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Abstract

We study the structure of the set of (Nash) equilibria of a deferred acceptance game
with complete lists: for a given marriage market with complete lists, men pro-
pose to women truthfully while women can accept or reject proposals strategically
throughout the deferred-acceptance algorithm. Zhou (1991) studied this game and
showed that a matching that is stable with respect to the true preferences can be
supported by some preference profile (possibly a non-equilibrium one) if and only
if it can be supported by an equilibrium as well. In particular, this result implies
the existence of equilibria since the men-optimal stable matching is supported by
true preferences and hence an equilibrium outcome. We answer an open question
Zhou posed by showing that there need not exist an equilibrium matching that
weakly dominates all other equilibrium matchings from the women’s point of view
(Theorem 2). We complement Zhou’s and our findings by showing that the set of
equilibrium matchings also need not be “connected” (Example 2).
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1 Introduction

The so-called marriage model is concerned with (two-sided, one-to-one) matching mar-
kets where the two sides of the market are, for instance, men and women (or firms and
workers). A matching is then a partition of all men and women into couples and un-
matched agents. Such a matching is “stable” if each man and woman has an acceptable
match, and no man and woman prefer one another to their respective matches. Gale
and Shapley (1962) were the first to formalize this notion of stability and presented their
deferred-acceptance algorithm to calculate stable matchings. Stability proved to be an
essential property in several real-life markets. For instance, in many centralized labor
markets, clearinghouses are most often successful if they produce stable matchings.1 This
inspired many researchers to study stability; see Roth and Sotomayor (1990) for a classic
survey, and Vulkan et al. (2013) and Manlove (2013) for more recent surveys.

In the original Gale-Shapley model, the preference lists of the agents are assumed to
be complete, i.e., for each agent all agents on the other side are acceptable. In other
words, remaining unmatched is not desirable. Moreover, agents cannot be (falsely) de-
clared unacceptable. The men-proposing deferred-acceptance algorithm with complete
lists induces a game where it is a weakly dominant strategy for each man to reveal his
preferences truthfully (Dubins and Freedman, 1981; Roth, 1982). For marriage markets
with complete lists, Roth (1984b) showed that the matching induced by any equilibrium
in (weakly) undominated strategies is stable with respect to the true preferences. Zhou
(1991) assumed that men propose to women truthfully while women can accept or reject
proposals strategically throughout the deferred-acceptance algorithm and showed that a
matching that is stable with respect to the true preferences can be supported by some
preference profile (possibly a non-equilibrium one) if and only if it can be supported
by an equilibrium as well. In particular, this result implies the existence of equilibria
since the men-optimal stable matching is supported by true preferences and hence an
equilibrium outcome. Zhou (1991) conjectured the existence of an equilibrium matching
(possibly not the women-optimal stable matching) that weakly dominates all other equi-
librium matchings from the women’s point of view. Teo et al. (2001) showed that it is
not always possible for a woman w to obtain her women-optimal stable partner from the
men-proposing deferred-acceptance algorithm, but they assumed that woman w is the
only agent acting strategically, i.e., their study does not consider the equilibria of the
deferred-acceptance game.

In this note, we solve Zhou’s (1991) conjecture in the negative by showing that there
need not exist an equilibrium matching (the women-optimal stable matching or not) that
weakly dominates all other equilibrium matchings from the women’s point of view (The-
orem 2). We complement Zhou’s and our findings by showing that the set of equilibrium
matchings also need not be “connected.” More precisely, suppose two stable matchings
are supported by equilibria. Then, it can happen that any stable matching that is located
between the two stable matchings (in terms of each agent’s preferences) is not supported

1See Roth (1984a) and Roth and Xing (1994) for empirical evidence.
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by an equilibrium (Example 2).

The results for the original Gale-Shapley model contrast with those for the model that
allows for “rejections,” i.e., an agent’s preference list need not be complete in the sense
that some agents on the other side of the market may be unacceptable. In this case, agents
have the option of declaring some agents as unacceptable. In the game induced by the
men-proposing deferred-acceptance algorithm, the set of equilibrium outcomes coincides
with the set of stable matchings (Gale and Sotomayor, 1985; Roth, 1984b). An important
consequence is that the remarkable properties of the set of stable matchings carry over to
the set of equilibrium outcomes. In particular, there exist an equilibrium matching (the
women-optimal stable matching) that weakly dominates all other equilibrium matchings
from the women’s point of view. However, for the more general many-to-one matching
model such an equilibrium matching also does not need to exist (Jaramillo et al., 2013,
Example 1).

2 Model

There are two finite and disjoint sets of agents: a set M = {m1, . . . ,mn} of men and a
set W = {w1, . . . , wn} of women. Thus, |M ∪W | = 2n. We denote a generic agent by i,
a generic man by m, and a generic woman by w.

Each agent has a complete, transitive, and strict preference relation over the agents on
the other side of the market. Hence, man m’s preferences �m can be represented as a strict
ordering Pm of the elements in W , for instance: Pm = w3w4w2w1 which indicates that m
prefers w3 to w4 to w2 to w1. Similarly, woman w’s preferences �w can be represented as
a strict ordering Pw of the elements in M . For any i ∈M ∪W , we write j �i k if j �i k
or j = k. For any I ⊆M ∪W , we define PI ≡ (Pi)i∈I . We write P instead of PM∪W .

A matching market is a triple (M,W,P ), or shortly P . A matching for (M,W,P )
is a function µ : M ∪W → M ∪W such that for all m ∈ M and w ∈ W it holds that
µ(m) = w ⇔ µ(w) = m. If µ(m) = w, then man m and woman w are matched to one
another. We call µ(i) the match of agent i at µ. When denoting a matching µ we list the
women that are matched to men m1, . . . ,mn; e.g., µ = w3, w4, w2, w1 denotes a matching
where m1 is matched to w3, m2 to w4, m3 to w2, and m4 to w1. Alternatively, a matching
can be described by the list of men that are matched to women w1, . . . , wn.

A key property of matchings is stability. If an agent can improve upon its present
match by switching to another agent such that this agent is better off as well, then this
blocking clearly would cause instability. For a given matching µ, a man m and a woman
w are a blocking pair if they are not matched to one another but prefer one another to
their current match at µ, i.e., w�mµ(m) and m�wµ(w). A matching is stable if there
are no blocking pairs. We denote the set of stable matchings for matching market P by
S(P ). Gale and Shapley (1962) proved that S(P ) 6= ∅.

In fact, Gale and Shapley (1962) showed that there is a men-optimal (women-
pessimal) stable matching µP

M , i.e., for each man m ∈ M , each woman w ∈ W ,
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and each stable matching µ, µP
M(m) �m µ(m) and µ(w) �w µP

M(w). Similarly, there is
a men-pessimal (women-optimal) stable matching µP

W . Gale and Shapley (1962)
provided an algorithm, called the deferred-acceptance algorithm, to compute µP

M and µP
W .

Next, we describe the (men-proposing) deferred-acceptance (DA) algorithm2 to obtain
the men-optimal stable matching µP

M ∈ S(P ) for any preference profile P .

DA algorithm:

Step 1. Each man proposes to his most preferred woman. Each woman who receives at
least one proposal is tentatively matched to her most preferred proposer and rejects all
other proposers.

Step k ≥ 2. Each man who has been rejected in Step k−1 proposes to his most preferred
woman among the ones that have not rejected him yet. Each woman who receives at
least one proposal is tentatively matched to her most preferred man among the ones that
proposed to her and the one she is currently tentatively matched to (if any)– all other
proposers are rejected.

The algorithm terminates when no man is rejected. Then, tentative matches become
final, and the resulting matching is µP

M . Let ϕ be the function that associates each
preference profile P with the men-optimal stable matching µP

M for P , i.e., ϕ(P ) = µP
M .

The DA algorithm induces a game form where each agent can reveal a preference
relation over the other side of the market. For each strategy profile Q, the DA algorithm
produces ϕ(Q) as the outcome. With each true preference profile P , the DA algorithm
induces a game Γ(P ). Dubins and Freedman (1981) and Roth (1982) showed that for
each man m ∈M it is a weakly dominant strategy to play Pm, i.e., to reveal his preferences
truthfully. Henceforth, we will assume that men always state the truth and that women
are the only strategic agents.

Roth (1984b) showed that for any strategy profile Q that is a Nash equilibrium (in
weakly undominated strategies) of the game Γ(P ), matching ϕ(Q) is stable with respect
to the true preferences P . Zhou (1991) proved the existence of Nash equilibria of Γ(P )
and characterized the matchings that can be sustained at Nash equilibria. Let E(P ) be
the matchings that are the outcome of some Nash equilibrium of Γ(P ). Let O(PM) be the
matchings that can be obtained at some strategy profile where men state the truth and
women play any set of strategies (which do not necessarily constitute a Nash equilibrium),
i.e.,

O(PM) = {ϕ(PM , QW ) : QW is a strategy profile of the women}.

Theorem 1. [Zhou, 1991, Theorem 1]
For each market P , E(P ) = S(P )∩O(PM). In particular, since µP

M = ϕ(PM , PW ) ∈ S(P ),
E(P ) 6= ∅.

Zhou (1991, Theorem 2) also showed that E(P ) contains matchings different from µP
M if

truth-telling is not an equilibrium profile for women.

2By switching the roles of men and women in the deferred-acceptance algorithm, matching µP
W is

obtained.
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3 Results

Zhou (1991, p. 29) asked whether women can coordinate their manipulations in an optimal
fashion. More precisely, “does there exist a matching [in] E(P ) that weakly dominates
all other matchings in E(P ) from the women’s point of view? Such a matching, if [it]
exists, seems more likely to emerge than others. . . . We leave it as a conjecture for future
research.”

The next theorem answers Zhou’s (1991) question.

Theorem 2. If n ≤ 3, then for any market P there exists a matching µ ∈ E(P ) that
weakly dominates all other matchings ν ∈ E(P ) from the women’s point of view, i.e., for
all w ∈ W , µ(w) �w ν(w). If n ≥ 4, this is not necessarily true.

Proof. Recall that by Theorem 1, for all markets P , E(P ) ⊆ S(P ).

Let n ≤ 2. Then, for any market P there are at most 2 stable matchings, and hence
the statement is trivially true.

Let n = 3. Let P be a market. Suppose by contradiction that there exists no matching
in E(P ) that weakly dominates all other matchings in E(P ) from the women’s point of
view. Then, women cannot find a jointly optimal equilibrium matching and hence there
exist at least two distinct (stable) matchings µ′, µ′′ ∈ E(P ), each of which is considered
optimal by some women but not others. Thus, there are distinct women, say w1 and w2,
such that woman w1 finds µ′ optimal but not µ′′ [for all ν ∈ E(P ), µ′(w1) �w1 ν(w1)
and µ′(w1) �w1 µ

′′(w1)] while woman w2 finds µ′′ optimal but not µ′ [for all ν ∈ E(P ),
µ′′(w2) �w2 ν(w2) and µ′′(w2) �w2 µ

′(w2)].

Let W (µ′) be the set of women who strictly prefer µ′ to µ′′ and M(µ′) be the set of
men who strictly prefer µ′ to µ′′. Analogously define W (µ′′) and M(µ′′). Since µ′, µ′′ ∈
E(P ) ⊆ S(P ) it follows from Donald Knuth’s decomposition lemma (Roth and Sotomayor,
1990, Corollary 2.21) that for all w ∈ W , [w ∈ W (µ′) if and only if µ′(w) ∈ M(µ′′)] and
[w ∈ W (µ′′) if and only if µ′′(w) ∈M(µ′)].

Note that w1 ∈ W (µ′) and w2 ∈ W (µ′′). Then, w1 ∈ W (µ′) implies m′ ≡ µ′(w1) ∈
M(µ′′). By assumption, w1 gets different matches at µ′ and µ′′. Hence, m′ = µ′(w1)
gets different matches at µ′ and µ′′. But then also w′′ ≡ µ′′(m′) gets different matches
at µ′ and µ′′. Hence, w′′ ∈ W (µ′) ∪W (µ′′). Suppose w′′ ∈ W (µ′′). Since m′ ∈ M(µ′′)
and w′′ = µ′′(m′), (m′, w′′) is a blocking pair for µ′, which contradicts the stability of
µ′. Hence, w′′ ∈ W (µ′). Since (i) µ′(m′) = w1 and µ′′(m′) = w′′ and (ii) m′ gets
different matches at µ′ and µ′′, it follows that w1 6= w′′. Hence, |W (µ′)| ≥ 2. Similarly, it
follows that w2 ∈ W (µ′′) implies |W (µ′′)| ≥ 2. Since W (µ′) ∩W (µ′′) = ∅, it follows that
|W | ≥ |W (µ′)|+ |W (µ′′)| ≥ 4, which contradicts |W | = n = 3.

If n = 4, then Example 1 shows that there need not exist an equilibrium matching
that weakly dominates all other equilibrium matchings from the women’s point of view.
The example extends to the case n > 4 by making for each l > 4, the members of (ml, wl)
each other’s mutually best possible partner.
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Example 1. [No optimal equilibrium outcome for the women]
Consider the matching market (M,W,P ) where M = {m1,m2,m3,m4}, W = {w1, w2, w3,
w4}, and preferences P given by Table 1. In each column, higher placed agents are more
preferred agents.

men women
m1 m2 m3 m4 w1 w2 w3 w4

w1 w4 w1 w4 m2 m1 m4 m3

w2 w2 w3 w3 m1 m2 m3 m4

· · · w1 w4 · · · · · · · · · · · · · · ·
w3 w3

Table 1: Preferences P in Example 1

The entries · · · can be any agents as long as each column is a preference relation
over the agents on the other side of the market. The set of stable matchings, given by
S(P ) = {µP

M = µ1, µ2, µ3, µ4 = µP
W}, is depicted in Table 2.3 In all tables, the men-

optimal stable matching is depicted in boldface while the women-optimal stable matching
is the boxed matching.

men women
m1 m2 m3 m4 w1 w2 w3 w4

µP
M = µ1 : w1 w2 w3 w4 m1 m2 m3 m4

µ2 : w2 w1 w3 w4 m2 m1 m3 m4

µ3 : w1 w2 w4 w3 m1 m2 m4 m3

µP
W = µ4 : w2 w1 w4 w3 m2 m1 m4 m3

Table 2: The four stable matchings in Example 1

To show that there is no optimal equilibrium outcome for the women it is sufficient to
prove that E(P ) = {µ1, µ2, µ3}: for all women w ∈ {w1, w2}, µ2(w) �w µ1(w) = µ3(w),
while for all women w ∈ {w3, w4}, µ3(w) �w µ1(w) = µ2(w).

We first show that E(P ) ⊇ {µ1, µ2, µ3}. By Theorem 1, µ1 = µP
M ∈ E(P ). Next, note

that for profile Q2 ≡ (PM , Q
2
W ), where Q2

W are the women’s preferences given in Table 3,
we have ϕ(Q2) = µ2. Hence, µ2 ∈ O(PM). So, by Theorem 1, µ2 ∈ E(P ). Similarly, for
profile Q3 ≡ (PM , Q

3
W ), where Q3

W are the women’s preferences given in Table 4, we have
ϕ(Q3) = µ3, and hence, µ3 ∈ E(P ).

3It is easy to see that the set of stable matchings is indeed S(P ) = {µP
M = µ1, µ2, µ3, µ4 = µP

W }. First,
one computes µP

M and µP
W using the two versions of the DA algorithm. Second, one verifies that the only

other two matchings µ with µP
M (m) �m µ(m) �m µP

W (m) for all m ∈ M are µ2 and µ3. Finally, one
checks the stability of µ2 and µ3.
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women
w1 w2 w3 w4

m2 m1 m4 m3

m3 m2 m3 m4

m1 · · · · · · · · ·
m4

Table 3: Preferences Q2
W

women
w1 w2 w3 w4

m2 m1 m4 m3

m1 m2 m3 m2

· · · · · · · · · m4

m1

Table 4: Preferences Q3
W

Next, we show that E(P ) ⊆ {µ1, µ2, µ3}. By Theorem 1, E(P ) = S(P ) ∩ O(PM) ⊆
{µ1, µ2, µ3, µ4}. Hence, it suffices to show that µ4 6∈ E(P ). Since µ4 ∈ S(P ), we have
to prove that µ4 6∈ O(PM), i.e., for all possible preference profiles QW of the women,
ϕ(PM , QW ) 6= µ4. Let QW be a preference profile of the women. Notice that in Step 1 of
the DA algorithm, men m1 and m3 propose to woman w1 and men m2 and m4 propose to
woman w4. Since each of these women has to reject one applicant, we distinguish between
the four cases4 depicted in the first column of Table 5. In all cases, the DA algorithm
terminates in Step 2, i.e., the other two women receive exactly one proposal that they
have to accept.

men women
Case m1 m2 m3 m4 w1 w2 w3 w4

(a) m1Qw1 m3 and m4Qw4 m2 ⇒ µ1 : w1 w2 w3 w4 m1 m2 m3 m4

(b) m3Qw1 m1 and m4Qw4 m2 ⇒ µ2 : w2 w1 w3 w4 m2 m1 m3 m4

(c) m1Qw1 m3 and m2Qw4 m4 ⇒ µ3 : w1 w2 w4 w3 m1 m2 m4 m3

(d) m3Qw1 m1 and m2Qw4 m4 ⇒ µ5 : w2 w4 w1 w3 m3 m1 m4 m2

Table 5: The four outcomes ϕ(PM , QW ) in Example 1

By applying the men-proposing DA algorithm, one easily verifies that in each case the
resulting matching ϕ(PM , QW ) is the one denoted in the same row. Since in all four cases
ϕ(PM , QW ) 6= µ4 (note that matching µ5 is not stable), the proof is completed. �

Our Example 1 and Example 1 in Zhou (1991) may suggest that for any market P
the set of equilibria is “connected,” i.e., if µ, µ′ ∈ E(P ), then for any ν ∈ S(P ) with
µ(m) �m ν(m) �m µ′(m) for all m ∈ M , ν ∈ E(P ). The following example shows this
need not be the case.

4For instance, m1Qw1 m3 (in Cases (a) and (c)) means that in w1’s strategy (list) man m1 is more
preferred to m3 and hence she rejects m3 at Step 1 of the DA algorithm.
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Example 2. [Gap in set of equilibrium outcomes]
Consider the matching market (M,W,P ) where M = {m1,m2,m3,m4,m5,m6}, W =
{w1, w2, w3, w4, w5, w6}, and preferences P given by Table 6.

men women
m1 m2 m3 m4 m5 m6 w1 w2 w3 w4 w5 w6

w2 w4 w5 w3 w1 w1 m1 m2 m3 m4 m5 m6

w1 w3 w4 w5 w5 w6 m5 m1 m2 m3 m4 · · ·
· · · w2 w3 w4 · · · · · · m6 · · · m4 m2 m3

· · · · · · · · · · · · · · · · · · · · ·

Table 6: Preferences P in Example 2

The entries · · · can again be any agents as long as each column is a preference relation
over the agents on the other side of the market. The set of stable matchings, given by
S(P ) = {ν1, ν2, ν3}, is depicted in Table 7.5 In all tables, the men-optimal stable matching
ν1 is depicted in boldface, the women-optimal stable matching ν3 is the boxed matching,
and the only other stable matching ν2 is underlined.

men women
m1 m2 m3 m4 m5 m6 w1 w2 w3 w4 w5 w6

ν1 w2 w4 w5 w3 w1 w6 m5 m1 m4 m2 m3 m6

ν2 w2 w3 w4 w5 w1 w6 m5 m1 m2 m3 m4 m6

ν3 w1 w2 w3 w4 w5 w6 m1 m2 m3 m4 m5 m6

Table 7: The three stable matchings in Example 2

We will show that E(P ) = {ν1, ν3}. We first show that E(P ) ⊇ {ν1, ν3}. By Theorem 1,
ν1 ∈ E(P ). Next, note that for profile Q̄3 ≡ (PM , Q̄

3
W ), where Q̄3

W are the women’s
preferences given in Table 8, we have ϕ(Q̄3) = ν3. Hence, ν3 ∈ O(PM). So, by Theorem 1,
ν3 ∈ E(P ).

Next, we show that E(P ) ⊆ {ν1, ν3}. By Theorem 1, E(P ) = S(P ) ∩ O(PM) ⊆
{ν1, ν2, ν3}. Hence, it suffices to show that ν2 6∈ E(P ). Suppose to the contrary that
there is a preference profile QW of the women such that (PM , QW ) is an equilibrium and
ϕ(PM , QW ) = ν2. Notice that in Step 1 of the DA algorithm, men m5 and m6 propose to
woman w1. Hence, for women w1 we can distinguish between two cases.

Suppose (a) m5Qw1 m6. Then, in woman w1’s strategy (list) man m5 is more preferred
to m6 and hence she rejects m6 at Step 1 of the DA algorithm. Furthermore, the DA

5It is easy to see that the set of stable matchings is indeed S(P ) = {ν1, ν2, ν3}. First, the two versions
of the DA algorithm yield ν1 and ν3. Second, one verifies that among all matchings ν that satisfy
ν1(m) �m ν(m) �m ν3(m) for all m ∈M the only other stable matching is ν2.
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women
w1 w2 w3 w4 w5 w6

m1 m2 m3 m4 m5 m6

m6 m1 m4 m2 m3 · · ·
m5 · · · m2 m3 · · ·
· · · · · · · · ·

Table 8: Preferences Q̄3
W

algorithm terminates in Step 2, i.e., all other women receive exactly one proposal that
they have to accept and ϕ(PM , QW ) = ν1 6= ν2.

Now suppose (b) m6Qw1 m5. Then, at Step 1 of the DA algorithm, woman w1 rejects
m5, who at Step 2 proposes to w5. Since m5 is woman w5’s most preferred man (according
to her true preferences Pw5) and since (PM , QW ) is an equilibrium, w5 and m5 are matched
to one another at ϕ(PM , QW ), but then ϕ(PM , QW ) 6= ν2. Hence, ν2 6∈ E(P ). �
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