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Abstract

In this paper I investigate mutual insurance arrangements restricted on a social network. My

approach solves for Pareto-optimal sharing rules in a situation where exchanges are limited within

a given social network. I provide a formal description of the sharing rule between any pair of

linked households as a function of their network position. I test the theory on a unique data set of

indigenous villages in the Bolivian Amazon, during the years 2004 to 2009. I find that the observed

exchanges across families match the network-based sharing rule, and that the theory can account

for the deviation from full insurance observed in the data. I argue that this framework provides a

reinterpretation of the standard risk sharing results, predicting household heterogeneity in response

to income shocks. I show that this network-based variation in consumption behavior is borne out

in the data, and that it can be interpreted economically in terms of consumption volatility. JEL
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1 Introduction

Vast areas of the developing world rely on informal mechanisms of insurance against random fluctua-
tions in crop-yields and other sources of income. Underdeveloped markets and little financial involve-
ment means that households must often find alternative social arrangements with which to smooth
consumption. Typically, these risk sharing arrangements involve the exchanges of goods and services
within a village or broader community. A great deal of work has gone into testing the “full risk-sharing
hypothesis” under which, if communities are indeed hedging risk efficiently, idiosyncratic and indepen-
dent movements in income should not correlate with fluctuations in consumption.1 While this test is
widely accepted now as the standard approach to test full insurance, it can only provide evidence for or
against Pareto-optimal allocations; it fails, however, to provide an accurate alternative characterization
below efficiency. Moreover, most empirical work on the subject has repeatedly rejected full risk sharing
in a number of different contexts ranging from India to Tanzania and including Thailand, Peru, and
many others.

In this paper I present a complementary interpretation of the risk-sharing test that provides a more
detailed account of the type of behavior we might observe when we reject full risk sharing. In particular,
I account for local network interactions by constraining Pareto-optimal allocations to a situation where
exchanges are limited within a given social arrangement. As a theoretical contribution, I provide a
formal description of the sharing rule between any pair of linked households strictly as a function of
their network position. I structurally estimate the sharing rule against a unique data set of indigenous
communities in the Bolivian Amazon, and I show that this description of sharing behavior does a
remarkably good job at describing observed transfers across families. I argue that this framework
provides a reinterpretation of the standard risk sharing results, predicting household heterogeneity in
response to income shocks. I show that this network-based variation in consumption behavior is borne
out in the data, and that it can be interpreted economically in terms of consumption volatitliy. Finally,
I show the theory can account for the level of risk sharing observed in the data.

The current framework provides a general approach to modeling mutual insurance organized around
local risk sharing groups. It generalizes recent work that has approached within-group insurance largely
as an empirical question.2 Rather than taking groups as separate, perfectly insured communities, I
allow for a fully general network with interconnected sharing groups that are specific to each household.
I argue that, in this environment, not defining the relevant local sharing group biases the results of
classical tests of full insurance. More importantly, I show that controlling for this bias does not

1Cochrane (1991) best explained this approach as the cross sectional equivalent to Hall’s permanent income hypothesis
test, which regressed consumption growth rates over time on ex-ante variables (Hall, 1978). Indeed, under complete
borrowing and lending opportunities consumption should not respond, over time, to forecastle shocks, just as it should
not respond to idiosyncratic shocks across households under full insurance.

2Hayashi et al. (1996) consider whether extended families can be viewed as collective units sharing risk efficiently.
Mazzocco and Saini (2012), for instance, argue that the relevant sharing group in India is the caste, rather than the
village. Munshi and Rosenzweig (2009) also find that the caste is the relevant group to explain migration patterns in
rural india. More recently Attanasio et al. (2015) test for efficient insurance within extended families in the U.S.
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eliminate the correlation between consumption and income across households: the network structure
generates underlying heterogeneity in sharing behavior, which implies that households’ income affects
consumption even after appropriately controlling for local aggregates.

I solve a constrained welfare problem in which transfers are limited along a given social structure.
The restriction on exchanges means that whatever a household receives from its neighbors cannot be
shared further down the network; that is, I assume that income can be split and shared only amongst
immediate neighbors. This assumption is meant to capture the relatively low levels of intermediation,
relative to direct exchanges, that occur in these types of subsistence economies, where mostly crops
and other perishable goods are traded.3 Alternatively, even when risk-sharing involves the transfer of
cash as well, urgent liquidity needs often means households cannot immediately access distant funds
that must first be intermediated by the network.4 While I take the lack of any intermediation as
a simplifying assumption, I also show that most results can be sustained when allowing for greater
movement of funds.5

In this context of no intermediation I solve for the non-contingent (or fixed) sharing rules that
maximize welfare. These type of sharing rules specify a fraction of each household’s income consumed
by each sharing partner, where this fraction is constant across all states of the world. In Section 2 I
discuss the implications of these type of sharing rules in the context of a very simple example, and I
show that they allow me to isolate network effects from income distributions in order to obtain simple
predictions on sharing behavior across households.

Of course, various other explanations have been provided to account for the failure of full risk
sharing in village economies. For instance, a number of papers have argued that incomplete information,
limited commitment, heterogeneous preferences, or the presence of outside markets are all capable of
generating inefficiencies in mutual insurance mechanisms.6 In this context, it is worth asking why
it makes sense to model social networks as a constraint on the classical welfare problem. Evidence
suggests that individuals select into particular social arrangements precisely to mitigate informational
frictions and to guarantee compliance, so that within these social arrangements mutual insurance
mechanisms function rather well.7 Moreover, there is strong evidence that informational frictions

3Hooper (2011) for instance mentions it is quite rare to observe the same good exchange hands twice within Tsimane’
communities. Similarly, Chiappori et al. (2013), Kinnan and Townsend (2012) and Udry (1994) document that an
overwhelming share of the economies they study in Thailand and Nigeria are formed by crops, livestock and other
perishable goods.

4You can think of this assumption as the complementary version of the assumptions driving the model of Ambrus et
al. (2014). In that model, funds can travel indefinitely along the network, but each edge has some exogenous capacity
constraint that limits the amount of funds it can intermediate. In this case, intermediation is ruled out, but the amount
of funds along any given edge is endogenized. These type of limited interactions are also studied by Bourlés et al. (2015)
in the context of altruism in networks, with very different implications.

5In Section 8.2 I show how to extend results to a general case with network intermediation. Notice that without some
limit on how far funds can exchange hands along the network, the welfare problem is unconstrained and full insurance
obtains as the unique outcome.

6See for instance Incomplete information (Udry, 1994); Limited Commitment (Ligon et al. 2002); Heterogeneous
preferences (Schulhofer-Wohl 2015, Mazzocco & Saini 2015); Outside Markets (Munshi & Rosenzweig 2014, Galeotti et
al. 2015, Saidi 2015).

7Munshi (2014) describes the general tendency of households to arrange into particular social patterns that avoid
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within these social spaces are relatively unimportant.8 In this paper I abstain from considering the
forces that shape particular social networks. Instead, I take them as given and study the type of
efficient outcomes we expect within these restricted environments.

My first main result relates constrained-efficient transfers to a global measure of households’ relative
importance in the network. This measure reflects a household’s direct and indirect interactions along
the entire network. In this manner, the proposed measure bears some similarity to previous statistics
— for instance Katz-Bonacich or PageRank — that capture higher-order dependencies as they feed
back along a given network of connections. The particular flavor of this network measure has to do with
the tradeoff faced by the planner between variance and covariance considerations. I find that, for any
network, the constrained-efficient exchanges across any pair of households follows a simple relationship
between the sender and receiver’s network measures.

I show that this framework redefines the relationship between consumption and income in a setting
of partial insurance on a network. This has important implications for the standard risk sharing tests.
Specifically, the model provides heterogeneous predictions on household’s response to income shocks
that emerge from households’ different positions in the network. This provides insight into the varied
insurance possibilities of households when full risk sharing is rejected. I show that, in certain scenarios,
these values can be mapped to important economic features, such as consumption volatility.

Having established the theoretical results, I examine a unique data set of about 250 households
in 8 different indigenous villages in the Bolivian Amazon basin, during the years 2004 to 2009. This
data is particularly well suited for my analysis as it provides information on the caloric exchanges
across pairs of households over time.9 This allows me to structurally estimate the model by fitting the
theoretical relationship between network position and exchanges at the edge level. Moreover, compared
to other models of risk sharing networks, I can estimate the model at a much finer level of variation (i.e.
using edge-level data), and separately from aggregate considerations on consumption growth. I find
that the empirical flows across connected dyads indeed respond to the network structure as the model
prescribes. I show that once we account for this restriction on the planner’s problem, we can effectively
explain all the variation in consumption that correlates with households’ income. Finally, I also test
the model’s implication on network-based heterogeneity of households’ response to own income shocks,
and I find that the data exhibits the same type of variation that the model prescribes. I do this by
constructing a couple of tests that can be applied to many other data sets that include network and
income data; it can be tested on a wide range of empirical settings. The results suggest that previous
failures of full-risk-sharing tests are best understood by invoking restrictions on bilateral exchanges.

certain commitment issues. On the theoretical side, a long list of papers have studied the type of networks that might
emerge under limited commitment and similar frictions. Bramoullé & Kranton (2007), Jackson et al. (2012), and Ambrus
et al. (2015) are just a few.

8In his work on Nigerian communities, for instance, Udry (1994) argues that loan arrangements are very informal,
with no collateral, explicit interest rates or repayment dates, and that households know each other well. Hooper (2011)
also finds similar evidence of strong informational flows in the Tsimane’ networks of Bolivia that I study in this paper.

9Exchanges are measured in calories: food is the primary source of income and trade for subsistence economies like
the Tsimane’ communities studied in this paper.
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Related Literature

The distribution of uncertainty along social ties has, in the past several years, drawn a lot of interest
from economists. Starting with Bramoullé and Kranton (2007a,b) and Bloch et al. (2008), a number
of recent contributions — such as Jackson et al. (2012), Billand et al. (2012), Ali and Miller (2013a,b),
and Ambrus et al. (2014) — have focused on enforcement concerns and the role of social capital
in sustaining cooperative behavior. Most of these studies assume networks serve a dual role as both
medium of exchange and social collateral, delivering efficient and stable structures for a set of exogenous,
and fixed, bilateral transfers. In other words, most of these papers assume a sharing behavior and
find networks that sustain it. Bramoullé and Kranton’s (2007a,b) model, for instance, assumes that
a connected component equally distributes its surplus independent of the social structure, so that
inequality is ruled out. Billand et al. (2012) also assume a sharing behavior whereby high-income
households transfer a fixed amount to low-income neighbors. I take a different view that abstracts
from enforceability considerations altogether and instead provides an endogenous prediction of efficient
transfers along a network. The focus on the distribution of surplus, and away from enforceability,
appears most recently in work by Ambrus et al. (2015) that studies cross-group incentives for social
investments. However, their concern has to do with network formation, so they also assume some
exogenous split of surplus: bilateral exchanges are assumed to split the total surplus according to
the Shapley value, which, in the particular setting they focus on, reduces to equal sharing. Perhaps
closest in spirit is the work by Ambrus et al. (2014) that similarly refrains from assuming, a priori,
the sharing pattern across connected pairs; they otherwise assume a distribution of “link values” that
are perfectly substitutable with consumption, so that coalition-proof transfers are, again, ultimately
determined from outside the model. The current paper refrains from engaging with these difficult
strategic considerations, and instead solves for a simple constrained-efficient, network-based sharing
rule that provides a number of testable implications.

On the empirical side, this paper joins the ranks of a long strand of research devoted to the
estimation, and interpretation, of risk-sharing patterns in data. While newer data sets have begun
to include social surveys that allow us to test network models directly, the empirical risk-sharing
literature has a longer tradition, and one that, with occasional exceptions, has overwhelmingly insisted
that communities operate below efficiency. The work of Mace (1991), Cochrane (1991), and Townsend
(1994) provided the theoretical foundations for measuring correlations between household income and
consumption, which, by now, has become the hallmark of all empirical tests on risk sharing. Since
then, a healthy number of studies have sprung up to investigate one or another economic dimension
of risk-sharing communities — from the impact of kinship ties on credit constraints in the Philippines
(Kinnan and Townsend, 2012) to the decreased social mobility induced by local sharing along caste lines
(Munshi and Rosenzweig, 2009). Whatever the particularities, all these studies perform the standard
test of full risk-sharing and, together, deliver a cogent narrative that by and large strays away from
efficiency. For instance, Ligon (1998) studies a private information alternative to the complete market
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model and rejects full insurance in rural south India. Fafchamps and Lund (2003) famously reject
full insurance for Philippine communities and show that the extent of risk sharing is limited by the
extent of interpersonal networks. Mazzocco and Saini (2012) reject full insurance for indian data at
the village but not at the caste level, while Munshi and Rosenzweig (2009) reject efficiency at the
caste level as well. On their study of investment decisions under exogenous income shocks to networks
in rural Mexico, Angelucci et al. (2015) however find that they cannot reject full insurance within
extended families. The list is long, though, and more often than not signals of full risk-sharing are
absent from a wide range of settings.10 More importantly, Saidi (2015) studies credit demand in the
same Tsimane’ indigenous communities that I study and also rejects full insurance.

Finally, the paper also relates to a number of studies that have sought to provide a direct explanation
for the repeated failure of efficiency in data. For instance, Ligon et al. (2002) model optimal contracts
under limited commitment. They estimate their model on three separate indian villages, and argue that
this type of transaction cost accounts for the magnitude of departure from full insurance. More recently,
a couple of studies have argued that heterogeneous risk preferences might force an interpretation of full
risk-sharing test that is far too pessimistic. (Mazzocco and Saini (2012) or Schulhofer-Wohl (2011)).
Schulhofer- Wohl (2012), for instance, argues that if households’ variation in risk preferences are cyclical
then not accounting for these explicitly introduces an omitted variable bias that pushes the coefficient
of own income upwards, leading to false rejections of full insurance. Mazzocco and Saini (2012) have
similarly developed empirical tests for heterogeneous preferences and provided a modified empirical
procedure to test for efficiency. Most importantly, Fafchamps and Lund (2003) address the failure
of efficient insurance in the data by invoking the role of gifts and remittances in risk-sharing and
reject mutual insurance at the village level, suggesting instead that households receive transfers from a
network of family and friends. Although they don’t model network flows explicitly, their findings serve
as the principal motivation for this paper.

The remainder of the paper is organized as follows. Section 2 goes over the standard test of full
insurance and argues how the current setup affects this estimation procedure using a simple example.
Section 3 introduces the theoretical framework, solves for the efficient sharing behavior, and provides
implications for the test of full insurance. Section 4 provides background information about the data
and summary statistics. In Section 5 I structurally estimate the model, and draw a number of testable
implications for risk-sharing tests. Section 6 concludes.

2 Network Constrained Risk Sharing: A Simple Example

In this section I present the canonical model of full risk sharing and I describe the empirical approach
that emerges from it to test full insurance from data. I then describe the main assumptions behind

10As Schulhofer-Wohl (2012) reminds us, full insurance has been rejected in data from the United States (Attanasio
and Davis 1996; Cochrane 1991; Dynarski and Gruber 1997; Hayashi et al. 1996), Côte d’Ivoire (Deaton 1997), India
(Munshi and Rosenzweig 2009; Townsend 1994), Nigeria (Udry 1994), and Thailand ( Townsend 1995). Mace (1991)
does not reject efficiency in U.S. data, but Nelson (1994) overturns this result.
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this paper and how it refines the concept of sharing groups. I use a very simple example to describe
the sharing rules I obtain, and I explain what they claim about the distribution of insurance across
the population. Finally, I present the implications of this model on the standard risk-sharing tests and
I show that, 1) not defining the appropriate local sharing groups generates biased estimators, and 2)
network asymmetries generate varying predictions on the impact of income shocks on consumption,
which in turn provides a network story behind the rejection of full insurance. Section 3 then generalizes
all these arguments to a full fledged model with an arbitrary network and a general income process for
households.

2.1 Canonical Model

The classical risk sharing models of Cochrane (1991), Mace (1991), and Townsend (1994) solve for the
ex-post pareto-optimal allocations by defining a planner problem as follows,

max
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the well known full insurance equations known as Borch’s rule. It states that the ratio of marginal
utilities across any two agents is constant across states. Formally, we can solve for the problem above
and, for any two households i and j, obtain the following expression,
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This expression has been used to develop a popular test of full insurance. Indeed, equation (1) states
that, under full risk sharing, consumption should not respond to idiosyncratic shocks after controlling
for aggregate shocks. The following type of regressions,

log(c
it

) = ↵

i

+ �1log(yit) + �2log(ȳt) + ✏

it

(2)

where ȳ

t

represents aggregate income, have been used to test for efficient outcomes, in which case
�1 = 0 and �2 = 1. Time and again, �1 is found to be positive and significant and �2 below one.
Unfortunately, not much can be learned from these results other than the existence, or not, of full
insurance. The following approach attempts to give a more nuanced understanding of the type of
sharing behavior that might be generating these estimates.

11Nondecreasing utility functions on consumption means that the constraint will hold with equality.
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Figure 1: A Simple Risk Sharing Economy

2.2 Overlapping Sharing Groups

An important feature of the classical risk sharing model above is that all households form part of the
same risk sharing group. In this paper, I relax this assumption by considering the possibility that
mutual insurance is local. This allows me to capture a number of relevant intermediation costs that
might make it impossible to define a unique sharing group.12 If these motives are strong, households
can only access local risk sharing groups defined by their immediate neighbors (or trading partners).13

To fix ideas, consider the economy presented in Figure 1 where households 2 and 3 can only trade
with household 1. For simplicity, imagine all households obtain a random income realization y

i

(!)

that is i.i.d. from some distribution F

�
µ, �

2
�
. The lack of intermediation means households must

access different, overlapping risk sharing groups — for instance, the risk sharing group of household 2

consists of households 2 and 1 only. Let ↵

ij

represent the fraction of j0s income consumed by i. The
situation of this economy can be written as follows,

c1 (!) = ↵11y1 (!) + ↵12y2 (!) + ↵13y3 (!)

c2 (!) = ↵21y1 (!) + ↵22y2 (!)

c3 (!) = ↵31y1 (!) + + ↵33y3 (!)

(3)

This formulation provides a very tractable way to define the risk sharing rule in this economy by
expressing consumption explicitly in terms of bilateral transfers, ↵

ij

. Notice that we can describe the
canonical model above as the particular case where households 2 and 3 are able to trade with each
other because they are directly connected.14 In this case, all households clearly access the same risk
sharing group and efficiency obtains.

12For instance, the Tsimane’ communities that I study in this paper transfer highly perishable goods - mostly prepared
food and game. In other contexts where risk sharing involves the transfer of cash as well, urgent liquidity needs means
individuals cannot immediately access distant funds that must be intermediated.

13In Section 8.2 I show how to extend the model to all levels of intermediation. Notice that if intermediation is
sufficiently high, all households access the same risk sharing group and efficiency obtains as above.

14Or, alternatively, by intermediating through household 1.
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Figure 2: The Sharing Rule of a Simple Economy

In this paper I solve generically for the set of non-contingent sharing rules that maximize welfare
in this setup with no intermediation. A non-contingent sharing rule means that the fraction ↵

ij

of j0s
income consumed by i is constant across all states !.15 In this paper I show how to solve analytically
for this type of sharing rule for any given network. As an example, consider the economy of figure
1, and, in order to make the argument as simple as possible, set all Pareto weights ⌘

i

equal and set
µ

2 = �

2. Applying the main theoretical result of this paper we obtain the following simple description
between a household’s consumption and the incomes of its relevant sharing group:

c1 (!) = 5
21y1 (!) + 9

21y2 (!) + 9
21y3 (!)

c2 (!) = 8
21y1 (!) + 12

21y2 (!)

c3 (!) = 8
21y1 (!) + + 12

21y3 (!)

(4)

This situation is depicted in Figure 2. A great deal can be gleaned already from this very simple
example. Notice that households 2 and 3 share a larger fraction of their income with 1 than 1 shares
with them ( 9

21 >

8
21); still household 10s relevant sharing group is larger and as a result 1 consumes

much less of its own income than 2 or 3 ( 5
21 <

12
21). Moreover, it is easy to show that consumption

volatility associates positively with this value, so that household 1 (with a lower coefficient) obtains a
less volatile consumption stream than households 2 and 3. This setup therefore provides network-based
heterogeneity on households’ response to own income shocks and relates it to the distribution of risk
sharing opportunities.

15In 8.1 I discuss the alternative assumption that sharing rules are contingent — i.e. ↵
ij

(!). I show how it restricts
the set of states for which the efficient condition (1) holds, and I demonstrate the inherent difficulty in isolating general
network effects from particular income realizations for these type of contingent sharing rules. I also provide some empirical
evidence that suggests informal exchanges in village economies might be closer to a fixed (or non-contingent rule) than
to an extremely flexible sharing rule.
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2.3 Risk Sharing Regressions under Local Insurance

Ultimately, these predictions generate enough information on household consumption to provide rea-
sonable explanations for the rejection of full insurance. I consider how this affects the empirical tests
of risk sharing described in the previous section. Let us stick to the simple economy in Figure 1 and
consider rewriting equations (3) in the form of the classical risk-sharing specification of equation (2)
with a common aggregate income term,

c1t = (↵11 � ↵12) y1t + ↵12ȳt + ✏1t

c2t = (↵22 � ↵21) y2t + ↵21ȳt + (✏2t � ↵21y3t)

c3t = (↵33 � ↵31) y3t + ↵31ȳt + (✏3t � ↵31y2t)

These equations reflect three important themes of this paper: 1) coefficients on own income are gener-
ically different from zero for all households — i.e. ↵

ii

6= ↵

ij

2) these coefficients vary according to
households’ position in the network, and 3) imposing the common sharing group on all households
generates biased estimates: notice the last two equations contain weighted incomes in the error term.16

The classical risk sharing test in (2), pools these equations and obtains a unique estimate for �1; given
the previous discussion we expect this estimate to be different from zero and positive. In the first
column of Table 1 I show the estimates for the simple example of Figure 1 for simulated data.17 As
expected, �1 is statistically significant and close to 0.2, while the coefficient on the common aggregate
income term, �2 , is statistically lower than 1.

In order to isolate the network effect from the bias in �1, consider estimating (2) with the relevant
local sharing group instead. In this case, estimates are no longer biased, but we still obtain heteroge-
neous estimates, �

i

, for the coefficients on own income. As a result, the risk sharing test still delivers
positive estimates. To see this rewrite again equations (3) in the form of (2), but now we allow for
household-specific aggregates, ȳ

it

, that sum over the incomes of i0s local sharing group. In this case
we have

c1t = (↵11 � ↵12) y1t + ↵12ȳ1t + ✏1t

c2t = (↵22 � ↵21) y2t + ↵21ȳ2t + ✏2t

c3t = (↵33 � ↵31) y3t + ↵31ȳ3t + ✏3t

Because aggregates are now household-specific, the additional terms in the error term disappear and
we obtain unbiased estimators. Notice, however, that coefficients to own income are different from zero
so long as ↵

ii

� ↵

ij

6= 0. This implies that the pooled regression will again deliver positive coefficient,
�1, even with the appropriate local aggregates. I present the results to this local sharing group version

16If incomes are positively correlated, then imposing a common aggregate variable biases estimates upwards.
Schulhofer-Wolf similarly uncovers a bias in the classical risk-sharing specification that comes from heterogeneity in
income preferences. Here, the heterogeneity is induced by positions in social structures. In any case, as I show below,
we can adjust for the bias and still expect positive coefficients to income in this setup.

17I simulate log-normal income data for all three households with t = 100, 000 and I obtain household consumption
as indicated by the sharing rule in (4). I then run the standard risk-sharing regression on logged data, controlling for
household fixed effects.
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Figure 3: Two Tsimane’ Villages: (a) Kinship Network (b) Trade Network

of equation (2) in the right column of Table 1. Again, the coefficient to income is positive, as expected,
although estimates decrease by one order of magnitude.

Real world social structures are usually far more complicated than these simple examples. Figure
4 plots two of the networks I build from data in one of eight indigenous communities I study in this
paper; the one on the left is built from kinship data and the one on the right on trade data.18 These
networks are orders of magnitude more complicated. Still, I show that the arguments above can be
extended generically for any network and general income process across households. Moreover, this
unique data set contains information on the transfer of food across households over time, so I am
able to structurally estimate the endogenous, network-based sharing rule that I derive in this paper. I
find it does a remarkably good job at describing the patterns of exchange across households in these
subsistence economies.

3 The Model

I study an economy in which households face uncertainty about their income realizations, but may
redistribute incomes through a given network of social connections. I characterize efficient transfers as
a function of households’ position in the network when the movement of funds is restricted. In section
3.1 I describe the theoretical setup. In section 3.2 I solve for the constrained-efficient set of transfers
and describe how they relate to the underlying network. In section 3.3 I provide certain properties of
the sharing rule and describe its behavior more closely for some simple structures.

18Refer to section X for a detailed description of the types of networks constructed and a discussion on the relative
merits of each. Refer to Figures 1 and 2 in the appendix for a visual plot of all villages for each of the network types.
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3.1 Setup

Consider a population of size N arranged in a network L = (V,E), consisting of a set V of households
(vertices) and a set E of pairs of elements of V that represent links (edges) across these households.
I assume the network is undirected, so that the pair of vertices in E is unordered. It is also useful to
define an alternative characterization of this social structure by an adjacency matrix G, where g

ij

= 1

if and only if {i, j} , {j, i} 2 E. Each connection can represent a friendship, kinship relation, or other
type of social connection between the two parties involved. We will refer to i’s neighborhood as the
subset of N defined by N

i

= {j 2 N | e
ij

2 E} . The degree of a vertex i measures the number of
connections of i and is defined as the cardinality of N

i

.
All households face risky endowments. Denote the vector of random endowments by y = (y

i

)
i2N ,

drawn from some joint distribution F with mean µ and variance �

2. I assume a common covariance
between the incomes of any two agents and denote it by ⇢ 6= 0. I assume throughout that |⇢| < �

2 so
that incomes are not perfectly correlated.

Households share incomes along a social network, so that consumption levels will differ, in general,
from their income realizations. Incomes can only be exchanged once, so that households consume
incomes from immediate neighbors.19 The shares of neighboring endowments consumed by a given
household are defined ex-ante and are non-contingent. Together this implies that a household’s con-
sumption in state ! can be defined as a linear combination of neighbors’ incomes as,

c

i

(!) =
X

j

g

ij

↵

ij

y

j

(!) (5)

where ↵

ij

represents the share of j

0
s endowment that is consumed by i. We will also define ↵

i

=

(↵
ij

)
j2N

i

as the vector of i0s incoming shares. By defining the “sharing matrix” A as A
ij

= g

ij

↵

ij

,
we can express equation (5) in matrix form in the following way, c = Ay, where I drop the explicit
dependency on ! from now on for notational convenience. Of course, the elements of A represent
percentage claims on neighboring incomes and must therefore satisfy a feasibility condition that all
claims on a given endowment sum to 1, which can be expressed as 1 = A01. Finally, I assume all
households have quadratic utility functions:

u (c
i

) = c

i

� 1

2
�c

2
i

where � is the common coefficient of risk aversion.
I now define the planner problem and provide a short discussion on the particular form of the

objective function and the constraints.

Definition 1. The planner problem is defined as,
19In Section 8.2 I show how this assumption can be relaxed to allow for network intermediation.
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P
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j
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ij

↵
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!2

+ �

2P
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ij

↵

2
ij

+ ⇢

P
k 6=j

g

ik

g

ij

↵

ij

↵

ik

1

A (6)

subject to ↵

ij

� 0 for all i, j 2 N and that
P
i

↵

ij

= 1 for all j 2 N

The form of equation (6) exploits the linear mean-variance tradeoff of expected utility: the first term
in brackets corresponds to the squared mean of consumption, while the next two terms correspond to
the variance of consumption.20 The constraints on the planner problem reflect the standard feasibility
conditions that shares are positive and sum to one. Finally, since the sum is convex in shares and the
constraint set is linear, the maximization is a convex program and the first order conditions completely
characterize the optimal solution. In the next section I define these optimality conditions and explore
the type of network interactions that are contained in them. I then provide the general solution for
any network G and a general class of distributions F .

3.2 Constrained-Efficient Network Flows

Having defined the economy and the welfare problem in the previous section, we are now ready to
obtain a description of the sharing rule for any given network. To do this in a way that clarifies the
type of network interactions that emerge, I first analyze the planner’s optimality condition in some
detail. The first order conditions of (6) defines the share ↵

ij

that i receives from j (for each pair
i, j 2 N) as,

↵

?

ij

= g

ij

(⇤
j

� 
X

k

g

ik

↵

?

ik

) for all i, j 2 N (7)

where ⇤
j

= �

j

2(�2�⇢) , and �

j

> 0 is the multiplier for j0s constraint, and where  = µ

2+⇢

�

2�⇢

> 0 captures
the shape of the income distribution. It is worthwhile to examine equation (7) in some detail. First
of all, notice that if i and j are not connected, g

ij

= 0 and i consumes none of j0s income. Instead,
if g

ij

= 1 then the fraction of j0s income consumed by i depends on two terms. The first term, ⇤
j

,
captures the relationship among all of j0s shares, as governed by j

0
s constraint,

P
i

↵

ij

= 1. It enters

positively because a drop in one of j

0
s shares (holding everything else constant) would increase ⇤

j

,
and thus force all of j0s shares up to meet the constraint. As such, this term effectively connects all of
the first order conditions pertaining to j. For instance, if no other effect existed, ⇤

j

would set all of
j

0
s shares equal to each other. However, in most situations j

0
s shares are not equal, given the second

term in (7). This second term determines how all shares received by i affect ↵
ij

— the more i receives
from some neighbor k the less it receives from j (and vice versa), where the constant  mediates the

20Notice we can write the planner problem as, Eu (c
i

) = E
P
i

(c
i

) � 1
2�

P
i

�
E (c

i

)2 + var (c
i

)
�

and the first term drops

out because aggregate consumption must equal aggregate income by the constraints— i.e.
P
i

c
i

=
P
i

y
i

. Therefore, the

planner problem reduces to minimizing
P
i

�
E (c

i

)2 + var (c
i

)
�

which corresponds to the expression in Definition 1. In

the appendix I show this problem corresponds to the minimization of expected inequality and I relate it to other similar
results for CARA utility in Ambrus et al. (2015).
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strength of this response. The value of  captures the relative variance and covariance considerations
of the planner: as covariance effects increase (and  increases), j0s shares respond more to the value
of other shares.21 To sum up, the share of j0s income consumed by i responds, on the one hand, to all
shares coming from j (through ⇤

j

) and, on the other hand, to all shares going to i (through  ).
More generally, the second term in (7) defines a recursive relationship for ↵

ij

. Cutting through the
recursivity allows us to reframe the optimality condition (7) in terms of the constraints ⇤

k

as follows22,

↵

?

ij

= g

ij

 
⇤
j

�  

1 +  d
i

X

k

g

ik

⇤
k

!
for all i, j 2 N (8)

Given the arguments above, ⇤
k

connects all of household k

0
s optimality conditions via k

0
s constraint (if

↵

ik

decreases, then ↵

jk

increases for all j connected to k, holding everything else constant). Therefore,
equation (8) expresses ↵

ij

not as a function of all shares that i receives (as in (7)), but instead as
a function of the full set of interactions for each of i0s partners. That is, it contains all the indirect
interactions that affect ↵

ij

. The shape of this expression clarifies the form in which indirect effects —
captured by the values of ⇤ = (⇤1,⇤2, . . . ,⇤n

) — feed into the optimality condition of the planner.
The challenge consists in determining the exact shape of these indirect effects as a function of the
network. It turns out we can obtain a recursive formulation for these constants in the spirit of other
well known vertex similarity measures such as Katz-Bonacich or PageRank.23 This is the content of
Proposition 1.

Proposition 1. The constrained-efficient risk sharing agreement for any network defined by G is

characterized by a set of transfers given by,

↵

ij

= g

ij

 
M

j

( ,G)�  

1 +  d
i

X

k

g

ik

M

k

( ,G)

!
(9)

where M

i

( ,G) corresponds to i’s Weighted Even-Path Centrality (WEPC) defined recursively as,

M

i

( ,G) =
1

d

i

0

@1 +
X

l,k

g

ik

g

kl

 

1 +  d
k

M

l

( ,G)

1

A (10)

Proof. See Appendix.

Proposition 1 characterizes the full set of shares, A ( ,G), that defines the interior solution to the
planner problem for any given network. As discussed above, the solution depends on the parameter
 and on the positions of each household in the network. The form in which the network defines the
efficient sharing rule has to do with interactions among neighbors of neighbors (in other words, among

21Conversely, when controlling the variance becomes more important to the planner than covariance effects, the term
 decreases and the planner sets all of j0s shares much closer to each other, as demanded by the ⇤

j

term in (7)
22This is shown in the proof of Proposition 1.
23See, for instance, Leich, Holme and Newman (2006) for a theoretical account of vertex similarity in networks.
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households located two links apart). To gain some intuition, recall the network interaction terms in
equation (7): the shares going to household i are substitutes. This implies that households two links
apart (with a common neighbor, say, i) interact directly as shown in equation (7). But indirect effects
play a crucial role here as well. To see this, notice that these two households not only interact through
their transfer to i, but also exchange resources with other partners, and these other relations affect
what i receives from them, given their constraints that

P
i

↵

ij

= 1. This is the main message behind

equation (8). As a result, each household connected to i not only interacts directly with each other
as in (7), but they also interact indirectly with others’ sharing partners. The recursive definition of
network centrality in Proposition 1 reflects these arguments: it says that i0s centrality depends on the
centralities of i0s neighbors’ neighbors (i.e. those households two links apart). Finally, Proposition 1
says that the sharing rule between any two households depends positively on the sender’s measure, and
negatively on the sum of measures of the receiver’s neighborhood. It is sometimes helpful to think of
this tradeoff as capturing the extent to which the sender’s indirect interactions in the network cannot
be accessed by any other of the receiver’s partners.

The previous discussion argues that households at distance two interact directly, but also that
households at distance four, six, eight etc.. interact indirectly. With this in mind, I show that the
centrality measure captures all these direct and indirect effects across the network. The crucial element
in this setting (following the previous arguments) consists of a network statistic that aggregates all
even-length paths for every household, weighted in some particular way. In other words, Proposition 2
solves through the recursive definition of Proposition 1 in order to provide a reinterpretation of network
centrality that clarifies the previous discussion.

Proposition 2. Household i

0
s WEPC measure corresponds to a weighted sum of all even-length paths starting

from i,

M

i

( ,G) =
1

d

i

+
X

q2N

X

j2N

X

⇡

ij

2⇧2q
ij

W (⇡
ij

) (11)

where the weight of each path ⇡

q

ij

= (i0, i1, i2, . . . iq) of length q from i to j (i.e. i0 = i and i

q

= j) is

given by,

W (⇡
ij

) =
1

d

i0

 

1 +  d
i1

1

d

i2

 

1 +  d
i3

. . .

1

d

i

q

(12)

Proof. See Appendix.

Recursive measures like the one in equation (10) are common in the networks literature. These can
be usually expressed similarly as the sum of all weighted paths starting from some household. I refer
the reader to Section 8.3 for a more detailed and technical discussion of these graph measures and how
the WEPC relates to them. In the context of the present discussion, however, it is interesting to note
that contrary to other similar measures that weight all paths of a certain length equally, the current
measure elicits path-specific weights, as described in equation (12). These weights reveal once more
how the constraints (which weight all shares evenly as one over the degree, 1

d

i

) are used to connect long
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chains of interactions, in which two households interact via a common neighbor i through the term
 

1+ d
i

, as shown in equation (8).
In the next section I work through some properties of the sharing rule, and I argue the type of

effects we expect in the estimation of standard tests for full insurance for some simple networks. In a
way, the reader might want to think of this section as a more complete version of section 2, now that
the sharing rule has been defined.

3.3 Comparative Statics and Implications for the Risk Sharing Test

Section 2 argues, like other recent papers, the importance of specifying the appropriate risk sharing
group for each household when running the risk sharing tests. However, it also makes the case that
coefficients to own income can generally be different from zero and that these coefficients vary across
households, so that full risk sharing is rejected even at the appropriate sharing level; If networks are
sufficiently symmetric, though, then households pass the Townsend (1994) test whenever local sharing
groups are correctly controlled for. In this section I complement these arguments by working through
two simple network structures using the sharing rule developed in the previous section.

First I show how, under symmetric structures, the sharing rule indeed boils down to a simple in-
tuitive sharing behavior that predicts the standard efficiency results, when controlling for aggregate
income of the relevant, household-specific sharing group. The most symmetric structure is the regular
network — this is a network where every household is connected to k identical households, so all house-
holds are in identical positions. Following the arguments of section 2, we write household consumption
in the form of risk sharing test

c

it

= (↵
ii

� ↵

ij

) y
it

+ ↵

ij

ȳ

it

+ ✏

it

where ȳ

it

represents aggregate income of i0s local sharing group (i.e. i0s neighborhood). It is clear that
the coefficient to i

0
s own income is zero (as in the Townsend tests) if ↵

ii

= ↵

ij

. This is true of regular
networks.

Proposition 3. The constrained-efficient sharing arrangement for any regular network with a common

degree equal to k corresponds to the equal sharing rule defined as,

↵

?

ij

= g

ij

1

k

(13)

As a result, the first-best allocation is obtained for complete networks.

Proof. See Appendix.

Of course the regular network is a very rare and extreme form of symmetry. In reality, social
networks are far less structured and will therefore predict widely different transfers for different house-
holds. In these other cases, we expect instead that ↵

ii

6= ↵

ij

and therefore that the coefficients to own
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income will be positive and different across households. To take the most extreme example, consider
the star network. In this network, one household is connected to all other households, that are other-
wise not connected to anyone. In this case, I show the sharing rule simplifies to a simple expression
relating to the size of the network and the level of connectivity of each household.

Proposition 4. The constrained-efficient sharing arrangement for a star network of size n is given

by,

↵

?

ij

= g

ij
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1

d

j
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for all j 6= i.

Proof. See Appendix.

It is easy to see from this expression that flows towards the center consumes a smaller fraction of
own income than other households. In fact, the star represents an extreme situation in which the center
can very quickly be left to consume none of its own income. 24 Because the center mediates among
a great number of other households, it benefits from diversification so long as incomes are sufficiently
uncorrelated. Therefore, high centrality translates to lower consumption variance, and therefore the
distribution of coefficients to own income across the population obtains a particular interpretation in
terms of sharing opportunities — something that is not available in the standard risk sharing tests of
Townsend (1994).

Finally, the value of  can also provide drastically different predictions on the type of sharing
behavior. Notice that if  tends to zero — for instance for i.i.d. variables (⇢ = 0) with small ratio
µ

2

�

2 — then the optimality conditions imply that a household shares equally with all its neighbors (i.e.
that ↵

ij

= g

ij

1
d

j

).25 This is not surprising: extremely low values of  represent situations where
only minimizing aggregate volatility of uncorrelated earnings is important; this is accomplished by
maintaining all shares as equal as possible.26 This result poses a challenge in identifying the sharing
behavior from data. Indeed if the true value of  is low, it might be impossible to distinguish between
sharing behavior described generally in Proposition 1 and a simpler, heuristic behavior such as equal
sharing; both prescriptions should perform well as statistical models. In Section 3.4 I explore an
alternative theoretical prediction of Proposition 1 in order to strengthen the belief that (9), and not
(13), appropriately describes the sharing patterns of the Tsimane’ communities.

On the other hand, as incomes correlate strongly across households the constrained-efficient sharing
rule trades off diversification opportunities. In these situations, where  is greater than zero (possibly

24More precisely, for n > 4 the center of the star consumes none of its own income if  � 2
n(n�4) (for n < 4 interior

solutions exist for all values of  ). This implies that as n increases, the space of parameters that guarantees an interior
solution decreases.

25To see this notice that equation 7 in this case implies ↵
ij

= ⇤
j

for all j, meaning that any two households connected
to j receive the same fraction of j0s endowment. As a result, it must be that ↵

ij

= 1
dj

. This represents equal-sharing.
26This is a classical iso-parametric problem of minimizing squares. Notice that for  ! 0, the parameter �2 dominates

over µ2 and ⇢ so the planner problem is reduced to minimizing
P
i,j

g
ij

↵2
ij

.
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much greater), the planner’s previous tendency to equate shares will lead to a large loss of surplus
as strong correlation effects hike up consumption volatility. Now, the incentives move in the opposite
direction and reigning in covariances is the primary concern; this is done by keeping all of i0s incoming
shares as different as possible. In particular, I show below that at this other extreme— that is as  
tends to infinity— a household’s net shares with each of its partners tend to zero.

Proposition 5. As  grows, the net exchange for any two households falls. In the limit, we have that

lim

 !1
|↵

ij

� ↵

ji

| = 0

for all i 6= j

Proof. See Appendix.

Large values of  correspond to situations of negligible net bilateral exchanges. This implies that
household’s in-shares correspond to its out-shares, that all households consume a convex combination
of their partners’ incomes.

4 Background and Data

In this paper I develop an alternative empirical specification to test risk-haring behavior by fitting
(network) constrained-efficient exchanges across pairs of households, and recovering unexplained de-
pendency between income and consumption. To do this I use panel data collected by a team of anthro-
pologists from the years 2004 to 2009 in the small-scale, hunter-gatherer economies of the Tsimane’ in
the Bolivian Amazon. Before describing the data set in more detail I provide a quick description of
the Tsimane’ social structure, their economy, and general patterns of exchange (see Hooper (2011) for
a much more thorough investigation into the economic life-cycle of the Tsimane’).

4.1 The Tsimane’ Indigenous Communities

The Tsimane’ are an indigenous population of about 10 to 20, 000 individuals, residing in the Beni
Department in lowland Bolivia. Tsimane’ settlements are located primarily along the Maniqui and
Quiquibey rivers, their tributaries and nearby forests. The Tsimane’ organize primarily around a
subsistence economy based on hunting, fishing, and slash-and-burn agricultural production of rice,
sweet manioc (or yucca), plantain, and maize. According to Hooper (2011), most families maintain
between 1 and 6 fields at one time (an average of 2.9 fields per family) that range in size from 0.1 to 2
hectares (an average of 0.56 hectares per field). While some of this production —- primarily, though
not exclusively, rice — is sold to outside nearby markets in San Borja, still, around 95% of Tsimane’
subsistence consumption rests on own production and exchanges across families.27

27See Martin, Melanie et al. (2012)
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The Tsimane’ social structure is primarily kin-oriented. Closely related nuclear families often reside
together in small residential clusters, engaged in high levels of cooperative labor, common and shared
meals, and other forms of resource pooling; bilateral exchanges of food across households account for
the majority of this form of risk sharing.

The important gains that come from sharing uneven returns to productive effort are not foreign to
the Tsimane’. The exchange of food across households forms a significant chunk of economic activity.
In previous work on the Tsimane’, Hooper (2011) shows clear evidence of reciprocity between families,
and across types of goods, suggesting an interest in both attenuating risk and exploiting gains from
specialization (see tables 5.1, 5.2 and 5.3 in Hooper (2011)). Around, 99% of the Tsimane’ population
engage in some form of food sharing at some point in the sample, and only 3.2% form separate trading
groups of less than four households. From total production, an average of 5% is sold to outside and
the rest is either consumed by the producing family, or exchanged with others. On average, 66% of a
household’s production is exchanged with other families, while 31% of a family’s consumption consists
of food received from other households. Genetic relatedness and the age of the household head interact
as decisive attributes in determining the patterns of caloric exchanges. Hooper finds that while age
alone does not seem to explain transfers, it nonetheless exhibits strong patterns of exchange between
closely related families, not between unrelated ones. In terms of relatedness, it alone forms a very good
predictor of food sharing. As an example, for two families with 40-year-old parents and zero net meat
production, for example, the effect of a 0.1 increase in relatedness on the gross number of meat calories
shared from one family to the other is 33.3 calories per day (Hooper, 2011).

4.2 The Data

The data comes from field work by a group of anthropologists at the Tsimane Health and Life History
Project.28 A series of field interviews were conducted from the years 2004 to 2009 on 250 families (1245
individuals) residing in 11 different Tsimane’ villages. The villages are grouped into four separate re-
gions: “downstream”, “forest”, “tributary”, and “ton’tumsi”. Figure 2.1 in Hooper provides a breakdown
of the different sample periods and sizes. Each family was interviewed an average of 45.5 times (SD =
20.4), yielding a mean of 92.8 sample days per individual (SD= 40.0). Households were surveyed on
average twice per week.

The surveys collected information on how many hours each family member spent laboring in subsis-
tence activities during the preceding two days. These include hunting, fishing, and agricultural work.
Quantities of edible products were recorded, and, for each product, interviewees were asked which
members of the nuclear family, and which other community members had consumed portions of the
product in prepared meals, or had received portions as raw gifts. Families were also asked whether
they had received any gifts of food from other households.

For each product, the raw mass in kilograms was calculated from reported quantities based on mean
28Paul Hooper (Emory), Hillard Kaplan (UNM), and Michael Gurven (UCSB)
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mass measurements derived from field guides and previous research with the Tsimane and other South
American foragers. A product’s total caloric value was based on estimates of mean dietary calories
(assimilated by a human consumer after processing) per kilogram (Hooper, 2011).

In all sample communities, a detailed census was established that provided information on each
individual’s sex, birth year, and biological parents and grandparents.29 Consanguineous and affinal
relationships between individuals residing in the same community were calculated on the basis of
shared genetic ancestry and marriage. Distance between households was constructed, when possible,
from GPS data. (See Hooper, 2011) for a detailed account of all data collection procedures).

Together, this information constitutes an unbalanced panel of pairwise calorie exchanges at a fre-
quency that is perhaps too high for this type of analysis. I therefore aggregate the data at a quarterly
level. After discarding some pathological cases, I am left with 243 households in 8 different communi-
ties, sampled irregularly over 20 quarters, out of which an average household is sampled for 4.5 quarters
(not always consecutive).30

4.3 Constructing Networks

As in most empirical studies of social networks, I confront the usual questions regarding how to define
the appropriate underlying (and unobserved) social structures. As explained above, the unit of analysis
is considered to be a nuclear family; I also refer to these as households. Although finer, within-household
data on exchanges is available, all evidence suggests that these intra-family flows operate efficiently as
completely connected (or in any case very dense) networks, so that for the purposes of this analysis
they are best considered as distinct economic units.31

I test the model on three types of networks; each is accompanied with its own set of problems
and advantages. The Trade Network establishes a link between two households if ever the two engage
in any food sharing. This method of constructing links by “revealed preferences” of course fails to
account for additional connections that could exist, but are otherwise not used. One could worry
about endogeneity issues coming from this type of network. There are two things to say on this matter:
First, the constrained-efficient exchanges I solve for are interior solutions to the planner problem, so the
model speaks only to situations where all available links are utilized for some amount of food sharing,
no matter how small. In other words, the model makes no predictions about which connections should
be used, so taking observed trade as a link is not a huge problem. Secondly, It seems reasonable to
assume that if two households share no calories throughout the entire sample then some social cost
exists that impedes said relationship.

29 Where incomplete, these census data were supplemented with data from demographic interviews described in Gurven
et al. (2007). Adult parents and their co-resident dependents (i.e. offspring and adopted dependents) were classified
together as nuclear families. Body mass in kilograms, assessed using an electronic standing scale, was available from
yearly physical exams conducted by Bolivian physicians and research assistants for 1198 individuals in the sample (96%).

30I discard 5 households for which there is no reliable data. They appear to produce nothing and receive nothing
throughout the entire sample. I drop another two households for which no reliable data on hours worked exists.

31See for instance, Hooper (2011).
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It is customary in these communities for households to split upon marriage while remaining in the
same village.32 In order to account for this type of network modifications I also construct a dynamic
version of the Trade Network. This network constructs links if, at every quarter, households are
observed exchanging calories. For this particular network, then, the various centralities computed, and
therefore the theoretical predictions on bilateral exchanges, are time dependent. While it might be
unreasonable to assume in general that underlying social connections should change often, I show in
the next section that in fact these networks show remarkable persistence over time, and in particular
that the vast majority of links persist once they appear.

Finally, networks are also built using kinship data. To refrain from the endogeneity issues above I
make no judgement on the “appropriate” level of kinship that determines the presence of a link. Instead,
I construct links between households that share any level of genetic relatedness. This method poses
its own set of concerns, not least of which has to do with missing genetic information for a number
of households; this restricts the network artificially. Moreover, while kinship appears repeatedly in
sociological work as a crucial determinant of social ties for a wide array of contexts, the Tsimane’s
population exhibit a disproportionately large share of endogamy33. This implies, as I describe in the
next section, that while kinship networks might very well capture the appropriate dimension upon
which social interaction develops, the level of connectivity might exceed any reasonable, underlying
structure that determines insurance.

4.4 Descriptive and Network Statistics

Table 1 provides some descriptive statistics for various demographic and economic household attributes.
Some of these represent cross sectional variability in different measures of household wealth, specified
in Bolivianos (the national currency) and split into animal (livestock), traditional (non-mechanized
productive tools) and modern (technological goods). These are used at times, together with demo-
graphic variables such as family size, age and marital status, to control for household-specific economic
attributes.34 More importantly, the average income and consumption variables represent the caloric
production and flow data that are used extensively to test the model predictions on bilateral exchanges.
These variables are longitudinal, specifying, for every household and every available date, the hours
spent in each productive activity, the calories obtained as production, and the ensuing flows of those
calories to nearby families. The data set also provides information on hours spent in three general
productive activities: Agriculture, Fishing, and Hunting; Leisure is therefore defined as the number of
hours in the past two days not spent in any of these activities.

Next I present network statistics for each of the kinship and trade networks that appear visually
32Hooper (2011) documents the creation and destruction of households in the Tsimane’ context somewhere between 5

to 10% of households.
33See Hooper (2011)
34I mostly use household fixed effects to control for time-invariant household specific attributes such as these. How-

ever, when estimating the model’s prediction on bilateral flows, edge-specific intercepts are unfeasible due to limited
observations. In these cases I use a battery of controls such as those in Table 1, and others.
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in figures 1 and 2. I show this information per village since I consider the villages as eight separate
network structures. As described above, the kinship network is far denser, exhibiting larger cluster and
closeness measures and much lower diameters across most villages. By way of comparing these two
networks more rigorously, I also calculate the share of edges of each network that are observed in the
other one. I find that about 71% of the connections observed in the data occur between households
with some degree of genetic relatedness, while only 35% of households with genetic affiliation actually
share food. 35 Finally, I present measures of persistence for the Updated Trade network to show that
while it might be worthwhile to allow for certain network changes that come from the movement across
villages or the creation of new families, networks are fairly stable over time.

In tables 5 to 8 I provide some preliminary evidence to support the assumption of no intermediation.
Recall that this assumption implies that household consumption is a linear function of neighbors’
incomes. As a result, two households that share a common neighbor will both consume a fraction of
that income, and their consumption will be correlated. Households that are farther from each other,
however, will not share any neighbors and their consumption will only co-move as per the underlying
covariance across incomes. I therefore estimate consumption of each household against the aggregate
consumption of those other households with which it shares a common neighbor (i.e. household in the
set N2

i

), and against the aggregate consumption of households with which it does not share a common
neighbor (i.e. households not in the set N2

i

). The results indicate that households farther away cannot
explain consumption, once we control for aggregate income fluctuations.

5 Empirical Analysis

The theory above provides a number of predictions that can be tested directly against data on bilateral
exchanges within networks. In this section I first run the standard test of full risk sharing and I find
that full insurance is rejected in the Tsimane’ data set. I then structurally estimate the sharing rule
prescribed by the theory as given in equation (9); I find that the constrained-efficient prediction above
appropriately describe the type of bilateral exchanges we observe across households. I also show that
the model can retrieve the observed deviation from full insurance by estimating the risk sharing test
on predicted consumption data. Finally, I test the model’s implications on households’ heterogeneous
response to own income fluctuations. I find that the variation in household’s coefficients to income
follows the general pattern described by the model.

35I also perform a second measure of network comparison known as the Hamming distance, which measures the number
of edges that need to be substituted to turn one network into another. We can see in Table 4that across most villages,
we need to substitute about a third of all available dyads to move from the trade to the kinship network— in a couple
of villages about half of that share is required.
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5.1 Test of Full Risk Sharing

In order to assess how well the data conforms with the model, I explore a number of distinct predictions
from the theory. Before I do this, however, I first perform the classical risk sharing test of Mace (1991),
Cochrane (1991), and Townsend (1994), by running regressions of the form

�log (c
it

) = �1�log (y
it

) + �2�log(X
it

) + ⌧

vt

+ ✏

it

(14)

where �log (c
it

) and �log (y
it

) stand for household consumption and income growth rates respectively,
and ⌧

vt

represents village-time fixed effects that capture uninsurable aggregate shocks that hit village v

at time t. First differencing controls for any idiosyncratic time-invariant characteristic correlated with
consumption; I also run some specifications in logs, in which case I add household-level fixed effects
instead. Finally, X

it

captures any other factors that could affect the optimal allocation of consumption
and should be controlled for. In particular, for some specifications I control for household leisure
over time, which affects consumption if preferences are non-separable and the planner cannot freely
transfer leisure across households (Cochrane, 1991). In other specifications, I instead use leisure as
an instrument to control for attenuation bias that might come from measurement error in the income
variable. Leisure is a suitable instrument as it is undoubtedly correlated with income — households
that spend more hours hunting, fishing, or harvesting will collect higher income, all else equal — but,
because leisure is a separate survey item, measurement error in leisure arguably does not correlate with
error in income (I follow Schulhofer-Wohl (2011) in this approach). All variables are expressed in adult-
equivalent terms: I divide by a measure of a household’s average adult caloric intake developed for the
Tsimane’ data set by Hooper (2011); it estimates caloric consumption across gender and age levels,
and weights each household’s demographic composition accordingly.36 Standard errors are clustered
at the household level.

Recall that we cannot reject the hypothesis of full risk sharing for values of �1 = 0 and �2 = 1. As
shown in Table 9, I reject full insurance across all specifications. Coefficients on own income are about
�1 = 0.35 and statistically significant at the 1% level. Leisure is negative associated with consumption,
as expected, but remains non-significant. Controlling for non-separabilities in income and consumption
does not change the log estimates and lowers the growth rate estimates only by 0.005. The Instrumental
Variables estimator controls for attenuation bias and therefore provides slightly higher estimates both
for logs and growth rates; the difference, however, is quite small. All in all, I find a considerable
correlation between consumption and own-income, consistent with previous studies in similar settings.
Although the magnitude of this association varies across studies, a value of 0.35 falls well within the
expected range. For instance, Munshi and Rosenzweig (2009) estimate values between 0.17 and 0.26
for Indian data, while Cochrane (1991) finds values between 0.1 and 0.2 in the PSID; Kinnan (2014)
finds values ranging from 0.07 to 0.3 for Thai data, depending on the type of estimation.37 Overall,

36See table 2.2 in Hooper (2011) for a more detailed explanation of this adult consumption measure
37Saidi (2015) finds that the magnitude of departure from efficiency is smaller than mine in the Tsimane’ communities.
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the results square fairly well with the literature and unequivocally reject full insurance. The theory
provides new ways to think of partial insurance within a network context and help us understand the
type of behavior that exists when we reject full insurance. To bring the main theoretical predictions
to data, I first estimate the income process; I then fit the sharing rule to data.

5.2 Estimating the Income Process

Before taking my model to data, it is necessary to obtain an estimate for the income process. In this
section I develop estimates of  = µ

2+⇢

⇢��

2 from panel data on the income processes of households. I
carry out two different estimation procedures that deliver similar results. I first perform a very simple
non parametric approach that uses basic moment estimators. I assume that income is described by
two transitory shocks, an aggregate and an idiosyncratic one,
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. These values deliver an estimate of  equal to
0.97± 0.2.

I also perform a more sophisticated estimation procedure, availing myself of a vast and well estab-
lished literature on estimating earnings processes from data.38 The estimation assumes a state space
model for the income process. Income is assumed to follow an aggregate shock, a temporary shock,
and a persistent shock.
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This model is estimated by GMM. More information is given in Section 8.6, where I go over the
estimation details and I show that I obtain values of  close to those obtained with the more naive
approach of the previous paragraph.

5.3 Structural Estimation of Network Flows

Having constructed networks and estimated the underlying income process, we are now ready to fit
the model’s sharing rules against the Tsimane’s data set. To bring the model to data, recall the closed
form expression for the constrained-efficient sharing rule as a linear function of global network measures

His data set comes from an entirely different survey corresponding to non-overlapping sets of Tsimane’ villages. Moreover,
he defines income from the sale of goods and labor as a separate survey item, whereas consumption here is income plus
transfers, and therefore more tightly correlated.

38See, for instance, Lillard and Weiss (1979), MaCurdy (1982), Nakata & Tonetti (2015)
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shown in equation (9),
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and assume that shares are measured every period with additive error: observed bilateral shares are
↵
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. Then the constrained-efficient sharing rule proposed in this paper implies the
following relationship,
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( ,G) aggregates the WEPC centrality measure across of all of i0s neigh-

bors. Under such a specification the theory requires that �1 = 1 , and �2 = �1. I control for village-level
shocks by allowing for village-time specific intercepts and control for a number of household-specific
attributes, such as household size, total wealth, marital status, and average age of the household
heads.39 I show in Table 10 that we obtain estimates statistically indistinguishable at the 5% level
from �1 = 1 and �2 = �1 for the Kinship, Trade, and Updated Trade networks, using a value of
 = 0.9 as estimated in the previous section. Values for the Trade and Update Trade networks are
statistically indistinguishable at the 1% level. Moreover, in Figures 6 to 8 I plot the two coefficients
for a wide range of  values to clarify that these results are fairly robust to possible estimation errors.
Both coefficients are statistically different from zeros. We see that �2 clearly takes on values close to
�1 for values of  away from zero and that for most values it is statistically indistinguishable from �1

at the 95% confidence level. Already in this first direct approach the model performs remarkably well
at describing the observed relationship between network structure and household exchanges.

I also perform a more demanding test of the model. Ideally, I would like to estimate the sharing
rule separately for each pair of households over time, and obtain distinct coefficients to each of the
centrality measures in equation (15). The lack of sufficient longitudinal data, however, precludes this
type of analysis. As an alternative, notice that the second term in equation (15) varies according to the
degree of the receiving household. I exploit this variability by splitting the population by their degree,
d

i

, and redefining M

N

i

in (16) as, M
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=
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k

g
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( ,G). In this case, a successful model would

obtain a negative coefficient of �2 (di) = �  
1+ d

i

that increases with the degree. Figures 10 and 11 plot
�2 (di) against the degree of each group. I also plot the curve representing the theoretical prediction of
 

1+ d
i

. The positive relationship between this coefficient and the degree of the receiving household is
clear. Moreover, the model and theoretical predictions move in a similar fashion and reasonably close
to each other.

Although the model seems to fit the sharing data quite well, we might still worry that other
network centrality measures could also predict similar results, undermining the model’s predictive

39Because I assume networks to be undirected, any edge that only sustains unilateral exchanges is complemented by
adding a flow equal to zero in the opposite direction for any period in which the household in question obtains positive
production.
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power. After all, it is well known that network centrality measures often correlate strongly. In 8.5
I discuss the statistical relationship between the centrality measure proposed here and several other
familiar candidates in the network literature. I show that these other measures are not strongly
correlated with the WEPC centrality that I propose, and more importantly that they fail to explain
the patterns of exchange observed in the Tsimane’ data.

5.4 Revisiting the Risk-Sharing Test

In this section I show that the positive coefficient on own income obtained in the test of full insurance
of Section 5.1 can be interpreted as capturing the bilateral sharing arrangement proposed in this
paper. To do this I run the income data through my model to obtain household consumption under
the constrained-efficient arrangement that I propose. I then estimate the risk sharing test of equation
(14) with predicted, rather than observed, consumption data. A successful theory of partial insurance
would retrieve the same coefficients to own income as those observed in the data in section 5.1.

More concretely, I use the sharing rule of Proposition 1 to calculate the consumption level of each
household in every period, given income, as,
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where I have dropped the explicit dependency on G and  for convenience. This equation defines
household consumption using the proposed sharing rule of the model. Expected consumption data is
used, in lieu of the actual consumption, to test whether the type of variability in household consumption
behavior proposed by this model can replicate the departure from full efficiency observed in the data.

The results are presented in Tables 12 to 14 for the different networks being analyzed, and for the
value of  estimated in section 4.3. Under my model’s predictions, and for the output data available
for the Tsimane’, the coefficient on own income corresponding to the Trade Network shown in Table 13
oscillates between 0.15± 0.023 for OLS to about 0.25± 0.06 for IV estimates. Compared to the value
of about 0.35±0.07 that we obtain in Table 9, the model seems to slightly underestimate the empirical
loading on own income for this network structure. However, it is worth noting that these differences
are not large, and that for the IV estimates the difference is statistically not significant. The results
for the kinship network presented in Table 12 show estimates far too low to resemble the magnitude of
departure from efficiency in Table 9; the specification in growth rates provides OLS estimates that are
non significant, suggesting full insurance under network constraints. This is not particularly surprising
given that, as mentioned above, kinship networks are excessively dense, so that the planner problem
is far less constrained than in the other network structures.40 On the other hand, the results for the
Updated Trade network in Table 14 are statistically indistinguishable from the estimates in Table

40For this same reason this network performs worst in the structural estimation of bilateral exchanges of section 4.2
for the value of  estimated from data.
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9. Although these coefficients, again, lie below the values provided by data, the differences now are
negligible— sometimes as small as 0.01 — and therefore are all statistically insignificant.

5.5 Underlying Heterogeneity in Consumption

The environment I describe not only accounts for the type of coefficients we obtain when we reject full
insurance, but, more importantly, defines a complete distribution of these coefficients based on network
measures. Moreover, as argued in Section 2, the size of these coefficients can provide information about
the relative sharing opportunities of each household in certain environments. Indeed, households with
lower coefficients to their own income process are far more central than others, and as a result obtain in
general smoother consumption paths. In other words, while the previous section showed that the model
can generate a common coefficient that reflects the observed departure from efficiency, the following
estimation procedure implies that the theory also provides insight into the type of asymmetric insurance
possibilities affecting households as a result of their social situation.

Recall that a household’s share of its own income left for consumption can be described, for each
i, as,
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Retrieving precisely these values from data would require estimating each household’s theoretical con-
sumption, as described in (17), independently. The short time dimension of the panel unfortunately
prohibits this type of analysis. Moreover, the variation across these values is often small for “similar”
nodes and would be difficult to extract from the inherent noise in data. Instead, I decide to rank the
population according to (17) and then split the population into equally sized groups. I then estimate
equation (14) separately for each group; This gives me enough variability both within and across groups
to effectively measure the expected positive difference across successive groups. 41

The results are shown in Figures 12 and 13. The positive trend across groups is evident for
all networks, and is especially pronounced for the trade and updated trade networks. In all these
cases, while any two consecutive groups might show little variation, the overall increase from the
first to the last group is generally about 0.5, and in all but the kinship network the difference is
statistically significant. In other words, the positive association between income and consumption
found for the Tsimane’ data set can be further decomposed into those households that, by the overall
social arrangement, consume more or less of their own income ex-post.

41In order to allow for as much intergroup variability as possible, group size was kept as small as possible, while
retaining enough observations to provide efficient standard errors. Average group size was 35 households per group,
leading to a total of 7 groups.
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6 Conclusion

Time and again, evidence collected from risk-sharing communities in the developing world has con-
cluded that households in these type of arrangements are only partially insured against random fluc-
tuations in income. In this paper I argue that these insurance mechanisms overwhelmingly perform
below full efficiency precisely because networks of interactions are not completely connected. I show
that if the underlying social structures are accounted for when deriving constrained-efficient exchanges,
then observed trades across pairs of households is well described by the theory, and the distance from
the Pareto frontier can be obtained.

I propose a constrained-efficient framework that relaxes a crucial assumption in the classical risk-
sharing literature, which allows all households to trade with each other. Instead, I restrict the movement
of goods along a given set of social relations and I derive a full analytical description of the exchanges
between any two households as a function of their network position. I show that exchanges are deter-
mined by a global network measure that accumulates all direct and indirect interactions along the entire
network. In other words, this theory endogenizes pairwise sharing behavior along any given network.
The theory is useful in providing a rich description of the type of partial insurance we might expect if
we believe network constraints are a relevant friction keeping communities below full efficiency. More
importantly, it can be easily tested in a number of different settings, as long as income and network
data is available. In this sense, it is capable of providing testable predictions at the pairwise level,
generating much more detailed variation on the exchanges generating consumption streams.

I test the theory with data from Tsimane’ indigenous communities in the Bolivian Amazon. I
structurally estimate the constrained-efficient sharing rule against bilateral exchanges observed across
Tsimane’ households and find that the theory does a good job of fitting empirical sharing behav-
ior. Moreover, predicted consumption profiles generate the type of inefficiencies observed in these
communities, and other important implications on the distribution of insurance levels across differ-
ent households are also observed in data. Overall, evidence from Tsimane’ communities suggest that
accounting for incomplete social structures goes a long way to explain the type of partial insurance
mechanisms operating more broadly in village economies.

Of course a number of other elements have been proposed that surely form part of a full description
of these complicated social arrangements. For instance, Ligon et al. (2000) have studied the presence
of limited commitment in these informal exchanges and argue that incentive constraints under dynamic
contracts indeed lead to partial insurance similar to that first observed by Townsend (1994) for Indian
villages. More recently, Schulhofer-Wohl (2015) and Mazzocco and Saini (2012) have stressed that
heterogeneous preferences might lead one to overestimate the failure of full insurance. I believe these
views and the one I propose here are complementary and together build a richer story of informal
insurance. Indeed my model refrains from considering these and many other interesting dimensions,
and I try and stay as close as possible to the classical setup of risk-sharing proposed by Mace (1991),
Cochrane (1991), and Townsend (1994), while at the same time allowing me to engage directly with a
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general network structure.
A network description of exchanges like the one proposed here holds great promise for identifying

vulnerable households, or determining superior social arrangements. After all, one of the advantages
of modeling social interactions explicitly in this context is that it provides a great deal of heterogeneity
on consumption volatility and inequality both across households and networks. It would be interesting
to know, for instance, which arrangements perform better than others, and whether we can generally
identify households that, if removed, would most affect the sharing opportunities of the entire com-
munity. Indeed network models like this one have already answered these type of questions in other
settings, such as Ballester et al. (2007) which do a similar exercise for criminal networks. Although I
provide some tentative results on the ranking of households by consumption volatility in section 8.4,
the ordering is only partial and I am currently working on new results. The challenge here, with respect
to Ballester et al. (2007), has to do with the complicated weighting scheme for paths that emerges
in this setting, and which is absent in the Bonacich centrality or other similar recursive network mea-
sures. Indeed a lot of the existing tools to make progress on this front utilize the convenient geometric
weighting of Bonacich, but I am working on a recursive formulation of WEPC that would allow me to
make progress nonetheless.

Another ambitious proposal that emerges from this analysis seeks to structurally estimate the
underlying social structure. In other words, if we agree the model performs well in this context, and
might therefore be a good proxy for the type of sharing behavior of the Tsimane’, then an exciting step
forward would utilize the theory’s predictions in order to structurally back out an estimate of the true
underlying structure. This approach is not without its own set of challenges, not least of which is that
the model requires inputing an entire network described by an n

2 dimensional object. Extracting this
from data is not simple. However, there have been some recent developments by Manresa (2015) on
estimating the structure of interactions from panel data using a pooled lasso estimator that might be
very useful. If we can frame the spillover effects in an amenable way, it might be possible to identify
the most likely structure from within the class of sparse networks.

Perhaps the most promising step forward involves more general results on the welfare implications
from my theory. Indeed, a theoretical result that relates network-based heterogeneity in consumption
behavior to more general welfare implications would provide a clear economic interpretation to the
coefficients of empirical risk sharing tests. In other words, beyond rejecting or not full insurance, the
theory could allow data to speak more clearly on the distribution of welfare across the population
when full insurance is rejected. The distribution of households’ response to income shocks that this
paper predicts could then be mapped directly to a normative implication on welfare. It would form
an important contribution, and would come full circle towards a new interpretation of empirical risk
sharing test.
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7 Tables and Figures

This section presents all tables and figures in the order in which they appear in the text. Some
additional tables and figures can be found in the Online Appendix.

n mean sd median min max
HH Size 245 5.22 3.04 5.00 1.00 16.00

Mean Age Head of HH 245 36.96 16.33 34.00 14.50 86.00
No. of Dependents 245 3.12 2.74 2.00 0.00 13.00

% Rice Sold on Market 184 32.03 25.54 29.23 0.00 95.00
Animal Wealth (Bolivianos) 199 1478.28 3500.81 455.00 0.00 28250.00

Traditional Wealth (Bolivianos) 199 1179.94 1078.11 743.00 0.00 5917.50
Modern Wealth (Bolivianos) 199 3582.21 2356.61 3348.64 184.68 10726.22

Total Wealth (Bolivianos) 199 6259.17 5089.62 5403.40 363.20 35582.94
Avg. Income (Calories) 244 925.63 694.70 750.30 0.00 3896.01

Avg. Consumption (Calories) 246 888.02 694.77 707.66 46.67 4527.67
Avg. Out Flow (Calories) 242 353.53 536.24 174.18 0.00 4365.31

Avg. In Flow (Calories) 246 286.84 415.54 167.88 0.00 3441.35
Avg. Leisure (Hours) 244 46.22 1.48 46.61 35.97 48.00

Table 1: Household Summary Statistics: Variables expressed in adult-equivalent terms. Averages taken
over periods where data is available

n Edges Avg.Degree Diameter Density Cluster Avg.Between Avg.Closeness
1 27 73 5.407 6 0.193 0.596 0.026 0.066
2 38 121 6.368 5 0.163 0.441 0.055 0.344
3 11 45 8.182 2 0.682 0.676 0.042 0.753
4 20 46 4.600 6 0.219 0.484 0.058 0.115
5 13 51 7.846 3 0.560 0.624 0.054 0.642
6 27 189 14.000 3 0.500 0.627 0.024 0.645
7 46 122 5.304 10 0.113 0.357 0.064 0.205
8 65 320 9.846 5 0.149 0.315 0.022 0.422

Table 2: Network Statistics Per Village: Trade Network

30



n Edges Avg.Degree Diameter Density Cluster Avg.Between Avg.Closeness
1 26 194 14.923 5 0.287 0.687 0.043 0.229
2 38 292 15.368 4 0.202 0.806 0.017 0.077
3 11 111 20.182 2 0.917 0.940 0.010 0.928
4 20 110 11.000 5 0.275 0.810 0.029 0.092
5 13 121 18.615 3 0.716 0.871 0.030 0.779
6 26 210 16.154 4 0.311 0.781 0.025 0.155
7 44 768 34.909 4 0.397 0.691 0.016 0.609
8 64 1594 49.812 5 0.389 0.810 0.013 0.581

Table 3: Network Statistics Per Village: Kinship Network

Hamming Distance Normalized Hamming Distance
1 100 0.285
2 116 0.165
3 18 0.327
4 29 0.153
5 30 0.385
6 128 0.365
7 320 0.309
8 804 0.387

Table 4: Hamming Distance per Village between Trade and Kinship Networks
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Figure 4: Trade Network: Link exists if households exchange food at any point in the sample.
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Figure 5: Kinship Network: Link exists if Mean Genetic Relation is above 0
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Figure 6: Coefficients to Network Centralities in Regression of Edge-Level Exchanges: Trade Network
(Households younger than 4 0)
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Figure 7: Coefficients to Network Centralities in Regression of Edge-Level Exchanges: Kinship Network
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Network
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Table 10: Regression of Edge-Level Exchanges on Predicted Sharing Rule ( = 0.9)

Dependent variable:

↵

ij

(i.e. share from i to j)
Kinship Network Trade Network Updated Trade Network

(1) (2) (3)

M

j

(G, ) 0.878⇤⇤⇤ 0.841⇤⇤⇤ 1.109⇤⇤⇤
(0.044) (0.111) (0.093)

M

N

i

(G, ) �1.324⇤⇤⇤ �0.697⇤⇤⇤ �0.946⇤⇤⇤
(0.113) (0.156) (0.133)

Village-Time Fixed Effects Y Y Y
Observations 11,943 2,059 1,730
Adjusted R2 0.092 0.180 0.202

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
Values in parentheses are standard errors clustered at the household level.

Table 11: Regression of Edge-Level Exchanges on Alternative Local Measure

Dependent variable:

↵

ij

(i.e. share from i to j)
Trade Network Kinship Network Updated Trade Network

(1) (2) (3)
|N2

i

(G)|
P
i

g

ij

|N2
i

(G)| 0.096⇤⇤ 0.167⇤⇤⇤ �0.007

(0.049) (0.037) (0.054)

Village-Time Fixed Effects Y Y Y
Observations 5,586 11,931 2,742
Adjusted R2 0.057 0.043 0.080

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
Values in parentheses are standard errors clustered at the household level.
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Figure 10: Coefficient �2 as a function of Receiver’s degree. Panel A: Trade Network. Panel B: Kinship
Network
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Figure 12: Coefficients and Confidence Intervals for Equation 14 Partitioning Population according to
Centrality Measure. Panel A: Trade Network. Panel B: Kinship Network
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Figure 13: Coefficients and Confidence Intervals for Equation 14 Partitioning Population according to
Centrality Measure. Panel A: Updated Trade Network. Panel B: Updated Trade Network (Age < 40)
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8 Additional Results

8.1 Contingent Sharing Rules

Consider the set of contingent sharing rules that maximize welfare for the simple economy in Figure 1.
Shares from i to j now depend on the state of the world !; intuitively, the distribution of income in each
state will determine the sharing opportunities. For instance, if household 1 obtains an income y1 (!)

larger than y2 (!) and y3 (!) then funds can readily be redistributed so that the efficient condition of
equation (1) holds for that particular state !. However, it is easy to see that this will not be possible
for all states: for instance if y1 (!) < ȳ (!)� y2 (!) then the income of household 1 is not large enough
to transfer the required resources to household 2.

Intuitively, because sharing groups are local, household consumption is bounded above by equation
(3). A good way to think of this setting more generally is by imagining that the lack of intermediation
essentially sets capacity constraints on what each node can transfer to its neighbors. This type of
environment is explored in Ambrus et al. (2014) in the context of credit constraints on a network with
exogenous link values. Here, rather than limiting the transfer across nodes by

As a result, only partial insurance is possible and the ratio of marginal utilities is not constant across
all states. As we have just seen, the ratio is constant only for a subset of states where the income
of the intermediating household is sufficiently large. More generally we can define a set ⌦̄ (G) ✓ ⌦,
such that for a given network G it provides the subset of ⌦ such that full insurance is possible. The
previous discussion signals the inherent difficulty in isolating general network effects from particular
income realizations for these type of contingent sharing rules. Not surprisingly, a large part of the
literature on risk sharing networks have dealt with fixed (or non-contingent) sharing rules.

8.2 A Model with Network Intermediation

In this section I show how to extend the current setup to a allow for network intermediation. In
particular, I relax the assumption of no-intermediation to a general case where households can access
income from households at some distance k (the setup analyzed in the main text corresponds to the
situation where k = 1). To simplify the arguments, let k = 2 in what follows. However, all the
arguments below apply for all values of k . In this scenario, consumption by household i is a linear
function, not only of incomes of neighbors (as before), but also of the income of neighbors’ neighbors
(i.e. those households two links away from i) as follows,

c

i

(!) =
X

jk

g

ik

g

kj

↵

ik

↵

kj

y

j

(!)

It is easy to see that the relationship between consumption and income is still defined by my model’s
predictions as given in Proposition 1, but where the primitive of the model now is not the original
network G, but rather a new network G̃ that is built from G by connecting all households that are
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two links apart. Indeed, while the exact trade is hard to describe analytically as a function of the true
network G, it is nonetheless very easy to describe as a function of the network G̃: it depends on the
sharing rule of Proposition1. In other words, the theoretical predictions of my model allow for general
descriptions of intermediation, and the general arguments on the implications for consumption behavior
follow through. The only caveat is that it is now difficult to characterize the type of exchanges (in this
case exchanges of exchanges) that will lead to an efficient solution, but the efficient solution, in terms of
consumption responses to income shocks, can be described precisely by my model. Finally, notice that
there is an upper limit on the amount of intermediation that generates a situation of partial insurance.
Indeed, if k is larger than the minimum distance separating any two households, then intermediation
is sufficiently large that full insurance is retrieved.

8.3 Discussion of Weighted Even Path Centrality

Proposition 1 is powerful because it provides a full description of efficient sharing-behavior under
restricted bilateral exchanges for all possible social networks and distributional parameters. As a
concrete prescription of network flows to be tested against data, it suffices, and, as we will see in
section 3, performs reasonably well. In this section I describe the expression of the WEPC in equation
(10) in more detail and discuss what it can tell us about the optimal network shares.

It turns out that recursive expressions like the one in (10) are found often in network analysis.
These measures attempt to quantify associations between vertices based solely on the structure of con-
nections. For instance, in their well-known work on strategic complementarities in networks, Ballester
et al. (2007) show that equilibrium actions depend on a similar recursive measure known as Bonacich
Centrality. More recently, Banerjee et al. (2012) have sought to identify individuals in the network
that are best placed to diffuse information on microcredit opportunities in India. They find that par-
ticipation is higher if those first informed have higher eigenvector centrality. 42 It is a matter of fact
that global network measures such as these always appear in situations with entangled interactions
along a set of connections. All of these measures can be expressed generically as

B

i

= c+ �

X

k

g

ik

B

k

(18)

for some constant c and with |�| < 1. This expression essentially says that i0s measure depends linearly
on the sum of measures that are connected to i. Let us distinguish two crucial differences with respect
to the WEPC measure defined in (10). First of all, notice that equation (10) does not sum over all
measures that i is connected to, but instead sums over all measures that i0s partners are connected to.
In other words, the WEPC is defined recursively at distance two, not one. This is not entirely rare in
network analysis and in fact appears in some work on vertex similarity by Jeh and Widom (2002). It

42Already at the beginning of the internet boom, a number of algorithms surfaced that allowed users to rank websites
by their significance in the broader world wide web network. Procedures such as PageRank and HITS algorithm also
refined measures recursively throughout the network.
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has also appeared in newer page-ranking algorithms, such as the HITS algorithm.43 Secondly, notice
that, in contrast to equation (18), the WEPC does not weight all neighboring measures with a common
parameter �. Instead, the measures at distance two are weighted by the degree of the household that
serves as a bridge between them. So for example, imagine two households k and i are both linked to
a third household l, but are not linked to each other. Then, k0s measure will enter the definition of
i

0
s measure, weighed by the degree of l. Moreover, notice that the particular weight has the familiar

form of equation (8) that captures the full extent of l0s local interactions with its partners. Remember
that M

i

(G, ) captures all of i0s indirect interactions along the network. Following earlier discussions,
these indirect interactions affect i only in so far as they alter the sharing behavior of those at distance
two from i (with whom i actually interacts). It only seems natural, then, that i0s measure, M

i

(G, ),
is defined recursively from the measures, M

l

(G, ), for all households l that that i directly interacts
with (i.e. those that are at distance two from i). In other words, the exact shape in the recursive
definition of M

i

(G, ) spells out quite clearly the preceding discussion on how indirect interactions
appear in the local tradeoffs of each household. I show next that the recursiveness in (10) can be
undone into an expression that holds a lot more meaning in terms of a household’s network position.

An important property of expressions like (18) is that, for appropriate values of � — particularly
for � <

1
⌫1

for ⌫1 the largest eigenvalue of G — we can write them as,

S = I+ �G+ �

2G2 + . . .

In other words, all these recursive measures are often expressed as the sum of all paths starting from
i, which can be written as B

i

=
P
j2N

1P
q=1

�

q

g

q

ij

. This framework provides a much more natural way to

think of the network statistic containing information on the importance of each household in the general
social structure. After all, it measures a household’s accessibility by aggregating all locations that can
be reached by it at any length. Since we have just seen that the WEPC is a particular version of these
general recursive measures, it should not be surprising that it too can be written as the accumulation
of paths. Proposition 2 indeed shows that we can similarly think of the WEPC measure accumulating
such paths, subject to the caveats discussed above: that only even paths are accumulated, and that
the weighting scheme for each path is particular to that path. Technically, the current setting asks us
to solve a modified version of these fixed points on a graph that looks like, (D�G G)�1. I show in
Proposition 2 that we can write this as,

D�1
�
I+

�
A+AD�1A+AD�1AD�1A+AD�1AD�1AD�1A+ . . .

�
D�1

�

Unlike Bonacich and other types of centralities that weight all paths of a certain length equally, in
43In the HTIS algorithm, a webpage is given both an authority and a hubness score, with the property that a website’s

authority is determined by the sum of the hubness scores of other websites it links to, while a website’s hubness is
determined by the sum of the authorities of websites it is linked by. This implies that each one of this measures is defined
recursively at distance two.
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this scenario each path elicits a specific set of weights, determined by the connectivity of each individual
involved in that particular path. The type of weighting scheme in equation 2 can be thought of in
terms of the accumulated local interactions mentioned above. Recall that indirect interactions only
represent the concatenation of various direct interactions linked together by the network constraints.
This can be gleaned from equation 2 where the weights  

1+ d
k

capture all the households in a given
path engaged in direct interactions and the weighs 1

d

i

capture the connecting household’s constraint.
This weighting scheme marks a crucial distinction vis-à-vis other measures, in that additional paths
does not guarantee an increase in households’ network measure.

8.4 Individual and Aggregate Volatility

In the context of bilateral risk-sharing in networks a natural concern seeks to distinguish amongst those
households that, from their structural position in a broader social arrangement, obtain smoother con-
sumption streams than others. Said differently, we can ask how a household’s consumption variability
relates to its location in the network. Proposition 1 defines transfers and therefore establishes, for
every household, a particular linear combination of neighboring incomes that enter its consumption.
The particularly complicated form of these transfers makes it difficult to obtain an intuitive translation
from network position to consumption variance. In the following result I provide a first, partial attempt
at ranking household’s consumption variance from network characteristics; I am currently working on
expanding this into a complete, intuitive ordering of variances on networks. Notice we can write the
variance of consumption of household i as ,

var (c
i

) =
�
�

2 � ⇢

�
↵

0
i

↵

i

+ ⇢10↵
i

↵

0
i

1

where ↵
i

= (↵
i1, ↵i2, . . . ↵in

)0 is defined as in (9). We want to find the household i

? such that var (c
i

?) �
var (c

i

) for all i 6= i

?. Using the expression for exchanges in (9) This next result allows us to rank
variances when endowments are independent across households.

Proposition 6. Let H
i

=
⇣
diag (G

i

)�  
1+ d

i

G0
i

G
i

⌘
. If ⇢ = 0 and H2

i

�H2
j

is positive semi-definite,

then var (c
i

) > var (c
j

)

Proof. See Appendix

The rather technical form of this result precludes a straightforward interpretation on the distribu-
tion of consumption volatility. In any case, it provides a testable prediction on individual consumption
volatility that is fairly quickly checked in data. I am in the process of extending this result and testing
it on the Tsimane’ data set.

Aggregate volatility of an entire village is perhaps even more important than distinguishing amongst
individual variances. After all, policy considerations can emerge from a deeper understanding of what
social arrangements are more conducive to better insurance opportunities. In this respect, we might
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want to know 1) what type of network is persistently less volatile than another, or 2) what individual,
when removed, reduces volatility the most. After some manipulations, I obtain a “useful” form that
should allow me to conclude something about which networks are prone to higher aggregate volatility.
Specifically, I have that,

X

i

var (c
i

) / 10 (D�G G)�1 (D�G �G) (D�G G)�1 1

where � is a diagonal matrix similar to  , such that �
ii

= 2+ d
i

1+ d
i

. The familiar quadratic form,
although a complicated function of the adjacency matrix, might conceal some useful properties that
might allow me to answer these two questions.

8.5 Alternative Centrality Measures

As in most network papers that prescribe a centrality-based prediction on behavior, a natural concern
is that in fact other similar measures might be as successful in explaining data, so that the predictions
of the model are rendered mute. Most times this is dealt with by running a horse race against other
measures and showing that the theory’s predictions indeed outperform other measures. To do this, I
first show that the WEPC centrality presented in this paper is only weakly correlated with other well
known global network measures, such as Bonacich centrality or eigenvalue centrality. Correlation with
Bonacich is about 0.32 for the Kinship Network and about 0.28 for the Trade Network. Correlation
with eigenvalue centrality is about 0.46 for the Kinship Network and about 0.38 for the Trade Network.
These values are not large, moreover if we substitute these measures for the WEPC in the expression
for the sharing rule in equation (9), we obtain non-significant, and even negative, result. Of course,
these values are not normalized, so they predict shares that fail to satisfy the constraint (i.e. outside
the interval [0, 1] and/or don’t sum to one).

A possible objection, therefore, may be that any other linear function of arbitrary network measures
that both defines values in [0, 1] and satisfies the feasibility constraint,

P
j

↵

ij

= 1, would deliver similar

results; said differently, one could ask if (16) estimates nothing but a simple accounting identity of cross-
claims on a network. Indeed, while there exist many such matrices A (G) that satisfy the feasibility
constraints, the estimation procedure could fail to distinguish amongst them, delivering “appropriate”
fits to vastly different predictions. To test this I estimate a simple, intuitive alternative to equation
(9) that only captures local node characteristics. Specifically I consider the possibility that the share
of j0s endowment consumed by i is determined entirely by the size of i0s k�neighborhood relative the
total of all k � neighborhoods of all of j0s neighbors. This measure captures i

0
s relative importance

within j

0
s sphere of influence similar to (9), but under a reduced, local notion of importance. We can

express this sharing behavior as,
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where |A| denotes the cardinality of set A. Indeed it is not difficult to see that this first-order measure
provides predictions within the unit interval and satisfies the budget constraint. If the structural
estimation of the sharing rule only captures an accounting identity, the estimation of

↵

obs

ijt

= �1Lij

+ ✏

ijt

(19)

where L

ij

= |N
i

(G)|P
i

g

ij

|N
i

(G)| , should undoubtedly produce �1 = 1. I show results for the 2� neighborhood

in table 11, although similar results hold for all k values tested (all below 10). The results show that
indeed �1 is either not significant, or far from one. Instead, relative neighborhood size fails to correlate
with the sharing behavior of the Tsimane’ in any reasonable manner that would indicate that other
local measures can do as good a job at describing pairwise exchanges.

8.6 Estimating the Income Process

Before estimating the income process I control for predictable components. Although the data set
contains a number of time-invariant demographic statistics for each household, the only time-varying,
household-specific attribute that predicts the level of income is hours worked. Therefore, I run the
following first-stage regression of log household income on hours invested in productive activities,
together with household and village-time fixed effects,

log (y
i,t

) = h

i,t

+ ⌧

vt

+ �

i

+ ✏

it

(20)

I choose to allow for household-specific intercepts rather than introducing a long, but still incomplete,
list of household demographic traits. I obtain a residual income process for household i from (20) that
I use as my unpredictable component of income in order to estimate the parameter  .

The next step requires that we define a process for residual income,
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where ỹ

i,t

is the residual from a log income regression for an individual i at time t, ⌘
it

is the persistent
component of income and is assumed to follow an AR(1) process, ⌫

it

is the transitory component
of income, ✏

it

is the shock to the persistent component of household income. Finally, �
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✏
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i,0 ⇠
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�
and are independent of each other for all i and t. The parameter vector to

estimate is ✓ =
�
�, c, �

2
✏

, �

2
�

�
. Notice that we don’t make any distributional assumptions on the error

terms besides defining first and second moments.
Before estimating the vector ✓ I relate its elements to the parameter of interest,  . Recall that

 = µ

2+⇢

�

2�⇢

where µ, �

2, and ⇢ represented the mean, variance and common covariance term of the
joint distribution of income across households. Given the description on residual income above we
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can conclude the following relationship between the parameters of ✓ and the parameters that form the
value of  :

µ = c

1��

�

2 = �

2
✏

1
1��

2 + �

2
⌫

⇢ = �

c

1��

Computing the cross-sectional covariances between period t and period t + k (for all t and k)
produces a total of T (T+1)

2 distinct moment conditions that relate residual income and distributional
parameters.44 In particular, if we write down the moment m

tk

(✓) between agents at time t and t+ k

we have,
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is the typical expression for the mean of an AR(1) process. The above expressions
represent an over-identified system for ✓, so moment conditions cannot be solved explicitly.45 As usual
in these cases, we look for the vector ✓ that minimizes the distance between theoretical moments and
their empirical counterparts,

✓̂ = min

✓

⇣
M (✓)� M̂

⌘0
W
⇣
M (✓)� M̂

⌘

where M (✓) and M̂ stack the moment conditions and the sample analogs respectively, and where W is
a weighting matrix. Following the general trend in the literature I take W as the identity matrix.46 The
non-linear GMM estimation delivers estimates of ✓̂ =

⇣
�̂, ĉ, �̂

2
✏

, �̂

2
�

⌘
=
�
0.981, 0.00932, 0.521 ⇤ 10�5

, 2.018
�
.

This represents a negligible shock to the persistent component of income, and a strong persistence pa-
rameter. the variance to transitory shocks is about 2. This implies that household income can best be
thought mostly of transitory shock with a small common intercept. Using the expressions above we
find that µ = 0.93, �2 = 2.019, and ⇢ = 0.86. Together this implies an estimated value of  = 1.474.
This value is close to other values found using more rudimentary estimates of simpler models in the

44Notice the matrix of moment conditions is symmetric (i.e. m
tk

(✓) = m
kt

(✓)) so we only calculate the lower triangular
part of the matrix, consistent of T (T+1)

2 distinct terms.
45In unbalanced panels like this one, moreover, we might estimate less conditions since it might very well happen

that no household is present both in period t and t+ k. Formally, we estimate the available moment conditions defined
as, E [�

i,t,k

(m̂
tk

�m
tk

(✓))] where �
i,t,k

equals 1 only if i is present at t and t + k, and is 0 otherwise, and where
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= 1
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, with I
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=
P
i

�
i,t,k

.
46Altonji and Segal (1996) show that the optimal weighting matrix introduces significant small sample bias. They

study the small sample properties of the GMM estimator with several alternative weighting matrices and recommend
using the identity matrix.
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main text.

9 Proofs

Lemma 1. Under quadratic utility, there exists no ex-ante conflict between efficiency and equity. If

L (C) is a network component, the ex ante Pareto-efficient risk-sharing arrangement among agents in

C minimizes expected cross-sectional variability in consumption. Formally,
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i2C
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and corresponds to solving the following mean and variance relation,
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Proof of Lemma Lemma 1

Consider the minimization of expected cross-sectional variability in consumption defined as E
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the second term drops out of the optimization prob-

lem. As a result, the problem reduces to minimizing E
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. Notice that the welfare problem under
quadratic utility corresponds to minimizing E
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. Distributing the sum and imposing the

feasibility condition that
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. For the
second statement, notice that
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)2 follows from the definition of variance and

the linearity of the expectations operator.

Proof of Proposition 1

Proof. Recall the optimality conditions given in equation (7), that characterize the dependency of
shares across the network,
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and, because the matrix on the left-hand-side is full-rank, we can offer the following formulation,
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, which means we can rewrite equation (23)
as,
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where we still have to solve for ⇤ to obtain a closed form solution of ↵
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. To do this notice that 24
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Proof of Proposition 2

Proof. If we impose the feasibility constraints on the vector equation (24) we obtain that,
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where 1 is an n�vector of ones. The properties of P
i

means we can rewrite equation (24) as a function
of the original matrix G in the following way,
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where  is a diagonal matrix with  
ii

=  
1+ d

i

and  
ij

= 0 for all i 6= j. This provides a closed form
solution of the constrained-efficient flows on any given network.

Finally, to arrive at the result we solve for the inverse matrix above as a series of powers of G. The
following formulation allows us to do so

(D�G G)�1 =
⇣
D

1
2

⇣
I�D� 1

2G GD� 1
2

⌘
D

1
2

⌘�1
= D� 1

2
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I�D� 1

2G GD� 1
2

⌘�1
D� 1

2

the middle term being inverted can be expressed as a geometric series as long as ?? . Provided this is
so, the following relation holds,

(D�G G)�1 = D�1 +D� 1
2

1X

k=1

⇣
D� 1

2G GD� 1
2

⌘
k

D� 1
2

which can be understood as accumulating weighted even powers of the adjacency matrix as follows,

D�1
�
I+

�
A+AD�1A+AD�1AD�1A+AD�1AD�1AD�1A+ . . .

�
D�1

�

where we set A = G G to ease notation. So the sharing rule weights all even powers between i and
j through the matrix  ̂ that appears between the product of G. This can be surmised in the above
expression and can be written as follows. Consider the set of all paths of length q between i and j

under G as

⇧q

ij

(G) = {{i0, i1, i2, . . . iq} | i0 = i, i

q

= j and g

n,n+1 = 1 for n = 0, 1, . . . q � 1}

for every ⇡

ij

2 ⇧q

ij

(G) let W (⇡) define the weights associated to this path. It is not difficult to see
that,

W (⇡
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j

Finally, let M
i

represent the i

th element of the vector (D�G G)�1 1. Then, M
i

= 1
d1
+
P
j

M

ij

, where

M

ij

=
1X

q=1

X

⇡2⇧2q
ij

W (⇡
ij

)
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Proof of Proposition 3

Proof. Assume on the contrary that ↵
ij

6= 1
d

. A regular network has the property that M
i

( ,G
reg

) =

M

j

( ,G
reg

) = M ( ,G
reg

) for all i and j. In that case, we can write the assumption that equal
sharing is not the solutions as,

↵
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◆
6= 1
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which implies that
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+ 

Using the result from Proposition X, we can also write M ( ,G
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) as,
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1

d

+
X

q2N

X
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X
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ij

2⇧2q
ij

W (⇡
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)

where W (⇡) corresponds to a particular weighting scheme for paths between i and j. So if equal
sharing is not the solution for a regular network, then  6=

P
q2N

P
j2N

P

⇡

ij

2⇧2q
ij

W (⇡
ij

). I show next that in

fact they are equal.
By the symmetry of the complete network, we know that, W

⇣
⇡

2q
ij

⌘
=
�
1
d

�
q+1
⇣

 
1+ d

⌘
q

for any path
of length 2q between i and j. Finally it is just a matter of finding how many such paths there are. Let
⇧q

j

= [
i

⇧q

ij

and ⇧q

ij

is the set of all paths of length q between i and j. Define |A| as the cardinality of
set A. Then we can write that,

X
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X
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X

⇡
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ij
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d
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The value of
���⇧2q

j

��� corresponds to the number of paths of length 2q starting from j. All paths of length
2q contain 2q + 1 nodes, so this is equivalent to the number of ways to assign d values to each of the
2q remaining values (once we fix j). This is a standard assignment problem in combinatorics and the
solution is well known and equal to d

2q. This means that we can write the following,

1

d

1X

q=1

d
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d
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1

d
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◆
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where the second equality comes from the convergence of the geometric series. This contradicts the
original assumption that ↵

ij

6= 1
d

and proves the result.

Let us define a household’s neighborhood centrality as a weighted average of all of its neighboring
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centralities as follows,
M

N

i

(G, ) =
 

1 +  d
i

X

k

g

ik

M

k

(G, ) (25)

This term appears in the constrained-efficient solution to all of i0s incoming shares and weights the total
position of all of i0s neighbors by the connectivity of i. The following two lemmas derive properties of
this neighborhood centrality and are used in a couple of proofs in the paper.

Lemma 2. The WEPC of agent i can be expressed as a function of the neighborhood centralities of all

its neighbors. In other words,
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Proof. Recall the two-step recursive expression of WEPC from equation 10,
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the second term in brackets above can be rewritten as
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g
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and using the definition of M
N

j

in equation 25 we obtain the expression.

Lemma 3. let n (C) equal the total number of households in any connected component C, then the

average neighborhood centrality over that component is always equal to  . Formally,

X
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for all C.

Proof. Using the budget constraint and our constrained-efficient solution, ↵?
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in equation (9), we have
that
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Now using the definition of M
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in equation 25, we have the following relationship
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rearranging we get the result.
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Lemmas 2 and 3 together imply the following useful result,

Lemma 4. The WEPC of a household i that is connected to all other households in a component

C

i

(G) is constant across all networks and equal to

M

i

(G, ) =
1

d

i

+ 

for all G whenever d

i

= |C
i

(G)|.

Proof. Straightforward.

Proof of Proposition 4

Proof. let h represent the center (or hub) of the star and s represent the peripheral households (or
spokes). Then, define the transfer from h to s as ↵

sh

= M

h

(G, )�M

N

s

(G, ) using the constrained-
efficient solution of equation 9 and the definition of neighborhood centrality in equation (25). By
Lemma 2 we can rewrite this as

↵

sh

= 1
d

h

(1 + (n� 1)M
N

s

+M

N

h

)�M

N

s

= 1
d

h

(1 +M

N

h

) +M

N

s

⇣
n�1
d

h

� 1
⌘

and by lemma 3 we have that
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which allows us to express ↵
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only as a function of M
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.
Finally, since h by definition is connected to all other players in the network, we can use corollary 1

together with the constraint on the shares sent by h to obtain the following useful relationship between
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this implies that we can express ↵
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uniquely as a function of parameters,  , n and d
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, as follows,
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rearranging we get that
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this proves the result for transfers from h to s. Similar steps show that Proposition 4 also holds for
transfers from s to h
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Proof of Proposition 6

Proof. We write down the variability in consumption as var (c
i

) / ↵

0
i

↵

i

where

↵
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let H
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diag (G
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⌘
. Then we have that,
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H
i

is symmetric so H0
i

H
i

= H2
i

. Equation (27) is a quadratic form on H2
i

. The result follows from
standard properties of quadratic forms.
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