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Abstract 

In many areas of social life, individuals receive information about a particular issue of 
interest from multiple sources. When these sources are connected through a network, then 
proper aggregation of this information by an individual involves taking into account the 
structure of this network. The inability to aggregate properly may lead to various types of 
distortions. In our experiment, four agents all want to find out the value of a particular 
parameter unknown to all. Agents receive private signals about the parameter and can 
communicate their estimates of the parameter repeatedly through a network, the structure of 
which is known by all players. We present results from experiments with three different 
networks. We find that the information of agents who have more outgoing links in a network 
gets more weight in the information aggregation of the other agents than under optimal 
updating. Our results are consistent with the model of “persuasion bias” of DeMarzo et al. 
(2003). 
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1. Introduction 

 In many important social and economic situations, individuals receive information 

about a particular issue from multiple sources and also transmit information to multiple 

others. Examples are the sharing of political opinions among voters or of information about 

prospective job candidates in an organization’s hiring process. When people exchange 

opinions about such issues within a group, some of the group members may have a stronger 

influence on the group’s opinion than others due to the quality or accuracy of the information. 

However, influence may also often be due to social factors like the resources some people 

have available to invest in spreading their opinions, how well considered their opinions are in 

society or how well connected they are to others.  

One basic source of social influence occurs in communication through networks, 

where there exists the possibility of one person’s information reaching a particular other 

person repeatedly. When individuals are connected through a network, then they may receive 

information both directly and indirectly from the same source and send information directly 

and indirectly to a particular other source. In such situations, perfectly rational aggregation of 

information by an individual involves taking into account the structure of the network and 

adjusting how one weighs the information one receives accordingly. However, boundedly 

rational agents may have difficulties with this process and aggregate in biased ways—for 

example, by failing to adjust properly for repetitions of information.1 In this paper we present 

results from laboratory experiments that shed light on how people aggregate information 

when they are connected in a network. 

 DeMarzo et al. (2003) present a stylized version of an information aggregation 

situation in a network, together with a model of a particular bias to which boundedly rational 

                                                 

1 See, for instance, Gale and Kariv (2003), Golub and Jackson (2010) and Acemoglu et al. (2011). 
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agents may fall prey. They posit a situation in which a set of agents all want to find out the 

value of a numerical parameter. Each agent starts with some initial private information about 

the parameter, the aggregation of which is all the information available to the group of agents 

in the network. Agents then communicate their estimates about the true parameter to one 

another through the network. The network consists of a number of connections between the 

set of agents that specify who sends information to whom—or, alternatively, who listens to 

whom. There are multiple periods of communication between the agents, a feature meant to 

represent a lengthy deliberation process. In each period, each agent listens to the estimates of 

those who, following the network structure, send him information and sends his estimate to 

those who listen to him. After each period, each agent can update his own estimate in order to 

approximate the true parameter based on any new information received from other agents.  

 There is a rational way to aggregate information in such a setting, which involves 

agents discounting information that reaches them repeatedly through distinct channels in the 

network. But it is possible that boundedly rational individuals will not use this optimal 

process. A priori, there are many distinct ways in which information could be aggregated 

non-optimally. DeMarzo et al. (2003) propose a particular model of boundedly rational 

information aggregation, based on DeGroot (1974), which leads to “persuasion bias.” 

According to this model, all agents treat all information they receive as new, ignoring the fact 

that an estimate received in a particular period may contain information that has already been 

received—directly or indirectly—from another source. Agents treat the information they 

receive in each period as new and independent and do not adjust for the fact that over time 

the information of some agents might contain more repetitions than that of others. The 

implications of this kind of biased information aggregation depend on the structure of the 

network. Some networks may cancel out the biased weighting of information, so that agents 

subject to the boundedly rational persuasion bias may nevertheless reach an unbiased 
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estimate of the true parameter. However, other networks will not have this property and the 

consequence will be that the presence of a bias at the level of individuals processing 

information yields groups that arrive at biased estimates of the parameter.  

 The model of bias proposed by DeMarzo et al. (2003) is a plausible one. Nevertheless, 

it is not a priori obvious that if people turn out to be biased, they will be so in the precise way 

posited by the model. There are many ways to aggregate information and addressing the 

questions of which bias will occur and how it will affect group outcomes requires empirical 

information. Therefore, we use laboratory experiments to explore the internal validity of the 

persuasion bias model. The laboratory provides an ideal environment to study the relation 

between network structures and the kind of information and communication processes 

necessary to test the persuasion bias model. The two principal values of laboratory 

experiments are control and replicability. Causal knowledge requires controlled variation 

(Falk and Heckman, 2009) and the laboratory allows for tight control over the environment in 

which interaction takes place. At the same time, the laboratory allows the generation of 

sufficient data to test theoretical predictions in a simple way.  

 In this paper, we present results from experiments with three different networks. The 

first two are directly inspired by the discussion in DeMarzo et al. (2003). We study behavior 

using their examples of both “balanced” and “unbalanced” networks of four agents. In the 

balanced network, four agents are located in a circle. They all receive one piece of 

information and all send their estimate of the parameter to and receive it from the two agents 

closest to them. In such a balanced network, DeMarzo et al. (2003) predict no bias in the 

consensus estimates of the group. In the unbalanced network, the four agents all receive one 

piece of information, but some agents send information to a larger number of others and 

receive information from a smaller number of agents than others. In such an unbalanced 
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network, DeMarzo et al.’s (2003) model predicts a precise biased outcome to which the 

group’s estimates should converge.  

We find that observed behavior is consistent with persuasion bias and, importantly, 

with many of the precise predictions of DeMarzo et al.’s (2003) model. In the balanced 

network, subjects’ estimates move in the direction of estimates in which the private 

information of all four players carries identical weights, as predicted by the theory. In 

contrast, in the unbalanced network, subjects tend towards biased estimates that give greater 

weight to the private information of those agents with more outgoing communication 

channels and those connected to such agents, which is consistent with DeMarzo et al.’s 

(2003) theoretical predictions. Moreover, with experience, the estimated empirical weights of 

the different private signals correspond closely to those of the persuasion bias model. Hence, 

our data provide substantial support for the notion of persuasion bias.2 

 In a set of experiments conducted independently, Corazzini et al. (2012) find that the 

network structure plays a significant role in determining social influence, but that the most 

influential agents are not those with more outgoing links, as predicted by the persuasion bias 

hypothesis, but those with more incoming links. Their study presents data from a balanced 

and an unbalanced network that are different from those we study. They present an 

explanation of their results in the context of a generalization of the DeMarzo et al. (2003) 

model, suggesting a more general way in which bounded rationality might influence 

information updating in a network. In particular, the more general model takes into account 

                                                 

2 Banerjee et al. (2013) and Mobius et al. (2015) contain some field evidence consistent with the DeGroot 
model. Our experiment also relates to a paper by Enke and Zimmermann (2013) on correlation neglect, which 
describes agents’ tendency to overweight information, received from multiple sources, that is correlated due to 
its origin from the same source. They report a laboratory experiment in which subjects’ exhibit correlation 
neglect and overweigh information that they receive repeatedly through multiple channels. They show 
experimentally that in such contexts many people neglect these correlations in the updating process and treat 
correlated information as independent.  
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not only agents’ outgoing links but also their incoming links—the idea being that those who 

“listen” to more people are potentially more influential.3 

Given the qualitative discrepancy between the results of Corazzini et al. (2012) and 

our results, we conducted new experimental sessions using their unbalanced network. Our 

results are again consistent with the more restrictive notion of persuasion bias and do not 

need the additional flexibility of the more general model. In addition, we perform a simple 

counter-factual exercise by applying their model to our unbalanced network with the 

parameter estimates that are reported in Corazzini et al. (2013). For this comparison, we find 

that the persuasion bias model outperforms their model. Hence, across multiple networks, our 

study suggests greater concordance with the persuasion bias model of DeMarzo et al. (2003). 

The remainder of this paper is structured as follows. In Section 2, we very briefly 

provide some theoretical background and describe the persuasion bias model of DeMarzo et 

al. (2003). Sections 3 and 4 present the design, hypotheses and results for Experiment 1, 

while Section 5 presents Experiment 2, which uses the network studied by Corazzini et al. 

(2012) to compare their model’s predictions with those of DeMarzo et al. (2003). Section 6 

concludes.  

 

2. Theoretical Background and Hypotheses for Experiment 1  

 We now succinctly present the theoretical environment that we study experimentally, 

which is based on the model of DeMarzo et al. (2003). In all networks that we study, there is 

a set of four agents N = {1, 2, 3, 4} who all wish to find out the value of an unknown one-

dimensional parameter, θ. There are sixteen periods of interaction between the four agents. 

                                                 

3 Battiston and Stanca (2014) present additional evidence that the influence of an agent may be positively 
affected by the number of incoming links. 
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The reason why we chose this particular number of periods is grounded in the persuasion bias 

model, which requires N2 periods for convergence (more detail provided below).  

Before the first period of interaction, each agent obtains some initial information 

about θ in the form of a private noisy signal xi0 = θ + εi, where εi is an error term with mean 

zero, independent across agents and normally distributed. Agents do not receive any other 

signals about the parameter. Each agent, i, assigns an initial precision to the information of 

each other agent, j, represented by πijo.  

 Starting with the initial information, agents communicate according to a 

communication network that can be represented as a directed graph indicating whether agent 

i listens to agent j. We denote by S(i) the set of agents to which i listens, and by qij the 

indicator function of S(i), which takes the value of 0 if agent i does not listen to agent j and 

the value of 1 if he does; we consider that each agent listens to himself, e.g., qii = 1. We refer 

to the set S(i) as the listening set of agent i and to the function S as the listening structure. 

 DeMarzo et al. (2003) model communication and updating as follows. In the first 

communication period, agent i learns the signals of the agents in S(i). Given normality and 

agents’ fixed assessment of the precision of others’ information, a sufficient statistic for these 

signals is their weighted average, with weight given by the precisions. They denote this 

statistic by xi1 and refer to it as agent i’s beliefs after one period of updating: 

   (1)  xi1 = ∑j (qijπij0/πii0) xj0 

where πii0 = ∑j qijπij0 denotes the precision that agent i assigns to his own beliefs and xj0 

represents j’s initial beliefs. Equation (1) is called agent i’s updating rule. 

 The updating rule (1) can be expressed in vector notation. Denote by xt the matrix 

whose i-th row is the vector xit of agent i’s beliefs in communication period t. Denote also, by 

T, the listening matrix with elements: 
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   (2)  Tij = qijπij0/πii1. 

Then the updating rule can be expressed as x1 = T x0.  

 A very important simplifying assumption introduced at this point is that all precisions 

are the same. This converts each element of the listening matrix into something very simple: 

the ratio between the indicator qij (0 or 1) and the total number of agents j that agent i listens 

to (1,2, 3 or 4). As a consequence of this simplification, the proposed updating consists 

simply of the averaging of others’ estimates.4 

 We now briefly refer to the two key results of the DeMarzo (2003) model pertaining 

to the convergence process of the updating rule that we will use in our analysis below. First, 

their Theorem 1 states that if the set of agents is strongly connected and another technical 

assumption holds, then the vector of agents’ social influences converges to the consensus 

given by the vector ω which is the unique solution w = Tw, where w is the “social influence” 

vector showing the weight of each agent’s initial signal in the consensus. A set of agents 

being strongly connected simply means that every agent speaks to every other agent (directly 

or indirectly) and thus no agent is isolated from the others.  

 Second, their Theorem 2 states that, if agents follow the updating process introduced 

above, the beliefs to which agents converge are correct if and only if the network is balanced, 

i.e. if and only if, for all i, ∑j qji Tjj = 1. In words, if the sums of weights in the listening 

vectors are the same and equal to 1 for all agents. We now present the two networks studied 

in Experiment 1and directly apply the two theorems to these networks.  

 Figure 1 shows the “Balanced Network 1” used in our first experiment. The arrows 

indicate which agents send information to which other agents. For example, agent 1 sends 

                                                 

4 In our experimental context. this assumption is a very reasonable one, since (as will become clearer below) our 
experimental subjects will not have much basis for attributing different precisions to distinct other agents.  
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information to agents 2 and 4 and also receives information from agents 2 and 4. This 

network is balanced, precisely because each agent talks and listens to the same number of 

other agents. Denoting by S(i) the set of agents to which agent i listens, we have, for the 

Balanced Network 1: S(1) = {1,2,4};  S(2) = {1,2,3};  S(3) = {2,3,4};  S(4) = {1,3,4}, 

including always the agent in question, i.e. each agent listens to himself. 

From here we obtain the corresponding listening matrix TB1 = . To find 

the weights to which Theorem 1 above predicts behavior will converge, we solve the system 

wT=w and find that the weight of the four signals in the consensus value to which the 

updating process converges is given by the vector, wB1 = (¼, ¼, ¼, ¼), i.e. the social 

influence is the same for all four agents. In spite of the fact that the updating process does not 

take into account repetition, the process converges to an unbiased set of weights, because the 

network is balanced, consistent with Theorem 2. 

 

 

 

 

                                                          

                                             

 

Figure 1: Balanced Network 1 
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Figure 2 shows the “Unbalanced Network 1,” where some agents speak and listen to a 

different number of other agents. In this case the sets of agents that agents listen to are the 

following: S(1) = {1,4};  S(2) = {1,2,3};  S(3) = {1,2,3,4};  S(4) = {1,3,4}.  

From here one can construct the corresponding listening matrix TUB1 = 

. and obtain the following vector of social influence weights: wUB1 = (16/42, 3/42, 8/42, 

15/42) for agents 1, 2, 3 and 4 respectively. In percentage terms, this vector is approximately 

equal to wUB1 = (38%, 7%, 19%, 36%).  Observe that persuasion bias does not propose that 

the influence weights directly reflect the number of agents an agent speaks to. Agents 3 and 4 

both speak to two other agents, but the corresponding influence weights are 19% and 36% 

due to the fact that agent 4 speaks to agent 1, who in turn talks to all three other agents. 

 

 

 

 

 

 

 

Figure 2: Unbalanced Network 1 
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DeMarzo et al. that, for both perfectly rational agents and to those affected by persuasion 

bias, the balanced network should produce no bias in consensus estimates. 

Hypothesis 1: In Balanced Network 1, subjects will converge to a consensus 

estimate in which the four initial signals will carry equal weight. 

Our second hypothesis uses the precise weights implied by DeMarzo et al.’s model for the 

specific unbalanced network in Figure 2. 

Hypothesis 2: In Unbalanced Network 1, subjects will converge to a consensus 

estimate in which the four initial signals will carry unequal weights. These 

weights will be as predicted by the persuasion bias model: 38%, 7%, 19% and 

36%. 

 

3. Experiment 1: Procedures  

 In Experiment 1, we study behavior in the two networks that we have just introduced, 

Balanced Network 1 and Unbalanced Network 1. The set-up was identical for all networks, 

with the exception of the links between subjects corresponding to the different 

communication networks. Each person participated only in one session with one particular 

network. The shape of the relevant network was common information. A graph of the 

network was visible to the participants at all times.  

 Each participant was a member of a fixed group of four subjects.5 Each group 

interacted consecutively in four blocks, each of which lasted for sixteen periods and was 

based on a new target value and private signals. This was to allow for learning of the task. At 

                                                 

5 The instructions can be found in Appendix A. 
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the beginning of a block, participants did not know the target value. Instead, each of the four 

subjects initially received a private signal drawn from a normal distribution centered on the 

target value.6 The signals were drawn separately for the different target values.  

Once each participant had received his or her signal, then the sixteen periods of 

information exchange within the group for that block began. In each period, each agent in a 

group sent an estimate of the target parameter to all agents in his or her listening set. After 

receiving estimates from others according to the network structure, the group moved to the 

next period. All sixteen periods proceeded according to the same rules. The choice of sixteen 

periods was guided by the result in DeMarzo et al. (2003) that fully rational agents will 

converge to the true value in at most N2 periods of updating. Participants in the experiment 

should not necessarily be expected to behave rationally, meaning that their estimates may not 

fully converge; however, we needed to make a choice of horizon and we chose the minimal 

one that allows for convergence under the rational benchmark.7  Note that learning could not 

only take place within the sixteen periods of a block, but could also occur across the four 

blocks.  

At the beginning of a block, subjects received their private signals through the 

computer interface.8 In each period, subjects could enter their estimate using the computer, 

and also observe the estimates entered by those in their listening set. Each subject was given 

a bundle of four record sheets, one for each block, and was instructed to write down his or her 

own estimate as well as the estimates of others in his or her listening set in each round. Each 

subject also received a sheet of paper depicting the communication network. 

                                                 

6 Participants did not receive any additional signals in subsequent periods within a block. 
7 In related work, Corazzini et al. (2012) had four players and twelve periods and Battiston and Stanca (2014) 
four players and eight periods. 
8 The experiment was conducted using the software, z-tree (Fischbacher, 2007). 



13 

 

 In every period, each participant’s payoff was determined by the distance between the 

estimate provided by the participant in that period and the actual target value in that block. 

Specifically, we implemented the payoff function, P = 400 – 0.5  (target number – 

estimate)2, where payoffs are denoted in Euro cents. In each block, one period was selected at 

random to count for payment. In principle, subjects’ payoffs could be negative, meaning that 

they could lose part of the 5 Euro participation payment, though this was unlikely. We did not 

allow subjects to lose more than the participation payment. 

 Target values were randomly drawn from a uniform distribution over the range 

determined by taking the tenth highest number and the tenth lowest number from one 

hundred draws from a normal distribution with mean 0 and standard deviation 400. This, in 

principle, allows for the target number to be any real number, though the likely ranges from 

which they are drawn are much more narrow and unlikely to yield very extreme numbers. 

Subjects were only told that the target number would be a real number and were not told 

anything else about how the number was determined. For robustness we investigated two 

complete parameter sets, i.e. two different sets of four target values with a corresponding set 

of signals for each of the four agents in the network.9 The two parameter sets were used in 

different sessions and can be found in Appendix B.  

Experiment 1 was conducted at Pompeu Fabra University in Barcelona. Participants 

were undergraduate students at the university who were recruited with the on-line system 

ORSEE (Greiner, in press). Table 1 shows the distribution of groups per treatment for 

                                                 

9 The ranges from which target values were drawn ended up being, in the Parameter Sets 1 and 2, respectively, 
[-512.669, 437.452] and [-501.17, 418.394].  

 

∗
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Experiment 1. Since each group is composed of 4 subjects, the total number of subjects in 

Experiment 1 is 144.10 

 

 

Table 1: Number of groups per treatment 

Treatment  (Parameter Set #) Number of groups 

Balanced 1 (1) 10 

Balanced 1 (2) 10 

Unbalanced 1 (1) 8 

Unbalanced 1 (2) 8 

 

   

4. Experiment 1: Results  

We examine Hypotheses 1 and 2, pertaining to whether behavior converges toward an 

unbiased estimate of the true target value, in which the individual private signals receive 

equal weight, or whether they converge toward systematically biased consensus estimates 

that concord with the predictions of persuasion bias. Of course, while complete convergence 

is theoretical possible, we expect it to be unlikely, a priori, given the complexity of the task. 

For instance, in related experiments that use a different design, Battistin and Stanca (2014) do 

not observe complete convergence.  

Nevertheless, we present three pieces of evidence that suggest estimates within groups 

converge across periods, even if complete convergence is rare. Figure 3 shows the evolution 

                                                 

10 Two sessions, with four groups each, ended early because of computer problems. In one case, the experiment 
ended after period 51 (i.e., after 3 periods of Block 4); we use only Blocks 1 through 3 from this session. In the 
other case, the experiment ended after period 30 (i.e., after 14 periods of Block 2); since we have almost 
complete data for Block 2 in this session, we use both Blocks 1 and 2. 
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over time of the average natural logarithm of the standard deviation of estimates within a 

group. We think that this is a sensible statistic to measure convergence, since it measures 

dispersion in individual estimates from the group mean estimate, using the natural logarithm 

to reduce the influence of outliers. The different panels show different aggregations of the 

data. In all cases, there is a downward trend, indicating that the estimates move closer 

together, on average, across periods within a block. Panel A shows this is true in the 

aggregated data. Panel B separates the data by block, revealing slightly weaker convergence 

in Block 3, but also a downward trend in all four blocks and little systematic evidence of 

learning across blocks. Panel C shows similarly decreasing trajectories across periods when 

dividing the data by parameter set. Finally, Panel D compares behavior for the two different 

networks, suggesting convergence is slightly stronger in the case of the unbalanced network. 

However, in all cases, there is a clear downward trend. 

An additional piece of evidence indicating a convergence process is the results of 

panel regressions, with group-level random effects, of the natural logarithm of the standard 

deviation of group estimates on the period within a block. Using all data jointly, we find a 

negative coefficient, -0.177 with a standard error of 0.014, which is statistically significant at 

the 1% level. Moreover, separate regressions for the balanced and unbalanced networks, the 

two parameter sets and for each of the four blocks show very similar results. In all cases, 

there is a significant downward trajectory across periods within a block. 

Finally, Figure 4 presents a different perspective of the convergence process that 

facilitates identifying possible heterogeneity across groups. It shows the evolution over time 

of the proportion of groups with standard deviations of estimates below five different 

thresholds. One can see that, for any threshold, there is an upward tendency over time. For 

example, in the first period, few groups have standard deviations below 20; this is not 

surprising, as the standard deviations of private signals are greater than 20 in almost all cases 
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(see Appendix B). However, by the end of the block, almost all groups have standard 

deviations below that threshold. Similarly, virtually no groups start off with standard 

deviations below 10, but roughly three-quarters of groups are below this threshold by the end 

of the block. While the proportion of groups with standard deviations below 1 is never high, 

this portion also increases across periods within a block. 

To summarize, our data are not fully consistent with the hypothesis that behavior 

converges to a consensus. In fact, there are zero instances in which all four estimates are 

identical by the end of a block. However, relaxing this strict criterion, we see considerable 

evidence that estimates move in the direction of consensus. For example, the proportion of 

groups with standard deviations below 0.1 increases from zero in the first period of a block to 

6.3 percent by the sixteenth period. More generally, we see widespread movement toward 

similar estimates across periods in almost every way we look at the data. 

We next turn to an analysis of what the average estimate in groups converge toward 

and whether this central tendency is consistent with Hypotheses 1 and 2.11 For this, we use 

the final 8 periods in a block, where Figures 3 and 4 show most of the convergence has taken 

place. We then calculate, as a measure of the central tendency in a group’s estimates, the 

average estimate in each group for all players across all 8 periods. We then estimate average 

“bias” in group estimates, by comparing the average estimate in the final 8 periods to the 

mean of the private signals received by the four group members; specifically, our measure of 

bias is the average estimate in the group minus the average of the signals. That is, a group 

that converges to mean estimates equal to the average of the four private signals shows zero 

                                                 

11 Evidence of convergence toward better informed estimates can be seen by comparing the earnings from the 
first half of a block (periods 1-8) with the second half (periods 9-16). Average payoffs rose from -1.82 Euro to 
2.31 Euro, while median payoffs rose from 3.59 Euro to 3.76 Euro. Comparing the first and last period, we see 
that the average (median) payoff also increased, from -13.32 (2.27) Euro to 2.56 (3.74) Euro. The discrepancies 
between mean and median earnings are due to the quadratic loss term in the payoff function and the large impact 
of occasional extreme estimates on the mean. Recall that subjects’ losses were bounded, such that subjects could 
not leave the experiment with a negative balance. 
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bias, while a group that converges to a mean estimate that is 4 greater than the rational 

benchmark shows a bias of 4. 

Figure 5 shows the median bias across groups, in the average estimates for the final 

eight periods of each block. Specifically, for each group, we look at the mean of the 32 

estimates in the final eight periods of a block. We identify the bias as the difference between 

the actual mean group estimate and the rational benchmark of the average of all the private 

signals. For the balanced network the predicted values of bias are zero, according to 

Hypothesis 1. For the unbalanced network, persuasion bias predicts a level of bias 

represented by the differential weights on the private signals; this predicted bias is provided 

by the solid line. The dashed lines show the observed data, by the type of network. Panel A 

provides this information for Parameter Set 1, while Panel B does so for Parameter Set 2. 

Both panels suggest that the estimates toward which participants tend are generally 

directionally in line with the predictions of persuasion bias. There is almost always greater 

bias in the behavior in the unbalanced networks and this generally concords—in six of eight 

cases—with the directional prediction of the persuasion bias model. In fact, the concordance 

with the persuasion bias predictions in the first three blocks for Parameter Set 1 and the first 

two blocks for Parameter Set 2 is quite striking. 

To put the analysis of the bias on a more solid basis we use regression analysis. Table 

2 shows, in columns 1 and 2, the results of regressions with subject fixed-effects, for the 

Balanced Network 1 and the Unbalanced Network 1, respectively. Individual subjects’ 

estimates are regressed on the value of the four private signals received by group members in 

that block. In column 1, the results for the balanced network show that the coefficients for all 

four signals are significant and appear to be close to the predicted and unbiased weights of 

0.25. The results of an F-test show that the null hypothesis that all four coefficients are equal 

to 0.25 cannot be rejected (p = 0.197, two-sided). We can also test whether the estimated 
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weights for the Balanced Network 1 are similar to those predicted for the Unbalanced 

Network 1 by the persuasion bias model. Under the model, this should not be the case. An F-

test rejects, at marginally significant levels, the null hypothesis that the estimated weights for 

the Balanced Network 1 are equal to those predicted for the Unbalanced Network 1 (p = 

0.056). 

 

Table 2: Regression results  

Independent Variables 
and Other Information 

Balanced Network 1 
Individual Estimate 

(1) 

Unbalanced Network 1 
Individual Estimate 

(2) 

Unbalanced Network 2 
Individual Estimate 

(3) 

Signal 1 
0.294*** 
(0.052) 

0.355*** 
(0.060) 

0.464*** 
(0.055) 

Signal 2 0.225*** 
(0.057) 

0.065 
(0.070) 

0.027 
(0.076) 

Signal 3 0.194*** 
(0.032) 

0.219*** 
(0.046) 

0.213*** 
(0.045) 

Signal 4 0.279*** 
(0.051) 

0.343*** 
(0.056) 

0.289*** 
((0.057) 

Constant 
1.340 
(1348) 

-1.673 
(1.695) 

-0.487 
(2.212) 

Number of 
observations 

2432 1760 2432 

R-squared 0.987 0.992 0.9835 
Number of Unique 

Subject IDs 
80 64 76 

The regressions above use as dependent variables the estimate provided by a subject in a 
period, using the final 8 periods (9-16) in a block. We include subject fixed-effects and 
cluster standard errors by groups. 

 

For the unbalanced network, the regression results in column 2 show that ordering of 

the estimated weights is the same as that of the weights predicted by the persuasion bias 

model. Specifically, we compare the estimated weights for the Balanced Network 1 with the 

prediction of DeMarzo et al. (2003) for the Unbalanced Network 1, which attributes 38%, 

7%, 19% and 36% of the weights to signals 1, 2, 3 and 4, respectively. We find that an F-test 

fails to reject the null hypotheses that the estimated weights for the Unbalanced Network 1 

are equivalent to the above weights predicted by persuasion bias (p = 0.136, two-sided). In 
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contrast, an F-test rejects the null hypothesis of equal weights for the Unbalanced Network 1 

(p = 0.038, two-sided). 

Hence, taken together, our four tests document that the estimated weights for each of 

the two networks are consistent with those predicted by the DeMarzo et al. (2013) model for 

that network and inconsistent with those predicted for the other network. 

What can we conclude with respect to our Hypotheses 1 and 2? First, for both 

networks, we do not see full convergence to a consensus estimate. However, we do see clear 

evidence of movement over time toward estimates that are more similar within groups. 

Hence, despite the lack of complete convergence to a common estimate, there is clearly 

partial convergence toward more similar estimates. More importantly, this movement tends to 

be in the direction of the weights on initial private information as predicted by DeMarzo et 

al.’s model of persuasion bias.  

 

5. A More General Model and Experiment 2 

 After having conducted Experiment 1, we became aware of a related paper by 

Corazzini et al. (2012). This paper presents the results of experiments on persuasion bias 

using a balanced network and an unbalanced one, both different from the ones we use in 

Experiment 1. They find results that are not in line with persuasion bias. Instead, in their data, 

“social influence depends not only on being listened to by many others, but also on listening 

to many others” (p. 1276).  In addition, they present a model of a generalized boundedly 

rational updating rule and show that persuasion bias and the behavior observed in their 

experiment can both be seen as the outcomes of special cases of that updating rule. 

 The interpretation provided by Corazzini et al. (2012) is indeed an intriguing one. An 

important question is what the precise behavioral mechanism is that underlies the rule that 

they use to explain the behavior in their experiment. Specifically, the observation of the 
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network structure may lead some individuals to give more weight to the input of somebody 

who listens to many players, guided by the notion that those players have a lot of information. 

In this sense, the idea that influential listeners’ information should carry more weight can be 

interpreted as players being somewhat more rational than under DeMarzo et al.’s persuasion 

bias model. That is, rather than simply treating all information as equally informative, such 

individuals look at the network structure to infer who has better information. Of course, an 

important question is why such behavior does not arise in our Experiment 1. 

 

 

 

 

 

 

Figure 3: Balanced Network 2 

 

One possible source of the difference between their results and ours is that the two 

experiments employ different networks. Figure 3 shows “Balanced Network 2,” which is the 

balanced network studied by Corazzini et al. (2012). The listening sets for this network are 

S(1) = {1,4};  S(2) = {1,2};  S(3) = {2,3};  S(4) = {3,4}. The listening matrix and the vector 

of influence weights are given by TB2 =  and wB2 = (¼, ¼, ¼, ¼), 

respectively. The regression results reported in Corazzini et al. (2012) for Balanced Network 

2 find that the values of the estimated coefficients vary between 0.15 and 0.34, but that the 

null hypothesis of equality of equal weights for the four coefficients cannot be rejected. This 
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finding supports our Hypothesis 1 above, and provides further evidence that behavior in 

balanced networks is consistent both with the persuasion bias model and with rational 

information aggregation. 

 

 

 

 

 

 

Figure 4: Unbalanced Network 2 

 

Figure 4 shows “Unbalanced Network 2,” which is the unbalanced network studied in 

Corazzini et al. (2012). Here, the listening structure is given by: S(1) = {1,4};  S(2) = {1,2};  

S(3) = {1,2,3};  S(4) = {1,3,4} and the listening matrix is TUB2 = . The 

corresponding influence vector, according to DeMarzo et al.’s persuasion bias model is wUB2 

= (42%, 10%, 16%, 32%). Agent 1 is the most influential one, since he is the only one that 

speaks to all three others. Agent 2 is the least influential one, since he only speaks to agent 3, 

who only indirectly reaches agent 1. Agent 4 is the second most influential one; like agents 2 

and 3 he only speaks to one other agent, but this agent turns out to be agent 1 who speaks to 

all three others. 

 The weights that Corazzini et al. (2012) find for signals 1 to 4 in their data analysis 

are, respectively, 27%, 20%, 22% and 31% (see Table 1 in Corazzini et al. (2012)). An F-test 

rejects the null hypothesis of equality of the weights. This configuration is certainly quite 
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distinct from the one predicted by the persuasion bias model of DeMarzo et al. (2003), of 

42%, 10%, 16% and 32%. This discrepancy is intriguing and led Corazzini et al. (2012) to 

formulate the more general model described above.  

 To provide insights into possible sources of the discrepancy between Corazzini et al.’s 

(2012) findings and ours, we employ two approaches. First, we derive the predictions of their 

model for our Unbalanced Network 1, from our Experiment 1, to see how well their model 

does in explaining our independent data. Second, we conduct new experimental sessions 

using the unbalanced network studied by Corazzini et al. (2012), Unbalanced Network 2, to 

see if their result replicates with our procedures.  

To compare the predictions of their model to those of ours for Experiment 1, we use 

two different weight vectors that correspond to two different parameterizations—specifically, 

two different values of ρ—of the model proposed by Corazzini et al. (2012). In their model, 

this parameter measures the degree to which players overweigh the information of those who 

receive more information from others in the network. A value of ρ equal to zero implies the 

persuasion bias model of DeMarzo et al. (2003), while a value of ρ equal to one implies that 

players weigh signals they receive by the number of incoming network connections of the 

person sending that signal. For ρ=0.82, the value that maximizes explanatory power for the 

weights they observe in their experiment, the vector of weights for the Unbalanced Network 

1 from our Experiment 1 is 21%, 13%, 33% and 33%. For ρ=1, the weights are 25%, 10%, 

30% and 34%. Observe that both vectors are quite distinct from the estimated weights we 

observe in the data, of 36%, 7%, 22% and 34% (see Table 1, column 2), which appear to be 

more similar to those predicted by DeMarzo et al.’s persuasion bias model (38%, 7%, 19%, 

36%).  

To evaluate the closeness of the vector of weights that we estimate from our data with 

that of the persuasion bias model of DeMarzo et al. (2003) and the influential listeners model 
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of Corazzini et al. (2012), we use distance functions. The left-hand side of Table 3 shows the 

Euclidean and Taxicab distances of our estimates to the two models for the Unbalanced 

Network 1 studied in Experiment 1.12 One can see that our estimated weight vector is much 

closer to the prediction of DeMarzo et al.’s (2003) persuasion bias model than to the 

Corazzini et al. (2012) model for the two specific parameter values we consider. 

 

Table 3: Distances of the estimated weight vector from the models 

Euclidean Distances 

Unbalanced Network 1 Unbalanced Network 2 

DeMarzo 
Corazzini 

(ρ=1) 
Corazzini 
(ρ=0.82) 

DeMarzo 
Corazzini 

(ρ=1) 
Corazzini 
(ρ=0.82) 

0.0017 0.0188 0.0374 0.0117 0.0437 0.0681 

Taxicab Distances 

Unbalanced Network 1 Unbalanced Network 2 

DeMarzo 
Corazzini 

(ρ=1) 
Corazzini 
(ρ=0.82) 

DeMarzo 
Corazzini 

(ρ=1) 
Corazzini 
(ρ=0.82) 

0.0751 0.2265 0.3329 0.2031 0.3544 0.3950 

 
 

We now move to our second comparison between the two models—Experiment 2, in 

which we study Unbalanced Network 2, using the same procedures and parameter sets as in 

our Experiment 1.13 We had 10 groups of participants with Parameter Set 1 and 9 groups with 

Parameter Set 2, a total of 76 participants. Experiment 2 was conducted in the LINEEX lab at 

                                                 

12 The Taxicab distance between two points is the sum of the absolute differences of their Cartesian 
Coordinates.  
13 We did not use Balanced Network 2 in this study, since both our results and those of Corazzini et al. (2012) 
are consistent with all four signals receiving equal weights in balanced networks. 
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the University of Valencia. Participants were undergraduate students at the university and 

recruiting was again done using the electronic system ORSEE (Greiner, in press).  

Figures 6 and 7 are analogous to Figures 3 and 4 for Experiment 1. Figure 6 shows the 

evolution over time of the average natural logarithm of the standard deviation of guesses 

within a group for the Unbalanced Network 2, and Figure 7 shows the evolution over time of 

the proportion of groups with standard deviations of estimates below five different thresholds 

for the Unbalanced Network 2. The main features to note in both figures at this point is that 

the patterns are rather similar for Experiments 1 and 2. Regression analysis confirms the 

impression one gets from inspecting Figures 6 and 7. The results of random-effects panel 

regressions of the natural logarithm of the standard deviation of group estimates on the period 

within a block, using all data from Experiment 2, jointly finds a negative coefficient, -0.086, 

with a standard error of 0.015, significant at the 1% level. Moreover, as with Experiment 1, 

we similarly find significant negative time trends in all separate analyses by parameter sets 

and by blocks. Hence, as was the case in Experiment 1, our data indicate some degree of 

convergence toward similar estimates within a group, even if such convergence is imperfect. 

We next use regression analysis to estimate the vectors of weights on the private 

signals that reflect the central tendency in group estimates. The third column in Table 2 

shows regressions results for our Experiment 2 comparable to those for the two networks in 

Experiment 1. The point estimates appear to be quite distinct from each other and indeed an 

F-test strongly rejects the null hypothesis of equality of coefficients at the 1% level. Our 

estimated values for the vector of weights are 46%, 3%, 21% and 29%. The ordering of the 

magnitudes of these weights is in line with the persuasion bias model, which predicts weights 

of 42%, 10%, 16% and 32%. The right side of Table 3 shows that, like for our Experiment 1, 

the estimated weight vectors are closer to the predictions of DeMarzo et al.’s (2003) 
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persuasion bias model—using either Euclidian or Taxicab distances—than to the predictions 

of either version of the Corazzini et al. (2012) model.  

As we did for Experiment 1, we can also test for the differences between the 

regression results and the predicted weights of the different models. We start with the test for 

equality of the regression coefficients with the weights predicted by the DeMarzo et al. 

(2003) model. An F-test finds that we cannot reject the hypothesis of equality (p=0.286, two-

sided). We can also test for the equality of the estimated coefficients with the two variants of 

the Corazzini et al. (2012) model. Two-sided F-tests reject both variants of the model at the 

5% level (ρ=1: p=0.024, ρ=0.82: p=0.018). Hence, Experiment 2, which studies behavior in 

the Unbalanced Network 2 first studied by Corazzini et al. (2012) using our procedures, lends 

further support for the predictions of the persuasion bias model, in contrast with the two 

versions of the “influential listeners” model that best accounts for their data.  

 

6. Concluding Remarks 

We provide several experimental results that are consistent with the predictions of a 

model in which communication through networks yields biased information aggregation. Our 

findings provide support for the prediction that people with more outgoing links and those 

connected to such people exert greater influence on group beliefs. Moreover, our results also 

yield estimated influence weights that are very close to those predicted by the model of 

DeMarzo et al. (2003). 

The fact that the results from our Balanced Network 1 are consistent with these 

predictions is perhaps not surprising. However, the results from two different unbalanced 

networks are also consistent with persuasion bias. In addition we confront the data with a 

more general model proposed by Corazzini et al. (2012) and do not find it to explain the data 

better than persuasion bias. One of the possible explanations for this disparity is that the 
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specifics of our experimental procedures are more closely related to the set-up of the 

theoretical framework of DeMarzo et al. (2003).14 As a consequence, the task that 

participants face may be cognitively more demanding than the one in Corazzini et al. (2012). 

In addition, the salience of the monetary incentive is lower with our procedures due to the 

variability of the signals; it is possible for participants to earn zero even when optimally 

processing the information they receive, since the averages of the signals are generally 

different from the target value. Furthermore, in our experiment participants did not know the 

variance of the distribution. All these features of our design may have led participants to 

make little cognitive effort and instead rely on the very simple updating rule that leads to 

persuasion bias, without attempting to exploit the information about the network structure in 

some way.  

 On the basis of our findings, we conclude that the persuasion bias model represents a 

good benchmark for the study of information aggregation. The model is based on a simple, 

intuitively defensible bias in information processing and we demonstrate that it generates 

predictions that are supported empirically in a careful test. In our data, the basic DeMarzo et 

al. (2003) model does rather well and the additional flexibility of the Corazzini et al. (2012) is 

not needed. To us this conclusion does not come as a surprise, since from the start the 

persuasion bias model seemed to us as a simple, perhaps very mechanical, but nevertheless 

natural way to behave. Of course, future research may produce results that may be at odds 

with persuasion bias, requiring the additional flexibility of the Corazzini et al. (2012) model 

                                                 

14 We thank a reviewer for suggesting this explanation. Relating the implication of using different procedures to 
the issue of external validity, perhaps one can say that natural environments will tend to be quite complex with 
many distractions that yield different cognitive approaches to theoretically similar problems. This may account 
for why one might observe particular biases in some situations but not others. At the same time, of course, 
agents in natural settings may often have higher incentives to behave rationally. 
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or an altogether new model. But, in at least one test, the assumptions and predictions of 

persuasion bias appear vindicated.  
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APPENDIX A: Instructions 

General Information 
 

This is an experiment in decision-making.  During the experiment, you will 
accumulate money.  In addition to a participation fee of 5€, you will receive the amount you 
accumulate in cash after the experiment is finalized. The exact amount you receive will be 
determined during the experiment and will depend on your decisions and/or the decisions of 
other participants.   

If you have any questions during the experiment, please raise your hand and wait for 
an experimenter to come to you.   

Please do not try to communicate with other participants during the experiment. 

At the bottom of this screen, you will see a letter (A, B, C, or D) and a number (1, 2, 
3, or 4).  This combination of letter and number is your participant number for the 
experiment.  Your participant number will be the same for the entire experiment.  This 
number is private and should not be shared with anyone.  Please record this number at your 
stack of record sheets. 

 

Your participation number …… 

 

Periods, Rounds, Groups, and Roles:   
 
During this experiment, you will be in a group with three other participants.  You will be 
grouped with the three other people with the same letter in their participant number.  That is, 
everyone with a letter “A” in his/her participation number will be in the same group, 
everyone with the letter “B” will be in the same group, and so on.  Throughout the 
experiment, you will be grouped with the same three participants. 
 
In the experiment, you will participate in 4 rounds of an activity.  Each round will consist of 
16 periods.  That is, during the experiment you will participate in Rounds 1 through 4, and 
each of these rounds will consist of Periods 1 through 16. 
 
For each round, we will randomly select one of the 16 periods for which to pay you.  Since 
you will not know which period will be selected for payment until the end of the experiment, 
every period could influence your earnings for the experiment. 
 
 
Round Instructions:   
 
In each round, a number will be drawn at random for your group.  This number will be a real 
number and can include three decimal places. The range from which we draw the number 
may change from round to round.  You will not be given any other information about how the 
number is determined.  This number will be referred to as the “target number” for your group 
for that round. 
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At the beginning of each round, every member of your group will receive a “private estimate” 
of the target number.  This private estimate will consist of the target number, plus or minus a 
random number.  For each member of your group, the random number will be drawn from the 
normal distribution, with an average of zero.  This means that your estimate will be related to 
the target number, but only imperfectly so.  That is, your estimate will give you an idea of the 
target number, but will most likely not be the same as the target number.  To be more precise, 
the private estimates will be normally distributed around the target number.   
 
Each of you will receive a different private estimate.  Each of the estimates will be drawn 
independently from the normal distribution around the target number.  That is, for each of 
you we will start with the target number and then add a random number drawn from the 
normal distribution. Your private estimates will therefore be related to each other and to the 
target number, but only imperfectly so. 
 
Are there any questions about the target number and estimates? 
 
 
Period Instructions:   
 
In each period, you will enter your guess of the target number.  You will do so by entering a 
number (of up to 3 decimal places).  The computer will prompt you for your guess and will 
then ask you to confirm this guess. If you want to enter a guess with a negative sign, make 
sure that you do not forget to put the negative sign. 
 
In each period, your payoff will be determined by how close your guess is to the target 
number.  That is, we will compare your guess with the target number.  The closer your guess 
is to the target number, the higher your payoff will be for that period. Note that you will not 
be able to see either the target value or your payoff for each period until the end of the round. 
 
IMPORTANT: YOU NEED TO USE THE DECIMAL POINT (.) TO ENTER THE 
DECIMALS. 
 
 
Information Instructions:   
 
At the end of each period, you will receive information on the guesses of other participants.  
Each of you will be able to observe the guess entered in that period by at least one other 
participant.  Some of you may receive more information than others. 
 
There are four participants in each group, with numbers from 1 to 4.  The information 
received by each participant is presented in the table below.  For each participant (row), the 
columns with an “x” indicate which guesses that participant is able to observe.  Note that 
each participant is able to observe his or her own guess.  In addition, every participant will be 
able to observe the guess of at least one other participant. For example, in addition to his/her 
own guess, Participant 3 can observe the guesses of the rest of the participants whereas 
Participant 1 can observe only the guess of Participant 4. 
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 Observes the guess of participant: 

 Participant 1 Participant 2 Participant 3 Participant 4 

Participant 1         X                     X 

Participant 2         X          X          X  

Participant 3         X          X          X           X 

Participant 4         X           X           X 

 
 
 
Therefore, the only information you will have on the target number is your private estimate as 
well as the guesses you receive from the other participants. 
  
To summarize, in each period you will make a guess, this guess will determine your payoff 
for that period, and you will then observe the guesses of some of the other members of your 
group. Once this takes place, you will continue to the next period.   
 
After 16 periods, the round will end, and you will be able to see the target number for that 
round, as well as your payoff in each of the 16 periods.  At the end of the experiment, one of 
these 16 periods will be selected at random to determine your earnings for that round.  You 
will be paid your earning across all 4 rounds, in addition to the 5 € participation fee, in cash. 
 
Are there any questions? 
 
 
 
Payoff Instructions:   
 
Your payoff in every period will be determined by the following formula (in cents): 
 
400 – 0.5  (target number – guess)2. 
 
To make sure everyone understands the payoff formula, let us go through a few examples: 
 

• Example 1: If your guess is exactly the same as the target number, then your payoff in that 
period will be:  400 – 0.5  (0) = 400 cents (4 €). 
   

• Example 2: If the target number is 100.0 and your guess is 80.0, then your payoff will be:   
 
                     400 – 0.5  (100 – 80)2 = 400 – 0.5  (400) = 400 – 200 = 200 cents (2 €).  
  

• Example 3: If the target number is –60.0 and your guess is –20.0, then your payoff will be:   
                     

                     400 – 0.5  (–60.0 – (–20.0))2 = 400 – 0.5  (20.0 – 60.0)2 = 400 – 0.5  (1600) = 400 – 
800 = – 400 cents (– 4 €) 
Please note three things about how your payoff will be determined.   
 

∗

∗

∗ ∗

∗ ∗ ∗
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First, a simple way to think about your payoff is that you start off with 400 cents, but lose 
money for the distance between your guess and the target number.  Therefore, you want your 
guess to be as close as possible to the target number. 
 
Second, remember that you will only receive payment for one of the 16 periods in a round.  
Since you will not know which period this will be until the end of the experiment, every 
period is equally likely to count towards determining your earnings. 
 
Third, notice that it is possible to lose money in a period if your guess is far from the target 
number.  If your payoff in a period is negative, and if that period is selected to count for that 
round, then the amount you lose will be subtracted from the amount that you accumulate in 
other rounds.  This means that you may lose some of your participation fee if the sum of your 
payoffs for all 4 rounds is negative.  However, we have designed the experiment so that this 
is very unlikely to be the case if you make decisions carefully.  If you notice that you are 
accumulating negative payoffs regularly, please raise your hand so that we can make sure that 
you understand how payoffs are determined.  Also, please double-check your guess before 
confirming it, since entering it incorrectly may cause you to lose a significant amount of 
money. 
 
Are there any questions about your payoffs? 
 
 
Quiz (Part 1) 
 
Before proceeding to the experiment, we would like to ask you to answer a few questions to 
make sure that everyone understands the instructions.  Please answer each of the following 
questions.  Once you have completed the quiz, please wait for the experimenter to ask you to 
proceed. 
 
1.  The experiment consists of 4 rounds.  Each round consists of 16 periods.    
               True               False 
 
2.  At the beginning of each round, everyone in your group will be shown the target number.                                  
              True               False 
 
 
3.  The target number in a round will be the same for everyone in your group.    
                True               False 
 
4.  The private estimate you receive will be the same for everyone in your group.  
                True               False 
 
5.  In each period, your payoff will be based on how close your guess is to the target number.                                 
              True               False 
 

6. At the end of every period, each of you will observe the guess of at least one other person in 
your group.   
                True               False 
Quiz (Part 2) 
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For the next three questions, remember that the formula for your payoff in a period is: 
400 – 0.5  (target number – guess)2. 
 
 
7.  Suppose that in a period your guess is 50.0.  If the target number is 50.0, then your payoff 
for that period is:  ….. 
 
8.  Suppose that in a period your guess is 200.00.  If the target number is 190.0, then your 
payoff for that period is:  ….. 
 
9. Suppose that in a period your guess is 500.00.  If the target number is 470.0, then your 
payoff for that period is:  ….. 
 
 
 
Final Instructions:   
 
We are now ready to begin the experiment.  We will proceed through 4 rounds, each of which 
will consist of 16 periods.  At the end of each round, you will find out the target number as 
well as your payoff for each of the 16 periods.  At the end of the experiment, one of these 
periods will be selected at random for each round to determine your earnings. 
 
At the beginning of each round, please record your private estimate on your record sheet.  
Then, in each period, please also record your guess and the information you receive regarding 
the guesses of others. 
 
If you have a question from this point on, please raise your hand and wait for the 
experimenter. 
 
 
 

 

 

 

 

 

  

∗
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APPENDIX B: Target Values and Private Signals 

 

Information set 1: 

Target Value Private Signals 
 Agent 1 Agent 2 Agent 3 Agent 4 

81.405 63.884 85.355 93.682 78.521 
-21.6 -3.518 -27.486 -51.65 -12.146 

124.16 119.512 95.831 146.349 153.696 
6.327 35.719 2.553 25.543 -11.991 

 

 

           Information Set 2: 

Target Value Private Signals 
 Agent 1 Agent 2 Agent 3 Agent 4 

-62.072 -48.463 -92.322   -85.279 -42.989 
-124.01 -129.756 -148.149 -123.711 -97.887 
380.12 404.631 364.22 351.162 390.095 
-294.56 -264.788 -319.406 -284.408 -290.207 
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Figure 3. Natural logarithm of standard deviation of group estimates across periods (Experiment 1)  

A: All Data Pooled      B: By Block 

  

C: By Parameter Set      D: By Network 
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Figure 4. Proportion of groups with standard deviations of estimates below certain 
thresholds (Experiment 1) 
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Figure 5. Median bias in mean group estimates over periods 9-16 of block (Exp. 1) 

A: Parameter Set 1 

 

B: Parameter Set 2 
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Figure 6. Natural logarithm of standard deviation of group estimates across periods (Experiment 2)  

A: All Data Pooled      B: By Block 

  

C: By Parameter Set       
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Figure 7. Proportion of groups with standard deviations of estimates below certain 
thresholds (Experiment 2) 

 

 


