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Abstract

We propose a way to compare the extent of preference misrepresentation between

two strategies. We define a mechanism to be monotone strategyproof when declaring a

“more truthful” preference ordering in the mechanism dominates—with respect to the

true preferences—declaring a less truthful preference ordering. Our main result states

that a mechanism is strategyproof if, and only if, it is monotone strategyproof. This

result holds for any deterministic social choice function on any domain; for probabilistic

social choice functions it holds under a mild assumption on the domain.
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1. Introduction

Truthful revelation is a primary goal in mechanism design theory. Ideally, it is a dominant

strategy to truthfully reveal one’s preferences, and a mechanism that induces such a dominant

strategy for all agents and all preference profiles is said to be strategyproof. Such mechanisms

do not always exist (Gibbard (1978), Satterthwaite (1978)), but a number of environments

have been identified for which they do, e.g. voting, two-sided matching, house allocation, or

auctions.1

Strategyproof mechanisms induce a radical division between strategies, for they distin-

guish the truthful strategy from all other strategies. All non-truthful strategies are deemed

undesired regardless of their other characteristics—a lie is a lie, whether big or small. This

gave the prior literature little reason to scrutinize misrepresentations in strategyproof mech-

anisms, e.g., measuring how much they deviate from the truth. We argue that this is an

important omission and we focus in this paper specifically on non-truthful strategies in strat-

egyproof mechanisms.

There is now growing evidence that strategyproof mechanisms perform poorly in the lab-

oratory (see Chen (2008) for a survey).2 Actually, experimental data from games with a

dominant strategy also exhibit seemingly irrational behavior.3 Overall, most experimental

analysis of strategyproof mechanisms cannot go further than acknowledging the percentage

of subjects not being truthful and analyzing how this percentage varies when changing some

environment parameters or the mechanism itself. However, the existing studies have not

been able to rank non-truthful strategies on how close they are to the true preferences, save

for some specific cases. This is a serious limitation because one of the valuable attributes

of strategyproof mechanisms is their ability to provide quality data about individuals’ pref-

erences. Such information is crucial if one wishes to run counter-factuals and test potential

new policies. It is easy to imagine that a policy maker (and an econometrician) would prefer

a mechanism with a large percentage of individuals not being truthful but “close” to the

truth to a mechanism with a smaller percentage of misrepresentations but consisting of large

1See for instance Moulin (1980) for voting with single-peaked preferences, Dubins and Freedman (1981)

and Roth (1982) for two-side matching. See also Barberà (2011) for a recent survey.
2See for instance Cason et al. (2006) for the pivotal and the Groves-Clarke mechanisms, Chen and Sönmez

(2006) or Calsamiglia et al. (2010) in a matching context.
3See Palacios-Hueta and Volij (2009) for the centipede game, Kagel and Levin (1986) for auction games

or Andreoni (1995) for public good games.
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deviations from the truth.

From a theoretical perspective we argue that studying misrepresentations can help further

understand the anatomy of strategyproof mechanisms. By its definition, strategyproofness

imposes the existence of a dominant strategy in the mechanism. But does it also impose

any structure on misrepresentations? To address this question we classify misrepresentations

so as to be able to rank strategies on how much they misrepresent the true preferences.

Our contention is that such a classification must be linked to the cost of misrepresenting

preferences. In other words—drawing on the intuition for strategyproofness—small misrep-

resentations should have a lower impact on agents’ welfare than large ones, or, put differently,

small deviations should dominate large ones.4 We call a mechanism satisfying this property

monotone strategyproof. One might conjecture that imposing monotonicity between payoffs

and distance from the truth would be more restrictive than the usual incentive compatibility,

i.e., that some strategyproof mechanisms may not be monotone strategyproof. Our main

contribution here is to show that monotone strategyproofness is actually equivalent to strat-

egyproofness. This counterintuitive result turns out to be straightforward to show and holds

for a very general class of environments.

Our result is derived within a typical environment where individuals have a preference

relation over a finite set of alternatives and participate in a strategyproof mechanism. We

first devise a measure to compare the degree of preference misrepresentation. Given two

preference orderings Pi and P ′i , we define the Kemeny set of Pi and P ′i as the pairs of

alternatives that are not ordered in the same way under these two preferences.5 We compare

the degree of misrepresentation by comparing Kemeny sets: Given a true preference ordering

Pi, ordering P ′i is defined to be more truthful than P ′′i when the Kemeny set of P ′i and Pi is

a subset of that of P ′′i and Pi. That is, P ′i is more truthful than P ′′i when P ′′i has relatively

more elements whose order disagrees with Pi. In this context, a mechanism is said to be

monotone strategyproof if a more truthful strategy always dominates a less truthful one.6

It is straightforward to see that monotone strategyproofness implies strategyproofness. Our

main result (Theorem 2) states that the reverse also holds under a mild assumption on the

domain of the mechanism. For deterministic social choice function this equivalence holds for

4See Jackson (2012) for a similar argument in the case of in an exchange economy.
5The cardinality of this set is the well-known Kemeny distance (Kemeny, 1959).
6The equivalent definition for stochastic mechanisms simply replaces dominance with stochastic domi-

nance.
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any environment (Theorem 1).

Given that Kemeny set inclusion captures dominance relations between different strategies

in a strategyproof mechanism, it is natural to ask whether the lack of Kemeny set inclusion

also implies that there is no dominance; that is, whether the Kemeny set inclusion is equiva-

lent to the dominance. It turns out that this equivalence is true for deterministic mechanisms,

but not generally. For non-deterministic mechanisms we show how one preference ordering

may dominate another without Kemeny set inclusion. This observation illustrates the com-

plication added by non-deterministic mechanisms.

A paper closely related to ours is Cho (2012), who studies different versions of the con-

cept of stochastic dominance in the context of probabilistic assignment mechanisms. Like

us, Cho also presents a result establishing the equivalence between monotone strategyproof-

ness and strategyproofness. His result, proved independently from ours, is however limited

to a more specific domain and can be obtained as a corollary of ours. Two other closely

related papers are Sato (2013) and Carroll (2012). They also compare “large” and “small”

misrepresentations, but they address a different question than we do. Sato and Carroll char-

acterize conditions under which “local” strategyproofness implies “global” strategyproofness.

Their concern is more about the transitivity of strategyproofness. Another, somewhat less

related paper, is Pathak and Sönmez (2012), who also focus on misrepresentation of prefer-

ences. However, Pathak and Sönmez are interested in comparing mechanisms—and therefore

consider mechanisms that are not strategyproof—while we are interested in comparing mis-

representations under strategyproof mechanisms.

We outline the environment we consider in Section 2. Monotone strategyproofness is

defined and shown to be equivalent to strategyproofness in Section 3. In Section 4 we discuss

the relevance of using Kemeny sets to compare strategies and show how similar result can

be obtained when agents have cardinal utility functions over outcomes. We conclude in

Section 5.

2. Preliminaries

Let N be a set of agents and X a (countable) set of alternatives. We shall focus in this

paper on the incentives from an individual agent’s perspective, henceforth called agent i.7 A

7Thus, the set of individuals need not be finite nor countable.
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preference Pi for agent i over X is a linear order on X. Given a preference relation Pi we

denote by Ri the weak ordering associated to Pi, i.e., xRix
′ implies xPix

′ or x = x′.8

A preference profile is a list P of preferences for each agent j ∈ N , P = ×j∈NPj.

We follow the usual convention to denote by P−i the profile (P1, . . . , Pi−1, Pi+1, . . . , Pn). The

set of all possible preferences for agent i is denoted Pi and the set of all possible preference

profiles, called the universal domain, is P . A domain is a non-empty subset of P .

Two preference orderings Pi and P ′i are adjacent if there exists a pair of alternatives (x, x′)

such that xPix
′, x′P ′ix, and for each pair of alternatives (z, z′) 6= (x, x′), zPiz

′ ⇔ zP ′iz
′.

A domain D is connected if for any two preference orderings Pi, P
′
i ∈ D, there exists a

sequence (P 1, . . . , P `) such that P 1 = Pi, P
` = P ′i and for each h < l, P h and P h+1 are

adjacent. A domain D is strongly connected if it is connected and there is a sequence of

adjacent preference orderings (P 1, . . . , P `) such that P 1 = Pi, P
` = P ′i and for each h < l,

if for some x, x′ ∈ X we have xP hx′ and x′P h+1x, then for each h′ > h we have x′P h′x.9

Sato (2013) shows that the single-peaked domain is strongly connected and Carroll (2012)

shows that the (maximal) single-crossing domain is also strongly connected.10

A lottery is a vector of probabilities π ∈ R|X| such that
∑

x∈X πx = 1. We denote by

∆(X) the set of all lotteries over X.

A social choice function (or a mechanism) on a domain D is a mapping ϕ : D →
∆(X). Given a profile P , we denote by ϕx(P ) the probability of alternative x under the lottery

ϕ(P ). The social choice function is deterministic if for each P ∈ D, ϕ(P ) is a degenerate

lottery. In this case (abusing notation) we shall denote by ϕ(Pi, P−i) the alternative x such

that ϕx(Pi, P−i) = 1.

Given preference orderings Pi, P
′
i , P

′′
i , we say that P ′i (stochastically) dominates P ′′i

8Note that in this setting agent i’s preferences are over the set of outcomes, which may not be always

the case. In the two-sided matching literature for instance, agents are defined as having preferences over

potential partners while an outcome is a matching that involves all agents. Since our model only describes

the problem from a unique agent’s perspective this is without loss of generality.
9Sato (2013) calls a strongly connected domain a connected domain that satisfies the non-restoration

property. The strongly connected domain defined by Chatterji et al. rests on a similar notion but the notion

of connectedness is imposed on alternatives and not preferences.
10Both single-peakedness and single-crossingness assume the existence of an ordering of alternatives, and

admissible preferences are obtained using this ordering. It is of course possible to have a (small) domain

that satisfies the properties required by single-peakedness or single-crossingness but does not contain enough

preferences such that any pair of preferences in the domain are connected.
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with respect to Pi, denoted P ′i �Pi P ′′i , when

for each P−i, for each x ∈ X,
∑

x′ : x′Rix

ϕx′(P
′
i , P−i) ≥

∑
x′ : x′Rix

ϕx′(P
′′
i , P−i) . (1)

For a deterministic social choice function condition (1) can be rewritten as

for each P−i, ϕ(Pi, P−i)Ri ϕ(P ′i , P−i) . (1’)

Definition 1 A social function ϕ is strategyproof on a domain D if for each agent i ∈ N ,

and for each Pi, P
′
i ∈ D, Pi dominates P ′i with respect to Pi.

Observe that the sets of individuals, the (true) preference profile P , and a social choice

function ϕ on a domain D induce a strategic form game Γϕ = 〈N,D, P 〉, where N is the set

of players, P is the set of (pure) strategy profiles, the outcome of a strategy profile P is given

by ϕ(P ), and each player i ∈ N evaluates the outcome ϕ(P ) using his true preferences Pi.

In this context, a social choice function ϕ is strategyproof if in the game form Γϕ induced by

ϕ the true strategy Pi is a (weakly) dominant strategy for each player i.

3. Monotone strategyproofness

One natural way to compare two preference orderings is by counting the number of pairs

of alternatives whose relative rank differ between the two orderings. This method is known

as the Kemeny distance (Kemeny, 1959). However, it is obvious to see that this method

serves little for our purposes. Indeed, the Kemeny distance produces a complete (weak)

ordering of strategies, while the ordering produced by the concept of strategic dominance is

not guaranteed to be complete. One way to keep an incomplete relation when comparing

strategies is to consider what we call the Kemeny sets of the preference orderings.

Definition 2 Given two preference orderings Pi, P
′
i , the Kemeny set of Pi and P ′i is the

set of all pairs (x, x′) ∈ X ×X that are not ordered identically in Pi and P ′i ,

K(Pi, P
′
i ) = {(x, x′) ∈ X ×X : x′Pix and xP ′ix

′}. (2)

We are now ready to introduce our main concept:
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Definition 3 A social choice function is monotone strategyproof on a domain D if for

each Pi ∈ D and each pair P ′i , P
′′
i such that K(P ′i , Pi) ⊂ K(P ′′i , Pi), P

′
i dominates P ′′i with

respect to Pi.

Note that if a social choice function is monotone strategyproof it is obviously strate-

gyproof. Since K(Pi, Pi) = ∅, Pi dominates any other preference ordering P ′i . In following

theorem we show that the converse also holds for deterministic social functions on any do-

main.

Theorem 1 Let ϕ be a deterministic social choice function on a domain D. Then ϕ is

strategyproof if, and only if, it is monotone strategyproof.

Proof Let Pi, P
′
i and P ′′i such that K(Pi) ⊂ K(P ′i ) with Pi, P

′
i , P

′′
i ∈ D. Let P−i by any

profile, and let x′ = ϕ(P ′i , P−i) and x′′ = ϕ(P ′′i , P−i) and assume that x′ 6= x′′.11

Observe that if x′P ′′i x
′′, then ϕ cannot be strategyproof. This is because if P ′′i where the

true preferences, then individual i can benefit by reporting P ′i instead of P ′′i . Similarly, it

cannot be that x′′P ′ix
′. So it must be that x′P ′ix

′′ and x′′P ′′i x
′. Since K(P ′i , Pi) ⊂ K(P ′′i , Pi),

we have x′Pix
′′. That is, ϕ(P ′i , P−i)Piϕ(P ′′i , P−i). �

A similar result holds when we do not require the social choice function to be deterministic,

provided some restrictions on the domain.

Proposition 1 Let ϕ be a social choice function on a strongly connected domain D. Then

ϕ is strategyproof if, and only if, it is monotone strategyproof.

Proof Let Pi = x1, x2, . . . x`, and let P ′i and P ′′i such that K(P ′i , Pi) ⊂ K(P ′′i , Pi). Since

the domain is strongly connected, there exist P 1
i , . . . , P

`
i such that P ′i = P 1

i , P ′′i = P `
i , and

for each h < `, K(P h
i , Pi) ⊂ K(P h+1

i , Pi), with P h
i and P h+1

i being adjacent. Since the

stochastic dominance relation is transitive, it is sufficient to show that for any h ≤ ` we have

P h
i �Pi P h+1

i .

Consider then any h ≤ `, and let x, x′ be the pair of alternatives such that xP h
i x
′ and

x′P h+1
i x. Let Z = {x′′ : x′′P h

i x} ≡ {x′′ : x′′P h+1
i x′}. Observe that restricted on Z, P h

i and

P h+1
i are identical. By strategyproofness, P h �P h

P h+1, and P h+1 �P h+1
P h. So for any

11If ϕ(P ′i , P−i) = ϕ(P ′′i , P−i) for any profile P−i, then P ′i and P ′′i are equivalent strategies and thus P ′i

trivially dominates P ′′i .
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P−i and each x′′ ∈ Z we have∑
x̂Rh

i x′′

ϕx̂(P h
i , P−i) ≥

∑
x̂Rh

i x′′

ϕx̂(P h+1
i , P−i) and

∑
x̂Rh

i x′′

ϕx̂(P h+1
i , P−i) ≥

∑
x̂Rh

i x′′

ϕx̂(P h
i , P−i).

(3)

So, for each x′′ ∈ Z we have ϕx′′(P
h+1
i , P−i) = ϕx′′(P

h
i , P−i). We easily obtain a similar result

for Ẑ = {x′′ : x′P h
i x
′′} ≡ {x′′ : xP h+1

i x′′} ≡ X\(Z ∪ {x, x′}). So, for any P−i,

ϕx̂(P h+1
i , P−i) = ϕx̂(P h

i , P−i) for each x̂ ∈ X\{x, x′} . (4)

It follows that P h �P h
P h+1 and P h+1 �P h+1

P h imply

ϕx(P h, P−i) ≥ ϕx(P h+1, P−i) (5)

ϕx(P h, P−i) + ϕx′(P
h, P−i) = ϕx(P h+1, P−i) + ϕx′(P

h+1, P−i) . (6)

Since (x, x′) /∈ K(P h
i , Pi) and (x, x′) ∈ K(P h+1

i , Pi), xPix
′. Together (4), (5) and (6) imply

that for each x̂ ∈ X and any P−i,∑
x′′Rix̂

ϕx′′(P
h, P−i) ≥

∑
x′′Rix̂

ϕx′′(P
h+1, P−i) . (7)

That is, P h �Pi P h+1, the desired result.

�

The next lemma shows that monotone strategyproofness may imply strategyproofness

also for some domains that are not strongly connected.

Lemma 1 Let Pi and P ′′i be such that for some distinct alternatives x1 and xk it holds that

(x, x′) ∈ K(Pi, P
′′
i ) if, and only if, x1RixPix

′Rixk and xkR
′′
i xP

′′
i x
′R′′i x1.

12 Let ϕ be any

stochastic strategyproof mechanism. If K(P ′i , Pi) ⊂ K(P ′′i , Pi), then P ′i �Pi P ′′i .

Proof Let Pi = x1, . . . , xk and assume without loss of generality that P ′′i = xk, . . . , x1.
13

Let P ′i such that K(Pi, P
′
i ) ⊂ K(Pi, P

′′
i ). Consider any profile P−i and let πh, π′h and π′′h

12That is, P ′′i is a complete reversal of Pi when restricting both preferences to the alternatives that lie

between x1 and xk in Pi.
13If there are some alternatives x′1, . . . , x

′
` such that Pi = x′1, . . . , x

′
`, x1, . . . xk, . . . then P ′′i =

x′1, . . . , x
′
`, xk, . . . , x1, . . . and thus the first ` alternatives for any P ′i such that K(Pi, P

′
i ) ⊂ K(Pi, P

′′
i )

are, in this order, x′1, . . . , x
′
`. In this case, for any profile P−i and strategyproof mechanism ϕ we have

ϕx′
h
(Pi, P−i) = ϕx′

h
(P ′i , P−i) = ϕx′

h
(P ′′i , P−i), for h = 1, . . . , `.
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denote the probability of alternative xh under the strategy Pi, P
′
i and P ′′i , respectively. We

need to show that Pi �Pi P ′′i , that is,

π′1 ≥ π′′1 (a1)

π′1 + π′2 ≥ π′′1 + π′′2 (a2)

. . .

π′1 + · · ·+ π′k−1 ≥ π′′1 + · · ·+ π′′k−1 (ak−1)

π′1 + · · ·+ π′k−1 + π′k ≥ π′′1 + · · ·+ π′′k−1 + π′′k (ak)

Strategyproofness of ϕ implies

π′′k ≥ π′k (a′k)

π′′k + π′′k−1 ≥ π′k + π′k−1 (a′k−1)

. . .

π′′k + · · ·+ π′′2 ≥ π′k + · · ·+ π′2 (a′2)

π′′k + · · ·+ π′′2 + π′′1 ≥ π′k + · · ·+ π′2 + π′1 (a′1)

Since there are k alternatives
∑

h π
′
h =

∑
h π
′′
h = 1. It is then readily verified that (a′k),

(a′k−1),. . . , (a′2) imply (ak−1), (ak−2), . . . , (a1), respectively. �

Building on the intuition of Proposition 1 and Lemma 1 we can identify a larger class of

domains where the equivalence between strategy proofness and monotone strategyproofness

holds. For this purpose, it is useful to introduce the concept of tight domain.

Let P ′i and P ′′i be any pair of preference orderings, and let G(P ′i , P
′′
i ) = (X,K(P ′i , P

′′
i ))

be a graph where X is the set of vertices and K(P ′i , P
′′
i ) is the set of edges. For instance, if

K(P ′i , P
′′
i ) = {(x1, x2), (x2, x4), (x3, x5)}, then the graph G(P ′i , P

′′
i ) has three edges: between

x1 and x2, between x2 and x4, and between x3 and x5.

Given a graph G(P ′i , P
′′
i ), a path is an ordered sequence of alternatives (x1, . . . , xk) such

that for each h < k, (xh, xh+1) ∈ K(P ′i , P
′′
i ). Two alternatives x and x′ are connected if there

exists a path (x1, . . . , xk) with x = x1 and x′ = xk. A connected component X ′ ⊆ X is a

set of alternatives such that any two alternatives in X ′ are connected in G(P ′i , P
′′
i ) and no

alternative in X ′ is connected with an alternative in X\X ′. Finally, a Kemeny set K(P ′i , P
′′
i )

is thin if the largest connected component in the graph G(P ′i , P
′′
i ) is of size 3 or less.
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A domain D is tight if for any pair of preferences (P ′i , P
′′
i ) there exists a sequence of

preference orderings (P 1, . . . , P `) such that P 1 = Pi, P
` = P ′i and for any k = 1, . . . , l − 1

the Kemeny set K(P k, P k+1) is thin.

Theorem 2 Let ϕ be a social choice function on a tight domain D. Then ϕ is strategyproof

if, and only if, it is monotone strategyproof.

The proof of Theorem 2 follows similar logic as the proof of Proposition 1.

Proof Consider a tight domain. Clearly, it suffices to show that strategyproofness implies

monotone strategyproofness. Let Pi = x1, x2, . . . x`, and let P ′i and P ′′i such that K(P ′i , Pi) ⊂
K(P ′′i , Pi). Since the domain is tight, there exists sequence (P 1, . . . , P `) such that P 1 = P ′i ,

P ` = P ′′i and for any k = 1, . . . , l − 1 the Kemeny set K(P h, P h+1) is thin. Since the

stochastic dominance relation is transitive, it is sufficient to show that for any h ≤ ` we have

P h �Pi P h+1.

In the first step, we show that for any connected component in the graph representing

K(P h, P h+1) the sum of probabilities for getting better alternatives than the nodes of the

component are equal. Let a set of alternatives C ⊂ X be any connected component in the

graph representing K(P h, P h+1). Let min(C, P ) be the least preferred element of C, i.e.,

min(C, P ) = x ⇐⇒ x ∈ C & ∀x′ ∈ C, xPx′ .

Similarly, let max(C, P ) be the most preferred element.

By strategy-proofness: ∑
x: xP h max(C,P )

πh
x ≥

∑
x: xP h max(C,P )

πh+1
x (8)

and
∑

x: xP h+1 max(C,P )

πh+1
x ≥

∑
x: xP h+1 max(C,P )

πh
x . (9)

Notice, however that {x : xP h max(C, P )} = {x : xP h+1 max(C, P )} = A. Assume, to the

contrary, that there exists y such that yP h+1 max(C, P ) but max(C, P )P hy. But then y ∈ C,
and there would be no P such that yP h+1 max(C, P ). Thus, conditions (8) and (9) can be

rewritten ∑
A

πh
x ≥

∑
A

πh+1
x &

∑
A

πh+1
x ≥

∑
A

πh
x =⇒

∑
A

πh
x =

∑
A

πh+1
x (10)
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Moreover, similarly we can show that
∑
A∪C π

h
x =

∑
A∪C π

h+1
x , which implies that∑

C

πh
x =

∑
C

πh+1
x . (11)

A connected component in K(P h, P h+1) may have either two or three nodes. First, con-

sider the case where the connected component has two nodes, |C| = 2. Let a = max(C, Pi) and

b = min(C, Pi). Because (with slight abuse of notation) K(P h, Pi) ∩ C ⊂ K(P h+1, Pi) ∩ C, it

must be that aP hb and bP h+1a. Then by strategy-proofness
∑

x: xRh+1b π
h+1
x ≥

∑
x: xRh+1b π

h
x ;

and together with (10) it yields πh+1
b ≥ πh

b . Equality (11) implies πh+1
a + πh+1

b = πh
a + πh

b .

Thus,

πh
a ≥ πh+1

a

and πh
a + πh

b = πh+1
a + πh+1

b .

Next, consider the case where the connected component has three nodes, |C| = 3. Let

a = max(C, Pi), c = min(C, Pi) and b is such that aPib and bPia. Let y = max(C, P h+1),

y′′ = min(C, P h+1) and y′ be such that yP h+1y′ and y′P h+1y′′. Then, by strategy-proofness

and equality (10):

πh+1
y ≥ πh

y

πh+1
y + πh+1

y′ ≥ πh
y + πh

y′

πh+1
y + πh+1

y′ + πh+1
y′′ = πh

y + πh
y′ + πh

y′′ .

Moreover, K(P h, P ∗) ∩ C ⊂ K(P h+1, P ∗) ∩ C. Then, by Lemma 1 we obtain

πh
a ≥ πh+1

a

πh
a + πh

b ≥ πh+1
a + πh+1

b

πh
a + πh

b + πh
c = πh+1

a + πh+1
b + πh+1

c .

Lastly, notice that for alternatives (again, with slight abuse of notation) z 6∈ K(P h, P h+1),

πh
z = πh+1

z . Therefore, for any x ∑
x′: x′R∗x

πh
x′ ≥

∑
x′: x′R∗x

πh+1
x′ ,

i.e., P h stochastically dominated P h+1 with respect to Pi. �
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A tightness of the domain is a sufficient condition to obtain the equivalence of strate-

gyproofness and monotone strategyproofness, but—similarly to strong connectedness—it is

not a necessary condition. The following two examples show that the equivalence may fail

(Example 1) or hold (Example 2) when the domain is not tight.

Example 1 Let X = {x1, x2, x3, x4}, and let D be the domain composed of the three prefer-

ence orderings depicted in Table 1. Preferences Pi, P
′
i and P ′′i satisfy K(P ′i , Pi) ⊂ K(P ′′i , Pi).

Pi P ′i P ′′i

x1 x1 x3

x2 x4 x4

x3 x2 x2

x4 x3 x1

Table 1: A non-tight domain

Suppose that for any P−i the probability to obtain alternative x ∈ X is given by the

Table 2. One easily verifies that P̂i �P̂i P̃i for any P̂i, P̃i ∈ {Pi, P
′
i , P

′′
i }, i.e., strategyproof-

Pi P ′i P ′′i

x1 .51 .51 .07

x2 .3 .05 .33

x3 .18 .004 .4

x4 .01 .4 .2

Table 2: Probabilities of each alternative under Pi, P
′
i and P ′′i

ness holds in this example. However, in spite of having K(P ′i , Pi) ⊂ K(P ′′i , Pi) it is not

the case that P ′i dominates P ′′i with respect to Pi. Indeed,
∑

xRix3
ϕx(P ′i , P−i) = .6 and∑

xRix3
ϕx(P ′′i , P−i) = .8.

Therefore, in this example the domain is not tight, and the equivalence of strategyproof-

ness and monotone strategyproofness fails.
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Example 2 Let X = {x1, x2, x3, x4}, and let D be the domain composed of the three pref-

erence orderings depicted in Table 3.

Pi P ′i P ′′i

x1 x2 x3

x2 x3 x4

x3 x1 x2

x4 x4 x1

Table 3: Another non-tight domain

Note that K(P ′, P ′′) = {(a, d), (b, c), (b, d)}, so the domain is not tight. If ϕ is a strate-

gyproof social choice function that is not monotone strategyproof we need one of the following

inequalities to be violated,

π′x1
≥ π′′x1

(12)

π′x1
+ π′x2

≥ π′′x1
+ π′′x2

(13)

π′x1
+ π′x2

+ π′x3
≥ π′′x1

+ π′′x2
+ π′′x3

(14)

From strategyproofness we have

P ′′ �P ′′ P ′ ⇒ π′′x3
+ π′′x4

+ π′′x2
≥ π′x3

+ π′x4
+ π′x2

⇔ π′′x1
≤ π′x1

(15)

P ′′ �P ′′ P ′ ⇒ π′′x3
+ π′′′x4

≥ π′x3
+ π′x4

⇔ π′′x1
+ π′′x2

≤ π′x1
+ π′x2

(16)

and

P ′ �P ′ P ′′ ⇒ π′x2
+ π′x3

+ π′x1
≥ π′′x2

+ π′′x3
+ π′′x1

(17)

Eqs. (15), (16) and (17) imply that (12), (13) and (14) must hold, respectively. So we

must have P ′ �P P ′′.

Therefore, a tight domain is not necessary to obtain the equivalence between strate-

gyproofness and monotone strategyproofness.
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4. Discussion

4.1. Weak preferences

Until now we have only considered the case of strict preference domains. In this section we

discuss how our results extend to the case of weak preferences. A weak preference relation

Ri for agent i over X is a complete, reflexive and transitive binary relation on X. Given

a preference relation Ri we denote by Pi and Ii the corresponding strict and indifference

preference relation, respectively. That is, xPix
′ if xRix

′ and not x′Rix, and xIix
′ if both

xRix
′ and x′Rix hold. We denote by R the domain of all possible preference profiles over X.

The natural extension of the Kemeny set concept for weak preference relations is the

notion of intermediate preferences introduced by Grandmont (1978).

Definition 4 R′i is between Ri and R′′i (noted as R′i ∈ (Ri, R
′′
i )) if for all x, x′ ∈ X,

(a) xRix
′ and xR′′i x

′ imply xR′ix
′.

(b) xPix
′ and xP ′′i x

′ imply xP ′ix
′.

(c) (xIix
′ and xP ′′i x

′) or (xPix
′ and xI ′′i x

′) imply xR′ix
′.

One easily see that for a triple (Pi, P
′
i , P

′′
i ) of strict preferences K(P ′i , Pi) ⊆ K(P ′′i , Pi)

implies that condition (b) of Definition 4 holds. In this case a natural definition of monotone

strategyproofness would be that for any triple of preference relations (Ri, R
′
i, R

′′
i ) such that

R′i ∈ (Ri, R
′′
i ), it holds that R′i dominates R′′i with respect to Ri. One could then expect

that monotone strategyproofness would be equivalent to strategyproofness in this setting.

However, there exist situations where this property does not hold. To see this, let R′i ∈
(Ri, R

′′
i ) such that for some preference profile R−i we have ϕ(R′i, R−i) = x′ and ϕ(R′′i , R−i) =

x′′, and assume that x′ 6= x′′. Suppose that we have x′′Pix
′, x′I ′ix

′′ and x′I ′′i x
′′. That is, for

the pair (x′, x′′) we have to consider the second part of condition (c) of Definition 4. It is

then easy to see that the pair (x′, x′′) does not violate the fact that R′i is between Ri and R′′i ,

yet we clearly have that R′i cannot dominate R′′i with respect to Ri.

In other words, the equivalence between strategyproofness and monotone strategyproof-

ness is not assured when considering indifferences. The reason behind is that when an agent

is indifferent between two alternatives, strategyproofness does not impose any particular se-

lection among these two alternatives. That is, we may well have that two alternatives, say, x′

14



and x′′ are indifferent under two preferences R′i and R′′i yet x′ is strictly preferred to x′′ under

Ri. Strategyproofness in this case does not impose that alternative x′ should be chosen over

x′′ under either R′i or R′′i for some preference profile P−i.

4.2. Comparing preferences

Theorems 1 and 2 show that Kemeny set inclusion captures dominance relations between

different strategies in a strategyproof mechanism. One natural question to address is whether

the converse also holds, i.e., if a preference ordering P ′i dominates another ordering P ′′i it is

necessarily the case that K(P ′i , Pi) is a subset of K(P ′′i , Pi). Note that since the starting

point is the dominance relation between P ′i and P ′′i we can only infer some information about

their Kemeny sets with the alternatives that can obtain with either P ′i or P ′′i . That is, when

comparing to preference orderings P ′i and P ′′i we are limited to the set of pairs of alternatives

that can be realized for some profile P−i, i.e., the pairs (x, x′), such that ϕ(P ′i , P−i) = x

and ϕ(P ′′i , P−i) = x′. We accordingly refine the concept of the Kemeny set by restricting

comparisons to be done only on such sets of pairs of alternatives.

The joint range of two preference orderings Pi and P ′i is the set of pairs alternatives

(v, v′) for which there exists a profile P−i such that ϕ(Pi, P−i) = v and ϕ(P ′i , P−i) = v′. The

joint range of Pi and P ′i is denoted J(Pi, P
′
i ) and J when there is no possible confusion.

Definition 5 Given three preference orderings Pi, P
′
i and P ′′i , the Kemeny set of P ′ with

respect to P on joint range with P ′′ is the set of all pairs (x, x′) ∈ X ×X that are not

ordered identically in Pi and P ′i and that belong to the joint range of P ′i and P ′′i , i.e.,

K̂(P ′i , Pi, P
′′
i ) ≡ {(x, x′) ∈ J(P ′i , P

′′
i ) : x′Pix and xP ′ix

′}. (18)

Proposition 2 Let ϕ be a deterministic strategyproof social choice function. If P ′i dominates

P ′′i with respect to Pi, then K̂(P ′i , Pi, P
′′
i ) ⊆ K̂(P ′′i , Pi, P

′
i ).

Proof Let Pi, P
′
i and P ′′i such that P ′i dominates P ′′i with respect to Pi, and let P−i such

that ϕ(P ′i , P−i) 6= ϕ(P ′′i , P−i). Define x = ϕ(P ′i , P−i) and x′ = ϕ(P ′′i , P−i). So, (x, x′) ∈
J(P ′i , P

′′
i ) and since P ′i dominates P ′′i with respect to Pi, xPix

′. It is sufficient to show

(x, x′) ∈ K̂(P ′i , P
′′
i , Pi) ⇒ (x, x′) ∈ K̂(P ′′i , P

′
i , Pi) . (19)
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Suppose then that (x, x′) ∈ K̂(P ′i , Pi, P
′′
i ) and (x, x′) /∈ K̂(P ′′i , Pi, P

′
i ). So xP ′′i x

′. This is

tantamount to ϕ(P ′i , P−i)P
′′
i ϕ(P ′′i , P−i), which contradicts strategyproofness. So, x′P ′′i x, i.e.,

(x, x′) ∈ K̂(P ′′i , Pi, P
′
i ). �

Example 3 To see the role that the joint support plays in the result of Proposition 2,

consider the standard median voter social choice function with the single-peaked preference

domain. It is well known that for the single-peaked domain the median voter rule is strate-

gyproof (Moulin, 1980).

Single peaked-preferences are defined as follows. There exists an ordering L of the al-

ternatives. Without loss of generality assume that the ordering is x1, . . . , x`, i.e., xhLxh′ for

each h < h′ ≤ `. Agents having single-peaked preferences means that for each agent i ∈ N
there is an alternative xk such that for each h, h′ where h < h′ ≤ k (resp. k ≥ h > h′), then

we have xkRixhPixh′ .
14 For simplicity, assume here that there is an odd number of agents.

Let i be an agent and Pi his true preferences where x is the most preferred alternative (the

peak) according to Pi. Consider now two preference orderings (that are single-peaked with

the order L), P ′i and P ′′i , where x′ and x′′ are their respective peaks. Suppose that xLx′Lx′′,

i.e., the peak of P ′i lies between that of Pi and P ′′i . It is not difficult to see that for any profile

P−i of the other agents, the individual with preferences Pi prefers the outcome with (P ′i , P−i)

than the outcome with (P ′′i , P−i). That is, P ′i dominates P ′′i . Yet, suppose that there exists

a pair of alternatives, say x1 and x2, such that (x1, x2) ∈ K(P ′i , Pi) yet (x1, x2) /∈ K(P ′′i , Pi).

We claim that (x1, x2) /∈ J(P ′i , P
′′
i ).

To see this, without loss of generality suppose that ϕ(P ′i , P−i) = x1 and ϕ(P ′′i , P−i) = x2.

first that x1Lx
′. If x1Lx

′, then by choosing P ′′i instead of P ′i agent i cannot change the

outcome, so x1 = x2, a contradiction. So, x′Lx1. Using symmetric argument we obtain

x2Lx
′′. So we have xLx′Lx1Lx2Lx

′′, which contradicts (x1, x2) ∈ K(P ′i , Pi). If x2Lx1, a

similar arguments leads to a contradiction, too. It is important to note that (x1, x2) ∈
K(P ′i , Pi) and (x1, x2) /∈ K(P ′′i , Pi) does not contradict single-peakedness. So, even though

P ′i dominates P ′′i we can still have K(P ′i , Pi) * K(P ′′i , Pi). However, it cannot be that

K̂(P ′i , P
′′
i , Pi) * K̂(P ′′i , P

′
i , Pi).

The problem becomes more delicate when we consider non-deterministic social choice

14See Ballester and Haeringer (2011) for a characterization of the single-peaked domain.
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functions. Consider the following situation with three alternatives,

Pi P ′i P ′′i

x1 x2 x1

x2 x1 x3

x3 x3 x2

Suppose that we know that P ′i �Pi P ′′i . Clearly, K(P ′i , Pi) * K(P ′′i , Pi). Consider any profile

P−i and let π′x = ϕx(P ′i , P−i) and π′′x = ϕx(P ′′i , P−i). Assuming that ϕ is strategyproof we

obtain π′x1
≥ π′x1

and π′x1
≤ π′′x1

, where the first and second inequalities comes from P ′i �Pi P ′′i

and P ′′i �P ′′i P ′i , respectively. So, π′x1
= π′′x1

. Note that it could be that the probability to

obtain alternative x1 may depend on the profile P−i, but the playing P ′i or P ′′i cannot affect

it. One may be tempted then to exclude alternative x1 from the set of alternatives considered

when comparing P ′i and P ′′i . Indeed, by doing so we see that P ′i does not reverse the relative

ranking of alternatives x2 and x3 while P ′′i does.

However, as the next example shows, ignoring alternatives whose probability does not

depend on the preference ordering chosen by the individual does not solve our problem.

To see this, consider a slightly modified example, where the numbers in parenthesis are

the probabilities that the corresponding alternative obtains for any profile P−i (it is readily

verified that in case ϕ is strategyproof),

Pi P ′i P ′′i

x1 (.5) x2 (.5) x3 (.5)

x2 (.3) x1 (.3) x1 (.2)

x3 (.2) x3 (.2) x2 (.3)

When comparing P ′i and P ′′i no alternatives can be discarded, yet we clearly have K(P ′i , Pi) *
K(P ′′i , Pi).

4.3. Cardinal environments

The concept of monotone strategyproofness can be easily adapted to cardinal environments,

i.e., when an agent is characterized by a utility vector over the set of alternatives and agents

have expected utility preferences over lotteries. A few more definitions are needed before

going further:
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A type space is a non-empty subset of ×i∈NR|X|, and an agent’s type is a vector in

R|X|. Given a type space T , a mechanism is a mapping ϕ : T → ∆(X). We denote by ui

a generic type of agent i, and u = (ui)i∈N is a type profile. Given a (true) type profile u

and a reported type profile u′, the expected utility of agent i is given by the inner product

ui · ϕ(u). A mechanism is incentive compatible on a type space T if, for each i ∈ N , for

each u ∈ T and each u′ ∈ T such that u−i = u′−i, we have ui · (ϕ(ui, u−i)− ϕ(u′i, u−i)) ≥ 0.

Definition 6 A mechanism is monotone incentive compatible on a type space T if,

for each i ∈ N , for each u ∈ T and each u′, u′′ ∈ T such that u−i = u′−i = u′′−i and

u′i = α · ui + (1− α) · u′′i for some α ∈ (0, 1), we have ui · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0.

We can now introduce the counterpart of Proposition 1 for cardinal mechanisms.15

Proposition 3 A mechanism is incentive compatible if, and only if, it is monotone incentive

compatible.

Proof That a monotone incentive compatible mechanism is also incentive compatible is

obvious. Consider then an incentive compatible mechanism ϕ on a type space T . Let ui

be any admissible type for agent i, and u′i, u
′′
i such that u′i = (1 − α) · ui + α · u′′i for some

α ∈ (0, 1). Since ϕ is incentive compatible,

u′i · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0

u′′i · (ϕ(u′′i , u−i)− ϕ(u′i, u−i)) ≥ 0

Multiplying the second constraint by α and adding up the two inequalities and rearranging

yields

(u′i − αu′′i ) · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0

Note that u′i−αu′′i = (1−α) ·ui. Since α ∈ (0, 1) we obtain ui · (ϕ(u′i, u−i)−ϕ(u′′i , u−i)) ≥ 0.

�

A straightforward application of Proposition 3 is for incentive compatible auction mech-

anisms with private values. Consider the case when agents’ types are real numbers (their

value of the good to be auctioned). Our result then simply says that if an agent’s private

value for the auctioned good is, say, x, then bidding x′ < x dominates bidding x′′ < x′.

15The proof of Proposition 3 is built on the proof of Proposition 1 in Carroll (2012).
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5. Conclusions

We show that under strategyproof mechanism one can meaningfully compare the extent of

preference misrepresentation by comparing pairs of alternatives. We define the concept of

monotone strategyproofness, which captures the link between incentives and the extent of a

misrepresentation: a larger extend of misrepresentation makes the agent (weakly) worse off.

Remarkably, requiring monotone strategyproofness does not reduce the set of strategyproof

social choice functions. This result shows that imposing strategyproofness (or incentive com-

patibility) does not only consist of imposing the existence of one dominating strategy (the

one corresponding to the true type) but imposes the existence of a large collection of domi-

nance relations between strategies, thereby providing further evidence that strategyproofness

is a very demanding property.

Our results also shed light on the complications that arise when social choice functions

are non-deterministic, or are defined on domains with indifferences. Strategyproofness in the

non-deterministic case imposes that the truthful strategy stochastically dominates any other

strategy. It is well known that the mere existence of a stochastically dominating strategy

can be very challenging in a general setting, so it is not a surprise that one should impose

some constraints on the domain to obtain the equivalence between strategyproofness and

monotone strategyproofness for stochastic mechanisms. As for the case of domains with weak

preferences we encounter stronger hurdles. Our discussion in Section 4.1 suggests indeed that

obtaining a similar result for the case of weak preferences seems beyond reach.
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