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Abstract

In many areas of social life, individuals receivdormation about a particular issue of
interest from multiple sources. When these souaresconnected through a network, then
proper aggregation of this information by an indual involves taking into account the

structure of this network. The inability to aggreg@roperly may lead to various types of
distortions. In our experiment, four agents all wém find out the value of a particular

parameter unknown to all. Agents receive privagnalis about the parameter and can
communicate their estimates of the parameter regbathrough a network, the structure of
which is known by all players. We present resuttsnf experiments with three different

networks. We find that the information of agentsowtave more outgoing links in a network
gets more weight in the information aggregationttté other agents than under optimal
updating. Our results are consistent with the madépersuasion bias” of DeMarzo et al.

(2003).
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1. Introduction

In many important social and economic situatiansljviduals receive information
about a particular issue from multiple sources atsb transmit information to multiple
others. Examples are the sharing of political ameiamong voters or of information about
prospective job candidates in an organization’sngirprocess. When people exchange
opinions about such issues within a group, som@eQroup members may have a stronger
influence on the group’s opinion than others duthéoquality or accuracy of the information.
However, influence may also often be due to sdaielors like the resources some people
have available to invest in spreading their opisjdrow well considered their opinions are in
society or how well connected they are to others.

One basic source of social influence occurs in camoation through networks,
where there exists the possibility of one persanfermation reaching a particular other
person repeatedly. When individuals are connec¢texigh a network, then they may receive
information both directly and indirectly from thamse source and send information directly
and indirectly to a particular other source. Inrsaituations, perfectly rational aggregation of
information by an individual involves taking inte@unt the structure of the network and
adjusting how one weighs the information one rezeiaccordingly. However, boundedly
rational agents may have difficulties with this gges and aggregate in biased ways—for
example, by failing to adjust properly for repetits of informatiort. In this paper we present
results from laboratory experiments that shed lighthow people aggregate information
when they are connected in a network.

DeMarzo et al. (2003) present a stylized versidnawm information aggregation

situation in a network, together with a model gfaaticular bias to which boundedly rational

! See, for instance, Gale and Kariv (2003), Goluth Zackson (2010) and Acemoglu et al. (2011).
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agents may fall prey. They posit a situation inahha set of agents all want to find out the
value of a numerical parameter. Each agent statitissome initial private information about
the parameter, the aggregation of which is allitfi@mation available to the group of agents
in the network. Agents then communicate their estte® about the true parameter to one
another through the network. The network consists vumber of connections between the
set of agents that specify who sends informatiowhtom—or, alternatively, who listens to
whom. There are multiple periods of communicati@baeen the agents, a feature meant to
represent a lengthy deliberation process. In eadog, each agent listens to the estimates of
those who, following the network structure, sench Imformation and sends his estimate to
those who listen to him. After each period, eactnagan update his own estimate in order to
approximate the true parameter based on any nenmiation received from other agents.
There is a rational way to aggregate informatiorsuch a setting, which involves
agents discounting information that reaches thgmatedly through distinct channels in the
network. But it is possible that boundedly ratiomadlividuals will not use this optimal
process. A priori, there are many distinct wayswimch information could be aggregated
non-optimally. DeMarzo et al. (2003) propose a ipalar model of boundedly rational
information aggregation, based on DeGroot (1974hjclv leads to “persuasion bias.”
According to this model, all agents treat all imh@tion they receive as new, ignoring the fact
that an estimate received in a particular periog omatain information that has already been
received—directly or indirectly—from another sourdggents treat the information they
receive in each period as new and independent ambtadjust for the fact that over time
the information of some agents might contain mapetitions than that of others. The
implications of this kind of biased information aggation depend on the structure of the
network. Some networks may cancel out the biasedhtreg of information, so that agents

subject to the boundedly rational persuasion bias/ mevertheless reach an unbiased
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estimate of the true parameter. However, other ordsvwill not have this property and the
consequence will be that the presence of a biatheatlevel of individuals processing
information yields groups that arrive at biasednestes of the parameter.

The model of bias proposed by DeMarzo et al. (2003 plausible one. Nevertheless,
it is not a priori obvious that if people turn datbe biased, they will be so in the precise way
posited by the model. There are many ways to agtgemformation and addressing the
guestions of which bias will occur and how it walifect group outcomes requires empirical
information. Therefore, we use laboratory experitega explore the internal validity of the
persuasion bias model. The laboratory providesdaalienvironment to study the relation
between network structures and the kind of inforomatand communication processes
necessary to test the persuasion bias model. The prncipal values of laboratory
experiments are control and replicability. Causabwledge requires controlled variation
(Falk and Heckman, 2009) and the laboratory allfawsight control over the environment in
which interaction takes place. At the same time, lboratory allows the generation of
sufficient data to test theoretical predictiongisimple way.

In this paper, we present results from experimeuts three different networks. The
first two are directly inspired by the discussionDeMarzo et al. (2003). We study behavior
using their examples of both “balanced” and “unbedal” networks of four agents. In the
balanced network, four agents are located in alecir€hey all receive one piece of
information and all send their estimate of the peaeter to and receive it from the two agents
closest to them. In such a balanced network, DeMatzal. (2003) predict no bias in the
consensus estimates of the group. In the unbalameiebrk, the four agents all receive one
piece of information, but some agents send infolonato a larger number of others and

receive information from a smaller number of agehin others. In such an unbalanced



network, DeMarzo et al.’s (2003) model predictsracfse biased outcome to which the
group’s estimates should converge.

We find that observed behavior is consistent wighspasion bias and, importantly,
with many of the precise predictions of DeMarzoaéts (2003) model. In the balanced
network, subjects’ estimates move in the directm estimates in which the private
information of all four players carries identicaleimghts, as predicted by the theory. In
contrast, in the unbalanced network, subjects tem@rds biased estimates that give greater
weight to the private information of those agentdshwmore outgoing communication
channels and those connected to such agents, wdicbnsistent with DeMarzo et al.’s
(2003) theoretical predictions. Moreover, with exi@ece, the estimated empirical weights of
the different private signals correspond closelyhiose of the persuasion bias model. Hence,
our data provide substantial support for the notibpersuasion bigs.

In a set of experiments conducted independentbyazzini et al. (2012) find that the
network structure plays a significant role in detigring social influence, but that the most
influential agents are not those with more outgdinks, as predicted by the persuasion bias
hypothesis, but those with more incoming links. iTlsudy presents data from a balanced
and an unbalanced network that are different frdros¢ we study. They present an
explanation of their results in the context of aeyalization of the DeMarzo et al. (2003)
model, suggesting a more general way in which bedndationality might influence

information updating in a network. In particuldnetmore general model takes into account

2 Banerjee et al. (2013) and Mobius et al. (201Ft@io some field evidence consistent with the D&Gro
model. Our experiment also relates to a paper teeEmd Zimmermann (2013) on correlation neglectclvh
describes agents’ tendency to overweight infornmatieceived from multiple sources, that is coredatiue to

its origin from the same source. They report a fatmyy experiment in which subjects’ exhibit coatén
neglect and overweigh information that they recerepeatedly through multiple channels. They show
experimentally that in such contexts many peoplglew these correlations in the updating processterat
correlated information as independent.



not only agents’ outgoing links but also their iming links—the idea being that those who
“listen” to more people are potentially more infiial >

Given the qualitative discrepancy between the tesafl Corazzini et al. (2012) and
our results, we conducted new experimental sessisimg) their unbalanced network. Our
results are again consistent with the more resteiatotion of persuasion bias and do not
need the additional flexibility of the more genemabdel. In addition, we perform a simple
counter-factual exercise by applying their model aior unbalanced network with the
parameter estimates that are reported in Coraerigl. (2013). For this comparison, we find
that the persuasion bias model outperforms thedehdlence, across multiple networks, our
study suggests greater concordance with the peosuaisis model of DeMarzo et al. (2003).

The remainder of this paper is structured as fdlolm Section 2, we very briefly
provide some theoretical background and describgénsuasion bias model of DeMarzo et
al. (2003). Sections 3 and 4 present the desigpothgses and results for Experiment 1,
while Section 5 presents Experiment 2, which ubesnetwork studied by Corazzini et al.
(2012) to compare their model's predictions witbsé of DeMarzo et al. (2003). Section 6

concludes.

2. Theoretical Background and Hypothesesfor Experiment 1

We now succinctly present the theoretical envirentrthat we study experimentally,
which is based on the model of DeMarzo et al. (2008all networks that we study, there is
a set of four agentd = {1, 2, 3, 4}who all wish to find out the value of an unknowmee

dimensional parametef), There are sixteen periods of interaction betwdenfour agents.

% Battiston and Stanca (2014) present additionalende that the influence of an agent may be pesjtiv
affected by the number of incoming links.
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The reason why we chose this particular numbeeabds is grounded in the persuasion bias
model, which requires f\periods for convergence (more detail provided Wglo

Before the first period of interaction, each agehtains some initial information
aboutd in the form of a private noisy signabx 0 + g;, whereg; is an error term with mean
zero, independent across agents and normally laiséd. Agents do not receive any other
signals about the parameter. Each agent, i, asaignsitial precision to the information of
each other agent, j, representedthy

Starting with the initial information, agents commnicate according to a
communication network that can be representeddaseeted graph indicating whether agent
i listens to agent j. We denote by S(i) the setgénts to which i listens, and by the
indicator function of S(i), which takes the valuieOoif agent i does not listen to agent j and
the value of 1 if he does; we consider that ea@n@listens to himself, e.g.; ¢ 1. We refer
to the set S(i) as the listening set of agent itaritie function S as the listening structure.

DeMarzo et al. (2003) model communication and tipdaas follows. In the first
communication period, agent i learns the signalthefagents in S(i). Given normality and
agents’ fixed assessment of the precision of otlv&iamation, a sufficient statistic for these
signals is their weighted average, with weight giy®y the precisions. They denote this

statistic by x and refer to it as agent i's beliefs after onegukof updating:

(1) %1 = Y (Gjmijo/mio) Xjo

wheremijo = Y} gjmjo denotes the precision that agent i assigns tawis beliefs and
represents j's initial beliefs. Equation (1) isledlagent i's updating rule.

The updating rule (1) can be expressed in veadtation. Denote by x¢the matrix
whose i-th row is the vectof; f agent i’'s beliefs in communication period t.rdee also, by

T, the listening matrix with elements:



(2) T = qjmjo/miiy.

Then the updating rule can be expressed asTxXo.

A very important simplifying assumption introducatthis point is that all precisions
are the same. This converts each element of ttemiligy matrix into something very simple:
the ratio between the indicatoy (P or 1) and the total number of agents j thanagéstens
to (1,2, 3 or 4). As a consequence of this singdtfon, the proposed updating consists
simply of the averaging of others’ estimafes.

We now briefly refer to the two key results of theMarzo (2003) model pertaining
to the convergence process of the updating rulevibawill use in our analysis below. First,
their Theorem 1 states that if the set of agenstriangly connected and another technical
assumption holds, then the vector of agents’ sanifdences converges to the consensus
given by the vecto® which is the unique solution w = Tw, where w is tisocial influence”
vector showing the weight of each agent’s initighal in the consensus. A set of agents
being strongly connected simply means that eveentagpeaks to every other agent (directly
or indirectly) and thus no agent is isolated frdra dthers.

Second, their Theorem 2 states that, if agentsvialhe updating process introduced
above, the beliefs to which agents converge anecoif and only if the network is balanced,
i.e. if and only if, for all i,}} g; Tj = 1. In words, if the sums of weights in the Irstey
vectors are the same and equal to 1 for all agevsnow present the two networks studied
in Experiment 1and directly apply the two theorémthese networks.

Figure 1 shows the “Balanced Network 1” used in fingt experiment. The arrows

indicate which agents send information to whicheotagents. For example, agent 1 sends

* In our experimental context. this assumption &y reasonable one, since (as will become clezaten) our
experimental subjects will not have much basisfaibuting different precisions to distinct ottegents.



information to agents 2 and 4 and also receivesrnmdtion from agents 2 and 4. This
network is balanced, precisely because each aglst and listens to the same number of
other agents. Denoting by S(i) the set of agentwhich agent i listens, we have, for the
Balanced Network 1: S(1) = {1,2,4}; S(2) = {1,2;3}S(3) = {2,3,4}; S(4) = {1,3,4},
including always the agent in question, i.e. eaggmalistens to himself.

1/3 1/3 0 1/3

1/3 1/3 1/3 0

From here we obtain the correspondiistening matrix = . To find
pondiisgening B= 0 13 s 13

1/3 0 1/3 1/3

the weights to which Theorem 1 above predicts behavill converge, we solve the system
wT=w and find that the weight of the four signats the consensus value to which the
updating process converges is given by the veeter, = (Y4, Y, Y, Y4), i.e. the social
influence is the same for all four agents. In spitéhe fact that the updating process does not
take into account repetition, the process convetges unbiased set of weights, because the

network is balanced, consistent with Theorem 2.

7N

N7

Figure 1: Balanced Network 1




Figure 2 shows the “Unbalanced Network 1,” whemmes@gents speak and listen to a
different number of other agents. In this cased#is of agents that agents listen to are the
following: S(1) ={1,4}; S(2) ={1,2,3}; S(3) =1,2,3,4}; S(@4) ={1,3,4}.

/2 0 0 1/2
1/3 1/3 1/3 0
1/4 1/4 1/4 1/4
/3 0 1/3 1/3

From here one can construct the correspondingirggematrix Tyg; =

. and obtain the following vector of social infleenweights: ws1 = (16/42, 3/42, 8/42,
15/42) for agents 1, 2, 3 and 4 respectively. Iic@atage terms, this vector is approximately
equal to w1 = (38%, 7%, 19%, 36%). Observe that persuasias tioes not propose that
the influence weights directly reflect the numbgagents an agent speaks to. Agents 3 and 4
both speak to two other agents, but the correspgnidifluence weights are 19% and 36%

due to the fact that agent 4 speaks to agent 1,mvhwn talks to all three other agents.

SN
N L7

Figure 2: Unbalanced Network 1

We can then use the above predictions, from DeMatzal.’s (2003) model of
persuasion bias, to generate precise hypotheseanfoexperimental test of information

aggregation in the above two networks. Our firgddtiaesis is based on the prediction from
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DeMarzo et al. that, for both perfectly rationakats and to those affected by persuasion

bias, the balanced network should produce no hiasmsensus estimates.

Hypothesis 1: In Balanced Network 1, subjects wilhverge to a consensus

estimate in which the four initial signals will cgrequal weight.

Our second hypothesis uses the precise weightseidnpy DeMarzo et al.’s model for the

specific unbalanced network in Figure 2.

Hypothesis 2: In Unbalanced Network 1, subjects$ edhverge to a consensus
estimate in which the four initial signals will egr unequal weights. These
weights will be as predicted by the persuasion rexlel: 38%, 7%, 19% and

36%.

3. Experiment 1: Procedures

In Experiment 1, we study behavior in the two reks that we have just introduced,
Balanced Network 1 and Unbalanced Network 1. Theaigavas identical for all networks,
with the exception of the links between subjectsrresponding to the different
communication networks. Each person participatdgt onone session with one particular
network. The shape of the relevant network was comnmformation. A graph of the
network was visible to the participants at all tame

Each participant was a member of a fixed groupfonfr subjects. Each group
interacted consecutively in four blocks, each ofickhasted for sixteen periods and was

based on a new target value and private signals.Wés to allow for learning of the task. At

® The instructions can be found in Appendix A.
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the beginning of a block, participants did not knihw target value. Instead, each of the four
subjects initially received a private signal drafskom a normal distribution centered on the
target valué. The signals were drawn separately for the diffetamet values.

Once each participant had received his or her kighan the sixteen periods of
information exchange within the group for that lddiegan. In each period, each agent in a
group sent an estimate of the target parametelt smants in his or her listening set. After
receiving estimates from others according to thevosk structure, the group moved to the
next period. All sixteen periods proceeded accgrdinthe same rules. The choice of sixteen
periods was guided by the result in DeMarzo et(2003) that fully rational agents will
converge to the true value in at mostpériods of updating. Participants in the experimen
should not necessarily be expected to behave eiypmeaning that their estimates may not
fully converge; however, we needed to make a choideorizon and we chose the minimal
one that allows for convergence under the ratibeachmark. Note that learning could not
only take place within the sixteen periods of ack|obut could also occur across the four
blocks.

At the beginning of a block, subjects received rthivate signals through the
computer interfacB.In each period, subjects could enter their esémaing the computer,
and also observe the estimates entered by thdbeimlistening set. Each subject was given
a bundle of four record sheets, one for each blac#l,was instructed to write down his or her
own estimate as well as the estimates of othenssior her listening set in each round. Each

subject also received a sheet of paper depict@gaodmmunication network.

® participants did not receive any additional signialsubsequent periods within a block.

" In related work, Corazzini et al. (2012) had fplayers and twelve periods and Battiston and Sté2a:4)
four players and eight periods.

8 The experiment was conducted using the softwaneez(Fischbacher, 2007).
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In every period, each participant’s payoff wasedeined by the distance between the
estimate provided by the participant in that pergod the actual target value in that block.
Specifically, we implemented the payoff function,#400 — 0.5C (target number —
estimate), where payoffs are denoted in Euro cents. In @mtk, one period was selected at
random to count for payment. In principle, subjepts/offs could be negative, meaning that
they could lose part of the 5 Euro participatiogrmant, though this was unlikely. We did not
allow subjects to lose more than the participagagment.

Target values were randomly drawn from a uniforistribution over the range
determined by taking the tenth highest number dred tenth lowest number from one
hundred draws from a normal distribution with m&and standard deviation 400. This, in
principle, allows for the target number to be aegl mumber, though the likely ranges from
which they are drawn are much more narrow and alyliko yield very extreme numbers.
Subjects were only told that the target number d@dag a real number and were not told
anything else about how the number was determiRed.robustness we investigated two
complete parameter sets, i.e. two different sefewf target values with a corresponding set
of signals for each of the four agents in the nekworhe two parameter sets were used in
different sessions and can be found in Appendix B.

Experiment 1 was conducted at Pompeu Fabra UniyarsiBarcelona. Participants
were undergraduate students at the university were wecruited with the on-line system

ORSEE (Greiner, in press). Table 1 shows the Higion of groups per treatment for

° The ranges from which target values were drawreeng being, in the Parameter Sets 1 and 2, résplgct
[-512.669, 437.452] and [-501.17, 418.394].
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Experiment 1. Since each group is composed of {est#) the total number of subjects in

Experiment 1 is 14%

Table 1: Number of groups per treatment

Treatment (Parameter Set| Number of groups
Balanced 1 (1) 10
Balanced 1 (2) 10

Unbalanced 1 (1) 8
Unbalanced 1 (2) 8

4. Experiment 1. Results

We examine Hypotheses 1 and 2, pertaining to whétbleavior converges toward an
unbiased estimate of the true target value, in wiie individual private signals receive
equal weight, or whether they converge toward syateally biased consensus estimates
that concord with the predictions of persuasiorsb@f course, while complete convergence
is theoretical possible, we expect it to be uniikal priori, given the complexity of the task.
For instance, in related experiments that usefardiit design, Battistin and Stanca (2014) do
not observe complete convergence.

Nevertheless, we present three pieces of eviddratestiggest estimates within groups

converge across periods, even if complete conveggenrare. Figure 3 shows the evolution

19 Two sessions, with four groups each, ended eadpiise of computer problems. In one case, the iexger
ended after period 51 (i.e., after 3 periods ofcRId); we use only Blocks 1 through 3 from thisssas. In the
other case, the experiment ended after period.80 &éfter 14 periods of Block 2); since we haveast
complete data for Block 2 in this session, we usth Blocks 1 and 2.
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over time of the average natural logarithm of ttendard deviation of estimates within a
group. We think that this is a sensible statistiarteasure convergence, since it measures
dispersion in individual estimates from the grougam estimate, using the natural logarithm
to reduce the influence of outliers. The differpanels show different aggregations of the
data. In all cases, there is a downward trend,catalig that the estimates move closer
together, on average, across periods within a bl&@nel A shows this is true in the
aggregated data. Panel B separates the data by béoealing slightly weaker convergence
in Block 3, but also a downward trend in all fododks and little systematic evidence of
learning across blocks. Panel C shows similarlyeBsing trajectories across periods when
dividing the data by parameter set. Finally, Pdahe&ompares behavior for the two different
networks, suggesting convergence is slightly steorig the case of the unbalanced network.
However, in all cases, there is a clear downwamaddr

An additional piece of evidence indicating a cogesice process is the results of
panel regressions, with group-level random effeatdhe natural logarithm of the standard
deviation of group estimates on the period withibl@ck. Using all data jointly, we find a
negative coefficient, -0.177 with a standard ea®®.014, which is statistically significant at
the 1% level. Moreover, separate regressions fibdlanced and unbalanced networks, the
two parameter sets and for each of the four bisti®v very similar results. In all cases,
there is a significant downward trajectory acrossqas within a block.

Finally, Figure 4 presents a different perspecidfethe convergence process that
facilitates identifying possible heterogeneity asgroups. It shows the evolution over time
of the proportion of groups with standard deviagioof estimates below five different
thresholds. One can see that, for any threshottetls an upward tendency over time. For
example, in the first period, few groups have stadddeviations below 20; this is not

surprising, as the standard deviations of privageads are greater than 20 in almost all cases
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(see Appendix B). However, by the end of the bloaknost all groups have standard
deviations below that threshold. Similarly, virtyalno groups start off with standard
deviations below 10, but roughly three-quartergroiups are below this threshold by the end
of the block. While the proportion of groups witlarsdard deviations below 1 is never high,
this portion also increases across periods wittbloek.

To summarize, our data are not fully consistenhwitie hypothesis that behavior
converges to a consensus. In fact, there are mstanices in which all four estimates are
identical by the end of a block. However, relaxthg strict criterion, we see considerable
evidence that estimates move in the direction olseasus. For example, the proportion of
groups with standard deviations below 0.1 incref®es zero in the first period of a block to
6.3 percent by the sixteenth period. More generally see widespread movement toward
similar estimates across periods in almost everywelook at the data.

We next turn to an analysis of what the averagenagt in groups converge toward
and whether this central tendency is consistertt Wigpotheses 1 and'2 For this, we use
the final 8 periods in a block, where Figures 3 drahow most of the convergence has taken
place. We then calculate, as a measure of theatdetitdency in a group’s estimates, the
average estimate in each group for all playerssacadl 8 periods. We then estimate average
“bias” in group estimates, by comparing the averageémate in the final 8 periods to the
mean of the private signals received by the foougrmembers; specifically, our measure of
bias is the average estimate in the group minustleeage of the signals. That is, a group

that converges to mean estimates equal to the gav@fathe four private signals shows zero

™ Evidence of convergence toward better informeiineges can be seen by comparing the earnings fiem t
first half of a block (periods 1-8) with the secdmalf (periods 9-16). Average payoffs rose fron82lEuro to
2.31 Euro, while median payoffs rose from 3.59 Bor8.76 Euro. Comparing the first and last perivé,see
that the average (median) payoff also increased) fi13.32 (2.27) Euro to 2.56 (3.74) Euro. The iipancies
between mean and median earnings are due to thieatgigdoss term in the payoff function and theg&armpact
of occasional extreme estimates on the mean. RibedlSubjects’ losses were bounded, such thaesiggould
not leave the experiment with a negative balance.
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bias, while a group that converges to a mean ewdinieat is 4 greater than the rational
benchmark shows a bias of 4.

Figure 5 shows the median bias across groups,eiratierage estimates for the final
eight periods of each block. Specifically, for eagpfoup, we look at the mean of the 32
estimates in the final eight periods of a block. Mentify the bias as the difference between
the actual mean group estimate and the rationathmeark of the average of all the private
signals. For the balanced network the predictedieslof bias are zero, according to
Hypothesis 1. For the unbalanced network, persoasias predicts a level of bias
represented by the differential weights on the gigwsignals; this predicted bias is provided
by the solid line. The dashed lines show the oleskdata, by the type of network. Panel A
provides this information for Parameter Set 1, wiilanel B does so for Parameter Set 2.
Both panels suggest that the estimates toward whigtiicipants tend are generally
directionally in line with the predictions of peesion bias. There is almost always greater
bias in the behavior in the unbalanced networksthisdgenerally concords—in six of eight
cases—with the directional prediction of the pessua bias model. In fact, the concordance
with the persuasion bias predictions in the finseé blocks for Parameter Set 1 and the first
two blocks for Parameter Set 2 is quite striking.

To put the analysis of the bias on a more solidsbas use regression analysis. Table
2 shows, in columns 1 and 2, the results of regmasswith subject fixed-effects, for the
Balanced Network 1 and the Unbalanced Network %peetively. Individual subjects’
estimates are regressed on the value of the fouatprsignals received by group members in
that block. In column 1, the results for the bathoetwork show that the coefficients for all
four signals are significant and appear to be ctosthe predicted and unbiased weights of
0.25. The results of an F-test show that the ngplothesis that all four coefficients are equal

to 0.25 cannot be rejected (p = 0.197, two-sidéd®. can also test whether the estimated

17



weights for the Balanced Network 1 are similar bose predicted for the Unbalanced
Network 1 by the persuasion bias model. Under thdet) this should not be the case. An F-
test rejects, at marginally significant levels, thal hypothesis that the estimated weights for
the Balanced Network 1 are equal to those preditdedhe Unbalanced Network 1 (p =

0.056).

Table 2: Regression results

Independent Variable Balgr_mced Net\_/vork 1 Unba_llgnced N(—.jtwork Unba_tlgnced Ne_twork b4
; Individual Estimate Individual Estimate Individual Estimate
and Other Information
1) (2) 3)
Signal 1 0.294*** 0.355*** 0.464***
(0.052) (0.060) (0.055)
Signal 2 0.225*** 0.065 0.027
(0.057) (0.070) (0.076)
Signal 3 0.194*** 0.219*** 0.213***
(0.032) (0.046) (0.045)
Signal 4 0.279*** 0.343*** 0.289***
(0.051) (0.056) ((0.057)
Constant 1.340 -1.673 -0.487
(1348) (1.695) (2.212)
Number of 2432 1760 2432
observations
R-squared 0.987 0.992 0.9835
Number of Unique
Subject IDs 80 64 76

The regressions above use as dependent varialdesstimate provided by a subject in a
period, using the final 8 periods (9-16) in a blo@¥e include subject fixed-effects and
cluster standard errors by groups.

For the unbalanced network, the regression resultelumn 2 show that ordering of
the estimated weights is the same as that of thghigepredicted by the persuasion bias
model. Specifically, we compare the estimated wisidgbr the Balanced Network 1 with the
prediction of DeMarzo et al. (2003) for the Unbalas Network 1, which attributes 38%,
7%, 19% and 36% of the weights to signals 1, )84 respectively. We find that an F-test

fails to reject the null hypotheses that the edthaveights for the Unbalanced Network 1

are equivalent to the above weights predicted bgyasion bias (p = 0.136, two-sided). In
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contrast, an F-test rejects the null hypothesisqufal weights for the Unbalanced Network 1
(p = 0.038, two-sided).

Hence, taken together, our four tests documentthieaéstimated weights for each of
the two networks are consistent with those preditiethe DeMarzo et al. (2013) model for
that network and inconsistent with those prediétedhe other network.

What can we conclude with respect to our Hypotheseand 2? First, for both
networks, we do not see full convergence to a aseestimate. However, we do see clear
evidence of movement over time toward estimate$ #n@ more similar within groups.
Hence, despite the lack of complete convergenca tmmmon estimate, there is clearly
partial convergence toward more similar estimaise importantly, this movement tends to
be in the direction of the weights on initial prieanformation as predicted by DeMarzo et

al.’s model of persuasion bias.

5.A More General Model and Experiment 2

After having conducted Experiment 1, we became awalr a related paper by
Corazzini et al. (2012). This paper presents tlselt® of experiments on persuasion bias
using a balanced network and an unbalanced onk, dfferent from the ones we use in
Experiment 1. They find results that are not ire Mith persuasion bias. Instead, in their data,
“social influence depends not only on being listete by many others, but also on listening
to many others” (p. 1276). In addition, they pregsea model of a generalized boundedly
rational updating rule and show that persuasios liad the behavior observed in their
experiment can both be seen as the outcomes aabkpases of that updating rule.

The interpretation provided by Corazzini et aDX2) is indeed an intriguing one. An
important question is what the precise behavioratimnism is that underlies the rule that

they use to explain the behavior in their experim&pecifically, the observation of the
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network structure may lead some individuals to giare weight to the input of somebody
who listens to many players, guided by the notiat those players have a lot of information.
In this sense, the idea that influential listen@mgrmation should carry more weight can be
interpreted as players being somewtmatre rational than under DeMarzo et al.’s persuasion
bias model. That is, rather than simply treatingrdbrmation as equally informative, such
individuals look at the network structure to infgho has better information. Of course, an

important question is why such behavior does neean our Experiment 1.
/ : \
3 /

Figure 3: Balanced Network 2

One possible source of the difference between tiesults and ours is that the two
experiments employ different networks. Figure 3vehoBalanced Network 2,” which is the
balanced network studied by Corazzini et al. (20TRg listening sets for this network are
S(1) ={1,4}; S(2) ={1,2}; S(3) ={2,3}; S(4) #3,4}. The listening matrix and the vector

1/2 O 0 1/2
1/2 1/2 0 O

of influence weights are given bygil = and = (Ya, Ya, Ya, Ya),
g g ¥2= 0 12 12 0 Wz = (%4 Y, ¥, 4)

0O 0 1/2 1/2
respectively. The regression results reported iraZoni et al. (2012) for Balanced Network
2 find that the values of the estimated coeffigevdry between 0.15 and 0.34, but that the

null hypothesis of equality of equal weights foe tflour coefficients cannot be rejected. This

20



finding supports our Hypothesis 1 above, and prwifurther evidence that behavior in
balanced networks is consistent both with the aism bias model and with rational

information aggregation.

TN
N/

Figure 4: Unbalanced Network 2

Figure 4 shows “Unbalanced Network 2,” which is tibalanced network studied in
Corazzini et al. (2012). Here, the listening stuuetis given by: S(1) = {1,4}; S(2) = {1,2};
1/2 0 0 1/2
o L 1/2 1/2 0 O
S(3) ={1,2,3}; S(4) ={1,3,4} and the listeningatnix is Tyg, = U3 U3 U3 0 The
1/3 0 1/3 1/3
corresponding influence vector, according to DeMastzal.’s persuasion bias model iggw
= (42%, 10%, 16%, 32%). Agent 1 is the most inflimrone, since he is the only one that
speaks to all three others. Agent 2 is the ledktential one, since he only speaks to agent 3,
who only indirectly reaches agent 1. Agent 4 issbeond most influential one; like agents 2
and 3 he only speaks to one other agent, but ¢festdurns out to be agent 1 who speaks to
all three others.
The weights that Corazzini et al. (2012) find fignals 1 to 4 in their data analysis

are, respectively, 27%, 20%, 22% and 31% (see TabieCorazzini et al. (2012)). An F-test

rejects the null hypothesis of equality of the wsy This configuration is certainly quite
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distinct from the one predicted by the persuasi@s Imodel of DeMarzo et al. (2003), of
42%, 10%, 16% and 32%. This discrepancy is intnguand led Corazzini et al. (2012) to
formulate the more general model described above.

To provide insights into possible sources of tiser@pancy between Corazzini et al.’s
(2012) findings and ours, we employ two approackast, we derive the predictions of their
model for our Unbalanced Network 1, from our Expemt 1, to see how well their model
does in explaining our independent data. Secondcaveluct new experimental sessions
using the unbalanced network studied by Corazziai.g2012), Unbalanced Network 2, to
see if their result replicates with our procedures.

To compare the predictions of their model to thoseurs for Experiment 1, we use
two different weight vectors that correspond to wkberent parameterizations—specifically,
two different values op—of the model proposed by Corazzini et al. (2012xheir model,
this parameter measures the degree to which playersveigh the information of those who
receive more information from others in the netwadkkvalue ofp equal to zero implies the
persuasion bias model of DeMarzo et al. (2003))endivalue op equal to one implies that
players weigh signals they receive by the humbencdming network connections of the
person sending that signal. FB¥0.82, the value that maximizes explanatory powerttie
weights they observe in their experiment, the wecfaveights for the Unbalanced Network
1 from our Experiment 1 is 21%, 13%, 33% and 33%.p=1, the weights are 25%, 10%,
30% and 34%. Observe that both vectors are qusndi from the estimated weights we
observe in the data, of 36%, 7%, 22% and 34% (sééeTl, column 2), which appear to be
more similar to those predicted by DeMarzo et gléssuasion bias model (38%, 7%, 19%,
36%).

To evaluate the closeness of the vector of weitffaswe estimate from our data with

that of the persuasion bias model of DeMarzo g2803) and the influential listeners model
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of Corazzini et al. (2012), we use distance fumgiorhe left-hand side of Table 3 shows the
Euclidean and Taxicab distances of our estimateth@éotwo models for the Unbalanced
Network 1 studied in Experiment'1.One can see that our estimated weight vector ishmu
closer to the prediction of DeMarzo et al.’s (20QG8rsuasion bias model than to the

Corazzini et al. (2012) model for the two spegfarameter values we consider.

Table 3: Distances of the estimated weight vector from the models

Euclidean Distances

Unbalanced Network 1 Unbalanced Network 2

DeMarzo Corazzini Corazzini DeMarzo Corazzini Corazzini
(p=1) (p=0.82) (p=1) (p=0.82)
0.0017 0.0188 0.0374 0.0117 0.0437 0.068

Taxicab Distances

Unbalanced Network 1

Unbalanced Network 2

DeMarzo Corazzini Corazzini DeMarzo Corazzini Corazzini
(p=1) (p=0.82) (p=1) (p=0.82)
0.0751 0.2265 0.3329 0.2031 0.3544 0.395

We now move to our second comparison between thentadels—Experiment 2, in
which we study Unbalanced Network 2, using the spmeedures and parameter sets as in
our Experiment 1> We had 10 groups of participants with Parametefl$ad 9 groups with

Parameter Set 2, a total of 76 participants. Expent 2 was conducted in the LINEEX lab at

12 The Taxicab distandeetween two points is the sum of the absolute w@iffeesof their Cartesian

Coordinates.

13 We did not use Balanced Network 2 in this stuityces both our results and those of Corazzini e24112)
are consistent with all four signals receiving dgueights in balanced networks.
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the University of Valencia. Participants were umpladuate students at the university and
recruiting was again done using the electronicesyDRSEE (Greiner, in press).

Figures 6 and 7 are analogous to Figures 3 and Bxjmeriment 1. Figure 6 shows the
evolution over time of the average natural loganitbf the standard deviation of guesses
within a group for the Unbalanced Network 2, anguifé 7 shows the evolution over time of
the proportion of groups with standard deviatiohsstimates below five different thresholds
for the Unbalanced Network 2. The main featuresdt in both figures at this point is that
the patterns are rather similar for Experimentsndl 3. Regression analysis confirms the
impression one gets from inspecting Figures 6 andiheé results of random-effects panel
regressions of the natural logarithm of the stamdi@viation of group estimates on the period
within a block, using all data from Experiment @ngly finds a negative coefficient, -0.086,
with a standard error of 0.015, significant at 18¢ level. Moreover, as with Experiment 1,
we similarly find significant negative time trenasall separate analyses by parameter sets
and by blocks. Hence, as was the case in Experitheaur data indicate some degree of
convergence toward similar estimates within a grewen if such convergence is imperfect.

We next use regression analysis to estimate thtongeof weights on the private
signals that reflect the central tendency in grespimates. The third column in Table 2
shows regressions results for our Experiment 2 eoaijpe to those for the two networks in
Experiment 1. The point estimates appear to bes gligtinct from each other and indeed an
F-test strongly rejects the null hypothesis of dity@f coefficients at the 1% level. Our
estimated values for the vector of weights are 48%, 21% and 29%. The ordering of the
magnitudes of these weights is in line with thespasion bias model, which predicts weights
of 42%, 10%, 16% and 32%. The right side of Tab&h@ws that, like for our Experiment 1,

the estimated weight vectors are closer to theigtieds of DeMarzo et al.’s (2003)
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persuasion bias model—using either Euclidian oridaxdistances—than to the predictions
of either version of the Corazzini et al. (2012)dab

As we did for Experiment 1, we can also test foe thifferences between the
regression results and the predicted weights oflitierent models. We start with the test for
equality of the regression coefficients with theigis predicted by the DeMarzo et al.
(2003) model. An F-test finds that we cannot refrethypothesis of equality (p=0.286, two-
sided). We can also test for the equality of thereded coefficients with the two variants of
the Corazzini et al. (2012) model. Two-sided Fgesfect both variants of the model at the
5% level p=1: p=0.024,p=0.82: p=0.018). Hence, Experiment 2, which stuthelsavior in
the Unbalanced Network 2 first studied by Corazeiral. (2012) using our procedures, lends
further support for the predictions of the persoadbias model, in contrast with the two

versions of the “influential listeners” model thmst accounts for their data.

6. Concluding Remarks

We provide several experimental results that aresistent with the predictions of a
model in which communication through networks ysebdased information aggregation. Our
findings provide support for the prediction thabpke with more outgoing links and those
connected to such people exert greater influencgromp beliefs. Moreover, our results also
yield estimated influence weights that are veryseldo those predicted by the model of
DeMarzo et al. (2003).

The fact that the results from our Balanced Netwbrlare consistent with these
predictions is perhaps not surprising. However, rgmults from two different unbalanced
networks are also consistent with persuasion masddition we confront the data with a
more general model proposed by Corazzini et allZ2@nd do not find it to explain the data

better than persuasion bias. One of the possiljdaeations for this disparity is that the
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specifics of our experimental procedures are mdosety related to the set-up of the
theoretical framework of DeMarzo et al. (2003)As a consequence, the task that
participants face may be cognitively more demandag the one in Corazzini et al. (2012).
In addition, the salience of the monetary incents/éower with our procedures due to the
variability of the signals; it is possible for pampants to earn zero even when optimally
processing the information they receive, since dlierages of the signals are generally
different from the target value. Furthermore, im experiment participants did not know the
variance of the distribution. All these featuresonir design may have led participants to
make little cognitive effort and instead rely ore thery simple updating rule that leads to
persuasion bias, without attempting to exploititifermation about the network structure in
some way.

On the basis of our findings, we conclude thatgleesuasion bias model represents a
good benchmark for the study of information aggtega The model is based on a simple,
intuitively defensible bias in information procesgiand we demonstrate that it generates
predictions that are supported empirically in setdrtest. In our data, the basic DeMarzo et
al. (2003) model does rather well and the additifieaibility of the Corazzini et al. (2012) is
not needed. To us this conclusion does not coma asrprise, since from the start the
persuasion bias model seemed to us as a simpleaggerery mechanical, but nevertheless
natural way to behave. Of course, future researap pnoduce results that may be at odds

with persuasion bias, requiring the additional itbéky of the Corazzini et al. (2012) model

14 We thank a reviewer for suggesting this explamatiRelating the implication of using different peauires to
the issue of external validity, perhaps one cantlsafnatural environments will tend to be quitenptex with
many distractions that yield different cognitivepapaches to theoretically similar problems. Thisyraacount
for why one might observe particular biases in saitgations but not others. At the same time, afrse,
agents in natural settings may often have highegritives to behave rationally.
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or an altogether new model. But, in at least orst, tthe assumptions and predictions of

persuasion bias appear vindicated.
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APPENDI X A: Instructions

General I nformation

This is an experiment in decision-making. Duririge texperiment, you will
accumulate money. In addition to a participatiea 6f 5€, you will receive the amount you
accumulate in cash after the experiment is findliZEhe exact amount you receive will be
determined during the experiment and will depend/aur decisions and/or the decisions of
other participants.

If you have any questions during the experimerdgagé raise your hand and wait for
an experimenter to come to you.

Please do not try to communicate with other paréiots during the experiment.

At the bottom of this screen, you will see a lef#y B, C, or D) and a number (1, 2,
3, or 4). This combination of letter and numberymsur participant number for the
experiment. Your participant number will be thansafor the entire experiment. This
number is private and should not be shared witloa@y Please record this number at your
stack of record sheets.

Your participation number ......

Periods, Rounds, Groups, and Roles:

During this experiment, you will be in a group witlree other participants. You will be
grouped with the three other people with the sagtterl in their participant number. That is,
everyone with a letter “A” in his/her participatiamumber will be in the same group,
everyone with the letter “B” will be in the sameogp, and so on. Throughout the
experiment, you will be grouped with the same thpaeicipants.

In the experiment, you will participate in 4 rourmfsan activity. Each round will consist of
16 periods. That is, during the experiment you pa4lrticipate in Rounds 1 through 4, and
each of these rounds will consist of Periods 1ubhol6.

For each round, we will randomly select one of 16eperiods for which to pay you. Since
you will not know which period will be selected fpayment until the end of the experiment,
every period could influence your earnings foréperiment.

Round Instructions:

In each round, a number will be drawn at randomyéur group. This number will be a real
number and can include three decimal places. Thgerrom which we draw the number
may change from round to round. You will not beegi any other information about how the
number is determined. This number will be refetieeds the “target number” for your group
for that round.
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At the beginning of each round, every member ofrygraup will receive a “private estimate”
of the target number. This private estimate wolhsist of the target number, plus or minus a
random number. For each member of your grouprathdom number will be drawn from the
normal distribution, with an average of zero. Timeans that your estimate will be related to
the target number, but only imperfectly so. Tlsatypur estimate will give you an idea of the
target number, but will most likely not be the samsehe target number. To be more precise,
the private estimates will be normally distributgdund the target number.

Each of you will receive a different private estima Each of the estimates will be drawn

independently from the normal distribution arouhé target number. That is, for each of

you we will start with the target number and theld & random number drawn from the

normal distribution. Your private estimates wilktlefore be related to each other and to the
target number, but only imperfectly so.

Are there any questions about the target numbeestithates?

Period I nstructions:

In each period, you will enter your guess of thgeéanumber. You will do so by entering a
number (of up to 3 decimal places). The computérprompt you for your guess and will
then ask you to confirm this guess. If you wanetber a guess with a negative sign, make
sure that you do not forget to put the negativa.sig

In each period, your payoff will be determined bywhclose your guess is to the target
number. That is, we will compare your guess wlid target number. The closer your guess
is to the target number, the higher your payoft W for that period. Note that you will not
be able to see either the target value or yourfbéyoeach period until the end of the round.

IMPORTANT: YOU NEED TO USE THE DECIMAL POINT (.) TCENTER THE
DECIMALS.

I nformation I nstructions;

At the end of each period, you will receive infotroa on the guesses of other participants.
Each of you will be able to observe the guess edtan that period by at least one other
participant. Some of you may receive more inforarathan others.

There are four participants in each group, with bere from 1 to 4. The information
received by each participant is presented in thkethelow. For each participant (row), the
columns with an “x” indicate which guesses thattipgrant is able to observe. Note that
each participant is able to observe his or her guass. In addition, every participant will be
able to observe the guess of at least one othécipant. For example, in addition to his/her
own guess, Participant 3 can observe the guesséseafest of the participants whereas
Participant 1 can observe only the guess of Ppaiiti4.
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Observes the guess of participant:

Participant 1| Participant 2 Participant 3 Partaipd
Participant 1 X X
Participant 2 X X X
Participant 3 X X X X
Participant 4 X X X

Therefore, the only information you will have orettarget number is your private estimate as
well as the guesses you receive from the otheicgzants.

To summarize, in each period you will make a gudss,guess will determine your payoff
for that period, and you will then observe the gessof some of the other members of your
group. Once this takes place, you will continugh next period.

After 16 periods, the round will end, and you vio# able to see the target number for that
round, as well as your payoff in each of the 16quk. At the end of the experiment, one of
these 16 periods will be selected at random torchete your earnings for that round. You
will be paid your earning across all 4 rounds,ddition to the 5 € participation fee, in cash.

Are there any questions?

Payoff Instructions:

Your payoff in every period will be determined tetfollowing formula (in cents):

400 — 0.5C (target number — guéss)

To make sure everyone understands the payoff fanetl us go through a few examples:

Example 1: If your guess is exactly the same adarget number, then your payoff in that
period will be: 400 - 0.5 (0) =400 cents (4 €).

Example 2: If the target number is 100.0 and yauesg is 80.0, then your payoff will be:
400 -0.5 (100 — 86)400 — 0.5C (400) = 400 — 200 = 200 cents (2 €).
Example 3: If the target number is —60.0 and yauesg is —20.0, then your payoff will be:
400 — 0.5 (-60.0 — (-20°6))400 — 0.5 (20.0 — 609¥ 400 — 0.5C (1600) = 400 —

800 =-400cents (—4 €)
Please note three things about how your payofflvéltietermined.
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First, a simple way to think about your payoff &t you start off with 400 cents, but lose
money for the distance between your guess andatgettnumber. Therefore, you want your
guess to be as close as possible to the targetexumb

Second, remember that you will only receive paynienbne of the 16 periods in a round.
Since you will not know which period this will bentil the end of the experiment, every
period is equally likely to count towards determgniyour earnings.

Third, notice that it is possible to lose moneyaiperiod if your guess is far from the target
number. If your payoff in a period is negativedahthat period is selected to count for that
round, then the amount you lose will be subtraétech the amount that you accumulate in
other rounds. This means that you may lose sonyewf participation fee if the sum of your
payoffs for all 4 rounds is negative. However, véae designed the experiment so that this
is very unlikely to be the case if you make decisi@arefully. If you notice that you are
accumulating negative payoffs regularly, pleassergour hand so that we can make sure that
you understand how payoffs are determined. Als®age double-check your guess before
confirming it, since entering it incorrectly mayus& you to lose a significant amount of
money.

Are there any questions about your payoffs?

Quiz (Part 1)

Before proceeding to the experiment, we would tkesk you to answer a few questions to
make sure that everyone understands the instrgctibtiease answer each of the following
guestions. Once you have completed the quiz, pleast for the experimenter to ask you to
proceed.

1. The experiment consists of 4 rounds. Eachdmaomsists of 16 periods.
True False

2. At the beginning of each round, everyone inrygroup will be shown the target number.
True False

3. The target number in a round will be the saone¥eryone in your group.
True False

4. The private estimate you receive will be thamesdor everyone in your group.
True False

5. In each period, your payoff will be based owlubose your guess is to the target number.
True False

. At the end of every period, each of you will obsetlie guess of at least one other person in
your group.

True False
Quiz (Part 2)
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For the next three questions, remember that theular for your payoff in a period is:
400 — 0.5C (target number — guéss)

7. Suppose that in a period your guess is 5@.¢heltarget number is 50.0, then your payoff
for that period is: .....

8. Suppose that in a period your guess is 200I0¢he target number is 190.0, then your
payoff for that period is: .....

9. Suppose that in a period your guess is 500.0Ghelftarget number is 470.0, then your
payoff for that period is: .....

Final Instructions:

We are now ready to begin the experiment. Wepvdceed through 4 rounds, each of which
will consist of 16 periods. At the end of eachrrduyou will find out the target number as

well as your payoff for each of the 16 periods. tA¢ end of the experiment, one of these
periods will be selected at random for each rowndetermine your earnings.

At the beginning of each round, please record ywiwate estimate on your record sheet.
Then, in each period, please also record your garegshe information you receive regarding
the guesses of others.

If you have a question from this point on, pleasése your hand and wait for the
experimenter.
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APPENDIX B: Target Valuesand Private Signals

I nfor mation set 1:

Target Value Private Signals
Agent 1 Agent 2 Agent 3 Agent 4
81.405 63.884 85.355 93.682 78.521
-21.6 -3.518 -27.486 -51.65 -12.146
124.16 119.512 95.831 146.349 153.696
6.327 35.719 2.553 25.543 -11.991

Information Set 2:

Target Value Private Signals
Agent 1 Agent 2 Agent 3 Agent 4
-62.072 -48.463 -92.322 -85.279 -42.98P
-124.01 -129.756 -148.149 -123.711 -97.887
380.12 404.631 364.22 351.162 390.095
-294.56 -264.788 -319.406 -284.408 -290.207
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Figure 3. Natural logarithm of standard deviation of group estimates across periods (Experiment 1)
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Figure 4. Proportion of groups with standard deviations of estimates below certain
thresholds (Experiment 1)
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Figure5. Median biasin mean group estimates over periods 9-16 of block (Exp. 1)

A: Parameter Set 1
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Note: Experiment 1; Parameter Set 1 only; predicted UB1 weights: 0.38, 0.07, 0.19, 0.36

B: Parameter Set 2
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Note: Experiment 1; Parameter Set 2 only; predicted UB1 weights: 0.38, 0.07, 0.19, 0.36
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Figure 6. Natural logarithm of standard deviation of group estimates acr oss periods (Experiment 2)

A: All Data Pooled B: By Block
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Figure 7. Proportion of groups with standard deviations of estimates below certain
thresholds (Experiment 2)
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