is also closed, bounded, and upper hemicontinuous.

4.1.2 Sequence of Economies

The following de�nition is needed to de�ne the sequence of economies.

De�nition 1 A sequence of correspondences f (n) (P ) uniformly converge to f (P ) if and only if,

for any " > 0, there exists N 2 N, such that when n � N ,

sup
P
dH

�
f (n) (P ) ; f (P )

�
� ";

where dH is Hausdor¤ distance, i.e.,

dH

�
f (n) (P ) ; f (P )

�
= max

8<: supY 2f(P ) infY (n)2f (n)(P )
Y (n) � Y  ,

supY (n)2f (n)(P ) infY 2f(P )
Y (n) � Y 

9=; ;
where k�k is the Euclidean distance.
16 It is important to note that P cannot be an equilibrium whenever the second part of Fi (P )�s de�nition is invoked.
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Let
�
�(n)

	
n2N be a sequence of matching problems where �

(n) =
�
I(n);S; q(n); v(n);<(n)

	
and

8n 2 N:

(i) I(n) � I(n0) and q(n)s < q
(n0)
s for all s if n < n0;

��I(n)�� =Ps2S q
(n)
s ; and q(n)s =

��I(n)�� = qs=I;
(ii) <(n) is such that the associated preference groups satisfy that

���i 2 I(n)jks;i = k	�� = ��I(n)�� =
Cs;k, for all k and s, where Cs;k is a constant.17

(iii) the number of schools, S = jSj, is constant;

(iv) the corresponding per capita demand G(n)
�
P; v(n)

�
! g (P ) uniformly as n!1.

Remark 4 g (P ) is a convex-valued, closed, bounded, and upper hemicontinuous correspondence,

since G(n)
�
P; v(n)

�
has these properties. Similar convergence restrictions are assumed in the litera-

ture on proving incentive compatibility in exchange economies, e.g., Roberts and Postlewaite (1976)

and Jackson (1992).

Remark 5 This de�nition includes two special cases: (i) a sequence of replica economies where

G(n)
�
P; v(n)

�
= g (P ), for all n 2 N; and (2) a sequence of economies in which students�preferences

and the associated preference groups are i.i.d. draws from a joint distribution of students� and

schools�preferences, while holding constant the relative size of each preference group at each school.

4.1.3 Results

Strategy-proofness requires truth-telling being a dominant strategy for every student, which means

there is no restriction on other students�reports. In the exchange economy, Roberts and Postlewaite

(1976) provide an example in which the incentive to misreport does not vanish as the economy grows.

To study the incentive property, this literature has imposed some restrictions on the sequence

of economies and focused on Nash equilibrium. For example, Roberts and Postlewaite (1976)

and Jackson (1992) assume some convergence conditions on others� reported demand functions.

The following result is in the same spirit and shows that truth-telling is asymptotically a Nash

equilibrium.

Proposition 4 Given
�
�(n)

	
n2N, if other students are truth-telling, each individual�s incentive to

misreport in the G-CEEI mechanism goes to zero when n!1.

Remark 6 The above proposition says that it is asymptotically a Nash equilibrium if everyone is

truth-telling. This is di¤erent from the criterion, strategy-proof in the large (SP-L), proposed by

17Note that for each <(n), the construction of corresponding preference groups may not be unique. We assume
that the same rule is used to construct the groups given <(n) for all n.

15



Azevedo and Budish (2012). A mechanism is SP-L if, for any agent, any probability distribution of

the other agents�reports, and any � > 0, in a large enough market the agent maximizes his expected

payo¤ to within � by reporting his preferences truthfully. Equivalently, the distribution of other

agents� reports is known, but not their realizations. The (Generalized) CEEI mechanism satis�es

this criterion. However, in our setting, each student has complete information on other students�

preferences and they �nd their best responses to opponents�realized reports.

4.2 Schools�Incentives

In the above analysis, we assume schools do not behave strategically, but this assumption is not

satis�ed in general. Under the student-optimal stable mechanism, Kojima and Pathak (2009) show

that the fraction of schools with incentives to misrepresent their preferences when others are truthful

approaches zero as the market becomes large. Unlike our setting, their market grows in the sense

that the number of schools increases. Under the G-CEEI mechanism, more work need to be done

to study the asymptotic incentive properties of both students and schools simultaneously.

5 Applications: School Choice and One-Sided Matching

5.1 School Choice: Priority as Schools�Ordinal Preferences

School choice and other resource allocation problems based on priorities are common in real life.

Schools usually have priority ordering over students, and the priority structure is usually determined

by government or local laws, and requires that higher-priority students obtain that school �rst,

ceteris paribus. Very often schools�priority ranking over students is not strict. Therefore, if one

treats schools�priority as their ordinal preferences, the G-CEEI mechanism can be applied to school

choice naturally, and it gives students with higher priorities at a school the right to be assigned to

that school earlier.

In the previous literature, it is noted that schools�priority ranking over students is not their

preferences and is usually treated as exogenous. However, we may interpret priorities as preferences

because (i) priority structure may be correlated with schools�or governments�preferences and (ii)

students�priorities at the schools are endogenous. For instance, school districts usually have rules

that give high priorities to students who live close to school (neighborhood priority), which can be

justi�ed as governments�objective to minimize transportation costs. Priority is also usually given

to those who have higher test scores, and this can be interpreted as schools�preferences for better
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performing students. More importantly, given any priority structure, students endogenously choose

their behavior. For example, under the neighborhood priority rule, students choose where to live in

order to get access to their preferred school, and thus it creates a market for students to compete

(Tiebout (1956)). If rules on priority have been stable over time, schools�priority ordering over

students can be highly correlated with students�preferences.

Our explicit use of students�cardinal preferences make the mechanism particularly attractive to

school choice. As Abdulkadiroglu, Che, and Yasuda (2011) point out, in settings as school choice,

students usually have similar ordinal preferences. Therefore, without information on cardinal pref-

erences, the e¢ ciency that a mechanism can achieve is very limited, and sometimes one cannot

do better than a pure random allocation. By explicitly using students�cardinal preferences, the

G-CEEI mechanism opens another avenue for e¢ ciency gain in these settings.

Besides, as the priority structure of schools is normally determined by government or local law,

the scope for schools to misreport their "preference" is very limited in school choice.

5.1.1 Matching with Group-Speci�c Quotas

In some real-life applications, there may be constraints on the allocation of school quotas, as a

form of a¢ rmative action. For example, schools may have group-speci�c quotas. The G-CEEI

mechanism can be applied in this case as well, and the results are readily extended. Budish, Che,

Kojima, and Milgrom (Forthcoming) study this case under the assumption that schools do not rank

students besides the group-speci�c quotas, whereas we allow schools to rank students.

We divide each school into multiple sub-schools each of which has a quota equal to the one

for the corresponding group and gives that group the highest priority. Other students�priorities

at these sub-schools are determined by the pre-speci�ed rules. With these sub-schools and their

priority rankings, our analyses are straightforward to extend.

Note that we rule out the case that some schools cannot �ll some group-speci�c quotas even

when their prices for those students are zero. In another words, we assume that the schools with

group-speci�c quotas are attractive enough to that group of students. Although it is possible to

relax this assumption and instead impose that every group-speci�c quota always has to be ful�lled,

in our opinion, this is against the principle of school choice, as it may sometimes force some students

to attend certain schools.18 More importantly, it would incur signi�cant e¢ ciency loss to do so.

18With techniques developed in Budish, Che, Kojima, and Milgrom (Forthcoming), it is possible to extend our
analyses to the case that all group-speci�c quotas always have to be met.
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5.1.2 A¢ rmative Action via Unequal Incomes

In our setting, to favor a group, one may give a higher income to members of this group, and all

previous results except the fairness result extend to this new environment. As the price of a school

for a given student is either zero, �nitely positive, or in�nite, depending on how the school ranks

the student, the increased income can only help when the student faces a non-zero and �nite price.

Unequal incomes can make some students in the same priority/preference group of a school be able

to receive di¤erent shares at that school, and thus the G-CEEI mechanism with unequal incomes

still produces stable outcomes.

5.2 One-Sided Matching: Schools Do Not Rank Students

If schools do not rank students, our setting is reduced to one-sided matching, and the G-CEEI

mechanism is equivalent to the CEEI mechanism (Hylland and Zeckhauser (1979)).19 All students

then face the same price of each school.

Theorem 4 still holds but can be interpreted di¤erently. The ex ante e¢ ciency only considers

students�welfare since schools have no preferences; justi�ed-envy-freeness is strengthened to be

envy-free as all students have equal "rights" at all schools; and similarly, the asymptotic incen-

tive compatibility still holds in one-sided matching. It therefore proves Hylland and Zeckhauser�s

conjecture that the incentive to misreport vanishes when the market grows.

The following proposition, which is a corollary of Theorem 1 and Proposition 4, summarizes the

properties of the CEEI mechanism, and its proof is therefore omitted but available upon request.

Proposition 5 In one-sided matching, given any reported preferences, there always exists equi-

librium prices in the CEEI mechanism. If students are truth-telling, its random assignment is ex

ante e¢ cient and envy-free. In a sequence of economies à la Proposition 4, if other students are

truth-telling, each individual�s incentive to misreport in the CEEI mechanism goes to zero as the

market grows.

6 Concluding Remarks

In a many-to-one setting, this paper studies the problem of matching students with schools, or

more generally matching agents with institutions, when monetary transfers are not possible. Each

19The CEEI mechanism is originally proposed for one-to-one matching. It is straightforward to extend it to many-
to-one matching, as long as each student has unit demand.
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side has a possibly weak ranking over agents on the other side, and students are endowed with

cardinal preferences. Each school seat is viewed as a continuum of probability shares, and students

have unit demand.

We use the idea of pseudo-market and de�ne a new mechanism, the G-CEEI mechanism in

which students who are more preferred by a school faces a lower and sometimes zero price of that

school. In other words, if a student is more preferred by a school, she has the right to be assigned

to that school earlier.

We establish the existence of equilibrium prices given any reported preferences, and we show

that it is asymptotically incentive compatible for students. Moreover, when both students and

schools are truth-telling, the mechanism delivers a random assignment that is justi�ed-envy-free

and ex ante e¢ cient with respect to both sides� preferences. The corresponding deterministic

assignments are always stable.

When considering student welfare only, we show that when all schools top rank the same

students, the G-CEEI assignment is also ex ante weakly student-e¢ cient, i.e., there is no other

feasible random assignment in which all students are ex ante strictly better o¤. This is particuarly

useful if one considers assignment problems with seniority rights, low-income priority, etc.

All the results hold true in school choice, school choice with group-speci�c quota, and one-

sided matching. In particular, as the mechanism explicitly uses students�cardinal preferences, it

may signi�cantly improve e¢ ciency in settings like school choice where agents have similar ordinal

preferences.

We note that the mechanism is not strategy-proof for schools, and we leave it as a future research

topic to study schools�asymptotic incentive properties. However, since schools�priority/preference

structure is known in school choice, this makes the mechanism more attractive in this setting.

Another concern with the mechanism is that it might be di¢ cult to elicit cardinal preferences

from students. For instance, Bogomolnaia and Moulin (2001) argue that agents participating in

the mechanisms may have the limited rationality and thus do not know exactly their cardinal

preferences. To address this issue theoretically, one may consider the case in which students know

their true ordinal preferences while knowing their cardinal preferences with some errors. One can

then compare the performance of the G-CEEI mechanism with those of other mechanisms.

From a di¤erent point of view, one may consider the requirement of reporting cardinal prefer-

ences as an incentive for student to investigate if the school is a good �t for her. Empirically, He

(2012) documents that students in Beijing pay di¤erent levels of attention to school quality under
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the Boston mechanism which elicits signals of cardinal preferences. This kind of attention which is

related to information acquiring is likely to be welfare-improving.

Bogomolnaia and Moulin also point out that there is convincing experimental evidence that

the representation of preferences over uncertain outcomes by vN-M utility functions is inadequate.

While how to model decision under uncertainty is beyond the scope of our paper, the G-CEEI can

still be applied as long as students�objective function is well de�ned.

The above and potentially many other concerns about the G-CEEI mechanism call for future

research e¤orts in related �elds.
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Appendix 1: The Two Popular Mechanisms

This appendix gives the formal de�nition of the two popular mechanisms: the Boston mechanism
and the Gale-Shapley mechanism.

The Boston mechanism asks students to submit rank-ordered lists, uses pre-de�ned rules to
determine schools�ranking over students, and has multiple rounds:

Round 1. Each school considers all the students who rank it �rst and assigns seats in order of
their priority at that school until either there is no seat left or no such student left.

Generally, in:
Round k. The kth choice of the students who have not yet been assigned is considered. Each

school that still has available seats assigns the remaining seats to students who rank it as kth choice
in order of their priority at that school until either there is no seat left or no such student left.

The process terminates after any round k when every student is assigned a seat at a school, or
if the only students who remain unassigned listed no more than k choices. Unassigned students are
then matched with available seats randomly.

The Gale-Shapley mechanism, which is also known as the deferred-acceptance mechanism,
can be student-proposing or school-proposing. In the former, schools announce their enrollment
quota and students submit rank-ordered lists of schools. The matching process has several rounds:

Round 1. Every student applies to her �rst choice. Each school rejects the least preferred
students in excess of its capacity and temporarily holds the others.

Generally, in:
Round k. Every student who is rejected in Round (k � 1) applies to the next choice on her list.

Each school pools new applicants and those who are held from Round (k � 1) together and rejects
the least preferred students in excess of its capacity. Those who are not rejected are temporarily
held by the schools.

The process terminates after any Round k when no rejections are issued. Each school is then
matched with students it is currently holding.

The school-proposing Gale-Shapley mechanism is similarly de�ned.

Appendix 2: Proofs

Proof of Theorem 1. (i) Existence.
First, we transform the price space from P � [0;+1]S�k to Z � [0; �=2]S�k such that 8P 2 P,

there is a Z 2 Z and Z = [zs;k]s2S;k2K = [arctan (ps;k)]s2S;k2K, with arctan (+1) � �=2 and
tan (�=2) � +1.20 Since arctan is a positive monotonic transformation, the reverse statement is
also true such that 8Z 2 Z, there is a P 2 P and P = T AN (Z) � [tan (zs;k)]s2S;k2K.

A price-adjustment process for � is de�ned as,

H [Z;G (T AN (Z) ; u)]

�
(
Y = [ys;k]s2S;k2K

����� ys;k
�
[ds;k]k2K

�
= min

n
�
2 ;max

h
0; zs;k +

�Pk
�=1 ds;� �

qs
I

�io
8 [ds;k]s2S;k2K 2 G (T AN (Z) ; u)

)
:

20Here and in the following, with some abuse of notation, �, without subscript, is the mathematical constant, i.e.,
the ratio of a circle�s circumference to its diameter.
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where u = (u1; � � � ; uI) are students�reports, and G (T AN (Z) ; v) is per capita demand for each
preference group at each school.

Since G is the average demand, it is then upper hemicontinuous and convex-valued, and thus
H [Z;G] has the same properties. H [Z;G] satis�es all the conditions of Kakutani�s �xed-point
theorem, and there must exist a �xed point Z� such that Z� 2 H [Z�; G (T AN (Z�) ; u)]. Given Z�,

there also exists [ds;k]s2S;k2K 2 G such that 8s, 8k, z
�
s;k = min

n
�
2 ;max

h
0; z�s;k +

�Pk
�=1 ds;� �

qs
I

�io
.

This implies that 8s,
Pk
�=1 ds;� = qs=I and there exists a unique k� (s) for each s such thatPk�(s)

�=1 ds;� =
qs
I , z

�
s;k�(s) 2

�
0; �2

�
, and ds;k�(s) > 0; if k < k� (s),

Pk
�=1 ds;� <

qs
I and z

�
s;k = 0; and

if k > k� (s), ds;k = 0, and z�s;k 2
�
0; �2

�
.

Moreover, if ds;k = 0, and z�s;k 2 [0; �2 ) for some k > k
� (s), there must exist another Z�� such

that Z�� 2 H [Z��; G (T AN (Z��) ; u)] and that if k � k� (s), z��s;k = z�s;k; and if k > k� (s), z��s;k = �
2 .

In summary, T AN (Z��) satis�es the form of equilibrium prices and indeed clears the market.
Therefore, an equilibrium price vector P �� = T AN (Z��) 2 P exists.

(ii) E¢ ciency and Fairness.
We de�ne the following rules regarding in�nity:

0 �+1 = 0;+1 � +1

Suppose the G-CEEI random assignment,
h
��i;s

i
i2I;s2S

, is ex ante Pareto dominated by another

random assignment [�i;s]i2I;s2S , i.e.,X
s2S

�i;svi;s �
X
s2S

��i;svi;s;8i 2 I, (1)X
i2fks;i�kg

�i;s �
X

i2fks;i�kg
��i;s; 8s 2 S;8k 2

�
1; 2; :::; k

	
, (2)

and at least one inequality is strict.
For any student whose most preferred school is free or of price less than one, she obtains

that school for sure, and there is no other assignment to make her better o¤. If for student i,P
s2S �i;svi;s >

P
s2S �

�
i;svi;s, it must be such that

P
s2S ps;ki;s�i;s > 1 and

P
s2S �

�
i;sps;ki;s = 1.

For other students, it must be that
P
s2S ps;kj;s�j;s �

P
s2S ps;kj;s�

�
j;s, since

h
��j;s

i
s2S

is the cheapest

among bundles delivering the same expected utility. Therefore,X
s2S

ps;ki;s�i;s +
X
j 6=i

X
s2S

ps;kj;s�j;s >
X
s2S

ps;ki;s�
�
i;s +

X
j 6=i

X
s2S

ps;kj;s�
�
j;s.

However, equation (2) implies that:X
j2I

X
s2S

ps;kj;s�
�
j;s �

X
j2I

X
s2S

ps;kj;s�j;s,

because prices are higher for students in lower preference group. This leads to a contradiction.
Suppose instead that for school s, equation (2) is satis�ed for all k, and 9k 2

�
2; :::; k

	
, such

that X
i2fks;i�kg

�i;s >
X

i2fks;i�kg
��i;s.
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This implies, X
j2I

ps;kj;s�j;s <
X
j2I

ps;kj;s�
�
j;s,

because prices are higher for students in lower preference group. Aggregating over all schools,X
j2I

X
s2S

ps;kj;s�j;s <
X
j2I

X
s2S

ps;kj;s�
�
j;s.

However, equation (1) implies that
P
s2S ps;kj;s�j;s �

P
s2S ps;kj;s�

�
j;s, 8j 2 I, and thus,X

j2I

X
s2S

ps;kj;s�j;s �
X
j2I

X
s2S

ps;kj;s�
�
j;s.

This leads to another contradiction.
Therefore,

h
��i;s

i
i2I;s2S

, must be ex ante e¢ cient.

To prove
h
��i;s

i
i2I;s2S

is justi�ed-envy-free, suppose that students i and j are such that ks;i �

ks;j , 8s 2 S. Then i faces the same or a lower price at each school than j does.
h
��j;s

i
s2S

is also

a¤ordable to i. Therefore, i will never envy j�s assignment.

(iii) Stability.
Given our setting, stability means that there is no student-school blocking pair (i; s), that is,

student i prefers school s to her current assignment and is more preferred by school s than at least
one of the students who are currently matched with s.

Under the G-CEEI mechanism, for any student i, we can group all S schools into two categories:
0-price schools, denoted as Oi, i.e., ps;ki;s = 0, 8s 2 Oi; and positive-price school(s), denoted as Xi,
i.e., ps;ki;s 2 (0;+1], 8s 2 Xi. Oi or Xi may be empty but Oi [ Xi = S, 8i 2 I.

Given a random assignment prescribed by the G-CEEI mechanism, 8i 2 I, denote Vi � S as
the set of schools that student i has positive probability shares. In a deterministic assignment
generated from this random assignment, student i matches with some si in Vi.

Therefore, student i must not prefer any school in Oi to si, and this means that vi;si � vi;s,
8s 2 Oi. If not, suppose 9s0 2 Oi such that vi;si < vi;s0 . She then can always pro�tably replace
her probability share at si with the same amount of probability share at s0, because s0 is free. This
contradicts the condition that the random assignment prescribed by the mechanism maximizes
everyone�s expected utility.

Alternatively, suppose student i prefers some s 2 Xi to si. It must be that the students matched
with school s must be in the same or higher preference group than i at school s. This is because
ps;kj;s = +1 for any student j in lower preference groups at s, given ps;ki;s > 0.

Hence, there is no blocking pair in any deterministic assignment generated by a random assign-
ment prescribed by the G-CEEI mechanism.

Proof of Proposition 1. Since all schools top rank the same group of students, we can de�ne
I�k � fi 2 I : ki;s = �k, 8s 2 Sg. Therefore, any student i 2 InI�k is not top ranked by any school,
i.e., ki;s < �k, 8s 2 S.

We consider a reduced economy with a subset of students, I�k and with the same schools and
quotas. For any G-CEEI equilibrium price matrix, P �, in the original economy, there is an equilib-
rium price vector P �k in the reduced economy such that p�ks = p

�
s;�k
, 8s 2 S. Under these prices, the
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set of equilibrium random assignments are the same for all students in I�k in both economies, re-
duced and original. Therefore, we can focus on equilibrium random assignments ��k in the reduced
economy and �� in the original economy such that ��ki = �

�
i , 8i 2 I�k.

If all prices in P �k are zero, no other random assignment can Pareto improve upon the G-CEEI
assignments for students in I�k, as they must be matched with their most preferred schools already.

Suppose that not all prices in P �k are zero. In the reduced economy, each random assignment
�
�k is also ex ante weakly student-e¢ cient. If not, there must be an alternative feasible reduced-

economy random assignment � such that
P
s2S vi;s�

�k
i;s <

P
s2S vi;s�i;s for all i 2 I�k. Since �

�k is

an optimal choice given the budget constraints, for any i 2 I�k we have
P
s2S p

�k
s�
�k
i;s <

P
s2S p

�k
s�i;s.

This implies that
P
s2S p

�k
s

P
i2I�k �

�k
i;s <

P
s2S p

�k
s

P
i2I�k �i;s, and therefore

P
i2I�k �

�k
i;~s <

P
i2I�k �i;~s

for some school ~s such that p�k~s > 0. Since this price is strictly positive, we must have
P
i2I�k �

�k
i;~s = q~s

and
P
i2I�k �i;~s > q~s. This constitute a contradiction as � is not feasible.

In the original economy, the ex ante weak student-e¢ ciency of ��k implies that any feasible
original-economy random assignment �0 is such that

P
s2S vi;s�

�
i;s �

P
s2S vi;s�

0
i;s for at least one

i 2 I�k. Hence, �0 cannot ex ante strongly Pareto dominate �� for students, and consequently, ��
is ex ante weakly student-e¢ cient.

Proof of Proposition 2. Let P � be the equilibrium price vector in the G-CEEI mechanism.
Suppose that si;1 is the non-free school on which student i spends income, and that si;2 is her most
preferred school among all free ones. Since each student has strict preferences over schools, si;2 is
unique.

Her random assignment
n
��i;s

o
s2S

must be such that:

��i;si;1 = min
n
1=p�si;1;ksi;1;i

; 1
o
, ��i;si;2 = 1� �

�
i;si;1 , and �

�
i;s = 0, 8s 6= si;1; 6= si;2,

or, if i does not spend any money on any non-free schools,

��i;si;2 = 1, and �
�
i;s = 0 8s 6= si;2.

Therefore,

�
��i;s
	
s2S 2 argmax�i;s

� PS
s=1 �i;svi;s,

s:t:
P
s2S �i;s = 1, �i;s � 0;8s 2 S,

P
s2S p

�
s;k�i;s � 1

�
:

Consider that student i�s rank-order list in the Boston mechanism is instead C�i = (si;1; si;2; �; :::; �)
or C�i = (si;2; �; :::; �) if she does not spend any income at all. Here, � denotes that there is no
school ranked. It can be veri�ed that given these rank-order lists, the Boston mechanism clears the
market in two rounds and delivers the same random assignment as the G-CEEI mechanism. The
only thing left to check is that this is a Nash equilibrium, i.e.,

C�i 2 argmax
Ci

B
�
Ci; C

�
�i
�
(vi;1; :::; vi;S)

0 ;

where B
�
Ci; C

�
�i
�
= (�i;s)s2S is the vector of probabilities that student i is assigned to each school

given
�
Ci; C

�
�i
�
.

Suppose
�
C�i ; C

�
�i
�
is not a Nash equilibrium and there is another C 0i = (s01; :::; s

0
S) 6= C�i . It

su¢ ces to show that any assignment resulted from any given deviation, C 0i, is a¤ordable to i in the
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G-CEEI mechanism.
If C�i = (si;1; si;2; �; :::; �), given C

�
�i, the schools of which i may obtain some probability shares

when ranking them as third or later choices are only si;1 and si;2, while the only non-free school
that may be available in the second round is si;1. Therefore, in addition to si;1, i may obtain some
probability shares of at most one other non-free school by ranking it top.

Consider random assignments of the following form: �0i;si;1 � 0 and �0i;s01
> 0 where ��i;si;1 +

�0i;s01
� 1 and si;1 6= s01 are not free in the G-CEEI equilibrium; if ��i;si;1 + �

0
i;s01

< 1, i obtains some
shares of free schools to meet the unit demand assumption. This assignment may be obtained by
deviating to C 0i = (s

0
1; si;1; s; �; :::; �), C

0
i = (s

0
1; s; si;1; �; :::; �), or other payo¤ equivalent strategies,

where s is a school that is free for i in the G-CEEI mechanism. Given C��i, the most expensive
one among all assignments that can be obtained by deviating from C�i to C

0
i must be of this form.

Otherwise, it must be cheaper than the assignment
n
��i;s

o
s2S
.

Moreover, given C��i and the rules of the Boston mechanism, we can derive

�0i;s01
=

qs01 �
P
j2
n
j2I:ks01;j>ks01;i

o ��j;s01
p�
s01;ks01;i

�
qs01 �

P
j2
n
j2I:ks01;j>ks01;i

o ��
j;s01

�
+ 1

;

where qs01 �
P
j2
n
j2I:ks01;j>ks01;i

o ��j;s01 is the remaining quota at s01 after those who are in higher
preferences groups claim their shares; and p�s01;ks01;i

�
qs1 �

P
j2
n
j2I:ks01;j>ks01;i

o ��j;s01
�
is the total

expenditure on s01 by students who are in the same preference as i at s
0
1, and more importantly it

is the total number of such students other than i who have ranked s01 as �rst choice given C
�
�i.

Note that the bundles
h
�0i;s01

, �0i;si;1 �
�
1� �0i;s01

�i
, are always a¤ordable in the G-CEEI, as

long as 0 < p�si;1;ksi;1;i
� 1. If instead, p�si;1;ksi;1;i > 1, si;1 must not be available if i ranks it second

or lower. This proves any assignment resulted from a deviation, C 0i, is a¤ordable in the G-CEEI
mechanism, if C�i = (si;1; si;2; �; :::; �).

In the same manner, we can show that i can a¤ord any assignment from deviations when
C�i = (si;2; �; :::; �). This complete the proof that

�
C�i ; C

�
�i
�
is a Nash equilibrium in the Boston

mechanism.

Proof of Proposition 3. Given a stable matching, for each school s, we may �nd ks =
mini2fj2S j j is matched with sg fks;ig which is the lowest preference group at s among those who are
matched with s. We may then de�ne the following price system:

ps;k =

�
0, if ks;i � ks
+1, if ks;i < ks

;8s.

This price system satis�es the requirement of the G-CEEI mechanism. We need to show that
students maximize their expected utility given the prices.

The only possible deviation for a student i is to choose some school s which is free to her. That
is, she is in a higher preference group at s than someone who is already accepted by s. If this
deviation is pro�table to i, it must also be pro�table to s. Therefore, (i; s) forms a blocking pair.
By the de�nition of stability, there is no such pair.

This proves that any stable matching is an equilibrium assignment of the G-CEEI mechanism.
Since the student-proposing or the school-proposing Gale-Shapley mechanism always delivers stable
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matchings, their outcomes are necessarily equilibrium assignments of the G-CEEI.

To prove Proposition 4, the following two lemmata are useful.

Lemma 2 If prices are �xed, it is a weakly dominant strategy for each student to report truthfully
in the G-CEEI mechanism.

Proof of Lemma 2. Assume the prices are �xed at P = [ps;k]s2S;k2K and Fi (P ) is then the
augmented set of possible assignments.

Truthful report leads to the assignment:

�i (vi; P ) 2 arg
(

max
[�i;s]s2S2Fi(P )

X
s2S

�i;svi;s

)
� Fi (P ) .

If there are multiple solutions, �i (vi; P ) should be interpreted as any element in the set of solutions.
Denote V (P ) �

P
s2S �i;s (vi; P ) vi;s, i.e., it is the maximized expected utility that i can obtain

within Fi (P ) and also the expected utility by truth-telling.
Suppose i with preference vi reports ui, then the assignment solution is

�i (ui; P ) 2 arg
(

max
[�i;s]s2S2Fi(P )

X
s2S

�i;sui;s

)
� Fi (P ) .

Therefore X
s2S

�i;s (ui; P ) vi;s � V (P ) =
X
s2S

�i;s (vi; P ) vi;s,

where the �rst inequality comes from the fact that �i (ui; P ) 2 Fi (P ). This proves that reporting
truthfully is a weakly dominant strategy.

Lemma 3 In the G-CEEI mechanism and in the sequence of economies
�
�(n)

	
n2N, let P

(n)
ui �

[0;+1]S�k be the set of equilibrium prices given
�
ui; v

(n)
�i

�
. Then limn!1 dH

�
P(n)vi ;P

(n)
ui

�
= 0,

8ui 2 [0; 1]S, 8i 2 I(n).

Proof. This is proven by the following three steps.

(1) Misreporting cannot a¤ect per capita demand by preference groups in the limit.

First, recall that per capita demand of each preference group at each school is G (P; v) for
P 2 [0;+1]S�k � P and v is the tuple of all students�preferences.

Since each student can increase or decrease the total demand of a preference group at a

school at most by one seat, 8 [ds;k]s2S;k2K 2 G
(n)
�
P;
�
ui; v

(n)
�i

��
, there must exist

h
d0s;k

i
s2S;k2K

2

G(n)
�
P;
�
vi; v

(n)
�i

��
, such that, 8s, 8k,

d0s;k �
1��I(n)�� � ds;k � d0s;k + 1��I(n)�� .
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Similarly, 8
h
d0s;k

i
s2S;k2K

2 G(n)
�
P;
�
vi; v

(n)
�i

��
, there exists [ds;k]s2S;k2K 2 G(n)

�
P;
�
ui; v

(n)
�i

��
,

such that 8s, 8k,
ds;k �

1��I(n)�� � d0s;k � ds;k + 1��I(n)�� .
Therefore, given any P ,

sup
ui2[0;1]S

dH

�
G(n)

�
P;
�
ui; v

(n)
�i

��
; G(n)

�
P;
�
vi; v

(n)
�i

���
�
p
Sk��I(n)�� ,

which implies, given any P ,

lim
n!1

sup
ui2[0;1]S

dH

�
G(n)

�
P;
�
ui; v

(n)
�i

��
; G(n)

�
P;
�
vi; v

(n)
�i

���
= 0: (3)

By de�nition, G(n)
�
P;
�
vi; v

(n)
�i

��
! g (P ) uniformly. Therefore, Equation (3) implies thatG(n)

�
P;
�
ui; v

(n)
�i

��
converges to g (P ) uniformly as n!1.

(2) Price Adjustment Process

Similar to the proof for Theorem 1, de�ne Z � [zs;k]s2S;k2K 2 [0; �=2]
S�k � Z, where zs;k =

arctan (ps;k), 8s, 8k.
A price adjustment process for �(n) is de�ned as,

H
h
Z;G(n)

�
T AN (Z) ;

�
vi; v

(n)
�i

��i
�

8<:Y = [ys;k]s2S;k2K
������ ys;k

�
[ds;k]k2K

�
= min

n
�=2;max

h
0; zs;k +

�Pk
�=1 ds;� � qs=I

�io
8 [ds;k]s2S;k2K 2 G

(n)
�
T AN (Z) ;

�
vi; v

(n)
�i

�� 9=; ;
where, T AN (Z) � [tan (zs;k)]s2S;k2K. It is straightforward to verify that the correspondence H is

a mapping from Z to Z, given
�
vi; v

(n)
�i

�
. Similarly,

H [Z; g (T AN (Z))]

�
(
Y = [ys;k]s2S;k2K

����� ys;k
�
[ds;k]k2K

�
= min

n
�=2;max

h
0; zs;k +

�Pk
�=1 ds;� � qs=I

�io
8 [ds;k]s2S;k2K 2 g (T AN (Z)) ;

)
.

Claim: H
h
Z;G(n)

�
T AN (Z) ;

�
vi; v

(n)
�i

��i
! H [Z; g (T AN (Z))] uniformly as n!1.

The uniform convergence of G(n)
�
P;
�
vi; v

(n)
�i

��
to g (P ) means that 8" > 0, 9N 2 N, such that
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when n > N , 8P 2 P, i.e., 8Z 2 Z,

suph
d
(n)
s;k

i
s2S;k2K

2G(n)
�
P;
�
vi;v

(n)
�i

�� inf
[ds;k]s2S;k2K2g(P )

hd(n)s;k � ds;kis2S;k2K
 � ", and

sup
[ds;k]s2S;k2K2g(P )

infh
d
(n)
s;k

i
s2S;k2K

2G(n)
�
P;
�
vi;v

(n)
�i

��
hd(n)s;k � ds;kis2S;k2K

 � ".

By the de�nition of the Euclidean distance, the �rst inequality implies that,

suph
d
(n)
s;k

i
s2S;k2K

2G(n)
inf

[ds;k]s2S;k2K2g(P )


24 min

n
�
2 ;max

h
0; arctan (ps;k) +

�Pk
�=1 d

(n)
s;� � qs

I

�io
�min

n
�
2 ;max

h
0; arctan (ps;k) +

�Pk
�=1 ds;� �

qs
I

�io 35
s2S;k2K


� ".

Or, equivalently,

sup
Y (n)2H

h
Z;G(n)

�
T AN (Z);

�
vi;v

(n)
�i

��i inf
Y 2H[Z;g(T AN (Z))]

Y (n) � Y  � ". (4)

Similarly, we have,

sup
Y 2H[Z;g(T AN (Z))]

inf
Y (n)2H

h
Z;G(n)

�
T AN (Z);

�
vi;v

(n)
�i

��iY (n) � Y  � ". (5)

Since (4) and (5) are satis�ed for all n > N and 8Z 2 Z, H
h
Z;G(n)

�
T AN (Z) ;

�
vi; v

(n)
�i

��i
converges to H [Z; g (T AN (Z))] uniformly.

From the proof for Theorem 1, H
�
Z;G(n)

�
is upper hemicontinuous and convex-valued and

thus satis�es all the conditions of Kakutani�s �xed-point theorem.

Claim: Given
�
vi; v

(n)
�i

�
and any equilibrium price P 2 P , its positive monotonic transformation

Z 2 Z is a �xed point of H
h
Z;G(n)

�
T AN (Z) ;

�
vi; v

(n)
�i

��i
.

If P � is an equilibrium price, there must exist a unique k� (s) 2 K for each s such that, for some
[ds;k]s2S;k2K 2 G

(n)
�
P �;

�
vi; v

(n)
�i

��
,

(i) p�s;k�(s) 2 [0;+1) and
Pk�(s)
�=1 ds;� =

qs
I ,

(ii)
Pk
�=1 ds;� <

qs
I and p

�
s;k = 0 if k < k

� (s), and
(iii) ds;k = 0 and p�s;k = +1 if k > k� (s).
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Let P � = T AN (Z�), given the same [ds;k]s2S;k2K, we must have

min

(
�

2
;max

"
0; z�s;k +

 
kX
�=1

ds;� �
qs
I

!#)
= 0 = z�s;k, if k < k

� (s) ;

min

(
�

2
;max

"
0; z�s;k +

 
kX
�=1

ds;� �
qs
I

!#)
= z�s;k, if k = k

� (s) ;

min

(
�

2
;max

"
0; z�s;k +

 
kX
�=1

ds;� �
qs
I

!#)
=

�

2
= z�s;k, if k > k

� (s) .

Therefore, Z� 2 H
h
Z�; G(n)

�
T AN (Z�) ;

�
vi; v

(n)
�i

��i
.

Note that not every �xed point of H is an equilibrium price vector as the proof for Theorem 1
has discussed, while the transformation of any equilibrium price vector is a �xed point.

Similarly, when student i reports ui, H
h
Z;G(n)

�
T AN (Z) ;

�
ui; v

(n)
�i

��i
has the same proper-

ties and converges to H [Z; g (T AN (Z))] uniformly, since G(n)
�
P;
�
ui; v

(n)
�i

��
converges to g (P )

uniformly. In the same manner, the transformations of all the equilibrium prices can be found as

a �xed point of H
h
Z;G(n)

�
T AN (Z) ;

�
ui; v

(n)
�i

��i
.

Denote P(1)vi as the set of equilibrium prices corresponding to the subset of �xed points of
H [Z; g (T AN (Z))] which all have the desired form.

(3) Asymptotic Equivalence between P(1)vi and P(n)ui .

In equilibrium, some prices may be +1 for some s and k. We supplement the de�nition of
Euclidean distance by de�ning the following for +1:21

j(+1)� (+1)j = 0;
p
+1 = +1; (+1)2 = +1;

j(+1)� xj = jx� (+1)j = +1, 8x 2 [0;+1) ;
and (+1) + x = +1, 8x 2 [0;+1] :

For any bP (n) 2 P(n)ui , by de�nition, 9
h
d
(n)
s;k

i
s2S;k2K

2 G(n)
� bP (n);�ui; v(n)�i ��, such that qs=I =Pk

�=1 d
(n)
s;� , 8s. Since G(n)

�
P;
�
ui; v

(n)
�i

��
! g (P ) uniformly as n!1,

lim
n!1

inf
[ds;k]s2S;k2K2g(

bP (n))
[qs=I]s2S �

24 kX
�=1

ds;�

35
s2S

 = 0;
which implies that Z = T AN�1

� bP (n)� has to be �xed point of H [Z; g (T AN (Z))] in the limit.

21ps;k = +1 means that there is no supply for the preference group k at school s. It therefore makes sense to
de�ne the distance between +1 and +1 as 0.
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Therefore for some P � 2 P(1)vi ,

lim
n!1

P � � bP (n) = 0;
which means, more precisely,
(i) when n is large enough, there is [k� (s)]s2S 2 KS such that 8s, 0 � p�s;k�(s); bp(n)s;k�(s) < +1;
p�s;k = bp(n)s;k = 0 if k < k�s ; p�s;k = bp(n)s;k = +1 if k > k�s ;

(ii) limn!1
hp�s;k�(s)is2S � hbp(n)s;k�(s)is2S = 0:

Since this is true for 8 bP (n) 2 P(n)ui ,

lim
n!1

supbP (n)2P(n)ui

inf
P �2P(1)

vi

P � � bP (n) = 0: (6)

On the other hand, for any P � 2 P(1)vi , by de�nition, 9 [ds;k]s2S;k2K 2 g (P
�), such that qs=I =Pk

�=1 ds;�, 8s. Since G(n)
�
P;
�
ui; v

(n)
�i

��
converges to g (P ) uniformly,

lim
n!1

infh
d
(n)
s;k

i
s2S;k2K

2G(n)
�
P �;

�
ui;v

(n)
�i

��
[qs=I]s2S �

24 kX
�=1

d(n)s;�

35
s2S

 = 0;
which implies that P � is an asymptotic equilibrium price for

�
ui; v

(n)
�i

�
, i.e., limn!1 inf bP (n)2P(n)ui

P � � bP (n) =
0 which means the above two properties (i) and (ii) being satis�ed. As this is true for all P � 2 P(1)vi ,
therefore

lim
n!1

sup
P �2P(1)

vi

infbP (n)2P(n)ui

P � � bP (n) = 0: (7)

Combining (6) and (7), we have limn!1 dH
�
P(1)vi ;P(n)ui

�
= 0, 8ui 2 [0; 1]S and 8i 2 I(n).

Furthermore, limn!1 dH
�
P(1)vi ;P(n)vi

�
= 0 and therefore limn!1 dH

�
P(n)vi ;P

(n)
ui

�
= 0, 8ui 2

[0; 1]S and 8i 2 I(n).

Proof of Proposition 4. From Lemma 3, if other students are truth-telling, no matter how
student i reports, the equilibrium prices converge to the set of prices which would emerge if all
student are truth-telling. From Lemma 2, truth-telling becomes a best response for each student
when prices converge. Therefore, given others being truth-telling, the incentive for an individual
student to misreport goes to zero as n!1 in the G-CEEI mechanism.
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