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Abstract

We propose a new model of simultaneous price competition, based on firms

offering personalized prices to consumers. In a market for a homogeneous good

and decreasing returns, the unique equilibrium leads to a uniform price equal

to the marginal cost of each firm, at their share of the market clearing quantity.

Using this result for the short-run competition, we then investigate the long-

run investment decisions of the firms. While there is underinvestment, the

overall outcome is more competitive than the Cournot model competition.

Moreover, as the number of firms grows we approach the competitive long-

run outcome.
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1 Introduction

In this paper we take a fresh look at markets where the firms compete in prices

to attract consumers. This is an elemental topic of industrial organization that

has been thoroughly investigated, ever since the original contribution of Cournot

(1838).1 Our excuse for re-opening the case is that we offer a fundamentally new

way of modelling price competition, which naturally leads to a unique equilibrium

with price equal to (perhaps non constant) marginal cost. The innovation we propose

is to allow the firms the option to personalize their prices. Note that we are NOT

assuming that they can engage in first-degree price discrimination, as they need

not know the valuation of each consumer. Nonetheless, as we explain below, the

flexibility allowed by personalized pricing ensures that competition is cut-throat even

in situations where attracting too much demand is harmful (because of increasing

marginal costs).

In the remainder of this Introduction we give a brief overview of the most relevant

literature in three subsections. We then present our model in detail. Section 3

derives the short-run equilibrium, while Section 4 looks at the long-run consequences.

We conclude with a brief discussion of our results.

1.1 Deconstructing the Bertrand Paradox

Take the standard model of simultaneous price competition between two producers

of a homogeneous good at constant and identical marginal cost, commonly referred

to as the Bertrand duopoly. As it is well known, this model has a unique equilibrium,

where both firms price at marginal/average cost, thereby earning zero profit. While

the model itself seems realistic, the result is clearly not: even though there are only

two competitors, they have no market power at all.2 The literature has dealt with

1Yes, Antoine-Augustin Cournot, not Joseph Bertrand. While Cournot (1838) only discussed

quantity competion for the more salient case of substitute goods, he did formalize price competition

as well, for the case of perfect complements.
2As a result, if entry to the market is costly or there are fixed production costs —as we would

expect in a duopoly —they have no incentive to enter. This sounds paradoxical: how can we have
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this issue enriching the model, by including product differentiation, price-quantity

bidding or dynamic competition. While the generalized models are useful in their

own right, it is nonetheless conceptually relevant to note that actually nothing is

amiss in the basic model.

Recall that if the technology is of increasing returns to scale —that is, average

costs are decreasing in output —then we have a natural monopoly: there is room for

only one firm in the market. The “paradoxical” situation with constant marginal

cost is the limiting case of this, where two (or more) firms can “just”fit. When

returns to scale are actually decreasing —that is, average costs are increasing and

so marginal costs are above average cost —as we will discuss below in detail, firms

do make positive profits in the Bertrand duopoly, despite still pricing at the cost of

the marginal unit sold in equilibrium.

The immediate implication is that the seemingly innocuous “simplifying” as-

sumption of constant returns actually leads to a non-generic, knife-edge situation,

just between the cases where a duopoly can make profits or losses. Therefore, it

should not come as a surprise that constant returns lead to zero profits in oligopoly:

there is no paradox. Thus, we need not modify the strategic aspects of the original

game to endow the firms with market power: it suffi ces to observe that marginal

costs are likely to be increasing in oligopoly.

1.2 A detour

The traditional approach toward the resolution of the Bertrand Paradox —pioneered

by Edgeworth (1897) —has been to allow firms to choose the quantity they are willing

to sell at the price they set. In its pure form, this leads to an Edgeworth Cycle,

or, in modern parlance, a mixed strategy equilibrium (c.f. Levitan and Shubik,

1972): Even if the equilibrium is unique, the range of prices offered are large3 and

an operating market where firms cannot recoup their investments?
3For example, when demand is Q = 1− p, and cost is quantity squared, with the proportional

rationing rule proposed by Edgeworth, prices would oscillate between 1/2 (the competitive price)

and 2/3.
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the two firms generically set different prices. Allowing firms to set supply functions

(complete quantity-price schedules) does not eliminate severe multiplicity either (c.f.

Klemperer and Meyer, 1989).

Building on the insights gained from the analysis of Bertrand competition with

capacity constraints by Levitan and Shubik (1972), Kreps and Scheinkman (1983)

constructed a two-stage model where firms first commit to capacity levels (or simply,

produce prior to the realization of demand) and then price competition follows. The

remarkable outcome is that in the unique sub-game perfect equilibrium prices and

quantities (produced and sold) are the same as those that would result in a one-shot

Cournot competition. Unfortunately, Davidson and Deneckere (1986) showed that

this result is not robust to the choice of rationing rule: Kreps and Scheinkman used

the “effi cient” or “surplus-maximizing” rule, where the demand is served starting

from the highest valuation buyer. As this rule results in the most pessimistic residual

demand curve for a firm with the higher price, for any other rule the outcome is

more competitive than the Cournot equilibrium.

Looking at competition from the long-run perspective is indeed insightful and it

is the main contribution of Kreps and Scheinkman (1983). However, restricting the

“fixed factor”to be a choice of capacity is not only unnecessarily restrictive but it is

also somewhat misleading. The latter weakness comes from the undue prominence

capacity choice gives to rationing. Allowing for the chosen cost curve to be smooth,

avoids rationing altogether as the firms are able to supply —within reasonable limits,

see below —the entire demand, even if they wished not to.4

1.3 Decreasing returns

Let us re-examine the Bertrand duopoly under diseconomies of scale. As shown by

Dastidar (1995), increasing marginal costs are not the panacea either as they lead

to multiple equilibria. There exists a range of prices, such that if a firm charges one

4Boccard and Wauthy (2000/2004) look at an extension of Kreps and Scheinkman (1983) where

the capacity can be voluntarily exceeded, at a linear cost.
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of them the other’s best response is to charge the same price.5 Denoting demand by

D(.) and cost byC(.), the lowest equilibrium price, p, is where the sellers splitting the

demand6 just break even: pD(p) = 2C(D(p)/2). The highest one, p, is where serving

the entire demand gives the same profit as splitting it: pD(p)−C(D(p)) = pD(p)/2−
C(D(p)/2). The reason for this plethora of equilibria lies with the obligation of a

deviant firm to serve all comers at the announced price. With constant marginal

costs this is not an issue. However, when marginal costs are increasing, selling to

the entire market —what happens if a firm undercuts its competitor —may not be

an advantageous proposition. Raising the price above the competitor’s does not pay

either as the residual demand is nil. Thus, with deviations discouraged, equilibria

thrive.

In order to regain a unique equilibrium price, Dixon (1992)7 introduced a mod-

ified Bertrand-Edgeworth game, where together with their price the firms also an-

nounce a maximum quantity they are willing to sell at it. This “trick” resolves

Dastidar’s problem that downward deviations are too costly, and by having firms

commit to supply —if needed —more than their share in the competitive equilibrium,

it removes the incentive for rivals to increase their price above the competitive one

(residual demand is zero), thus destroying the Edgeworth Cycle.

In this paper, we wish to enrich Dixon’s model by allowing the firms to make

a personalized price offer to each consumer. There are a number of reasons for

proposing this.

• Firstly, in some applications —especially Internet commerce, where via cookies
sellers can price discriminate —the option of posting personalized prices is more

realistic.

• Second, from the game-theoretic point of view, our strategies are (nearly) a

5The indeterminacy of this result is rather severe. For instance, if demand is Q = 1−p, and cost
is quantity squared, the lowest and highest equlibrium prices are p = 1

3 and p = 3
5 . The monopoly

price would be 3
4 , the Cournot price

3
5 (it is just a coincidence that it equals p).

6Dastidar assumes equal sharing of the demand for firms charging the same price.
7See Allen and Hellwig (1986) as well.
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generalization of Dixon’s. If we restrict attention to price schedules that take

only two values, a suffi ciently high one, at which no one buys, and an "interior"

price, then such price schedules are equivalent to a single price and a maximum

quantity.8 Thus, Theorem 1 below shows that the larger strategy set does not

lead to a different equilibrium price (and neither does it destroy the existence

of a deterministic equilibrium price), while it also implies Dixon’s result.

• Third, from a conceptual point of view, we feel that despite being a semi-

generalization of Dixon’s model, ours is closer in spirit to “pure”price compe-

tition, as quantities are not explicitly mentioned, and no consumer faces the

risk of being rationed.

• Fourth, our model leads to a decentralized implementation, where each con-
sumer decides individually which price to accept in equilibrium, so there is

no need to appeal to sharing rules9 and to an “invisible hand” clearing the

market.

• Finally, as our firms do not have finite capacities (self-imposed or otherwise) —
for a high enough cost they can satisfy the market demand —our equilibrium

is not hostage to an exogenous choice of rationing rule.

2 A model of price competition

Specifically, we assume that there is a set Ω of N producers, indexed by J =

1, 2, ..., N , with increasing, strictly convex, twice differentiable costs functions, CJ(q),

with C(0) = 0, and there is a unit mass of consumers, indexed by i ∈ [0, 1]. Each

consumer’s valuation, v ∈ [0, 1], is an i.i.d. draw from the strictly increasing and

8Except that the quantity has the names of a subset of consumers on it, which only enriches

the set of possible outcomes.
9Dixon (1992) assumes equal sharing, though he also assumes that all firms have the same cost

function. In fact, it is straightforward to see from the proofs of his Lemmas 1 and 2 that with

asymmetric costs and equal sharing, his model generically has no equilibrium. To regain existence

the sharing rule must be in proportion of competitive supply, see below.
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continuous probability distribution function F (v), resulting in a deterministic ag-

gregate demand function D(p) = 1 − F (p) : [0, 1] → [0, 1]. We assume that firms

do not observe individual buyer valuations (however, see Remark 2 below). Firms

simultaneously set a (Lebesgue measurable) price schedule, PJ(i) each, which as-

signs to each consumer a (personalized) price. Consumers observe their N offers

and accept at most one of them. As long as it is feasible, firms are committed to

satisfy the demand of each consumer that accepts their offer (see Remark 1 below).

Outside options are normalized to zero.

We denote the inverse of firm J’s marginal cost function —its price-taking supply

function —by SJ(p), and define the competitive price, p∗, as the price that equates

aggregate supply with demand : D(p∗) =
∑N

J=1 SJ (p∗).

The following corollary shows that p∗ is a selection from Dastidar’s interval.10

The corollary also highlights a key observation that is useful in comprehending the

intuition for our main theorem below: price is below (above) the marginal cost —

that would result by selling the competitive share of the demand at that price —if

and only if it is less (more) than p∗. That is, there is a pressure to move towards

the competitive price from any symmetric hypothetical equilibrium. To simplify

matters, we make the following regularity assumption, which basically requires that

a firm’s residual demand according to the Vives Rule is non-increasing in the price

(the second derivatives of the cost functions are not too different):

10The exact description of the latter (especially its lower bound), depends on whether there are

fixed costs of production (for simplicity we assume not: C(0) = 0) and on the rule according to

which firms charging the same (lowest) price split demand. For consistency with our endogenously

derived result below, we adopt the assumption made by Vives (1999) —see Dastidar (1997) as well

—that they split in proportion to their price taking supply (SJ(p)): firm J’s share as a proportion

of the aggregate output if firms in Γ set the lowest price (p) is αJ(p; Γ) = SJ (p)∑
K∈Γ SK(p)

. With this

assumption, the result is straightforward (see Vives’note 7 in Chapter 5), as —by construction —

in equilibrium all firms must produce.

An interesting alternative assumption —as it reduces the complexity of the consumers’strategies

—could be to assume that the split is according to the competitive supplies at p∗ no matter what

the price is: αJ(p; Γ) = SJ (p
∗)∑

K∈Γ SK(p
∗)
. In this case, as well as with fixed costs, it can happen that

in the lower price equilibria some of the firms are excluded from production.
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Assumption 1 For all J, p and Γ, d[αJ (p;Γ)·D(p)]
dp

≤ 0. Equivalently, dαJ
dp
· p
αJ
≤

−dD
dp
· p
D(p)

, or ε(SJ)− ε(ΣK∈ΓSK) ≤ −ε(D).

Corollary 1 The competitive price is in the Dastidar interval: p < p∗ < p. More-

over, if Assumption 1 is satisfied, then for every J, p >=< p∗ ⇐⇒ p >=< C ′J(αJ(p,Ω)·
D(p)).

Proof. The lowest Dastidar equilibrium price is the lowest commonly charged price

where all firms make non-negative profits. As at the competitive price they all have

the same marginal cost (p∗) which is above average cost (as C(0) = 0 and C ′′ > 0)

p < p∗. The highest Dastidar price is the highest commonly charged price at which

no firm would prefer to serve all the demand. As at the competitive price they all

charge at marginal cost, any additional amount sold would decrease their profits,

implying that p∗ < p. To see the second observation, note that by Assumption 1

and the convexity of C(.), C ′J(αJ(p; Ω)D(p)) is a curve non-increasing in p. Thus,

it crosses the (strictly increasing) line p from above at p∗. Consequently, when

p >=< p∗, p >=< C ′(αJ(p; Ω)D(p)).

3 The short-run equilibrium

The main result of this section is that —assuming that it is feasible for any N − 1

firms to serve the demand at p∗ —our decentralized price setting mechanism leads

to the competitive outcome.

Before presenting this, a technical point. When a continuum of agents each

ramdomize over a common finite set of actions, there is no guarantee that the set

of agents that choose certain action (in this case, accepting trading with seller J) is

measurable. If such set is not measurable, then payoffs and best responses cannot

be defined. In order to avoid what is but a technical issue, we will consider only

equilibria where this indeterminacy is not an issue.11

11In fact, the concept of "equilibrium" implicitly requires measurability of outcomes.
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Thus, let P = (P1, P2, ..., PN) represent the vector of sellers’strategies. Also,

let σi represent consumer i’s (mixed strategy), where σi = (σ1
i , σ

2
i , ..., σ

N
i ) and σJi :

RN → [0, 1] with
∑

J ≤ 1 represent consumer i’s probability of accepting J’s offer

given the price offers PJ(i) for J = 1, 2, ..., N . We can finally represent by σ the

strategies of all consumers, and define

µJ(i;P,σ) = σJi (P1(i), P2(i), ..., PN(i)).

as the probability that consumer i accepts seller J’s offer when sellers and consumers,

respectively, use the strategy profile (P,σ). We say that the outcome of (P,σ) is

measurable if for each J , µJ(i;P,σ) is (Lebesgue) measurable in i. Equivalently, if∫
i

µJ(i;P,σ)di

exists for all J .

Theorem 1 As long as CK
(
SK(p∗)D(p∗)
D(p∗)−SJ (p∗)

)
< ∞ for all K 6= J ,12 the unique mea-

surable equilibrium outcome in pure price schedules is such that all trades are at the

competitive price and firms sell in proportion to their competitive supply: firm J’s

offer of p∗ is accepted by a measure SJ(p∗) of consumers.

The proof is in the Appendix.

Remark 1 The symmetric equilibrium strategies involve offering the good for the

competitive price to all consumers (who then use a mixed strategy of acceptance in

proportion to the firms’competitive supply). Thanks to the Law of Large Numbers,

this is not any more serious an issue than in Dixon’s model, as a unilateral deviation

can only move the demand from SK(p∗) to SK(p∗)D(p∗)
D(p∗)−SJ (p∗) , which by assumption (both his

and ours) is still feasible. In practical terms, following a deviation by a competitor a

firm would prefer to ration consumers. There must be either suffi cient reputational

concerns or consumer protection regulation in place to ensure compliance.13

12One can replace infinity by any other number that determines the limit of feasibility (like the

bankruptcy constraint in Dixon, 1992).
13This may involve a substitute good or a “rain check”. The crucial assumption is that a

consumer who has accepted an offer no longer has unsatisfied demand in the market.
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Remark 2 Note that, if we assume that consumer valuations are observable, our

mechanism allows firms to perfectly price discriminate. Theorem 1 would still apply:

marginal cost pricing continues to be the equilibrium outcome, so competition drives

out price discrimination. Unlike in the case of monopoly, the lack/presence of the

ability to price discriminate has no effi ciency consequences.14

4 The long run

Now that we have a unique prediction for the outcome of Bertrand competition in

the short run, we can turn to the question of the choice of — or investment in —

productive technology, which was considered to be fixed in the short run.15

We assume that all firms have access to the same meta-technology, described by

the differentiable, sub-additive production function f(K,L) which satisfies fK , fL >

0, fLL, fKK ≤ 0, and fKL > 0. Here K, say capital, priced at r, is considered to be

the fixed factor while L, say labor, priced at w, is the short-run decision variable.

WhenK is fixed, the production function results in a cost function CSR = wL(q;K),

where L(q;K) is the short-run input demand for L implicitly defined by

f(K,L(q;K)) = q. (1)

Differentiating both sides with respect to q we obtain fL · L′(q) = 1, implying

that MCSR(q) = wL′(q) = w
fL
. Differentiating with respect to K, we have that —as

required —at any given quantity, marginal cost is reduced by investment:16

∂MCSR(q)

∂K
= −fKL · w

f 2
L

< 0. (2)

14This is in contrast to Armstrong and Vickers (1993) but in line with Holmes (1989) and Stole

(2007).
15Cabon-Dhersin and Drouhin (2014) look at a similar two-stage model, but they use Dastidar’s

(1995) model of price competition in the second stage, which they then refine by selecting the

collusive (highest price) equilibrium.
16If we differentiate with respect to q and L, we can also verify that the cost function is indeed

convex, as assumed in the previous section.
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Thus, firms have an incentive to sink capital into their technology. We model the

long-run competition as follows: In a first stage, firms simultaneously choose their

“fixed”inputs, KJ , J = 1, 2, ..., N , in anticipation that in a second stage this will be

followed by the play of the "Bertrand equilibrium" identified in the previous section.

Given the choices of all other firms, K−J , firm J’s best response solves

max
KJ

{
p∗(K−J , KJ)SJ(p∗(K−J , KJ))− CSR(SJ(p∗(K−J , KJ));KJ)− rKJ

}
. (3)

The first-order condition for this maximization problem is

∂p∗(K−J , KJ)

∂KJ

[
SJ(p∗) +

(
p∗ −MCSR (SJ(p∗);KJ)

)
S ′J(p∗)

]
= r+

∂CSR (SJ(p∗);KJ)

∂KJ

.

(4)

As we have discussed in the previous section, p∗ = MCSR(SJ(p∗);KJ), so the above

condition simplifies to

∂p∗(K−J , KJ)

∂KJ

· SJ(p∗) = r +
∂CSR (SJ(p∗);KJ)

∂KJ

. (5)

This leads to the following immediate result.

Proposition 1 In equilibrium all firms will underinvest, not only relative to the

first best but even conditional on their equilibrium output.

Proof. Note that for a given quantity-price pair, at the cost minimizing mix of K

and L, −∂CSR

∂KJ
= r. Thus, at any effi cient mix of inputs, the left-hand side of (5)

has the same sign as ∂p∗

∂KJ
. We will show that ∂p∗

∂KJ
< 0, implying that in equilibrium

0 > r + ∂CSR

∂KJ
. In other words, an extra unit of capital would decrease short-term

costs by more than its price, just as claimed in the proposition.

Recall that in short-run equilibrium
∑
I 6=J

SI(p
∗) = D(p∗)−SJ(p∗). Totally differ-

entiating both sides with respect to KJ we obtain∑
I 6=J

∂SI(p
∗)

∂p
· dp

∗

dKJ

= D′(p∗) · dp
∗

dKJ

− ∂SJ(p∗)

∂p
· dp

∗

dKJ

− ∂SJ(p∗)

∂KJ

. (6)

Solving for dp∗

dKJ
we have

dp∗

dKJ

=

∂SJ (p∗)
∂KJ

D′(p∗)−
∑
I

∂SI(p∗)
∂p

. (7)
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By (2) ∂SJ (p∗)
∂KJ

> 0. Moreover, we have established already that marginal costs are

increasing and thus ∂SI(p∗)
∂p

> 0 for all firms. The fact that demand is downward

sloping completes the proof.

Note that Proposition 1 points to an effect beyond the hold-up problem. It is

not that firms restrict investment because they will not reap its full benefit. Rather,

there is a market power effect: taking into account that the final price decreases in

their investment, the firms have an additional reason to invest too little in “capital”.

Note that this implies that the short-run marginal cost is strictly larger than the

long-run marginal cost for the equilibrium level of output. (See graph.)

That is, even though the price equals the short-run marginal cost, the equilibrium

is not effi cient: the price is larger than the long-run marginal cost (market power

effect) and firms do not minimize costs (cost ineffi ciency).

4.1 Cournot or not, revisited

We can now check what our two-stage model has to say in the discussion of whether

the (long-run) Cournot model is a good description of a market where firms first take

decisions that affect output, and which they take as given when they set their prices.

In the standard Cournot model, when firms choose their inputs, in particular their
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level of K, they do so taking as given not only their competitors’(conjectured) level

of K but also their (conjectured) level of output. We could equivalently formalize

this problem in two steps: firms choose their level of K, and then, without observing

anything else, they choose their level of L and so their output. This emphasizes that

the only difference between the Cournot model and our two-stage model is that,

when choosing K, as in (3), in the Cournot model firms would conjecture that —

since choices are not observed —their choice of capital does not directly affect their

competitors’quantity choices: dqI
dKJ

= 0, and so ∂Q
∂KJ

= ∂qJ
∂KJ

. This means that in (6)

the left-hand side —
∑
I 6=J

dSI(p∗)
dKJ

—is zero, so that in terms of price responses this is

equivalent to conjecturing that dp∗

dKJ
=

∂SJ (p
∗)

∂KJ

D′(p∗)− ∂SJ (p
∗)

∂KJ

instead of
∂SJ (p

∗)
∂KJ

D′(p∗)−
∑
I
∂SI (p

∗)
∂p

, and

thereby to “overestimating”the (negative) effect of investment on the market price.

Now, return to our two-step model, and assume for a moment that firm J makes

exactly the same conjecture, i.e., that dqI
dKJ

= 0, while qI , I 6= J , are fixed at the long-

run Cournot output. Obviously, in that case, firm J would also choose the Cournot

output and the effi cient mix of inputs by solving (4). However, compensating for the

overestimate of the negative effect of investment, the left-hand side of (4) becomes

positive, showing that at that level KJ is too low. Thus, in our equilibrium KJ is

larger than in the long-run Cournot solution. As the short-run Cournot production

is increasing in K, even a second-stage Cournot competition would lead to higher

production. Finally, it is easy to see that the short-run competitive output is always

higher than the short-run Cournot one. Thus we have shown that

Proposition 2 In the two-stage long-run equilibrium with price competition, pro-

duction is higher than in the one-stage long-run equilibrium with quantity setting.

Proposition 2 means that the Cournot output is an overestimation of the market

power that oligopolistic firms enjoy. This is consistent with Davidson and De-

neckere’s (1986) critique of Kreps and Scheinkman’s (1983) rendering of first long-

run quantity, and then short-run price competition. However, our result is not based

on the plausibility of one or another rationing rule, but rather on a basic strategic

interaction taking into account input substitutability. Once we depart from the

13



(implicit, in Kreps and Scheinkman, 1983, and Davidson and Deneckere, 1986) as-

sumption of a fixed proportion production function, firms take into account how

their input decisions affect those of their rivals, and this is what makes them behave

more aggressively than predicted by the Cournot model.

4.2 Discussion

Price competition should lead to marginal cost pricing even when firms enjoy market

power. Price competition is perhaps the best description of market behavior in the

short run, and so we should expect that the price is indeed close to the marginal

cost of firms. However, we have been familiar with the distinction between long

and short run since the days of our first college studies of Microeconomics. Certain

decisions, input decisions in particular, are mostly taken as given, when prices are

chosen, as Kreps and Scheinkman (1983) argued. Fixed production factors typically

result in decreasing returns even when the technology is constant returns in the long

run. Thus, marginal cost pricing and extraordinary profits are compatible. What is

important to understand is not so much the difference between price and (short-run)

marginal cost, but the incentives for the choice of levels and mix of inputs —and as

a result, the level of output —arising from the strategic considerations present when

firms do have market power: when firms’decisions affect market output and price.

This is the main message of this paper. We have shown how these strategic

considerations typically lead to both an ineffi cient mix of inputs, with long-run

decisions resulting in too low levels of these long-run determined inputs; and result

in prices above long-run marginal cost.

We have also shown that, from a long-run point of view, and as argued by

Davidson and Deneckere (1986), (short-run) price competition results in more output

than predicted by the Cournot model. According to our analysis, the discrepancy

comes from the strategic interaction between the long-run decisions of the different

firms. When a firm determines its own short-run cost function by investing in the

long-run factor of production, it takes into account how these decisions will affect
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future output decisions of rivals. A lower short-run marginal cost will be answered by

rivals with a reduction in their own output. Thus, investments in these production

factors have a lower impact on prices than what is predicted by the Cournot model.

The result is a stronger incentive on short-run cost reduction and therefore, a larger

output.

Despite this stronger incentive to invest in the long-run factor, the equilibrium

input mix shows ineffi ciently low levels of it. As we have shown, this is associated

with the effect of the long-run factor on prices, and is a well-understood phenomenon

in price competition: at the cost minimizing mix of inputs, a small reduction in the

use of the long-run input increases the equilibrium price. When marginal units are

sold at marginal (short-run) cost, this effect dominates the second order effect on

cost minimization.

Both the departure from the effi cient mix of inputs and the departure from long-

run marginal cost pricing are, therefore, consequences of market power. Indeed,

from (2) if symmetric firms behave symmetrically and there are N active firms in

the market,
∣∣∣ ∂p∗∂KJ

∣∣∣ < 1
N−1

. Thus, as N gets large ∂p∗

∂KJ
approaches zero and, by (5),

the input mix approaches effi ciency. Moreover, market clearing (and effi cient input

mix) implies output per firm approaching 0, at which point long-run marginal cost

equals short run marginal cost (and then price).17

17This is not an artifact of our assumption of always increasing average cost, and so marginal

cost of 0 at q = 0. Indeed, assume more standard, "U-shaped" average cost in the long run, and

define the minimum effi cient scale

q∗ = arg min
q
{C(q)

q
}.

Let p∗ = C(q∗)
q∗ , i.e., the average cost at that level of output. If

N∗ =
D(p∗)

q∗

is large, as N approaches N∗, market clearing and effi cient input mix implies output per firm

approaching q∗, at which point, again, long run marginal cost equals short term marginal cost and

so price.
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5 Concluding remarks

In this paper we have presented a novel way of modelling price competition, which

leads to marginal cost pricing —but positive profits —as the unique equilibrium,

without the need to specify rationing (when demand exceeds supply) or sharing

(when supply exceeds demand) rules. It should therefore be a useful off-the-shelf

workhorse model to embed in more complex scenarios.

We have also developed the most direct implications in a set-up with long-run

competition, underlining the consequences of market power as ineffi cient investments

in the fixed factor. This analysis has also shed more light on the literature on two-

stage Bertrand-Edgeworth competition.
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6 Appendix

Proof. (of Theorem 1) First, we show that charging p∗ to (almost) everyone is

indeed an equilibrium. Suppose that consumers use a mixed strategy of acceptance

such that if they receive the lowest offer, p, from the firms in Γ, they probabilistically

accept them in proportion of the firms’competitive supplies at p: they accept firm

J’s offer with probability αJ(p; Γ).

Assume all firms but J make a price offer p∗ to all consumers, and consider

the best response of firm J : PJ(.). Let Q1 be the (Lebesgue) measure of the set

{i : PJ(i) < p∗} and Q2 be the measure of the set {i : PJ(i) = p∗}. Then, the profits
of firm J are not larger than p∗(Q1 +αJ(p∗; Ω)Q2)−CJ (Q1 + αJ(p∗; Ω)Q2). Indeed,

a mass of consumers Q1 accept J’s offer of a price below p∗, and a mass of consumers

Q2 receive N offers of p∗, and proportion18 αJ(p∗; Ω) of these accept firm J’s offer.

The rest of consumers receive better offers than firm J’s offer to them so —since,

by assumption, the other firms can satisfy all the demand at p∗ —they do not buy

from it. Now, note that Q = αJ(p∗; Ω)D(p∗) = SJ(p∗) solves

max
Q

p∗Q− CJ(Q),

and therefore, p∗(Q1+αJ(p∗; Ω)Q2)−CJ (Q1 + αJ(p∗; Ω)Q2) ≤ p∗SJ(p∗)−CJ (SJ(p∗)).

Finally, observe that by using the price schedule PJ(i) ≡ p∗, firm J sells exactly

SJ(p∗). Therefore, PJ(i) ≡ p∗ is indeed a best response. Finally, as the consumers

are indifferent, they are clearly happy mixing in the prescribed proportions. Note

that the µJ(i;P,σ) is indeed measurable.

We now show that there exists no other measurable equilibrium outcome with

pure strategy price schedules. Assume the Law of Large Numbers is satisfied for a

continuum -in the index i- of independent random variables -on J- with bounded

variance, so that the quantity that firm J sells in the proposed equilibrium is

qJ(P,σ) =
∫
µJ(i;P,σ)di almost surely.

Note that forP to be part of an equilibrium it has to be that PJ(i) ≥ C ′J(qJ(P,σ))

for almost all i such that µJ(i;P,σ) > ε, for all ε > 0. Indeed, otherwise firm J

18By the Law of Large Numbers this proportion is deterministic.
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could profit by increasing her offer (up to, say, PJ(i) = 1) to a positive measure of

these consumers so as not to sell to them. Also, note that qJ(P,σ) > 0, if (P,σ)

is an equilibrium. Indeed, consider a small δ. Since the marginal cost is increasing,

there could be no more than (N − 1)δ consumers that receive a price offer below

minJ ′ 6=J C
′
J ′(ε) > C ′J(0) = 0: some producer J ′ would be selling units below marginal

cost and so would profit from withdrawing the corresponding offers. Thus, there are

at least D(minJ ′ 6=J C
′
J ′(δ))−(N−1)δ that are willing to pay minJ ′ 6=J C

′
J ′(δ) > C ′J(0)

and either don’t buy or buy at larger prices. Thus, if qJ(P,σ) = 0, J could gain by

offering a small measure of those consumes a price minJ ′ 6=J C
′
J ′(δ).

Next, observe that C ′J(qJ(P,σ)) = C ′K(qK(P,σ)) for all J , K. Otherwise, if

C ′J(qJ(P,σ)) > C ′K(qK(P,σ)) then firm K could profit by deviating and making a

(unique winning) offer PJ(i)− δ to some arbitrarily small but positive measure υ of
consumers i such that µJ(i;P,σ) > ε for some (perhaps very small) ε > 0, for some

δ satisfying (PJ(i)− δ ≥ ) C ′J(qJ(P,σ))− δ > C ′K(qK(P,σ) + υ).

Next, we show that, for all ε > 0, PJ(i) = C ′J(qJ(P,σ)) for all J , and for almost

all i such that µJ(i;P,σ) > ε. Indeed, if PJ(i) > C ′J(qJ(P,σ)) = C ′K(qK(P,σ)) for a

positive measure of i such that µJ(i;P,σ) > ε, then firm K could profit by reducing

her price offer to PJ(i) − δ, to a small but positive measure of these consumers

and for a small enough δ. That would increase the sales of firm K by a positive

measure, at a price above its marginal cost. It follows that in any equilibrium almost

all consumers must buy at the same price in equilibrium. We have left to show that

this price must be the competitive price. That is, we need to show that the total

sales must be equal to the demand at the price common to all transactions. It cannot

be larger, since then some consumers would be buying at a price larger than their

willingness to pay. It cannot be smaller either. Indeed, in such a case a positive

measure of consumers with willingness to pay higher than p = C ′J(qJ(P,σ)) would

not buy. Some firm could profit by deviating and offering to a small measure of

them a price equal to their willingness to pay (and above its marginal cost).
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