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Abstract: We consider strategy-proof social choice functions operating on a rich do-

main of preference pro�les. We show that if the social choice function satis�es in addi-

tion tops-onlyness, anonymity and unanimity then the preferences in the domain have

to satisfy a variant of single-peakedness (referred to as semilattice single-peakedness).

We do so by deriving from the social choice function an endogenous partial order

(a semilattice) from which the notion of a semilattice single-peaked preference can

be de�ned. We also provide a converse of this main �nding. Finally, we show how

well-known restricted domains under which nontrivial strategy-proof social choice

functions are admissible are semilattice single-peaked domains.
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1 Introduction

Strategy-proofness plays a central role in mechanism design. A social choice function is

strategy-proof if, for every preference pro�le, truthtelling is a dominant strategy in its in-

duced game form. Hence, the potentially complex strategic decision problems of agents

involved in a strategy-proof social choice function are extremely simple indeed. Whether

or not an agent�s strategy is dominant depends only on the preferences of the agent and

not on the other agents�preferences. Under strategy-proofness the interlinked decisions be-

come a collection of independent optimization problems. Thus, the use of a strategy-proof

social choice function does not require (as any other solution concept related to Nash equi-

librium would) any informational hypothesis about the beliefs that each agent has about

the other agents�preferences, and the subsequent iteration of beliefs until the preference

pro�le becomes common knowledge. However, the Gibbard-Satterthwaite theorem states

that requiring truthful reporting of preferences in weakly dominant strategies implies dic-

tatorship whenever preferences of agents are unrestricted. This fundamental result has

directed subsequent research on social choice in the presence of private information towards

suitably restricted domains of preferences which admit to the design of anonymous, and

hence non-dictatorial strategy-proof social choice functions. Particularly prominent in this

regard is the class of single-peaked preferences and its variants and the strategy-proof social

choice functions characterized for such domains are extensions of the median voter scheme.1

Single-peaked preferences are well known to have desirable properties in the context of ag-

gregation theory. They also provide the underpinnings of many models in political and

public economics.2

Single-peaked preferences have been speci�ed by postulating an underlying structure on

the set of alternatives that allows one to state for every triple x; y and z of alternatives, that

y is between x and z; and so on, and the restriction imposed by single-peakedness is that if

x is top-ranked for a particular preference ordering, then y; by virtue of being in between

x and z; be ranked at least as high as z: This paper formulates a more general notion of

single-peakedness in terms of a partial order on the set of alternatives with the property

that every pair of alternatives possesses a supremum under the postulated partial order.3

Our notion of single-peakedness requires that for any triple x; y and z of alternatives, a

preference ordering that has x as its top-ranked alternative should rank the supremum of

the pair (x; y) at least as high as the supremum of the pair (z; y).4

1Single-peakedness was initially proposed by Black (1948) and Inada (1964). The surveys of Barberà

(2001, 2010) and Sprumont (1995) contain several axiomatic characterizations of the median voter scheme

and its extensions.
2See Austen-Smith and Banks (1999, 2005).
3A partial order is a re�exive, antisymmetric and transitive binary relation.
4Later in the paper we explain this property and discuss why it may be seen as a weakening of single-
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Our main �nding is that this notion of single-peakedness is implied by the existence

of a strategy-proof and anonymous social choice function which is determined completely

by the pro�le of the agents top-ranked alternatives (i.e., it is tops-only), and satis�es

additionally the innocuous requirement of unanimity, whenever such a social choice function

can be de�ned for an even number of agents and the underlying domain satis�es a richness

requirement.5 Our approach reconstructs the partial order on alternatives in a natural way

from the social choice function with the four stated properties. Our methodology applies to

domains that allow the design of well-behaved social choice functions for some even number

of voters. While this restriction to an even number of voters is somewhat awkward, we

do not necessarily view it as a drawback of our approach, given that our intention is to

reconstruct features of a domain of preferences that allows the design of well-behaved social

choice functions for all societies; indeed while our methodology would not identify a domain

that allows well-behaved social choice functions to be designed only for societies with an

odd number of agents, one might argue that such a domain would not be attractive from a

design perspective. The semi-lattice single peaked condition identi�ed by our methodology

su¢ ces for the design of well-behaved strategy proof social choice functions for any, and in

particular an odd, number of agents.

Fix a tops-only and unanimous social choice function. Assume the number of agents

is two and let x and y be two alternatives. We say that x � y if and only if x is chosen

at any pro�le of preferences where one agent has x as the top-ranked alternative and the

other y. The assumed axioms of unanimity and anonymity imply that � is re�exive and

antisymmetric respectively. Our requirement that the domain of preferences be rich ensures

that � is transitive and that the social choice function must be of a particular form: at

any pro�le of preferences, the social choice is the supremum of the pair of alternatives

that are top-ranked by the two agents. Our de�nition of single-peakedness now obtains

as a direct consequence of strategy-proofness. This methodology applies whenever the

number of agents is even. A similar �nding holds under an additional axiom of invariance

when a social choice function with the aforementioned properties can be de�ned only for

an odd number of agents. As a converse to our main �nding, we show that any domain

of preferences (there is no richness requirement) which is single-peaked with respect to a

partial order possessing the supremum property admits a strategy-proof, anonymous, and

unanimous social choice function that is completely determined by the pro�le of the agents

top-ranked alternatives, for any number of agents.

In the literature on social choice on restricted domains, there has been interest in for-

mulating a sort of converse to the Gibbard-Satterthwaite theorem; a statement that would

peakedness.
5Most interesting rules identi�ed in the restricted domain literature generate binary relations that allow

interesting preference domains to satisfy our richness requirement.
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identify features of a domain that are implied by the design of a strategy-proof and anony-

mous social choice function. It has been conjectured that domain restrictions of the single-

peaked variety and social choice functions of the median voter scheme form are salient in

this regard.6 An early formulation of such a partially converse statement is Bogomolnaia

(1998). In a model with �nitely many alternatives and two agents, she identi�es the fea-

tures of any anonymous and tops-only social choice function under which the �nite set of

alternatives can be embedded into a �nite dimensional euclidean space with a grid structure

with the property that the social choice function takes the form of a (multi-dimensional)

median voter scheme. This embedding depends crucially on the set of alternatives being

�nite. These features of tops-only and anonymous social choice functions are stated in

terms of the same binary relation induced by a two agent tops-only and anonymous social

choice function that we use in our paper, and are the following: (i) the binary relation is

transitive and a semilattice and (ii) the social choice function is the supremum of the pair

of alternatives that are the top-ranked alternatives of the two voters. These �ndings are

extended to the three agent case under similar, but somewhat more demanding, hypothe-

sis and she derives additionally that the domain of preferences must be multi-dimensional

single-peaked on the set of alternatives. Our work extends this methodology in the following

sense. We postulate a richness condition on the domain in terms of the binary relation on

alternatives induced by a two agent social choice function satisfying our axioms and derive

that the binary relation is transitive and that the social choice function has the supremum

property. This is used to establish the salience of the supremum rule and a version of

single-peaked preferences in a general setting with an arbitrary number of voters without

requiring the set of alternatives to be �nite. In particular, under our richness condition,

the set of alternatives need not turn out to be embedded in a �nite dimensional euclidean

space with a grid structure as in Bogomolnaia (1998), but the characterization of the social

choice function as a supremum rule on our version of a single-peaked domain remains valid.

More recently, work by Nehring and Puppe (2007a,b), and Chatterji, Sanver and Sen

(2013), provide formulations of such a converse statement. Our paper complements these

approaches and is closely related to the approach of these papers in that our axioms on the

social choice function are similar. However, there are important di¤erences in the scope

of our model and our methodology. The richness condition in these papers is speci�ed

independently of the social choice function whose existence is postulated whereas in our

paper the richness condition is speci�ed in relation to the social choice function. But

more importantly, the methodology in these papers relies also on the �niteness of the set

of alternatives and on strict preferences. The approach of Nehring and Puppe (2007a,b)

assumes a speci�c algebraic structures on the set of alternatives. The richness condition

6Conjectures of this nature have been attributed by Barberà (2010) to Faruk Gul and referred to as

Gul�s conjecture.
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in Chatterji, Sanver and Sen (2013) is speci�ed in terms of alternatives that appear as the

�rst and second ranked alternatives in di¤erent preference orderings which makes it speci�c

to a model with �nitely many alternatives with strict preferences and also excludes the

consideration of preferences commonly employed in the study of multidimensional models.

Our formulation is more permissive in that we impose no �niteness requirement on the set

of alternatives and, provided the top-ranked alternative is unique, we admit indi¤erences.

As a consequence, our methodology is of necessity di¤erent and somewhat more direct

than that of those papers. Our methods lead to a simple and a fairly general version of a

statement to the e¤ect that a particular form of single-peakedness is implied by strategy-

proofness in conjunction with anonymity and other natural axioms and that this form

of single-peakedness su¢ ces for the design of social choice functions with these properties.

Many prominent restricted domains of preferences studied in the literature appear as special

cases of our formulation.

The paper is organized as follows. Section 2 introduces basic de�nitions and notation

while Section 3 contains the main results for the case of an even number of agents. In Section

4 we partially extend our results to the case of an odd number of agents. In Section 5 we

relate our results to the large literature on domain restrictions for non-trivial strategy-proof

social choice functions. Section 6 contains some �nal remarks and an appendix contains

further analysis of the case of an odd number of agents and proofs of two results, omitted

in the main text.

2 Basic de�nitions and notation

Let N = f1; :::; ng be the �nite set of agents, with n � 2, and A be any set of alternatives.
We do not assume any a priori structure on the set of alternatives. Each agent i 2 N
has a preference (relation) Ri 2 D over A, where D is a subset of complete, re�exive and

transitive binary relations on A: The set D is referred to as the domain of preferences. For
any x; y 2 A; xRiy means that agent i considers alternative x to be at least as good as
alternative y: Let Pi and Ii denote the strict and indi¤erence relations induced by Ri over

A, respectively; namely, for any x; y 2 A; xPiy if and only if xRiy and :yRix; and xIiy if
and only if xRiy and yRix. We assume that for each Ri 2 D there exists t(Ri) 2 A, the top
of Ri, such that t(Ri)Piy for all y 2 Anft(Ri)g: For x 2 A, let Rxi denote any preference
in D with t(Rxi ) = x: Moreover, we assume that for each x 2 A the domain D contains

at least one preference Rxi : A pro�le R = (R1; :::; Rn) 2 Dn is an n�tuple of preferences,
one for each agent. To emphasize the role of agent i we will often write the pro�le R as

(Ri; R�i).

A social choice function (SCF) is a mapping f : Dn ! A that assigns to every pro�le

R 2 Dn an alternative f(R) 2 A:
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A SCF f : Dn ! A is tops-only if for all R;R0 2 Dn such that t(Ri) = t(R0i) for all

i 2 N , f(R) = f(R0). Hence, a tops-only SCF f : Dn ! A can be written as f : An ! A:

Accordingly, we will on occasion use the notation f(t(R1); :::; t(Rn)) interchangeably with

f(R1; :::; Rn):

A SCF f : Dn ! A is unanimous if for all R 2 Dn and x 2 A such that t(Ri) = x for
all i 2 N , f(R) = x:
To de�ne an anonymous SCF on Dn; for every pro�le R 2 Dn and every one-to-one

mapping � : N ! N , de�ne the pro�le R� = (R�(1); :::; R�(n)) as the ��permutation of R,
where for all i 2 N , R�(i) is the preference that agent �(i) had in the pro�le R. A SCF
f : Dn ! A is anonymous if for all one-to-one mappings � : N ! N and all R 2 Dn,
f(R�) = f(R):

A SCF f : Dn ! A is strategy-proof if for all i 2 N , all R 2 Dn and all R0i 2 D;

f(R)Rif(R
0
i; R�i):

A SCF f is strategy-proof if for every agent at every preference pro�le R truth-telling is a

weakly dominant strategy in the direct revelation game induced by f at R:

In this paper, in addition to strategy-proofness, we will require the SCF to satisfy

anonymity. This is a key assumption in our analysis and is in some ways an opposite

of dictatorship as the identity of no particular agent matters in determining the social

outcome. The appeal of this axiom is obvious. In addition we will impose that the SCF

also satisfy the tops-only requirement. This axiom simpli�es considerably the speci�cation

of the SCF and is pervasive in the literature on the characterization of strategy-proof SCFs

on restricted domains.7 There are results on restricted domains establishing that tops-

onlyness need not be assumed explicitly as it is implied by strategy-proofness together

with an additional property like unanimity, e¢ ciency or ontoness (see for instance Barberà,

Sonnenschein and Zhou (1991) or Sprumont (1995)). However, these studies start from the

very beginning with a given domain (often related to single-peakedness) whose structure is

explicitly used in obtaining tops-onlyness as a consequence of strategy-proofness (and the

additional property). Our di¢ culty in following this approach is that we do not impose any

structure on the domain of the SCF, except that it has to be rich. The axiom of unanimity is

natural to impose and is mild as it follows as a consequence of strategy-proofness whenever

the SCF is required to be onto the set of alternatives.

7Moulin (1984) and Berga (1998) indicate the di¢ culties of extending our results to a setting where

agents�preferences may have several tops.
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3 Results

3.1 Obtaining the induced binary relation

In this subsection we assume that n = 2 and indicate how to obtain a binary relation �
from a tops-only SCF f : D2 ! A and show that if the SCF satis�es in addition unanimity

and anonymity, then � is re�exive and antisymmetric.8 In doing so, we follow a procedure
introduced by Bogomolnaia (1998).

Let f : D2 ! A be a tops-only SCF. De�ne the binary relation � induced by f over A
as follows: for all x; y 2 A,

x � y if and only if f(x; y) = x: (1)

A SCF aggregates individual preferences. A SCF can be seen as a systematic procedure

specifying how a society resolves its members�disagreements. Hence, the binary relation �
induced by a SCF f over A may be interpreted as the outcome of this procedure applied

to the family of basic situations in which there are only two agents and two alternatives

under consideration; the relation x � y re�ects the fact that in this scenario the alternative
x prevails over y:9 We will show later that if the SCF f is strategy-proof, tops-only and

anonymous, then its induced binary relation � is transitive, provided the domain of f

satis�es a richness condition. Here we note that the following result is immediate.

Remark 1 Let f : D2 ! A be a tops-only SCF and � be the binary relation induced by f

over A. If f is unanimous, then � is re�exive. If f is anonymous, then � is antisymmetric.

3.2 Rich domain and semilattice single-peaked preferences

We now turn to a description of the domain of preferences that we characterize in this

paper. First we present the notion of a rich domain on a set of alternatives endowed with

a binary relation. Fix a binary relation � over A. Given two alternatives x; y 2 A with
y � x, de�ne the set [x; y] as

[x; y] = fx; yg [ fz 2 A j y � z and z � xg:

If x and y are distinct alternatives and related by � as y � x, then the set [x; y] is obtained
by adding to the set fx; yg all alternatives in A that �lie between�x and y according to
� : For y � x de�ne [x; y] = ;.

8A binary relation � over A is re�exive if for all x 2 A; x � x, and it is antisymmetric if for all x; y 2 A;
[x � y and y � x]) [x = y]:

9Since the binary relation is not required to be complete, it may be the case that neither alternative

prevails over the other and f(x; y) is a third alternative z:
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Definition 1 Fix a binary relation � over A. The domain D is rich on (A;�) if for all
x; y 2 A with [x; y] 6= ; and z =2 [x; y], there exist Rxi ; R

y
i 2 D such that yP xi z and xP

y
i z:

Richness is a mild requirement. It says that for any pair of distinct alternatives x and

y related by � and any alternative z not lying between x and y; a rich domain has to

contain two preference relations with the properties that for one of the preferences x is the

top-ranked alternative and y is strictly better than z; and for the other preference y is the

top-ranked alternative and x is strictly better than z. Below we will illustrate the notion

of rich domain by means of an example.

We now exhibit conditions under which � is transitive.10

Lemma 1 Let f : D2 ! A be a strategy-proof, tops-only and anonymous SCF. Let � be

the binary relation induced by f over A and assume that D is rich on (A;�). Then, � is

transitive.

Proof : Assume the three distinct alternatives x; y; z 2 A are such that x � y and y � z.
We show that x � z; namely, f(x; z) = x. First, suppose f(x; z) = w =2 fx; yg: By strategy-
proofness, f(x;w) = w: Hence, w � x � y and w =2 [y; x] 6= ;: Since D is rich on (A;�),
there exists Rx1 2 D such that yP x1 w: But then,

f(y; z) = yP x1 w = f(x; z);

a contradiction with strategy-proofness of f: Thus, f(x; z) 2 fx; yg: Assume f(x; z) = y:
But then, by strategy-proofness, f(x; y) = y; a contradiction with strategy-proofness of f:

Hence f(x; z) = x and x � z. Thus, � is transitive. �

A partial order � over A is a re�exive, antisymmetric and transitive binary relation

over A: A partial order � over A is a (join-)semilattice if for all (x; y) 2 A�A; sup�(x; y)
exists. We now turn to our notion of a single-peaked preference in this setting.

Definition 2 Let � be a semilattice over A. The preference Rxi 2 D is semilattice single-
peaked on (A;�) if for all y; z 2 A, sup�(x; y)Rxi sup�(z; y).

We say that a domain D is semilattice single-peaked on (A;�) if it is a subset of all
semilattice single-peaked preferences on (A;�).
Single-peaked preferences embodies the idea that an alternative y that is �closer� to

the top x of a preference ordering Rxi than is an alternative z, should be ranked at least

as high as z: We now argue that semilattice single-peakedness embodies in some measure

this idea in its treatment of those pairs of alternatives that arise as suprema under the

10A binary relation � over A is transitive if for all x; y; z 2 A, [x � y and y � z]) [x � z]:
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semilattice � : Given a triple of alternatives a; b; c, we say that b is �closer� to a than is

c according to the semilattice �; if a � b holds and a � c � b (equivalently, c 2 [a; b])
does not hold: Now consider any preference Rxi 2 D and consider any pair of alternatives

y; z. Assume �rst that sup�(z; y) � x: Then we have x � sup�(x; y) � sup�(z; y) holds,

so that sup�(x; y) is closer to the top x of R
x
i than is sup�(z; y): Even when the condition

sup�(z; y) � x does not hold, we have at any rate that sup�(z; y) =2 [x; sup�(x; y)] and
here too sup�(x; y) is closer to the top x of R

x
i than is sup�(z; y): Indeed the condition of

semilattice single-peakedness requires that in this situation, sup�(x; y) being closer to the

top x; should be ranked by Rxi at least as high as sup�(z; y).

To better understand the notions of richness and semilattice single-peakedness on (A;�),
it is convenient to look at the semilattice (A;�) as a partially directed graph. To make
the argument more transparent assume A is �nite and that sup�A exists and is denoted

by �: Figure 1 below represents an example of such a semilattice (A;�) as a partially
directed graph, where A = fx; y; z; �; x1; :::; x13g and the direction of an arrow on the edge
linking two alternatives indicates how they are related according to the partial order �; for
example, x �! y means that y � x (arrows that can be obtained from the transitivity of

� are omitted).
First consider the pair of alternatives �; x: Since � � x; the set [x; �] is non-empty

and equals fx; y; z; x2; x3; x4; �g. The requirement of richness would for the set [x; �]

then require there exist Rxi ; R
�
i 2 D such that �P xi v and xP

�
i v only for alternatives

v 2 fx1; x5; x6; x7; x8; x9; x10; x11; x12; x13g:

- - - �

- - - � �

6

6

6

6

6 ?

�

-

r
r r r r r

r
r r r r r r

r r

r

r
r

x7

x8
x9

x y x5

x3

x6 x2 x4 z

�

x12 x11

x10

x1

x13

Figure 1

We next illustrate the restrictions implied by semilattice single-peakedness on a prefer-

ence ordering where the alternative x is top-ranked. The de�nition of semilattice single-

peakedness imposes two sorts of restrictions on a preference relation Rxi (in addition to xP
x
i y

for all y 6= x). The �rst of these applies to alternatives that appear along any � �path

9



emanating from x. There are two such paths from x to � (emphasized with bold type

links); namely, x � y � x3 � z � � and x � x2 � x4 � z � �: Along such paths, we have
classical single-peakedness. Thus, since the pair y; z belong to the �rst path, we have yRxi z.

Observe that sup�(x; y) = y and sup�(z; y) = z: However, note that since the alternatives

x3 and x4 belong to di¤erent paths, there is no restriction on the relative ranking of these

two alternatives in Rxi ; indeed if one were to apply De�nition 2 with x3; x4 playing the role

of y; z respectively, one only obtains sup�(x; x3) = x3R
x
i z = sup�(x4; x3):

The second restriction applies to alternatives that are not in a � �path from x to �:

Such alternatives are dispreferred to the �closest� alternative in the path; namely, if w

and r are such that x � w � �, r =2 [x; �]; and sup�(x; r) = w, then wRxi r (observe that
sup�(r; r) = r). For instance in Figure 1, yR

x
i x5 and yR

x
i x1 but no condition is imposed

on the preference between x5 and x1; moreover, take any z0; z00 2 fx10; x11; x12g such that
z0 6= z00 and observe that sup�(x; z

0) = z, sup�(z
00; z0) = x12 and sup�(z

0; z0) = z0: Then,

zRxi x12 and zR
x
i z
0.

Finally, we enumerate below the restrictions implied on a preference Rxi over A: By

de�nition, we know that xP xi y
0 for all y0 =2 Anfxg. Semilattice single-peakedness imposes

the following relations among (few) pairs of alternatives (observe that in Figure 1, z is the

supremum of Anf�; x13g):11

� yRxi x3Rxi z since sup�(x; y) = yRxi x3 = sup�(x3; y) and sup�(x; x3) = x3R
x
i z =

sup�(z; x3):

� x2Rxi x4Rxi z since sup�(x; x2) = x2R
x
i x4 = sup�(x4; x2) and sup�(x; x4) = x4R

x
i z =

sup�(z; x4):

� yRxi xk for k = 1; 5 since sup�(x; xk) = yRxi xk = sup�(xk; xk) (i.e., xk plays simulta-
neously the role of y and z in De�nition 2).

� x2Rxi x6 since sup�(x; x6) = x2Rxi x6 = sup�(x6; x6) (i.e., x6 plays simultaneously the
role of y and z in De�nition 2).

� zRxi xk for k = 10; 11; 12 since sup�(x; xk) = zRxi xk = sup�(xk; xk):

� �Rxi x13 since sup�(x; x13) = �Rxi x13 = sup�(x13; x13) (i.e., x13 plays simultaneously
the role of y and z in De�nition 2).

Observe that semilattice single-peakedness leaves freedom to Rxi on how it orders many

pairs of alternatives. For instance, we have already noted that the relative ranking of the

pair x3; x4 is not �xed. Consider next the path x7 �! x9 �! x: Here too, letting x7; x9
11In addition to the relations derived from the transitivity of Rxi , these are the only relations imposed

on Rxi by semilattice single-peakedness.
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play the role of y; z in De�nition 2 does not lead to any restriction on the relative rankings

of x7 and x9 in Rxi since sup�(x; x9) = xR
x
i x9 = sup�(x7; x9):

3.3 Results for the case of n even

We now proceed by �rst showing that any strategy-proof, tops-only and anonymous SCF

f : D2 ! A can be seen as the supremum of the binary relation � induced by f over A,

provided that the domain of f is rich on (A;�):12

Lemma 2 Let f : D2 ! A be a strategy-proof, tops-only and anonymous SCF. Let � be

the binary relation induced by f over A and assume that D is rich on (A;�). Then, for all
x; y 2 A, f(x; y) = sup�(x; y).

Proof : Let x; y 2 A and assume �rst that x 6= y. If f(x; y) = x; then x � y and

x = sup�(x; y): Similarly if f(x; y) = y:Assume f(x; y) = z =2 fx; yg: By strategy-proofness,
f(z; y) = f(x; z) = z: Hence, z � x and z � y: Thus, z is an upper bound of (x; y): Assume
z 6= sup�(x; y); namely, there exists �z 2 A, �z 6= z, such that �z � x and �z � y and either
z � �z; or z is not comparable to �z: In either case we have �z � z and hence, z =2 [x; �z] 6= ;:
Furthermore we have f(�z; y) = �z. Since D is rich on (A;�), there exists Rx1 2 D such that
�zP x1 z: But then,

f(�z; y) = �zP x1 z = f(x; y);

a contradiction with strategy-proofness of f: Assume now that x = y and f(x; x) = z:

We want to show that sup�(x; x) = z: Suppose not; i.e., there exists w 2 A such that

w � x and either z � w or z is not comparable to w: In either case we have w � z and so
z =2 [x;w] 6= ;: Since D is rich on (A;�) there exists Rx1 2 D such that wP x1 z: But then,

f(w; x) = wP x1 z = f(x; x);

a contradiction with strategy-proofness of f: �

We now extend our preliminary results to the case where n is any positive even integer.

Given a strategy-proof, tops-only and anonymous SCF g : Dn ! A where n is a positive

even integer, let N1 = f1; :::; n2g and let N2 = f
n
2
+ 1; :::; ng. De�ne an SCF f : D2 ! A

by setting, for all (R1; R2) 2 D2; f(R1; R2) = g( �R) where �R 2 Dn is such that �Rj = R1

for all j 2 N1 and �Rj = R2 for all j 2 N2. We note the following fact which appears as
Proposition 2 in Chatterji, Sanver and Sen (2013).

12Subsection 6.2 contains an example of a set A and a strategy-proof, tops-only, anonymous and unan-

imous SCF f on a domain that is not rich on (A;�) with the property that � is not a semilattice and f

does not take the supremum form.
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Fact 1 Let D be an arbitrary domain and let n be a positive even integer. Suppose there

exists a strategy-proof, tops-only and anonymous SCF g : Dn ! A. Then SCF f : D2 ! A,

de�ned by setting, for all (R1; R2) 2 D2; f(R1; R2) = g( �R) where �R 2 Dn is such that
�Rj = R1 for all j 2 N1 and �Rj = R2 for all j 2 N2, is strategy-proof, tops-only and

unanimous. Moreover, if g is unanimous, then so is f:

Lemmata 1 and 2 do not require that the SCF should be unanimous. If the SCF f in

Lemmata 1 and 2 is unanimous then the binary relation � induced by f over A is re�exive.
Moreover, if the SCF g in Fact 1 is unanimous, then so is f: From now on we will be

interested only in unanimous SCFs.

In view of Fact 1, we say that a strategy-proof, tops-only, anonymous and unanimous

SCF g : Dn ! A; where n is a positive even integer, induces a binary relation � over A,

where it is understood that � is the binary relation induced by f over A where f is induced
from g by �cloning�the �rst n

2
agents as agent 1 and the remaining as agent 2. We now

state our principal �nding.

Proposition 1 Let g : Dn ! A be a strategy-proof, tops-only, anonymous and unanimous

SCF where n is a positive even integer. Let � be the binary relation induced by g over A and
assume that D is rich on (A;�). Then, (i) � is a semilattice over A, (ii) for all x; y 2 A,
f(x; y) = sup�(x; y); where f is induced from g; and (iii) D is semilattice single-peaked on

(A;�).

Proof : The proofs of (i) and (ii) follow from Lemmata 1 and 2 respectively. To show

that the condition speci�ed in De�nition 2 holds, observe that by Lemma 2 and strategy-

proofness, f(x; y) = sup�(x; y)R
x
1 sup�(z; y) = f(z; y). �

We next show that a semilattice single-peaked domain admits a strategy-proof, tops-

only, anonymous and unanimous SCF for an arbitrary number of agents.

Proposition 2 Let D be a semilattice single-peaked domain on the semilattice (A;�).
Then, there exists a strategy-proof, tops-only, anonymous and unanimous SCF f : Dn ! A

for all n; which when n is even is such that � is induced by f over A.

Proof : We �rst establish the following induction step: Suppose for k � 2; sup�(x1; :::; xk)
exists for every set fx1; :::; xkg of k distinct alternatives. Then for any alternative xk+1 =2
fx1; :::; xkg, sup�(x1; :::; xk+1) exists and is given by sup�

�
sup�(x1; :::; xk); xk+1

�
.

To verify this step, let y = sup�(x1; :::; xk). By the induction hypothesis, sup�(y; xk+1)

exists and is denoted w. Since � is transitive, w is an upper bound for (x1; :::; xk+1).

Suppose there exists v 2 Anfwg such that v is an upper bound for (x1; :::; xk+1). Then it

12



must be that v � y since y = sup�(x1; :::; xk). We also have v � xk+1: These imply that

v is an upper bound for (y; xk+1): But since sup�(y; xk+1) exists and is w; we must have

v � w and so w = sup�(x1; :::; xk+1):
Given a preference pro�le R 2 Dn, let G(R) = fx1; :::; xkg; k � n; be the set of distinct

alternatives such that for each t = 1; :::; k; xt = t(Ri) for some i 2 N .
For every R 2 Dn; de�ne

f(R) = sup�G(R): (2)

Since � is a semilattice, the induction step veri�ed earlier implies that f is well-de�ned.

By construction, f is tops-only, anonymous and unanimous. We next show that f is

strategy-proof. Given R 2 Dn and i 2 N; let G(R�i) = G(R)nft(Ri)g and observe that
f(Ri; R�i) = sup�(t(Ri); sup�G(R�i)): To show that f is strategy-proof, we wish to show

for arbitrary Rxi 2 D and Rzi 2 D, z 2 Anfxg;

f(Rxi ; R�i) = sup�(x; sup�G(R�i))R
x
i sup�(z; sup�G(R�i)) = f(R

z
i ; R�i): (3)

By the de�nition of f in (2) and the de�nition of semilattice single-peakedness, (3) holds.

It is straightforward to verify that when n is a even positive integer, � is induced by f

as de�ned in (2). �

4 A partial extension to the case of n odd

We consider in this section an extension of our results to the case where the domain D is

assumed to admit a SCF g : Dn ! A which is strategy-proof, tops-only, anonymous and

unanimous where n � 3 is a positive odd integer. We will do so by introducing an additional
axiom.13 This axiom requires that the SCF satisfy an invariance requirement across two

pro�les of preferences where agents tops are either of two alternatives x or y; when the

number of agents with top x and top y di¤er by exactly one across the two pro�les.

Definition 3 The SCF g : Dn ! A, where n � 3 is a positive odd integer, satis�es

invariance if for every x; y 2 A, for every i 2 N and every pair of preference pro�les of

the form (Ri; R�i); (R
0
i; R�i) where t(Ri) = x and t(R0i) = y, and R�i is any subpro�le

where n�1
2
agents have x as their top and n�1

2
have y as their top, it is the case that

g(Ri; R�i) = g(R
0
i; R�i):

Let g : Dn ! A be a tops-only SCF, where n � 3 is a positive odd integer. De�ne the
binary relation �o induced by g over A as follows: for all (x; y) 2 A�A, let (x; :::; x| {z }

n+1
2

; y; :::; y| {z }
n�1
2

)

13We consider in Appendix 7.1 a version of our analysis without this axiom.
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denote a pro�le of top-ranked alternatives where the �rst n+1
2
agents have x as the top and

the remaining n�1
2
agents have y as the top and de�ne

x �o y if and only if g(x; :::; x| {z }
n+1
2

; y; :::; y| {z }
n�1
2

) = x: (4)

Remark 2 Let g : Dn ! A, where n � 3 is positive odd integer, be a tops-only SCF and
�o be the binary relation induced by g over A: If g is anonymous, and satis�es invariance,
then �o is antisymmetric. If g is unanimous, then �o is re�exive.

Remark 3 The analogues of Lemmata 1 and 2 can be proved analogously for �o as well
by standard arguments. We omit the details.

Finally we obtain as Proposition 3 the extension of Proposition 1 to the case where

n � 3 is a positive odd integer and the SCF satis�es in addition invariance.

Proposition 3 Let g : Dn ! A be a strategy-proof, tops-only, anonymous and unanimous

SCF that satis�es invariance where n � 3 is a positive odd integer. Let �o be the binary
relation induced by g over A and assume that D is rich on (A;�o). Then, (i) �o is a
semilattice over A, (ii) for all x; y 2 A, g(x; :::; x| {z }

n+1
2

; y; :::; y| {z }
n�1
2

) = sup�o(x; y); and (iii) D is

semilattice single-peaked on (A;�o).

Remark 4 Part (iii) of the Proposition establishes that D is semilattice single-peaked on

(A;�o). Consequently, by an application of Proposition 2 there exists a strategy-proof, tops-
only, anonymous and unanimous SCF f : Dn ! A for all n. Furthermore, we note that

the SCF constructed in the proof of Proposition 2 also satis�es invariance.

5 Related literature

In this section we relate our results to the large literature on restricted domains. The

starting point of this approach is to assume that the set of alternatives A has a particular

structure (for instance, A is a linearly ordered set). Using this structure one can de�ne

a meaningful domain restriction on preferences over A (for instance, single-peakedness)

under which non-trivial strategy-proof SCFs can be de�ned (for instance, the median voter

scheme). Our Proposition 2 (and its proof) follows partially this approach. We start by

hypothesizing that the set A; together with the binary relation �; is a semilattice from
which we de�ne the domain D of semilattice single-peaked preferences on (A;�): We then
show that there exists a strategy-proof, tops-only, anonymous and unanimous SCF f on the

domain D which, when n is a positive even integer, is such that � is induced by f over A:

14



We want to emphasize however that our main contribution is Proposition 1, which follows

a very di¤erent approach. Without assuming any structure on the set of alternatives A,

we suppose that there is a strategy-proof, tops-only, anonymous and unanimous SCF g on

a given domain D of preferences over A. Following Bogomolnaia (1998) we show how to

identify using condition (1) a binary relation � over A: Then, provided that the domain

D is rich on (A;�); we prove that (A;�) is a semilattice, the domain D is semilattice

single-peaked on (A;�) and g can be obtained as the supremum rule of a two-agents SCF

f induced from g: Hence, the semilattice structure on A follows from the existence of a

SCF satisfying the desirable properties without imposing any condition on A whatsoever.

We now relate with more detail our results to some representative results of the restricted

domains literature.

5.1 Single-peaked preferences on a line

The most signi�cant domain restriction is single-peakedness, originally proposed by Black

(1948) and studied by Moulin (1980). Following the latter, assume that the set of alterna-

tives is the unit interval in the real line endowed with the linear order >; i.e., A = [0; 1]. A

preference Ri is single-peaked on A if there exists a unique alternative t(Ri) 2 A such that,
for all x 2 Anft(Ri)g, t(Ri)Pix and for all x; y 2 A; xRiy whenever either t(Ri) � x > y or
y > x � t(Ri): Let SP be the set of all single-peaked preferences on A: Following Moulin

(1980), a SCF f : SP2 ! A is a median voter scheme if there exists a �xed ballot � 2 A
such that for all (R1; R2) 2 SP2;14

f(R1; R2) = med>(t(R1); t(R2); �):

A characterization result in Moulin (1980) implies that any strategy-proof, tops-only, anony-

mous and unanimous SCF f : SP2 ! A is a median voter scheme. We relate this setting

with our result.

Assume the SCF f : SP2 ! A is strategy-proof, tops-only, anonymous and unanimous.

Let � be its associated �xed ballot and � be the semilattice obtained from f using (1).

Then, the following facts can be veri�ed.

(a) The binary relation � induced from f using (1) is as follows: if either y < x � �

or � � x < y then x � y and if x > � > y then x � y and y � x: Figure 2 below gives a
geometric representation of this semilattice.

r�- �

Figure 2
14Given a list ofK real numbers (x1; :::; xK), whereK is a positive odd integer, de�nemed>(x1; :::; xK) =

y, where y 2 R is such that #ft 2 f1; :::;Kg j xt � yg = #ft 2 f1; :::;Kg j xt � yg = K+1
2 :
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(b) For all x; y 2 A; f(x; y) = sup�(x; y) = med>fx; y; �g:
(c) The domain SP is rich on (A;�) and it is a strict subset of the set of all semilattice

single-peaked preferences on (A;�).15
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Figure 3 illustrates a semilattice single-peaked preferenceRi on (A;�) when sup�A = �.
Observe four features of Ri. First, Ri is far from being single-peaked on A. Second, Ri
is monotonically (not necessarily strictly) decreasing on the segment [t(Ri); �]; and hence

single-peaked on it. Third, no condition is imposed between pairs on [0; t(Ri)): Fourth, �Rix

for each alternative x 2 (�; 1] and no condition is imposed between pairs of alternatives on
this segment.

5.2 Semi single-peaked preferences

The notion of single-peakedness on a tree was introduced by Demange (1983) and studied

further by Danilov (1994).16 A weaker notion called semi single-peakedness was introduced

in Chatterji, Sanver and Sen (2013). It can be described as follows. Assume that the set

15In fact, the set SP is the intersection of all sets of semilattice single-peaked preferences, where each of
these sets is associated to each of all possible values � in A:
16Savaglio and Vannucci (2014) extends the analysis to graphs that are not necessarily trees. We further

comment on this paper in Subsection 6.3. Schummer and Vohra (2002) also study a model where the set

of alternatives is possibly in�nite and arranged as a graph. They consider separately the case where the

graph is a tree and the case where the graph has cycles. They characterize strategy-proof and onto SCFs

assuming preferences are Euclidean, which satisfy our richness condition.
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of alternatives A is a �nite tree; i.e., for every pair of alternatives (nodes) x; y 2 A, there
is a unique path p linking them, denoted hx; yi. Two alternatives x; y are directly linked if
hx; yi = fx; yg:17 Given alternatives x; y; z 2 A, let �(z; hx; yi) denote the projection of z on
the path hx; yi which is de�ned as the unique alternative w 2 A such that hx; zi \ hy; zi =
hw; zi. A path p is �maximal�if it cannot be extended by adding more edges at either one
of the two ends. Fix a particular alternative � on the tree A (call it the threshold), and

use it to specify a threshold on every maximal path p, denoted �(p), as �(p) = �(�; p).

Thus, for every maximal path p, if it contains the alternative �, set �(p) = �; otherwise,

the threshold �(p) is the unique alternative that lies on every path from an alternative on

p to �.

Given A with a tree structure and the threshold � 2 A de�ne the binary relation � as
follows: for all x; y 2 A,

x � y if and only if x = �(�; hx; y)i ;

which is equivalent, using the direct graphic expression to, x � y if and only if x 2 h�; yi.
Then, the following facts can be veri�ed.

(a) (A;�) is a semilattice.
(b) The set of strict semilattice single-peaked preferences on (A;�) coincides with the

set of semi single-peaked preferences on the tree A with respect to the threshold � where,

according to Chatterji, Sanver and Sen (2013), a preference Ri belongs to the latter set if

for all x; y 2 A:
(i)
�
x; y 2 p such that x; y 2 ht(Ri); �(p)i and x 2 ht(Ri); yi

�
) [xRiy], and

(ii)
�
x 2 p such that �(p) 2 ht(Ri); xi

�
) [�(p)Rix].

(c) The two person SCF f , where for all x; y 2 A,

f(x; y) = �(�; hx; yi) (5)

is strategy-proof, tops-only, anonymous and unanimous on the domain of semi single-peaked

preferences on the tree A with respect to the threshold �. Moreover, f(x; y) = sup�(x; y):

Figure 4 below illustrates this construction.

(d) The domain of all semi single-peaked preferences on the tree A with respect to the

threshold � is rich on (A;�):

17See Example 2 in Subsection 6.3 for a description of how to, given a domain of preferences, directly

link two alternatives.
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5.3 Multidimensional models

In many social choice problems alternatives are multidimensional. To describe an alterna-

tive one has to specify the level reached in each of its attributes. Our setting includes also

these cases. Border and Jordan (1983) and Barberà, Gul, and Stacchetti (1993) are pro-

totypical examples of this approach, and they can be seen as extensions of Moulin (1980).

We �rst relate our results with the main ones contained in these two papers and second,

with the results in Barberà, Sonnenschein and Zhou (1991) on voting by quota, the case

when each attribute can take only two possible values.

5.3.1 Multidimensional single-peaked preferences

Assume the set of alternatives A is a Cartesian product of subsets of real numbers; i.e.,

A =
KQ
k=1

Ak;

where, for each k = 1; :::; K; Ak � R can be �nite or in�nite.18 De�ne the L1�norm in A

as follows: for every x 2 A,

kxk =
KP
k=1

jxkj :

Given x; y 2 A; let

MB(x; y) = fz 2 A j kx� yk = kx� zk+ kz � ykg

be the minimal box containing x and y:

A preference Ri 2 D is multidimensional single-peaked on A if, for all y 2MB(x; t(Ri));
yRix holds (namely, alternatives that lie on a L1�path going from x to t(Ri) should be

ranked at least as high as x):19 LetMSP be the set of all such preferences on A.
18Border and Jordan (1983) study the in�nite case while Barberà, Gul and Stacchetti (1993) study the

�nite case.
19It is possible to show that the set of star-shaped and separable preferences on A (de�ned in Border

and Jordan (1983)) coincides with the set of multidimensional single-peaked preferences on A:
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General results in Border and Jordan (1983) and Barberà, Gul, and Stacchetti (1993)

imply the following characterization. Let f :MSP2 ! A be an anonymous and unanimous

SCF. Then, f is strategy-proof if and only if there exists a vector of �xed ballots � =

(�1; :::; �K) 2 A such that for all (R1; R2) 2MSP2 and k = 1; :::; K;

fk(R1; R2) = med>(tk(R1); tk(R2); �k):

Consider a SCF f : MSP2 ! A and let � be the semilattice obtained from f using

(1). Furthermore, assume f is strategy-proof, anonymous and unanimous, and let � 2 A
be its associated vector of �xed ballots. The following facts hold.

(a) For all x; y 2 A;
x � y if and only if x 2MB(y; �):

Hence, for each k 2 f1; :::; Kg the pair (Ak;�k) is a semilattice where �k is de�ned as
follows: for xk; yk 2 Ak;

xk �k yk if and only if either yk � xk � �k or �k � xk � yk:

This means that the semilattice (A;�) can be equivalently described by the family of
semilattices f(Ak;�k)gKk=1:
(b) Let x 2 A: The preference Rxi is semilattice single-peaked on (A;�) if and only if

for all y; z 2 A such that y 2 MB(x; �) \MB(x; z); yRxi z: We illustrate it in Figure 5
below for the case K = 2 (see Appendix 7.2 for a general proof of this statement). Observe

that y 2 MB(x; �); y 2 MB(x; z), y 2 MB(x;w); and sup�(x; y) = yRxi z = sup�(z; y)

and sup�(x;w) = yR
x
iw = sup�(w;w):

-

6
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(c) Let f : MSP2 ! A be a strategy-proof, tops-only, anonymous and unanimous

SCF and let � = (�1; :::; �K) 2 A be its associated vector of �xed ballots. Then, for all
x; y 2 A; f(x; y) = (sup�1(x1; y1); :::; sup�K (xK ; yK)):
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(d) The set of all multidimensional single-peaked preferencesMSP is rich on (A;�).20

5.3.2 Voting by committees and separable preferences

Barberà, Sonnenschein and Zhou (1991) contains another example of a domain restriction

that can be described in a multidimensional setting. It is as follows. Let K = f1; :::; Kg
be a �nite set of objects. Agents have to choose a subset of K (possibly empty). Hence,

the set of alternatives is the family 2K of all subsets of K which can be identi�ed with the
K�dimensional hypercube f0; 1gK : Namely, any set X 2 2K can be described as the vector
x 2 f0; 1gK where, for each k = 1; :::; K; xk = 1 if and only if k 2 X:
A (strict) preference Ri on A is said to be separable if adding an object to a given set

makes the new set better if and only if the added object is good (as a singleton set, the

object is preferred to the empty set). In the hypercube representation of 2K; separability of

Ri means the following. Let x be the vector of zeros and ones representing the best subset

of objects according to Ri; and take any pair of vectors y and z of zeros and ones (i.e., two

subsets of objects Y and Z). From z obtain x by iterating the following procedure. Take a

coordinate of z that does not coincide with the corresponding coordinate of x; and replace

it by the coordinate of x; obtaining z0: Proceed similarly from z0, until x is reached. Then,

yRiz if and only if y is obtained in one of the steps for some of these procedures starting

at z to obtain x. Let S be the set of all separable preferences on f0; 1gK :
For simplicity we consider two agent SCFs. Following Barberà, Sonnenschein and Zhou

(1991) a SCF f : S2 ! f0; 1gK is voting by quota (not necessarily neutral) if there exists
q 2 f1; 2gK such that for all (R1; R2) 2 S2 and all k = 1; :::; K;

fk(R1; R2) = 1 if and only if #fi 2 N j tk(Ri) = 1g � qk: (6)

A characterization result in Barberà, Sonnenschein and Zhou (1991) implies that any

strategy-proof, tops-only, anonymous and unanimous SCF f : S2 ! f0; 1gK is voting

by quota. We indicate now how to relate this setting with our result.

Let f : S2 ! f0; 1gK be a voting by quota q and from it, de�ne the vector � 2 f0; 1gK

as follows: for every k = 1; :::; K, set

�k =

(
1 if qk = 1

0 if qk = 2:

Next, de�ne the binary relation � over f0; 1gK as follows: for all x; y 2 f0; 1gK ,

x � y if and only if x 2MB(�; y):
20As in the unidimensional case, the setMSP is the intersection of all sets of semilattice single-peaked

preferences,where each of these sets is associated to each of all possible values � in A:
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We show here that � = sup�f0; 1gK : To see that, �x k 2 f1; :::; Kg and consider any x
and y such that xk = 1 and yk = 0: Assume qk = 1: Then, fk(x; y) = 1 and 1 �k 0: Hence,
sup�kf0; 1g = 1 = �k: Assume now that qk = 2: Then; fk(x; y) = 0 and 0 �k 1: Hence,
sup�kf0; 1g = 0 = �k: In Appendix 7.3 we show that � is induced by f over A by condition
(1).

Finally, it is easy to see that the set of all separable preferences is rich on (f0; 1gK ;�):

6 Final remarks

We �nish the paper with some �nal remarks related to issues left aside during the presen-

tation of the main results.

6.1 Example of a non rich domain

Our methodology relies on establishing that a two agent strategy-proof, tops-only, anony-

mous and unanimous SCF f : D2 ! A induces a semilattice over A and that f takes the

supremum form, i.e., for every x; y 2 A; sup�(x; y) exists and f(x; y) = sup�(x; y): We

show here that the rich domain condition is indispensable for this property. The example

below exhibits a domain D, a strategy-proof, tops-only, anonymous and unanimous SCF
f : D2 ! A whose induced partial order � over A is not a semilattice because for some

x; y 2 A; sup�(x; y) does not exist (and hence f(x; y) 6= sup�(x; y)), and where D is not a

rich domain on (A;�):

Example 1: Let A = fx; y; z; �z; wg be the set of alternatives and D the domain of �ve

strict preferences:
P x P y P z P �z Pw

x y z �z w

z z w w x

�z �z �z z y

w w x y z

y x y x �z

:

Consider the strategy-proof, tops-only, anonymous and unanimous SCF f : D2 ! A de�ned

by the following table:
f x y z �z w

x x z z �z w

y z y z �z w

z z z z w w

�z �z �z w �z w

w w w w w w

:
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The partial order � induced by f can be represented by the following �gure:
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Figure 6

This partial order � is not a semilattice since sup�(x; y) does not exist. But the domain

D is not rich on (A;�) since z =2 [x; �z] 6= ; and there does not exist any P̂ x 2 D such that

xP̂ x�zP̂ xz; observe that there are other missing preferences, for instance any P̂ �z such that

�zP̂ �zxP̂ �zz. �

6.2 Finite set of alternatives

We identify in the Corollary below a set of necessary conditions on any strategy-proof, tops-

only, anonymous and unanimous SCF which applies to the case where the set of alternatives

is �nite and n is an even positive integer. This is obtained by application of Proposition 1

with a result on two agent SCFs from Bogomolnaia (1998).

Corollary Let g : Dn ! A be a strategy-proof, tops-only, anonymous and unanimous

SCF where n � 2 is an even positive integer and A is �nite. Let � be the binary relation
induced by g over A and assume that D is rich on (A;�). Then, (i) A � f0; 1gK for

some positive integer K, (ii) there exists � 2 A such that fk(xk; yk) = med>(xk; yk; �k) for
k 2 f1; :::; Kg and x; y 2 A, where the SCF f : D2 ! A is induced by g; (iii) D is semilattice
single-peaked on (A;�), or equivalently, for all x; y; z 2 A; [y 2 MB(x; �) \MB(x; z)] )
[yRxi z]:

6.3 Relation to other notions of single-peakedness

Nehring and Puppe (2007a,b) start with an abstract algebraic structure of a property space

on a �nite set of alternatives and a notion of �betweenness�, and use it to de�ne the notion

of generalized single-peakedness. The necessity part of their characterization is similar to
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our analysis in spirit and shows that if there exists an onto, strategy-proof, anonymous

and neutral social choice function on a rich domain of generalized single-peaked preferences

induced by a property space, then this property space is a median space.21 The notions of

generalized single-peakedness and semilattice single-peakedness are related but independent

of each other. For instance, the complete domain, which never appears in our analysis is a

generalized single-peaked domain.

The domain of preferences we characterize is closer in spirit to semi single-peaked do-

mains. Semilattice single-peakedness extends the notion of semi single-peakedness in at

least three directions. The key di¤erences are that the set of alternatives may be in�nite

and preferences admit indi¤erences. The notion of semi single-peakedness is built upon an

undirected graph which is necessarily a tree. The notion of semilattice single-peakedness

can be illustrated via a directed graph (which need not be a tree when viewed as an undi-

rected graph by ignoring the direction). Finally, the threshold (as described in Subsection

5.2) does not have to be an alternative; for instance, when A = (0; 1) � R and the partial
order � is the natural order > on real numbers (a semilattice on (0; 1)) then, 1 =2 A would
play the role of the threshold in Chatterji, Sanver and Sen (2013)�s construction. We show

below that the analysis of Chatterji, Sanver and Sen (2013) is not implied by our analysis

restricted to �nitely many alternatives.

Example 2: Let A = fw;�; x; v; yg be the set of alternatives. We consider the following
domain D of exactly eight strict preferences given below:

P1 P2 P3 P4 P5 P6 P7 P8

w � � x x v v y

� w x � v x y v

x x w w � � x x

v v v v w w � �

y y y y y y w w

:

This domain is strongly path connected in the terminology of Chatterji, Sanver and Sen

(2013) and consequently satis�es their richness condition. The notion of a strongly path

connected domain can be seen as follows. The alternatives w and � are said to be strongly

connected since there exist two preference orderings P1 and P2 which rank the alternatives

x; v and y identically while the positions of w and �, the top two ranked alternatives are

reversed across the two orderings. Likewise � and x; x and v, and �nally v and y are

strongly connected. One now associates to this domain a graph whose vertices are the �ve

alternatives and where two vertices are an edge if and only if they are strongly connected.

A domain is said to be strongly path connected if this graph is a connected graph. The

21See Bogomolnaia (1998) for characterizations of median voter schemes using medians on median graphs.
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domain D speci�ed above is indeed a strongly path connected domain. Figure 7 below

depicts this strongly path connected graph.

r r r r rw � x v y

Figure 7

Now consider a median voter scheme f : D2 ! A, where the �xed ballot is located on

� and consider the partial order � associated with this SCF f as de�ned by (1). Namely,
� � w and � � x � v � y: Figure 8 below depicts this semilattice.

r r r r r- � � �
w � x v y

Figure 8

Observe that [y; x] is non-empty and w =2 [y; x]: This paper�s notion of richness requires
that there exist a preference ordering where x is the top ranked alternative and where

y is ranked above w: This condition is violated by P4 and P5 above. Thus the richness

condition of Chatterji, Sanver and Sen (2013) does not imply that our richness condition

will necessarily be satis�ed. The converse is also true since our notion of richness can

be applied to multidimensional models with separable preferences which are excluded by

strongly path connected domains.22 Thus the two notions of richness and consequently the

results of the two papers are independent. �

Savaglio and Vannucci (2014) consider a social choice setting where the set of alter-

natives is a distributive lattice (A;�) from which a latticial ternary betweenness relation

is de�ned: z lies between x and y if and only if x ^ y � z � x _ y, where the binary
operations ^ and _ are the in�mum and the supremum taken according to �, respectively.
Agents�preferences satisfy some unimodality conditions, that are consistent with this lat-

ticial ternary betweenness relation. They study and characterize strategy-proof SCFs on

such domains. Note that our setting admits semilattices that are not necessarily lattices

(the in�mum of pairs of alternatives may not exist) and more importantly, we do not start

by assuming an speci�c structure on the set of alternatives but rather we obtain it as the

consequence of the existence of a strategy-proof, tops-only, anonymous and unanimous SCF

on a rich domain of preferences.

22Chatterji, Sen and Zeng (2014) characterize single-peaked preferences on a tree (as de�ned by Demange

(1983)) on strongly path connected domains using random social choice functions.
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6.4 Invariance

We �rst illustrate the content of the invariance axiom by exhibiting for well-known settings,

SCFs that satisfy it and SCFs that do not.

Consider in the Moulin (1980) setting the SCF f : SP3 ! [0; 1] that for all (x; y; z) 2
[0; 1]3; f(x; y; z) = med>fx; y; z; �1; �2g; where �1; �2 2 [0; 1]: Then, f satis�es invariance
if and only if �1 = �2:

Consider the Barberà, Sonnenschein and Zhou (1991) setting with n = 3 and K = 2:

The SCF f : S3 ! f0; 1g2 de�ned by quota q = (q1; q2) satis�es invariance if and only if
q1 = q2 (i.e., neutral quota).

Clearly, in the Moulin (1980) and in the Barberà, Sonnenschein and Zhou (1991) settings

there are many instances of well studied SCFs that satisfy all our requirements but violate

invariance. But in both cases, there indeed exists some SCFs which satisfy invariance

in addition to the properties we have imposed in this paper. This leads to the following

question. Suppose a domain admits a strategy-proof, tops-only, anonymous and unanimous

SCF for an odd number of agents. Does it imply that there exists a SCF which in addition to

satisfying all the foregoing properties also satis�es invariance, or does one need additional

conditions on the domain in order to ensure invariance? The single-peaked domain and

the multi-dimensional version of it alluded to above are domains where this property is

gotten without any additional conditions. A formal statement that resolves this question

is of obvious interest to us, but we are unable to establish any version of it here. In the

appendix, we provide a brief account of the picture without assuming invariance.

6.5 Characterization of all strategy-proof SCFs

Our results indicate that the supremum rule is prominent in the class of strategy-proof,

tops-only, anonymous and unanimous SCFs. On an arbitrary (rich or otherwise) domain of

semilattice single-peaked preferences, the supremum rule shown in Proposition 2 to possess

the aforementioned properties. On the other hand, any SCF with these properties, induces,

under the hypothesis of richness, a two agent SCF that coincides with the supremum rule.

A complete characterization of all SCFs that are strategy-proof, tops-only, anonymous and

unanimous on an arbitrary domain of semilattice single-peaked preferences is outside the

scope of the present study.
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7 Appendix

7.1 Odd number of agents without invariance

We consider here the case where the domain under consideration is known to admit a

strategy-proof, tops-only, anonymous and unanimous SCF for an odd number of agents. We

do so without imposing invariance on the SCF. At the end of this subsection we introduce

invariance in order to understand its role in Proposition 3 in the main text.

We restrict attention to the case n = 3: By the cloning method employed in Fact 1, we

can induce such an SCF whenever one exists for an odd number of agents that is divisible by

3. Let f : D3 ! A be strategy-proof, tops-only, anonymous and unanimous SCF. Fix x 2 A
and de�ne, following a procedure also introduced by Bogomolnaia (1998), gx : D2 ! A by

setting, for each pair y; z 2 A; gx(y; z) = f(x; y; z): Then gx is a strategy-proof, tops-only
and anonymous SCF. Note that we cannot deduce that gx is unanimous since gx(y; y) = y

does not follow from the assumed unanimity of f: Let �x be the binary relation induced
by gx over A using (1). Remark 1 applies and the binary relation �x is antisymmetric but
cannot be assumed re�exive since gx(y; y) = y is not guaranteed.

We will therefore consider binary relations that are antisymmetric and transitive (which

will follow from the richness axiom we introduce below) and refer to them as orders. The

following de�nitions generalize our notions of richness and semilattice single-peakedness to

the case at hand.

Definition 4 Let A be an arbitrary set. A family of orders f�rgr2A over A is given. The
domain D is rich on (A; f�rgr2A) if for any y; z; w 2 A, if [y; z]�x is non-empty for some
x 2 A and w =2 [y; z]�x, then there exist R

y
i ; R

z
i 2 D such that zP yi w and yP

z
i w:

Definition 5 Let f�rgr2A be a family of orders over A: The domain D is order-family

single-peaked on (A; f�rgr2A) if for all x; y; z; w 2 A and all Rxi ; Rzi 2 D;
(i) sup�w(x; y)R

x
i sup�w(z; y) and

(ii) sup�z(x; y)R
z
i sup�w(x; y).

The proofs of Lemmata 1 and 2 do not require that the two-agent SCF under considera-

tion satisfy unanimity. These Lemmata apply here if the domain D is rich on (A; f�rgr2A)
(in the sense of De�nition 4). We omit the details. Consequently, analogously to Propo-

sition 1, we obtain here for all x; y; z 2 A, gx(y; z) = sup�x(y; z) and D is order-family

single-peaked on (A; f�rgr2A).
To summarize, if a domain D admits a three agent SCF satisfying strategy-proofness,

tops-onlyness, anonymity and unanimity and the richness condition is satis�ed, then D is

order-family single-peaked on (A; f�rgr2A). However, this notion of single-peakedness does
not su¢ ce for the design of a strategy-proof SCF satisfying tops-onlyness, anonymity and
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unanimity. This is the principal di¢ culty in extending our analysis for an even number of

agents in Section 2 to the case of an odd number of agents.

We are however able to design an SCF with the required four properties if we introduce

additionally a notion of invariance of the family of orders. We express invariance in terms

of the family of orders as follows. We say that the family of orders f�rgr2A satis�es order-
invariance if sup�x(x; y) = sup�y(x; y) for all pairs (x; y): This condition would be implied

by the existence of a SCF de�ned for an odd number of agents that satis�es strategy-

proofness, tops-onlyness, anonymity, unanimity and invariance in the sense of De�nition

3.

We may now de�ne a two agent SCF in the following manner; for any pair (x; x) of alter-

natives, de�ne f(x; x) = x; while for any pair (x; y); x 6= y; of alternatives, de�ne f(x; y) =
sup�x(x; y) = sup�y(x; y): It is evident that this SCF satis�es anonymity, unanimity and is

tops-only. This SCF will also satisfy strategy-proofness whenever D is order-family single-
peaked on (A; f�rgr2A). Indeed we have f(x; y) = sup�y(x; y)Rxi sup�y(z; y) = f(z; y) by
(i) of De�nition 5. This veri�cation of strategy-proofness uses the invariance of the family

of orders in a central way and breaks down without it.

7.2 Multidimensional semilattice single-peakedness

We now prove that in the multidimensional model the following characterization of semi-

lattice single-peaked preferences holds:

The preference Rxi is semilattice single-peaked on (A;�) if and only if for all y; z 2 A
such that y 2MB(x; �) \MB(x; z); yRxi z.
First, we show that if Rxi is semilattice single-peaked on (A;�), then for all y; z 2 A

such that y 2 MB(x; �) \ MB(x; z); yRxi z. Since y 2 MB(x; �); it is true that y � x

and hence, sup�(x; y) = y. Moreover, y 2 MB(x; z), implies that, for each k = 1; :::; K;

either xk � yk � zk or zk � yk � xk: Assume without loss of generality that xk �
yk � zk: Since xk � yk � �k; sup�k(xk; zk) = sup�k(yk; zk) = �k if �k � zk and

sup�k(xk; zk) = sup�k(yk; zk) = zk otherwise. Hence, sup�(x; z) = sup�(y; z): By semilat-

tice single-peakedness, we know that sup�(x; z)R
x
i sup�(z; z). Thus, sup�(y; z)R

x
i z. Since

sup�(x; y)R
x
i sup�(z; y) by semilattice single-peakedness, we have yR

x
i z as required.

Conversely, we show that if for all y; z 2 A such that y 2 MB(x; a) \ MB(x; z),
yRxi z, then R

x
i is semilattice single-peaked on (A;�). Given y; z 2 A, to show that

sup�(x; y)R
x
i sup�(z; y), it su¢ ces to show that sup�(x; y) 2MB(x; �)\MB(x; sup�(z; y)):

Since sup�(x; y) � x, it is evident that sup�(x; y) 2 MB(x; �). Next, to show that

sup�(x; y) 2 MB(x; sup�(z; y)), we simplify the notation and let sup�(x; y) = w and

sup�(z; y) = w0. We know that for each k 2 f1; :::; Kg, wk = med>(xk; yk; �k) and

w0k = med>(zk; yk; �k). Assume without loss of generality that xk � yk. Consider three
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situations: (i) wk = xk, (ii) wk = �k and (iii) wk = yk. In situation (i), it is evident that

either xk � wk � w0k or w
0
k � wk � xk: In situation (ii), we know that xk � �k � yk.

Consequently, w0k = med>(xk; yk; �k) � �k = wk. Hence, xk � wk � w0k. In situation

(iii), we know that �k � yk. Consequently, w0k = med>(xk; yk; �k) � yk = wk. Hence,

xk � wk � w0k. In conclusion, wk is always in the middle of xk and w0k for all k 2 f1; :::; Kg.
Therefore, sup�(x; y) 2MB(x; sup�(z; y)) as required.

7.3 The binary relation � in voting by committees

We show that in the voting by committees model, the binary relation �; obtained by setting
for all x; y 2 f0; 1gK ,

x � y if and only if x 2MB(�; y);

is induced by f over A by condition (1).

Assume x � y:We want to show that f(x; y) = x; i.e.; fk(x; y) = xk for all k = 1; :::; K:
Take an arbitrary k 2 f1; :::; Kg and assume �rst that fk(x; y) = 1: Since f is voting by

quota, xk + yk 6= 0: If xk + yk = 2 then, xk = 1 and fk(x; y) = xk: Assume now that

xk + yk = 1: Since f is voting by quota, qk = 1; and by the de�nition of �; �k = 1: To

obtain a contradiction, suppose xk = 0: Since, by the de�nition of �; x 2MB(�; y) holds,
we have that yk = 0; a contradiction with the assumption that xk + yk = 1: Assume now

that fk(x; y) = 0: Then, xk+yk < qk: If xk = 0 then fk(x; y) = xk; which is what we wanted

to prove. If xk = 1 then qk = 2; �k = 0 and yk = 0: Hence, x =2 MB(�; y): Thus, x � y; a
contradiction. Since k was arbitrary, f(x; y) = x:

To prove the other implication in the de�nition of x � y by (1) assume f(x; y) = x:

We want to show that x � y: Take an arbitrary k 2 f1; :::; Kg. Suppose �rst that xk = 0:
If yk = 1 then qk = 2 and �k = 0: Namely, (i) xk = �k = 0 and yk = 1: If yk = 0 then

either qk = 1; in which case �k = 1; or qk = 2; in which case �k = 0: Namely, either (ii)

xk = yk = 0 and �k = 1 or (iii) xk = yk = �k = 0. Suppose now that xk = 1: If yk = 1

then either qk = 1, in which case �k = 1, or qk = 2, in which case �k = 0: Namely, either

(iv) xk = yk = �k = 1 or (v) xk = yk = 1 and �k = 0. If yk = 0 then qk = 1, in which

case �k = 1: Namely, (vi) xk = �k = 1 and yk = 0: Hence, (i) to (vi) hold for an arbitrary

k 2 f1; :::; Kg: Thus, x 2MB(�; y); and by de�nition of �; x � y holds.
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