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Abstract

Nominal shocks have long-lasting effects on real economic activity, beyond those implied by standard

models that target the average frequency of price adjustment in micro data. This paper develops a

price-setting model that explains this gap through the interplay of menu costs and uncertainty about

idiosyncratic productivity. Uncertainty arises from firms’ inability to distinguish between permanent

and transitory productivity changes. Upon the arrival of a productivity shock, a firm’s uncertainty

spikes up and then fades with learning until the next shock arrives. These uncertainty cycles, when

paired with menu costs, generate recurrent episodes of high adjustment frequency followed by episodes

of low adjustment frequency at the firm level. A decreasing hazard rate of price adjustment results,

as in the data. Taking into account this pricing behavior amplifies the persistence and reduces the

pass-through of nominal shocks.

JEL: D8, E3, E5

Keywords: Menu costs, uncertainty, information frictions, monetary policy, hazard rates.

∗Previously circulated as “Learning to Price.” We are especially thankful to Virgiliu Midrigan and Laura Veldkamp for
their advice and to three anonymous referees for their constructive comments. We also thank Fernando Álvarez, Rudi
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1 Introduction

How do nominal shocks propagate, affecting prices and output? This classic question in monetary eco-

nomics is largely motivated by an empirical puzzle. Nominal shocks have very persistent effects on real

output, lasting up to twelve quarters (Christiano, Eichenbaum and Evans (2005), Romer and Romer

(2004), Gaĺı and Gertler (1999)). Microdata shows that prices change every two to three quarters on

average (Nakamura and Steinsson (2008), Klenow and Kryvtsov (2008)). When standard frameworks like

Calvo, Taylor, and menu cost models are calibrated to match this average frequency of price adjustment,

they do not generate the large persistence of output response that follows a nominal shock.

In this paper we argue that firms’ hazard rate of price adjustment – the probability of adjusting

their price since its last adjustment – is a key statistic to assess the flexibility of the aggregate price

level, and that the output response to nominal shocks depends largely on its shape. Specifically, a model

that targets a decreasing hazard rate amplifies the persistence of the output response. We develop a

price-setting model that generates a decreasing hazard rate through the interplay of menu costs and

uncertainty about firms’ idiosyncratic productivity. When we match the hazard rate in the micro data,

the persistence of monetary shocks is amplified in our model with respect to a Calvo pricing model.

Furthermore, our model predicts behavior differences between young and old prices, which is consistent

with micro evidence.

The price-setting problem involves nominal and informational frictions. The starting point is the

framework by Álvarez, Lippi and Paciello (2011), where firms face a menu cost to adjust their prices and

are uncertain about their level of productivity.1 In particular, we assume that the firms receive permanent

and transitory shocks to their idiosyncratic productivity, but they cannot distinguish between types of

shocks. Because firms must pay a menu cost with each adjustment, it is optimal to ignore transitory

shocks and only respond to permanent shocks. Therefore firms estimate the permanent component of

their productivity. Firms use Bayes law to estimate and we call the conditional variance of the estimates

firm uncertainty. As in any problem with fixed adjustment costs, the decision rule takes the form of an

inaction region, in which the firm adjusts her price only if she receives shocks that make it worth paying

the menu cost. In this case, the inaction region also depends on firm uncertainty.

Our framework’s contribution is a structure of productivity shocks that gives rise to firm uncertainty

cycles, defined as recurrent episodes of high uncertainty followed by episodes of low uncertainty. The

key to generate these cycles are infrequent and large shocks to permanent idiosyncratic productivity – or

regime changes – where the timing but not the magnitude of the shock is known. That is, a firm knows

when a regime change has occurred, but not the sign or the size of the change. It is also assumed that

these shocks have the potential to push productivity either upwards or downwards, but in expectation

they have no effect. Examples are changes in the supply chain or the cost structure, changes in the fiscal

or regulatory environment, new competitors, the introduction of a new technology, product turnover, and

access to new markets, among others. Large and infrequent idiosyncratic shocks to productivity were first

introduced in menu cost models by Gertler and Leahy (2008) and then used by Midrigan (2011) as a way

to account for the empirical patterns of pricing behavior such as fat tails in price change distributions.

1In Álvarez, Lippi and Paciello (2011) firms pay an observation cost to see their true productivity level; here we make
the observation cost infinite and the true state is never fully revealed. The Appendix of that paper discusses this particular
case in an environment where the information friction does not have effects in steady state.
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In our model, the infrequent first moment shocks paired with the information friction give rise to second

moment shocks in beliefs or uncertainty shocks.2 When a regime change shock hits, uncertainty spikes

up; then it fades with learning until it jumps again with the arrival of the next shock; these are the

uncertainty cycles.

Uncertainty, inaction regions, and decreasing hazard Our theoretical contribution is twofold.

First, we contribute to the filtering literature by extending the Kalman-Bucy filter to an environment

where the state follows a general jump-diffusion process. Second, we characterize analytically the dynamic

inaction region and several price statistics as a function of uncertainty. This involves solving a stopping

time problem together with a signal extraction problem. This analytical characterization allows for

understanding how uncertainty shapes pricing decisions. The model is very general and can be applied

to a variety of environments with non-convex adjustment costs and idiosyncratic uncertainty shocks.

The mechanism that generates a decreasing hazard rate comes from the combination of the uncer-

tainty cycles and a positive relationship between uncertainty and adjustment frequency. This positive

relationship is subtle as uncertainty has two opposing effects on frequency. Higher uncertainty means

that the firm does not trust her current estimates of permanent productivity, and thus she optimally

puts a high Bayesian weight on new observations that contain transitory shocks. Estimates become more

volatile and the probability of leaving the inaction region and adjusting the price increases. This is known

as the “volatility effect” and it has a positive effect on the adjustment frequency. This volatility arises

from belief uncertainty, not from fundamental shocks. As a reaction to the volatility effect, which triggers

more price changes and menu costs payments, the optimal policy calls for saving menu costs by widening

the inaction region. This is known as “option value effect” (Barro (1972) and Dixit (1991)), and it has

a negative effect on the adjustment frequency. However, the widening of the inaction region does not

compensate for the increase in volatility. Overall, the volatility effect dominates and higher uncertainty

yields higher adjustment frequency. When this relationship is paired with uncertainty cycles, we obtain

adjustment frequency cycles as well: firms alternate between periods of high frequency with periods of

low frequency, in other words, price changes get clustered in some periods instead of evenly spread across

time. This gives rise to the decreasing hazard rate of price adjustment.

With respect to the positive relationship between uncertainty and adjustment frequency, Bachmann,

Born, Elstner and Grimme (2013) use survey data collected from German firms to document a positive

relationship between the variance of firm-specific forecast errors on sales – a measure of firm-level belief

uncertainty – and the individual adjustment frequency. Vavra (2014) and Karadi and Reiff (2014) exploit

a version of this positive relationship in menu cost models where productivity shocks volatility follows

exogenous autoregressive processes. Both belief uncertainty as in our model and fundamental volatility

shocks generate higher adjustment frequency in a menu cost model; however, we show that the decreasing

hazard cannot be generated by an autoregressive stochastic process for fundamental volatility.3

Regarding decreasing hazard rates of price adjustment, these are documented in several datasets,

covering different countries and different periods. For instance, decreasing hazards are documented by

2Senga (2014) uses of a similar mechanism in a model of investment and misallocation, in which firms occasionally
experience a shock that forces them to start learning afresh about their productivity.

3In the Appendix we compare the hazard rates from our learning model and a model with autoregressive volatility and
show that the later always produces an increasing hazard rate.
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Nakamura and Steinsson (2008) using monthly BLS data for consumer and producer prices, Campbell

and Eden (2014) using retailer weekly scanner data, Eden and Jaremski (2009) using Dominik’s weekly

scanner data, Dhyne et al. (2006) using monthly CPI data for Euro zone countries, and Cortés, Murillo

and Ramos-Francia (2012) for CPI data in Mexico. Most of these papers use the mixed proportional

hazard model to construct estimates, which Álvarez, Borovičková and Shimer (2015) argue is a convenient

statistical representation of the pricing data. They control for observed and unobserved heterogeneity

and also filter discounts out, these are known sources of potential downward bias in the slope of hazard

rates. There are other alternative explanations for decreasing hazard rates of price adjustment; examples

are discounts in Kehoe and Midrigan (2015), mean reverting shocks in Nakamura and Steinsson (2008),

experimentation in Bachmann and Moscarini (2011), introduction of new products in Argente and Yeh

(2015), price plans in Álvarez and Lippi (2015), and rational inattention in Matějka (2015). Below, we

provide additional support for the our theory using cross-sectional implications of our learning model.

Decreasing hazard and propagation of monetary shocks Why does a decreasing hazard rate

imply more persistent monetary shock effects on output? To answer this question, it is key to recognize

two observations. First, a decreasing hazard rate generates cross-sectional heterogeneity. At the firm

level, a falling hazard is equivalent to having time-varying adjustment frequency; in the aggregate, it

implies that there are different types of firms: high frequency firms and low frequency firms. Second, a

firm’s first price change after a monetary shock takes care of incorporating the monetary shock into her

price and, in the absence of complementarities, it is the only price change that matters for the accounting

of monetary effects. Any price changes after the first one are the result of idiosyncratic shocks that cancel

out in the aggregate and do not contribute to changes in the aggregate price level. When a monetary

shock arrives, the high frequency firms will incorporate almost immediately the monetary shock with

their first price change; but the monetary shock will have effects until the low frequency firms have made

their first price adjustment. Therefore, the heterogeneity generated by a decreasing hazard makes the

aggregate price level less responsive to monetary shocks compared to an aggregate price level where every

firm faces the same average frequency.

The following simplified example highlights the main mechanisms in our framework. Suppose there

is a continuum of firms and two states for uncertainty, high and low; assume that half of the firms are

in each state. High uncertainty firms change their price during N consecutive periods and then become

low uncertainty firms with probability one; this switch in firm type captures the learning process. Low

uncertainty firms do not change their price and with probability 1/N they become high uncertainty firms;

this switch in firm type captures the regime changes. In steady state, the aggregate adjustment frequency

is equal to 1/2. Now suppose there is a monetary shock. To measure the output effects, let us keep track

of the mass of firms that have not adjusted their price. On impact, 1/2 of the firms (all high uncertainty

firms) change their price and the output effect is equal to 1/2 (all low uncertainty firms). In subsequent

periods, all high uncertainty firms adjust again, but we do not count these price changes towards the

effect of the monetary shock because these respond only to idiosyncratic shocks. Then the low uncertainty

firms that become high uncertainty (a fraction 1/N of firms) adjust and incorporate the monetary shock.

Therefore, the output effect is 1/2(1−1/N), which is equal to the mass of low uncertainty firms that have

not switched yet. Continuing in this way, the output effect τ periods after the impact of the monetary
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shock is given by 1/2(1 − 1/N)τ . The persistence of the output response is driven by N , which is the

number of periods that firms remain characterized by high uncertainty (the speed of learning). Now let

us compare this stylized economy with learning to a Calvo economy with the same aggregate frequency,

which is generated with a random probability of adjustment of 1/2. On impact, the output effects also

equal to 1/2, but in subsequent periods the response is 1/2(1− 1/2)τ . Therefore, as long as N > 2, the

economy with learning has more persistence than the Calvo economy.

Heterogeneity in adjustment frequency has been analyzed as a source of non-neutrality before. For

instance, Carvalho (2006) and Nakamura and Steinsson (2010) find larger non-neutralities in sticky price

models with exogenous heterogeneity in sector level adjustment frequency. Heterogeneity in our setup

arises endogenously in ex-ante identical firms that churn between high and low levels of uncertainty. Im-

portantly, this type of heterogeneity does not refer to different types of firms, but to different uncertainty

states within each firm. Therefore, our mechanism does not rely on survivor bias to generate a decreasing

hazard.4 The regime change shocks are crucial to produce a non-degenerate distribution of uncertainty

that keeps heterogeneity active in steady state. Without regime changes, uncertainty becomes constant

and equal across firms in steady state, as Álvarez, Lippi and Paciello (2011) recognize. The model

collapses to that of Golosov and Lucas (2007) without heterogeneity and where money is highly neutral.

Larger persistence of output response to monetary shocks To give a quantitative assessment

of the impact of monetary shocks implied by the model, we study a general equilibrium economy with

a continuum of firms that solve the price-setting problem with menu costs and idiosyncratic uncertainty

cycles. The environment includes a representative household that provides labor in exchange for a wage,

consumes a bundle of goods produced by the firms, and holds real money balances. We solve for the

steady state of this economy and calibrate the parameters using US micro pricing data. We focus on

matching the statistics produced by Nakamura and Steinsson (2008) with CPI data from the Bureau of

Labor Statistics. We target three factors jointly: the average adjustment frequency, the dispersion of the

price change distribution, and the decreasing hazard rate. In particular, we use the slope of the hazard

rate to calibrate the volatility of the transitory shocks that give rise to the information friction. This

approach of using a price statistic to recover information parameters was first suggested in Jovanovic

(1979), and Borovičková (2013) uses it to calibrate a signal-noise ratio in a labor market framework.

In the calibrated economy we study the effect of a small unanticipated increase in the money supply.

In equilibrium this monetary shock increases wages and gives incentives to firms to increase their prices.

As a baseline case, we assume that the monetary shock is perfectly observable and then relax this

assumption. The results show that the output response to the monetary shock is more persistent in our

model than in alternative models. The larger persistence generated in the baseline model only relies

on information frictions regarding idiosyncratic conditions; the arrival of the aggregate nominal shock is

perfectly observed by firms. Even though this model performs well in terms of the long-run effects of

the monetary shock by increasing persistence, it has shortcomings with respect to its short-run response.

On impact of the monetary shock, there is an overshooting in the adjustment frequency that makes the

monetary shock’s total effect too small. Furthermore, this overshoot is not observed in the data.

4Survivor bias emerges when computing hazards in populations with heterogenous types as noted by Kiefer (1988) and
studied in an economy with different Calvo agents as in Álvarez, Burriel and Hernando (2005).
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To address this issue, we consider an extension of the model that incorporates an additional infor-

mation friction. We assume that there is a fraction of firms that does not observe the monetary shock’s

arrival. These type of constraints on the information set regarding aggregate shocks are at the core of

the pricing literature with information frictions that started with Lucas (1972) and has been recently

explored by Mankiw and Reis (2002), Woodford (2009), Maćkowiak and Wiederholt (2009), Hellwig and

Venkateswaran (2009), and Álvarez, Lippi and Paciello (2011). These firms apply the same learning tech-

nology to filter the monetary shock as they do to filter their idiosyncratic permanent productivity shocks.

Upon the impact of the monetary shock, there will be initial forecast errors that disappear over time. The

persistence of forecast errors increases the persistence of the output response. Under this assumption,

the output response is significantly amplified compared to the case with the observable monetary shock.

Aggregate uncertainty, forecast errors, and persistence The model also predicts that unobserved

monetary shocks have less effects when aggregate uncertainty is high. We interact the monetary shock

with a synchronized uncertainty shock across all firms. In more uncertain times, firms place a higher

weight on new information, forecast errors disappear faster, and the monetary shock is quickly incorpo-

rated into prices; this reduces the persistence of the average forecast error, and in turn, the persistence of

the output response. This relationship between uncertainty and forecast errors is novel and there is em-

pirical evidence in this respect. For instance, Coibion and Gorodnichenko (2015) compares the dynamics

of forecast errors during periods of high economic volatility (as the 70’s and 80’s) with periods of low

economic volatility (as the late 90’s). It concludes that information rigidities are higher during periods

of low uncertainty than higher uncertainty. The joint dynamics of uncertainty, prices, and forecast errors

implied by our model provide a theoretical framework to think about this piece of evidence. Furthermore,

we show how forecast errors can be disciplined with micro-price data.

The negative relationship between the effects of monetary shocks and aggregate uncertainty is also

documented empirically in various studies. Pellegrino (2015) finds weaker real effects of monetary policy

shocks during periods of high uncertainty, and even more, it finds that prices respond more to a mone-

tary shock during times of greater firm-level uncertainty. Aastveit, Natvik and Sola (2013) shows that

monetary shocks produce less output effects when various measures of economic uncertainty are high;

and other papers find differential effects of monetary shocks in good and bad times, where bad times are

associated with periods of high uncertainty, as Caggiano, Castelnuovo and Nodari (2014), Tenreyro and

Thwaites (2015), Mumtaz and Surico (2015). Finally, Vavra (2014) uses BLS data to document that the

cross-sectional dispersion of the price change distribution (a potential measure of aggregate uncertainty)

is larger during recessions, implying higher price level flexibility and lower effects of monetary policy.

Age dependent pricing An interesting prediction of our learning model is that price age, defined as

the time elapsed since its last change, is a determinant of the size and frequency of its next adjustment.

Young prices – or recently set, mostly by firms who are highly uncertain at the time of the change –

and old prices – set many periods ago by firms which are currently certain about their productivity–

will exhibit different behavior. In particular, young (and uncertain) prices are more likely to be reset

than older (and certain) prices. Furthermore, as the inaction region decreases with uncertainty and price

age, young prices changes will tend to be larger and more dispersed compared to older prices. These
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predictions are documented by Campbell and Eden (2014) using weekly scanner data. They find that

young prices (set less than three weeks ago) are relatively more dispersed and more likely to be reset than

older prices. Further evidence regarding age dependence is documented in Baley, Kochen and Sámano

(2015) who find a negative relationship between price age and exchange rate passthrough using Mexican

CPI data: conditional on adjustment, older prices incorporate a smaller fraction of the exchange rate

depreciation since the last change. Our results on age dependence are in line with those in Carvalho and

Schwartzman (2015), which shows that in time-dependent sticky price models, monetary non-neutrality

is larger if older prices are disproportionately less likely to change.

2 Firm problem with nominal rigidities and information frictions

We develop a model that combines an inaction problem arising from a non-convex adjustment cost

together with a signal extraction problem. Although the focus here is on pricing decisions, the model is

easy to generalize to other settings. We contribute in three ways. First, we provide filtering equations

for a state that has both continuous and jump processes. Second, we derive closed form decision rules

that take the form of a time-varying inaction region that reflects the uncertainty dynamics. Lastly, we

characterize micro-price statistics and some aggregation results, also in closed form.

2.1 Environment

Consider a profit maximizing firm that chooses the price at which to sell her product, subject to idiosyn-

cratic cost shocks. She must pay a menu cost θ in units of product every time she changes the price. We

assume that in the absence of the menu cost, the firm would like to set a price that makes her markup

– price over marginal cost – constant. The cost shocks –and therefore her markup– are not perfectly

observed, only noisy signals are available to the firm. She chooses the timing of the adjustments as well

as the new reset markups. Time is continuous and the firm discounts the future at a rate r.

Quadratic loss function Let µt be the markup gap, defined as the log difference between the current

markup and the optimal markup obtained from a static problem without menu costs. Firms incur an

instantaneous quadratic loss as the markup gap moves away from zero:

Π(µt) = −Bµ2
t , B > 0

Quadratic profit functions are standard in price setting models, such as Barro (1972) and Caplin and

Leahy (1997), and can be motivated as second order approximations of more general profit functions.

Markup gap process The markup gap µt follows a jump-diffusion process as in Merton (1976)

dµt = σfdWt + σuutdqt (1)

where Wt is a Wiener process, utqt is a compound Poisson process with the Poisson counter’s intensity

λ, and σf and σu are the respective volatilities. When dqt = 1, the markup gap receives a Gaussian
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innovation ut ∼ N (0, 1). The process qt is independent of Wt and ut. Analogously, the markup gap can

be also expressed as

µt = σfWt + σu

qt∑
κ=0

uκ

where {κ} are the number of times when dqt = 1 and
∑qt

κ=0 uκ is a compound Poisson process. Note

that E[µt] = 0 and V[µt] = (σ2
f + λσ2

u)t. This process for markup gaps nests two specifications that are

benchmarks in the literature:

i) small frequent shocks modeled as the Wiener process Wt with small volatility σf ; these shocks are

the driving force in standard menu cost models, such as Golosov and Lucas (2007)5;

ii) large infrequent shocks modeled through the Poisson process qt with large volatility σu. These shocks

produce a leptokurtic distribution of price changes and are used in Gertler and Leahy (2008) and

Midrigan (2011) to capture the fat tailed price change distribution in the data.

Signals Firms do not observe their markup gaps directly. They receive continuous noisy observations

denoted by st. The noisy signals about the markup gap evolve according to

dst = µtdt+ γdZt (2)

where the signal noise Zt follows a Wiener process, independent from Wt. The volatility parameter γ

measures the information friction’s size. Note that the underlying state, µt, enters as the drift of the

signal. This representation makes the filtering problem tractable as the signal process has continuous

paths.6

Information set We assume that a firm knows if there has been an infrequent large shock to her

markup – our notion of regime change–, but not the size of the innovation ut. Therefore, the information

set at time t is given by the σ-algebra generated by the history of signals s as well as the realizations of

the Poisson counter q:

It = σ{sr, qr; r ≤ t}

These regime changes reflect innovations in the economic environment that, given the information avail-

able to her, a firm cannot assign a sign or magnitude to in terms of the effects it will have on her markup.

These shocks may push the firm’s optimal price, and therefore its markup gap, either upwards or down-

wards: in expectation the firm thinks the shock will have no effect as the mean of the innovation ut is

zero. For analytical traction, we assume that the firm knows the arrival of a regime change. This allows

us to keep the problem within a finite dimensional state Gaussian framework, as we show in Proposition

(1), where only the first two moments of posterior distributions are needed for the firm’s decision problem.

Another approach would be to assume a finite number of markup gaps and keep track of their probability

distribution, and use the techniques of hidden state Markov models pioneered by Hamilton (1989). Other

5Golosov and Lucas (2007) use a mean reverting process for productivity instead of a random walk. Still, our results
concerning small frequent shocks will be compared with their setup.

6Rewrite the signal as st =
∫ t

0
µsds + γZt that is the sum of an integral and a Wiener process, and therefore it is

continuous. See Øksendal (2007) for details about filtering problems in continuous time.
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methods that would solve the filtering problem without our assumptions involve approximations as in

the Kim (1994) filter or infinite dimensional states as in particle filters, which are not suitable for solving

the inaction problem.

Figure I illustrates the evolution of the markup gap and the signal process. It assumes that there is

a regime change at time t∗. At that moment, the average level of the markup gap jumps to a new value;

nevertheless, the signal has continuous paths and only its slope changes to a new average value.

Figure I: Illustration of the process for the markup gap and the signal.
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0 µsds+ γZt

Panel A describes a sample path of the markup gap. The dotted black line describes the compound Poisson process and the

blue line describes the markup gap (the sum of the compound Poisson process and the Wiener process). t∗ is the date of an

increase in the Poisson counter. Panel B describes a sample path for the signal. The dotted black lines describes the drift

and the solid blue line describes the signal (the sum of the drift and the local volatility).

2.2 Filtering problem

This section describes the filtering problem and derives the laws of motion for estimates and estimation

variance, our measure of uncertainty. The key challenge is to keep the finite state properties of the

Gaussian model and apply Bayesian estimation in a jump-diffusion framework. Álvarez, Lippi and Paciello

(2011) analyze the filtering problem without the jumps and they show that the steady state of such a model

is equal to a perfect information model. Our contribution extends the Kalman–Bucy filter beyond the

standard assumption of Brownian motion innovations. We are able to represent the posterior distribution

of markup gaps µt|It as a function of mean and variance. To our knowledge, this is a novel result in the

filtering literature.

Firms make estimates in a Bayesian way by optimally weighing new information contained in signals

against old information from previous estimates. This is a passive learning technology in the sense that

firms process the information that is available to them, but they cannot make any action to change the

quality of the signals; this contrasts with the active learning models in Bachmann and Moscarini (2011),

Willems (2013), and Argente and Yeh (2015) where firms learn the elasticity of their demand by experi-

menting with price changes.
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Estimates and uncertainty Let µ̂t ≡ E[µt|It] be the best estimate (in a mean-squared error sense) of

the markup gap and let Σt ≡ E[(µt− µ̂t)2|It] be its variance. Firm level uncertainty is defined as Ωt ≡ Σt
γ ,

which is the estimation variance normalized by the signal volatility. Proposition 1 below establishes the

laws of motion for estimates and uncertainty for our drift-less case. In the Appendix we provide the

generalization of the Kalman-Bucy filter to a jump-diffusion process with drift.

Proposition 1 (Filtering equations). Let the markup gap and the signal evolve according to the

following processes:

(state) dµt = σfdWt + σuuttdqt, µ0 ∼ N (a, b)

(signal) dst = µtdt+ γdZt, s0 = 0

where Wt, Zt are Wiener processes, qt is a Poisson process with intensity λ, ut ∼ N (0, 1), and a, b

are constants. Let the information set be given by It = σ{sr, qr; r ≤ t}, and define the markup estimate

µ̂t ≡ E[µt|It] and the estimation variance Σt ≡ V[µt|It] = E[(µt−µ̂t)2|It]. Finally, define firm uncertainty

as the estimation variance normalized by the signal noise: Ωt = Σt
γ . Then the posterior distribution of

markups is Gaussian µt|It ∼ N (µ̂t, γΩt), where (µ̂t,Ωt) satisfy

dµ̂t = ΩtdẐt, µ̂0 = a (3)

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dqt, Ω0 =

b

γ
(4)

Ẑt is the innovation process given by dẐt = 1
γ (dst− µ̂tdt) = 1

γ (µt− µ̂t)dt+ dZt and it is one-dimensional

Wiener process under the probability distribution of the firm independent of dqt.

Proof. All proofs are given in the Appendix.

The proof consists of three steps. First, we show that the solution to the system of stochastic

differential equations in (1) and (2), conditional on the history of Poisson shocks, follows a Gaussian

process; second, we show that µt|It is a Gaussian random variable where its mean and variance can be

obtained as the limit of a discrete sampling of observations; and third, we show that the laws of motion

of markup estimates and uncertainty obtained with discrete sampling converge to the system given by

(3) and (4). We now discuss each filtering equation with detail.

Higher uncertainty implies more volatile estimates Equation (3) says that the estimate µ̂t is

a Brownian motion driven by the innovation process Ẑt with stochastic volatility7 given by Ωt. The

stochastic process Ẑt is the difference between the markup gap estimate and the signal, which under the

firm’s information set is a Wiener process independent of dqt. We can see this property using a discrete

time approximation of the estimates process in (3) and the signal process in (2).

Consider a small period of time ∆. As a discrete process, the markup gap estimate at time t+ ∆ is

given by the Bayesian convex combination of the previous estimate µ̂t and the signal change st − st−∆

7In Section 3 we discuss the differences between our model with stochastic volatility that arises from learning Ωt and a
model with fundamental stochastic volatility σf (t) as in Vavra (2014).
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(see Appendix for a formal proof)

µ̂t+∆∆ =
γ

Ωt∆ + γ︸ ︷︷ ︸
weight on prior estimate

µ̂t∆ +

(
1− γ

Ωt∆ + γ

)
︸ ︷︷ ︸

weight on signal

(st − st−∆) (5)

A discrete time approximation of the signal is given by:

st = st−∆ + µt∆ + γ
√

∆εt, εt ∼ N (0, 1) (6)

Substituting (6) into (5) and rearranging we obtain:

µ̂t+∆ − µ̂t =
Ωt

Ωt∆ + γ

(
(µt − µ̂t)∆ + γ

√
∆εt

)
︸ ︷︷ ︸

→ γdẐt

(7)

Since the estimate µ̂t is unbiased, the term inside parentheses has all the properties of a Wiener process.

Therefore, µ̂t follows an Itō process with local variance given by Ωt.

The same approximation in (5) makes evident that, when uncertainty is high, the estimates put more

weight on the signals than on the previous estimate. This means that the estimate incorporates more

information about the current markup µt; in other words learning is faster, but it also brings more white

noise εt into the estimation. Therefore, estimates become more volatile with high uncertainty. This effect

will be key in our discussion of firms’ responsiveness to monetary shocks, as with high uncertainty the

markup estimates will incorporate the monetary shock faster and responsiveness will be larger.

Uncertainty cycles Regarding the evolution of uncertainty, Equation (4) shows that it is composed of

a deterministic and a stochastic component, where the latter is active whenever the markup gap receives

a regime change. Let’s study each component separately. In the absence of regime changes (λ = 0),

uncertainty Ωt follows a deterministic path which converges to the constant volatility of the continuous

shocks σf , i.e. the fundamental volatility of the markup gap. The deterministic convergence is a result

of the learning process: as time goes by, estimation variance decreases until the only volatility left is

fundamental. In the model with regime changes (λ > 0), uncertainty jumps up on impact with the

arrival of regime change and then decreases deterministically until the arrival of a new regime that will

push uncertainty up again. The time series profile of uncertainty features a saw-toothed profile that never

stabilizes due to the recurrent nature of these shocks. If the arrival of the infrequent shocks were not

known and instead the firm had to filter their arrival as well, uncertainty would feature a hump-shaped

profile instead of a jump. Although uncertainty never settles down, it is convenient to characterize

the level of uncertainty such that its expected change is equal to zero, E
[
dΩt

∣∣∣It] = 0. It is equal to

the variance of the state V[µt] = Ω∗2t, hence we call this “fundamental” uncertainty with a value of

Ω∗ ≡
√
σ2
f + λσ2

u. The next section shows that the ratio of current to fundamental uncertainty is a key

determinant of decision rules and price statistics.

Further comments on the filtering problem A notable characteristic of this filtering problem is

that point estimates, as well as the signals and innovations, have continuous paths even though the
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underlying state is discontinuous. The continuity of these paths comes from two facts. First, changes in

the state affect the slope of the innovations and signals but not their levels; second, the expected size of

an infrequent shock ut is zero. As a consequence of the continuity, markup estimations are not affected

by the arrival of a regime change; only uncertainty features jumps. It is also worth noticing that both

the filtered estimates µt|It and smoothed estimates µt−δ|It, for any δ > 0 are Gaussian. In contrast, the

predicted estimate (µt+δ|It) is not. For instance, in the case σf = 0, the predicted markup has Laplace

distribution with fat tails. We focus our attention on the filtered estimate since it is the only input in

our firm’s decision problem. We leave for further research the analysis of other estimates.

2.3 Decision rules

With the filtering problem at hand, this section derives the price adjustment decision of the firm.

Sequential problem Let {τi}∞i=1 be the series of dates where the firm adjusts her markup gap and

{µτi}∞i=1 the series of reset markup gaps on the adjusting dates. Given an initial condition µ0, the law of

motion for markup gaps, and the filtration {It}∞t=0, the sequential problem of the firm is described by:

max
{µτi ,τi}

∞
i=1

−E

[ ∞∑
i=0

e−rτi+1

(
θ +

∫ τi+1

τi

e−r(s−τi+1)Bµ2
s ds

)]
(8)

The sequential problem is solved recursively as a stopping time problem using the Principle of Optimality

(see Øksendal (2007) and Stokey (2009) for details). This is formalized in Proposition 2. The firm’s state

has two components: the point estimate of the markup gap µ̂ and the level of uncertainty Ω attached to

that estimate. Given her current state (µ̂t,Ωt), the firm policy consists of (i) a stopping time τ , which is

a measurable function with respect to the filtration {It}∞t=0; and (ii) the new markup gap µ′.

Proposition 2 (Stopping time problem). Let (µ̂0,Ω0) be the firm’s current state immediately after

the last markup adjustment. Also let θ̄ = θ
B be the normalized menu cost. Then the optimal stopping

time and reset markup gap (τ, µ′) solve the following problem:

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0
−e−rsµ̂2

sds+ e−rτ
(
− θ̄ + max

µ′
V (µ′,Ωτ )

)∣∣∣I0

]
(9)

subject to the filtering equations in Proposition 1.

Observe in Equation (9) that the estimates enter directly into the instantaneous return, while un-

certainty affects only the continuation value. To be precise, uncertainty does have a negative effect on

current profits that reflects the firm’s permanent ignorance about her true productivity. However, this

loss is constant and can be treated as a sunk cost; thus it is set to zero.

Inaction region The solution to the stopping time problem is characterized by an inaction region R
such that the optimal time to adjust is given by the first time that the state falls outside such region:

τ = inf{t > 0 : (µt,Ωt) /∈ R}
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Since the firm has two states, the inaction region is two-dimensional, in the space of markup gap esti-

mations and uncertainty. Let µ̄(Ω) denote the inaction region’s border as a function of uncertainty. The

inaction region is described by the set:

R = {(µ,Ω) : |µ| ≤ µ̄(Ω)}

The symmetry of the inaction region around zero is inherited from the specification of the stochastic

process, the quadratic profits, and zero inflation. Notice that this is a non-standard inaction problem

since it is two-dimensional. In order to solve it, we derive the Hamilton-Jacobi-Bellman equation, the

value matching condition, and, following Øksendal and Sulem (2010), we ensure that the standard smooth

pasting condition is satisfied by both states. Proposition 3 formalizes these points.

Proposition 3 (HJB Equation). Let V (µ̂,Ω) be the value of the firm and Vx denote the derivative of

V with respect to x. For all states inside the inaction region R, V satisfies:

1. the Hamilton-Jacobi-Bellman (HJB) equation:

rV (µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
VΩ(µ̂,Ω) +

Ω2

2
Vµ̂2(µ̂,Ω) + λ

[
V

(
µ̂,Ω +

σ2
u

γ

)
− V (µ̂,Ω)

]

2. the value matching condition that sets equal the value of adjusting and not adjusting at the border:

V (0,Ω)− θ̄ = V (µ̄(Ω),Ω)

3. two smooth pasting conditions, one for each state: Vµ̂(µ̄(Ω),Ω) = 0, VΩ(µ̄(Ω),Ω) = VΩ(0,Ω.

A key property of the HJB is the lack of interaction terms between uncertainty and markup gap

estimates. This property is implied by the passive learning process in which the firm cannot change the

quality of the information flow by changing her markup. Using the HJB equation and other conditions,

Proposition 4 gives an analytical characterization of the inaction region’s border µ̄(Ω). The proof uses a

Taylor expansion of the value function.8

Proposition 4 (Inaction region). For r and θ̄ be small, the border of the inaction region µ̄(Ω) is

approximated by

µ̄(Ω) =

(
6θ̄Ω2

1 + Lµ̄(Ω)

)1/4

, with Lµ̄(Ω) =
Ω2 − Ω∗2

γ

3

2

(
6θ̄Ω∗2

)1/4
(10)

The elasticity of µ̄(Ω) with respect to Ω is equal to

E(Ω) ≡ 1

2
− 3

γ

(
6θ̄Ω∗2

)1/4
Ω2 (11)

Lastly, the reset markup gap is equal to µ̂′ = 0.

8In the Online Appendix we show that this is a good approximation.
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Higher uncertainty implies wider inaction region The numerator of the inaction region µ̄(Ω) in

equation (10) is increasing in uncertainty and captures the well-known option value effect (see Barro

(1972) and Dixit (1991)). As a result of belief dynamics, the option value is time-varying and driven

by uncertainty. In the denominator there is a new factor Lµ̄(Ω) that amplifies or dampens the option

value effect depending on the ratio of current uncertainty to fundamental uncertainty Ω
Ω∗ . When current

uncertainty is high with respect to its average level
(

Ω2

Ω∗2
> 1
)

, uncertainty is expected to decrease

(E[dΩ] < 0) and therefore future option values also decrease. This feeds back into the current inaction

region shrinking it as Lµ̄(Ω) > 0. Analogously, when uncertainty is low with respect to its average level(
Ω2

Ω∗2
< 1
)

, it is expected to increase (E[dΩ] > 0) and thus the option values in the future also increase.

This feeds back into current bands that get expanded as Lµ̄(Ω) < 0.

The overall effect of uncertainty on the inaction region also depends on the size of the menu cost

and the signal noise. The expression (10) shows that small menu costs θ paired with large signal noise

γ make the factor Lµ̄(Ω) close to zero, implying that the elasticity of the inaction region with respect to

uncertainty E(Ω) in (11) is close to 1/2 and thus the inaction region is increasing in uncertainty. This

implies that the size of prices changes done by uncertain firms will be larger.

Figure II shows a particular firm realization for the parametrization we will use in our quantitative

exercise, which has small menu costs θ̄ and large signal noise γ. Panel A shows the evolution of uncertainty,

which follows a saw-toothed profile: it decreases monotonically with learning until a regime change

happens and makes uncertainty jump up; then, learning brings uncertainty down again. The dashed

horizontal line is the average fundamental uncertainty Ω∗. Panel B plots the estimate of the markup gap

and the inaction region. This path is inherited by the inaction region because the calibration makes the

inaction region increasing in uncertainty. Finally, Panel C shows the magnitude of price changes. These

changes are triggered when the markup gap estimate touches the border of the inaction region.

Figure II: Sample paths for one firm.
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Panel A: Uncertainty (solid line) and fundamental uncertainty (horizontal dotted line). Panel B: Markup gap estimate (solid
line) and inaction region (dotted line). Panel C: Price changes.

Note that without regime changes, uncertainty would converge to the fundamental volatility in the
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long run, i.e., Ω→ σf . The inaction region would also become constant and akin to that of a steady state

model without information frictions, namely µ̄ =
(
6θ̄σf

2
)1/4

. That is the case analyzed in the Online

Appendix in Álvarez, Lippi and Paciello (2011). As that paper shows, such a model collapses to that

of Golosov and Lucas (2007) where there is no price change size dispersion, since all firms would have

the same inaction region. Therefore, both the regime changes and the information friction are key to

generate the cross-sectional variation in price setting that arises from the heterogenous uncertainty.

How does uncertainty affect the adjustment frequency? Notice that price changes appear to be

clustered over time, that is, there are recurrent periods with high adjustment frequency followed by

periods of low adjustment frequency. Figure II shows that after a regime change arrives, the estimation

becomes more volatile, which increases the probability of hitting the bands and changing the price. As a

response to higher volatility and to save on menu costs, the inaction region becomes wider, which reduces

the probability of a price change. Therefore, we have two opposite forces acting on the adjustment

frequency. Since the elasticity of the inaction region with respect to uncertainty is less than unity,

the volatility effect dominates and higher uncertainty brings more price changes. We formalize these

observations in the following section on price statistics.

3 Uncertainty and micro-price statistics

In this section we characterize analytically two price statistics that are crucial to understand the economy’s

response to aggregate nominal shocks: the expected duration of prices and the hazard rate of price

adjustment. First, we focus on price statistics conditional on a level of uncertainty, and we shed light

on the role of uncertainty in pricing behavior. We show that higher uncertainty decreases price duration

(increases the adjustment frequency) and that the hazard rate of price adjustment is decreasing for firms

with a high level of uncertainty. Furthermore, we show that the slope of the hazard rate is determined by

the volatility of the signal noise. To obtain these results, we require an elasticity of the inaction region

with respect to uncertainty that is less than unity.

Second, we aggregate the conditional statistics to generate the unconditional statistics that we observe

in the data. For aggregation, we use the renewal distribution of uncertainty, which is the distribution of

uncertainty of adjusting firms. We show that this renewal distribution puts more weight on high levels of

uncertainty than does the steady state distribution of uncertainty. This implies that aggregate statistics

reflect the behavior of highly uncertain firms, and therefore, decreasing hazard rates are also observed in

the aggregate.

3.1 Expected time

In Proposition 5 we formalize a positive relationship between adjustment frequency and uncertainty,

as observed in Figure II. It is followed by Proposition 6 which formalizes a positive relationship between

adjustment frequency and uncertainty dispersion. These relationships prove to be very useful to back out

an unobservable state – uncertainty – with observable price statistics.
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Proposition 5 (Conditional Expected Time). Let r and θ̄ be small. The expected time for the next

price change conditional on the state, denoted by E[τ
∣∣µ̂,Ω], is approximated as:

E[τ
∣∣µ̂,Ω] =

µ̄(Ω)2 − µ̂2

Ω2
(1 + Lτ (Ω)) where Lτ (Ω) ≡

(
Ω

Ω∗
− 1

)
(1− E(Ω∗))

(
4γ(6θ̄)1/2

γ + 2(6θ̄)1/2

)
(12)

If the elasticity of the inaction region with respect to uncertainty is lower than unity and signal noise is

large, then the expected time between price changes (i.e. E[τ
∣∣0,Ω]) is a decreasing and convex function

of uncertainty.

The expected time between price changes has two terms. The first term µ̄(Ω)2−µ̂2

Ω2 is standard, and it

states that the closer the current markup gap is to the border of the inaction region, then the shorter the

expected time for the next adjustment. This term is decreasing in uncertainty with an elasticity larger

than unity in absolute value, and it is time-varying. The second term Lτ (Ω) amplifies or dampens the

first effect depending on the level of uncertainty, and it has an elasticity equal to unity with respect to

uncertainty. Therefore, uncertainty’s overall effect on the expected time to adjustment is negative: a firm

with high uncertainty is going to change the price more frequently than a firm with low uncertainty.

As mentioned in the introduction, there is empirical evidence of this positive relationship between

uncertainty and adjustment frequency. Bachmann, Born, Elstner and Grimme (2013) use German survey

data to document a positive relationship between firm-level belief uncertainty, measured as the variance of

sales’ forecast errors, and the individual adjustment frequency; Vavra (2014) uses BLS micro-price data

to document a positive relationship between the cross-sectional dispersion of price changes – another

measure of uncertainty – and the individual frequency of price changes.

Proposition 6 establishes a positive relationship between uncertainty dispersion and adjustment fre-

quency, and between uncertainty dispersion and price change dispersion. It generalizes Proposition 1

found in Álvarez, Le Bihan and Lippi (2014) for general Ωt and it demonstrates a very intuitive link be-

tween uncertainty dispersion and price statistics. The key point is that observable price statistics provide

a way to back-out the level of heterogeneity in an unobserved state, uncertainty.

Proposition 6 (Uncertainty and Frequency). The following relationship between uncertainty disper-

sion, average price duration, and price change dispersion holds:

E[Ω2] =
V[∆p]

E[τ ]
(13)

Holding fixed uncertainty’s cross-sectional dispersion in the left-hand side, expression (13) establishes

a positive link between average price duration and price change dispersion. Prices either change often

for small amounts or rarely for large amounts. This implication of menu cost models can be tested

empirically, for instance, using price statistics from different sectors. As an alternative way to read this

relationship, consider a fixed price change dispersion; then heterogeneity in uncertainty and average price

duration are negatively related. Underlying these results is a Jensen inequality and the fact that frequency

decreases with price age. We turn next into characterizing the hazard rate, which is a dynamic measure

of adjustment frequency.
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3.2 Hazard rate

Let hτ (Ω) be the conditional hazard rate of price adjustment. It is the probability of changing the price

at date τ since the last price change and conditional on a current level of uncertainty Ω. It is computed

as hτ (Ω) ≡ f(τ |Ω)∫∞
τ f(s|Ω)ds

, where f(s|Ω) is the conditional distribution of stopping times. It reflects the

probability of exiting the inaction region, or first passage time. Without loss of generality, assume the

last adjustment occurred at time t = 0 and denote price duration with τ > 0. The hazard rate is a

function of two objects:

i) estimate’s unconditional variance: this is the variance of the estimate at a future date τ from a time

t = 0 perspective, which we denote by Vτ (Ω0)

µ̂τ |I0 ∼ N (0,Vτ (Ω0))

ii) expected path of the inaction region µ̄(Ω) given the information available at time t = 0.

An analytical characterization of the hazard rate is provided in Proposition (7). The key message

is that the concavity of the unconditional variance Vτ (Ω0) determines the shape of the hazard function,

because it measures how fast learning occurs. The presence of infrequent shocks only changes the level

of the hazard rate but not its slope; thus we characterize the hazard rate assuming no infrequent shocks

(λ = 0). Furthermore, the inaction region is assumed to be constant. This is also a valid assumption since

what matters for the hazard rate is the inaction region’s size relative to the volatility of the uncontrolled

process. The validity of both assumptions is explored in the Online Appendix where we compute the

numerical hazard rate.

Proposition 7 (Conditional Hazard Rate). Without loss of generality, assume the last price change

occurred at t = 0 and let Ω0 > σf be the level of uncertainty. There are no infrequent shocks (λ = 0) and

a constant inaction region µ̄(Ωτ ) = µ̄0. Denote derivatives with respect to τ with a prime (h′τ ≡ ∂h/∂τ).

1. The estimate’s unconditional variance, denoted by Vτ (Ω0), is given by:

Vτ (Ω0) = σ2
fτ + LVτ (Ω0) (14)

where LVτ (Ω0) ≡ γ(Ω0 − Ωτ ), with LV0 (Ω0) = 0, limτ→∞ LVτ (Ω0) = γ(Ω0 − σf ), and equal to:

LVτ (Ω0) = γΩ0 − γσf

 Ω0
σf

+ tanh
(
σf
γ τ
)

1 + Ω0
σf

tanh
(
σf
γ τ
)


2. Vτ (Ω0) is increasing and concave in duration τ : V ′τ (Ω0) > 0 and V ′′τ (Ω0) < 0. Furthermore, the

following cross-derivatives with initial uncertainty are positive:

∂Vτ (Ω0)

∂Ω0
> 0,

∂V ′τ (Ω0)

∂Ω0
> 0,

∂|V ′′τ (Ω0)|
∂Ω0

> 0
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3. The hazard of adjusting the price at date τ , conditional on Ω0, is characterized by:

hτ (Ω0) =
π2

8

V ′τ (Ω0)

µ̄2
0︸ ︷︷ ︸

decreasing in τ

Ψ

(
Vτ (Ω0)

µ̄2
0

)
︸ ︷︷ ︸
increasing in τ

(15)

where Ψ(x) ≥ 0, Ψ(0) = 0, Ψ′(x) > 0, limx→∞Ψ(x) = 1, first convex then concave, and it is given

by:

Ψ(x) =

∑∞
j=0 αj exp (−βjx)∑∞
j=0

1
αj

exp (−βjx)
, αj ≡ (−1)j(2j + 1), βj ≡

π2

8
(2j + 1)2

4. Exists a τ∗(Ω0) such that the slope of the hazard rate is negative for τ > τ∗(Ω0), and τ∗(Ω0) is

decreasing in Ω0.

Estimate’s unconditional variance Vτ (Ω0) in (14) captures the evolution of uncertainty. The first term,

σ2
fτ , refers to the linear time trend that comes from the fact that fundamental shocks follow a Brownian

Motion. The second term, LVτ (Ω0), is an additional source of variance coming from imperfect information.

The second point in Proposition (7) establishes that higher initial uncertainty increases the level, slope,

and concavity of this additional variance. In other words, higher initial uncertainty brings higher expected

gains from learning. In the third point, we show that the hazard rate with imperfect information is given

by the product of Ψ(x), an increasing function of τ , times the derivative of the unconditional variance

V ′τ , a decreasing function of τ . The function Ψ(x) characterizes the hazard rate with perfect information

as derived in Álvarez, Lippi and Paciello (2011), which in turn uses a transformation of the stopping

time density by Kolkiewicz (2002). Therefore, there are two opposing forces acting upon the slope of the

hazard rate. Finally, the fourth point states that there exists a date after which the hazard is downward

sloping. If the initial uncertainty is larger with respect to its lower bound σf , then the decreasing force

becomes stronger and the hazard’s slope is negative for a larger range of price durations. Figure (III)

illustrates the hazard rate for different initial conditions Ω0.

Figure III: Hazard Rate Conditional on Initial Uncertainty
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Decreasing hazard and noise volatility The economics behind the decreasing hazard rate are as

follows. Because of learning, firm uncertainty decreases with time and the weight given to new observa-

tions in the forecasting process decreases too. Since the markup gap estimates’ volatility is reduced, the

probability of adjusting also decreases. A firms expects to transition from high uncertainty and frequent

adjustment to low uncertainty and infrequent adjustments. The speed of the transition is determined by

the level of information frictions as captured by the noise volatility γ. If noise volatility is high, a firm will

take a long time after a regime switch to learn her new level of permanent productivity. Both uncertainty

and adjustment frequency remain high for many periods and the hazard rate is flat; in contrast, when

the noise volatility is low, a firm learns quickly her new level of permanent productivity, both uncertainty

and adjustment frequency fall after a few periods, and the hazard rate is relatively steep. Therefore γ

can be chosen to match the shape of the hazard rate.

3.3 Belief uncertainty vs. stochastic volatility

The uncertainty shocks in this paper contrast with the stochastic volatility processes for productivity used

in Vavra (2014) and Karadi and Reiff (2014). Our definition of uncertainty concerns idiosyncratic beliefs;

it is the conditional variance of the estimates of markup gaps. The volatility of the markup process is

a known constant Ω∗; it is the realizations which are unknown. In these other papers, there is perfect

information but the volatility of the markup process is stochastic. Regardless of the structure, however,

the positive relationship between the frequency of price changes and the uncertainty (or volatility) faced

by the firm is maintained.

A natural question arises: can we distinguish our model of endogenous uncertainty with one of exoge-

nous stochastic fundamental volatility? The answer is yes: a model with stochastic volatility generates

an increasing hazard rate, while the learning model generates a decreasing hazard rate.

The exercise is documented in detail in the Appendix. We calibrate the stochastic volatility process

to match the frequency of price changes in the data, as well as the autocorrelation and cross-sectional

dispersion of volatility/uncertainty in the learning model. We obtain an increasing hazard rate for

the stochastic volatility model. This is robust to changes in the persistence of the stochastic volatility

process. The reason for this result lies in the dynamics for volatility. The AR(1) process produces smooth

changes in volatility, whereas the Poisson shock we have large changes in uncertainty. The price change

distribution obtained with the stochastic volatility model has much lower dispersion and kurtosis (thinner

tails) compared to the learning model.

3.4 Aggregation

In the data we observe unconditional statistics. These moments are equal to the weighted average of

the conditional statistics, where the weights are given by the renewal distribution of uncertainty. The

renewal distribution is the stationary distribution of uncertainty conditional on price adjustment: it is

the uncertainty faced by adjusting firms. Such distribution is different from the unconditional steady

state distribution of uncertainty, which is the uncertainty in the entire cross-section. Importantly, micro

price statistics are the outcomes of aggregation using the renewal distribution of uncertainty. This section

characterizes analytically the ratio between these two distributions.
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The distribution of price adjuster uncertainty– the renewal distribution – is difficult to compute an-

alytically because of the jump process. Nevertheless, we can characterize the ratio between the renewal

distribution and marginal distribution over uncertainty to show that it is increasing in uncertainty. The

next proposition formalizes this result.

Proposition 8 (Renewal distribution). Let f(µ̂,Ω) be the joint density of markup gaps and uncer-

tainty in the population of firms. Let r(Ω) be denote the density of uncertainty conditional on adjusting,

or renewal distribution. Assume the inaction region is increasing in uncertainty (i.e. µ̄′(Ω) > 0). Then

we have the following results:

• For each (µ̂,Ω), we can write the joint density as f(µ̂,Ω) = h(Ω)g(µ̂,Ω), where g(µ̂,Ω) is the

density of markup gap estimates conditional on uncertainty and h(Ω) is the marginal density of

uncertainty.

• The ratio between the renewal and marginal distributions of uncertainty is approximated by

r(Ω)

h(Ω)
∝ |gµ̂(µ̄(Ω),Ω)|Ω2 (16)

where g(µ,Ω) solves the following differential equation

Ω2 − Ω∗2

γ
gΩ(µ̂,Ω) +

Ω2

2
gµ̂2(µ̂,Ω) = 0

with border conditions:

g(µ̄(Ω),Ω) = 0

∫ µ̄(Ω)

−µ̄(Ω)
g(µ,Ω)dµ = 1

• If Ω = Ω∗, then the ratio is proportional to the inverse of the expected time between price adjust-

ments. Then if the inaction region’s elasticity to uncertainty is lower than unity, the ratio is an

increasing function of uncertainty:

r(Ω∗)

h(Ω∗)
∝ Ω∗2

µ̄(Ω∗)2
=

1

E[τ |(0,Ω∗)]
(17)

The last point of Proposition (8) states that if inaction regions are relatively flat with respect to

uncertainty, as it is the case, the renewal distribution is biased towards high levels of uncertainty. This

implies that micro-price statistics will reflect more intensively the pricing behavior of highly uncertain

firms. In the particular case of the hazard rate, the average hazard rate is decreasing because it puts a

higher weight on the decreasing hazard rate of high uncertainty firms compared to the increasing hazard

rate of low uncertainty firms.
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4 General Equilibrium model

In this section we develop a standard general equilibrium framework with monopolistic firms that face the

pricing-setting problem with menu costs and information frictions studied in the previous sections. We

extend the environment in Golosov and Lucas (2007) to include the information friction and characterize

the steady state of the economy. Then we calibrate the model to match several micro price statistics from

CPI data in the US. In particular, we calibrate the signal noise to match the slope of the hazard rate of

price adjustment in the data. Finally, as an orthogonal check to our model, we refer to evidence from US

scanner data and Mexican CPI data that confirms the age dependence in pricing implied by our model.

4.1 Model

Environment Time is continuous. There is a representative consumer, a continuum of monopolistic

firms, and a monetary authority.

Representative Household The household has preferences over consumption Ct, labor Nt, and real

money holdings Mt
Pt

, where Pt is the aggregate price level. She discounts the future at rate r > 0.

E0

[∫ ∞
0

e−rt
(

logCt −Nt + log
Mt

Pt

)
dt

]
(18)

Consumption consists of a continuum of imperfectly substitutable goods indexed by z bundled together

with a CES aggregator as

Ct =
(∫ 1

0

(
At(z)ct(z)

) η−1
η
dz

) η
η−1

(19)

where η > 1 is the elasticity of substitution across goods and ct(z) is the amount of goods purchased from

firm z at price pt(z). The ideal price index is the minimum expenditure necessary to deliver one unit of

the final consumption good, and is given by:

Pt ≡

[∫ 1

0

(
pt(z)

At(z)

)1−η
dz

] 1
1−η

(20)

In the consumption bundle and the price index, At(z) reflects the quality of the good, with higher

quality providing larger marginal utility of consumption but at a higher price. Quality shocks are firm

specific and will be described fully in the firm’s problem below. The household has access to complete

financial markets. The budget includes income from wages Wt, profits Πt from the ownership of all firms,

and the opportunity cost of holding cash RtMt, where Rt is the nominal interest rate. Let Qt be the

stochastic discount factor, or valuation in nominal terms of one unit of consumption in period t. Thus

the budget constraint reads:

E0

[∫ ∞
0

Qt (PtCt +RtMt −WtNt −Πt) dt

]
≤M0 (21)

The household problem is to choose consumption of the different goods, labor supply and money holdings

to maximize preferences (18) subject to (19), (20) and (21).
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Monopolistic Firms On the production side, there is a continuum of firms indexed by z ∈ [0, 1].

Each firm produces and sells her product in a monopolistically competitive market. They own a linear

technology that uses labor as its only input: producing yt(z) units of good z requires lt(z) = yt(z)At(z)

units of labor, so that the marginal nominal cost is At(z)Wt (higher quality At(z) requires more labor

input). The assumption that the quality shock enters both the production function and the marginal

utility of the household is done for tractability as it helps to condense the numbers of states of the firm

into one, the markup, as in Midrigan (2011). Each firm sets a nominal price pt(z) and satisfies all demand

at this posted price. Given the current price pt(z), the consumer’s demand ct(z), and current quality

At(z), the instantaneous nominal profits of firm z are equal to the difference between nominal revenues

and nominal costs:

Π(pt(z), At(z)) = ct(pt(z), At(z))
(
pt(z)−At(z)Wt

)
(22)

Firms maximize their expected stream of profits, which is discounted at the same rate of the consumer

Qt. They choose either to keep the current price or to change it, in which case they must pay a menu

cost θ and reset the price to a new optimal one. Let {τi(z)}∞i=1 be a series of stopping times, that is,

dates where firm z adjusts her price. The sequential problem of firm z is given by:

V (p0(z), A0(z)) = max
{pτi (z),τi(z)}

∞
i=1

E

[ ∞∑
i=0

Qτi+1(z)

(
−θ +

∫ τi+1(z)

τi(z)

Qs
Qτi+1(z)

Π(pτi(z), As(z))ds

)]
(23)

with initial conditions (p0(z), A0(z)) and subject to the quality process described next.

Quality process Firm z’s log quality at(z) ≡ lnAt(z) evolves as the following jump-diffusion process

which is idiosyncratic and independent across z:

dat(z) = σfWt(z) + σuut(z)dqt(z) (24)

where Wt(z) is a Wiener process and ut(z)qt(z) is a compound Poisson process with arrival rate λ and

Gaussian innovations ut(z) ∼ N (0, 1) as in the previous sections. As before, firms do not observe their

quality directly, and they do not learn it from observing their wage bill or revenues either. The only

source of information are noisy signals about quality together with the information that a regime change

has hit them. The noisy signals st(z) evolve as

dst(z) = at(z)dt+ γdZt(z) (25)

where Zt(z) is an independent Brownian motion for each firm z and γ is signal noise. Each information

set is It(z) = σ{sr(z), qr(z); r ≤ t}. The parameters {σf , σu, λ, γ} are identical across firms.

Money supply The monetary authority keeps money supply constant at a level M̄ .

Equilibrium An equilibrium is a set of stochastic processes for (i) consumption strategies ct(z), labor

supply Nt, and money holdings Mt for the household, (ii) pricing functions pt(z), and (iii) prices Wt, Rt,

Qt, Pt such that the household and all firms optimize and markets clear at each date.

22



4.2 Characterization of steady state equilibrium

Household optimality The first order conditions of the household problem establish: nominal wages

as a proportion of the (constant) money stock Wt = rM̄ ; the stochastic discount factor as Qt = e−rt; and

demand for good z as ct(z) = At(z)
η−1

(
pt(z)
Pt

)−η
Ct.

Constant aggregate prices The equilibrium with constant money supply implies a constant nominal

wage Wt = W and a constant nominal interest rate equal to the household’s discount factor Rt = 1 + r.

The ideal price index in (20) is also a constant Pt = P . Then nominal expenditure is also constant

PtCt = PC = M = W . Therefore, there is no uncertainty in aggregate variables.

Back to quadratic losses Given the strategy of the consumer ct(z) and defining markups as µt(z) ≡
pt(z)

At(z)W
, the instantaneous profits can be written as a function of markups alone:

Π(pt(z), At(z)) = Kµt(z)
−η
(
µt(z)− 1

)
where K ≡ M

(
W
P

)1−η
is a constant in steady state. A second order approximation to this expression

produces a quadratic form in the markup gap, defined as µt(z) ≡ log(µt(z)/µ
∗), i.e. the log-deviations

of the current markup to the unconstrained markup µ∗ ≡ η
η−1 :

Π(µt(z)) = C −Bµt(z)2

where the constants are C ≡ Kη−η(η − 1)η−1 and B ≡ 1
2K

(η−1)η

ηη−1 . The constant C does not affect the

decisions of the firm and it is omitted for the calculations of decision rules; the constant B captures the

curvature of the original profit function. This quadratic problem is the same as 8.

Markup gap estimation and uncertainty The markup gap is equal to

µt(z) = log pt(z)− at(z)− logW − logµ∗

When the price is kept fixed (inside the inaction region), the markup gap is driven completely by the

productivity process: dµt(z) = −dat(z). When there is a price adjustment, the markup process is reset

to its new optimal value and then it will again follow the quality process. By symmetry of the Brownian

motion without drift and the mean zero innovations of the Poisson process, we have that dat(z) = −dat(z).
Given the quality and signal processes in (24) and (25), together with dµt(z) = dat(z), we obtain the

same filtering equations as in Proposition 1, but now each process is indexed by z and is independent

across firms.

dµ̂t(z) = Ωt(z)dXt(z)

dΩt(z) =
σ2
f − Ω2

t (z)

γ
dt+

σ2
u

γ
dqt(z)

where Xt(z) is a standard Brownian motion for every z, just as before.
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4.3 Data and calibration

The model is solved numerically as a discrete time version of the continuous time model described

above. For the calibration, we use price statistics reported in Nakamura and Steinsson (2008), who use

BLS monthly data for a sample that is representative of consumer and producer prices except services,

controlling for heterogeneity and sales. The sample is restricted to regular price changes, that is, with

sales filtered out. These statistics are also consistent with Dominick’s database reported in Midrigan

(2011). The targets for calibration are the expected time between price changes, the standard deviation

of price changes and the hazard rate.

The calibration is at weekly frequency and then the price statistics are aggregated to match the

monthly price statistics in the data. The discount factor is set to 1
1+r = 0.961/52 to match an annual risk

free rate of 4%. Following the empirical evidence in Zbaracki et al. (2004) and Levy et al. (1997), the

normalized menu cost is set to θ̄ = 0.064 in all models so that the expected menu cost payments ( 1
E[τ ]θ)

represent 0.5% of the average revenue. The CES elasticity of substitution between goods is set to η = 6

in order to match an average markup of 20%.

We consider three alternative calibrations that allow us to highlight the properties of our model. The

first calibration shuts down the information friction (γ = 0) and the regime changes (λ = 0), and the only

parameter σf is set to match the adjustment frequency. Price change distribution has zero dispersion and

kurtosis of 1. The second calibration also shuts down the information frictions (γ = 0) and the frequent

shocks (σf = 0), keeping the regime changes active. Its two parameters λ and σu match the frequency

and the dispersion of price changes. The price change distribution features fatter tails with a kurtosis of

1.5. The third is the full model with information frictions that has an additional parameter to calibrate,

the signal noise, which is set to match the shape of the hazard rate9. The volatility of the frequent shocks,

σf , is set very close to zero so that the minimum level of uncertainty is also close to zero and small price

changes may occur. The price change distribution has even fatter tails, with a kurtosis of 1.9.

Notice that the arrival rate of the Poisson shocks in the imperfect information model is 80% smaller

than in the perfect information model. Nevertheless, both models generate the same expected time be-

tween price changes. The reason is that one Poisson shock produces many more price changes in the

imperfect information model because of the decreasing hazard rate. A lower arrival rate is key to higher

persistence of the output response to monetary shocks, as we show in the next section.

Price statistics Panel A in Figure IV shows the ergodic distribution of price changes for the BLS

data in Nakamura and Steinsson (2008) and the three parametrizations of the model. The symmetry

of the distribution comes from the assumption of zero inflation and the symmetry of the stochastic

process. The baseline model of perfect information and only small frequent shocks generates a price

change distribution concentrated at the borders of the inaction region. The models with regime changes,

with and without information frictions, are able to match better the fatter tails and larger dispersion of

the empirical distribution of price changes. Panel B in figure IV plots the hazard rate of price adjustment.

The model with perfect information and only small shocks features an increasing hazard rate: after a

price adjustment, it takes time for the small shocks to accumulate in the markup gap and trigger a

9The Online Appendix shows how the slope of the unconditional hazard rate varies with different choices of γ without
changing the price change distribution. We also show that the two parameters σf and σu are well identified.

24



Table I: Model parameters and targets

Target Data Model

Perfect Info Info Frictions
Monthly BLS No infreq shocks Infreq shocks

E[τ ] 2.3 quarters σf = 0.0165 λ = 0.055 λ = 0.016
std[|∆p|] 0.08 σu = 0.08 σu = 0.21
min|∆p| ≈ 0 σf = 0 σf = 0.0005
h(τ) slope < 0 γ = 0.22

CPI data from Nakamura and Steinsson (2008). For the slope of the hazard rate h(τ) see Figure IV.

price change. The model with perfect information and regime changes produces an flat hazard: the

probability of changing the price is constant as it reflects the constant arrival rate of the Poisson shocks

that trigger price changes. Therefore, it works as a Calvo model. Finally, the model with information

frictions generates the decreasing hazard rate. Note that by calibrating one parameter, the signal noise

γ, we can match very well the shape of the hazard rate for a large span of durations.

Figure IV: Distribution of price changes and hazard rate of price adjustments
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The model has some difficulty in matching small price changes because the minimum price change

is bounded by the size of the menu cost. In the Online Appendix, we extend the baseline model to the

so-called CalvoPlus model in Nakamura and Steinsson (2010), in which there are random opportunities

to adjust prices without the menu cost. This extended model generates small price changes. Small price

changes can also be generated by introducing economies of scope through multi-product firms as in see

Midrigan (2011) and Álvarez and Lippi (2014). However, as noted by Eichenbaum, Jaimovich, Rebelo

and Smith (2014), small price changes might be the result of measurement errors and not a reason to

dismiss a menu cost model.
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4.4 Uncertainty and price age

Our model generates a very tight connection between the age of price and firm uncertainty, where

age is measured as the number of periods that a price has remained unchanged. High uncertainty firms

are more likely to be charging young prices, while low uncertainty firms are more likely to be charging

old prices. Therefore, price age becomes a determinant of the size and dispersion of price changes as well

as the adjustment frequency. In particular, our model predicts that young (uncertain) prices are larger,

more dispersed, and more likely to be reset than older (certain) prices.

These predictions are documented by Campbell and Eden (2014) using weekly scanner data. They

define a young price if its age is less than three weeks and an old price if its age is more than four weeks.

They find that conditional on adjustment, young prices have double the dispersion of old prices (15%

vs. 7%) and that price changes in the extreme tails of the price change distribution tend to be young.

Regarding the frequency, they find that young prices are three times more likely to be changed than

old prices (36% vs 13%). We compute analogous numbers in our model, defining young prices to be in

the 25th quartile of the price age distribution and old prices to be in the 75th quartile. We obtain that

dispersion of young price changes is one and half times larger than that of old prices, and that adjustment

frequency is twice as large for young prices. Interestingly, the uncertainty faced by young prices is also

twice the uncertainty faced by old prices, thus the relative adjustment frequency seems to be informative

about the relative uncertainty faced by firms.

Further evidence regarding age dependence in pricing is documented in Baley, Kochen and Sámano

(2015). Using detailed CPI data from Mexico, they show that adjustment frequency and price change

dispersion falls with the age of the price. Furthermore, they document a negative relationship between

price age and exchange rate passthrough: conditional on adjustment, older prices incorporate a smaller

fraction of the exchange rate depreciation occurred since the last change. Specifically, exchange-rate

passthrough is 50% smaller for six-month old prices compared to one-month old prices. These results

point towards relevant age dependence in the responsiveness of prices to aggregate shocks. We explore

this responsiveness in the next section within our framework.

5 Propagation of nominal shocks

What are the macroeconomic consequences of our pricing model with information frictions? Specifically,

how does output respond to an aggregate nominal shock? In order to answer these questions, we conduct

three exercises. In the first exercise, we compute the response of output to a unanticipated permanent

monetary shock. We find that information frictions amplify the persistence of output response compared

to a Calvo economy. This is because of the heterogeneity in uncertainty that arises from matching the

decreasing hazard rate. In the second exercise, the monetary shock interacts with an uncertainty shock

that is synchronized across all firms. We find that output responses are smaller and less persistent when

aggregate uncertainty is higher. Lastly, we explore the relevance of price age – a proxy for firm uncertainty

– in explaining the responsiveness of prices to the monetary shock. We find that old prices are less

responsive to nominal shocks compared to young prices, which is consistent with empirical observations.
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5.1 Output response to an unanticipated monetary shock

In the first exercise, we compute the impulse-response function of output to a one-time unanticipated

small shock to money supply. This monetary shock is fully observed by all firms and thus we say that is

it disclosed. Starting from a zero inflation steady state at t = 0, we shock the economy with a permanent

increase in the money supply of a small size δ, such that logMt = log M̄ + δ, t ≥ 0. Since wages are

proportional to the money supply, the shock translates directly into a wage increase. In turn, the wage

increase brings down all markups by δ. Given that the monetary shock is disclosed, markup estimates

also fall by δ as they are updated by the full amount of the monetary shock:

µ̂0(z) = µ̂−1(z)− δ, ∀z

Response of aggregate price level and output Even though markup gap estimates get updated

immediately, prices will only be changed when these estimates fall outside the respective inaction regions.

The price index in (20) can be written in terms of the markup gaps by multiplying and dividing by the

nominal wages and using the definition of markup gap:

Pt = Wt

[∫ 1

0

(
pt(z)

WtAt(z)

)1−η
dz

] 1
1−η

= Wt

[∫ 1

0
µt(z)

1−ηdz

] 1
1−η

= Wtµ
∗
[∫ 1

0

(
eµt(z)

)1−η
dz

] 1
1−η

Taking the log difference from steady state, approximating the integral, and substituting the wage devi-

ation ln
(
Wt

W

)
= δ, we obtain the price deviations from steady state denoted by P̃t:

P̃t ≡ ln

(
Pt

P

)
≈ δ +

∫ 1

0
µt(z)dz ≈ δ +

∫ 1

0
(µt(z)− µ̂t(z)) + µ̂t(z) dz ≈ δ +

∫ 1

0
µ̂t(z) dz (26)

We arrive to the last equality by noticing that the forecast error µt(z) − µ̂t(z) is iid across firms and

therefore the average forecast error is equal to zero. Expression (26) states that the price level will deviate

from its steady state value as long as some firms have not adjusted their price.

To compute the output response to the monetary shock, we use the equilibrium condition that output

equals the real wage. Therefore, putting together the wage and price level deviations from steady state,

output deviations are given by the negative of the cross-sectional average of markup gap estimates:

Ỹt ≡ ln

(
Yt

Y

)
= δ − P̃t = −

∫ 1

0
µ̂t(z) dz (27)

In a frictionless world, all firms would increase their price in δ to reflect the higher marginal costs,

implying that µ̂t(z) = 0 for all firms. The monetary shock would have no output effects. With the menu

costs and the information frictions, the price level will fail to fully reflect the monetary shock and there

will be real effects.

During the transition to the new steady state, there are general equilibrium effects arising from

changes in the average markup in the economy that affect individual policies. However in Álvarez and

Lippi (2014)’s Proposition 7, it is demonstrated that in this type of framework, such general equilibrium
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effects can be ignored. Following this result, we compute price responses using the steady state policies.

Figure (V) shows the impulse-response of output to a monetary shock of size δ = 1% for the three

calibrations outlined in the previous section. We also report two statistics: the area under the impulse-

response function, M ≡
∫∞

0 Ỹt dt, which is a measure of the total output effect; and the half-life of the

impulse response. Columns (1) to (3) of Table II report these statistics.

Figure V: Output response to a positive monetary shock of size δ = 1%.
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Table II: Output response to monetary shocks (as a multiple of the first column).

Perfect Info Info Frictions
(1) (2) (3) (4)

Output Effect Benchmark Regime changes Disclosed Undisclosed

Total effect (M) 1.00 2.16 2.97 6.47
Half-life (t0.5) 1.00 1.67 1.33 5.17

For the first column, the total output effects are M = 1.74% and the half-life is 1.5 months.

Let us first consider the models with perfect information. For the first calibration with only small

frequent shocks (Column 1 of Table II), an increase of 1% in the money supply generates a total output

effect of M = 1.74%, and it has a half-life of 1.5 months. These numbers are set as a benchmark to

compare the statistics of the other models. The small and short-lived output response is the result of a

large selection effect as highlighted by Golosov and Lucas (2007). The firms that are more likely to adjust

their price after the monetary shock are those with the largest desired price changes; their adjustments

offset any potential monetary effects. The second calibration (Column 2 of Table II), which introduces

the regime changes, features more than two times the total output effects and 1.7 times the half-life of
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the first model. By matching the dispersion of the price change distribution, this model generates a flat

hazard rate; it is akin to a Calvo economy where all firms have the same probability to adjust their prices

regardless of their state. By breaking the selection effect, it obtains a larger non-neutrality of monetary

shocks as in Gertler and Leahy (2008) and Midrigan (2011). The third calibration with information

frictions (Column 3 of Table II) is able to generate almost three times the total output effects of the

benchmark model.

As Álvarez, Le Bihan and Lippi (2014) points out, higher kurtosis is associated with higher effects

of monetary shocks. That paper derives a formula that computes the cumulative output effect after a

monetary shock as an increasing function of kurtosis and a decreasing function of adjustment frequency.

Since all our calibrations match the same adjustment frequency and are identical in other parameters,

the only relative difference in output effects should be driven by the relative kurtosis of their price change

distributions. Recall that the kurtosis of the price change distributions were 1, 1.5 and 1.9 respectively.

Thus our results confirm the predictions of such formula, as the output effects are increasing in kurtosis10

Despite the increased output effects obtained with the third calibration, the half-life is only slightly

larger than in the benchmark and under that of the Calvo-like model. We can observe this tension in

Figure (V), which shows that the impulse-response of the information frictions model crosses the impulse-

response of the Calvo model after five months. Both the larger output effects and the shorter half-life are

the result of having a large mass of firms with low uncertainty in steady state. Low uncertainty firms have

small inaction regions, so the impact of the monetary shock triggers many price changes. This resembles

the selection effect of the benchmark model. In fact, the adjustment frequency overshoots by 80%

compared to its steady state level (see Panel C of Figure VI below) and reduces the output effect drastically

during the first months. However, even with the frequency overshoot, the model with information frictions

still obtains a larger output effect. The reason for this is that there are low uncertainty firms that did not

adjust on impact, and they will only incorporate the monetary shock when they receive a regime change.

This delay increases the persistence.

The frequency overshoot after a monetary shock is not observed in the data, as the aggregate frequency

is very stable (Nakamura and Steinsson (2008), Klenow and Kryvtsov (2008)) or slightly countercyclical

(Vavra (2014)). To address this issue, we consider an extension of the model where firms only observe a

fraction α ∈ [0, 1] of the monetary shock, and their markup gap estimates are only partially updated11:

µ̂0(z) = µ̂−1(z)− αδ

We assume that firms filter the monetary shock using the same learning technology they use to estimate

their permanent productivity shocks. Upon the impact of the monetary shock, there will be an initial

forecast error f0(z) which then evolves as follows:

f0(z) = (1− α)δ, ft+1(z) = ω(Ωt(z))ft(z)

10The one caveat to applying the formula by Álvarez, Le Bihan and Lippi (2014) in our model is that there is a large
reaction of the adjustment frequency on the impact of the monetary shock, while this formula assumes that frequency does
not change.

11The CalvoPlus model with random menu costs developed in the Online Appendix also reduces the frequency overshoot
from 80% to 50%.
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where ω(Ωt(z)) denotes the Bayesian weight used by firm z with uncertainty Ωt(z) to update her estimate.

The average forecast error is given by:

F0 = (1− α)δ, Ft+1 = Ft

(∫ 1

0
ω(Ωt(z)) dz

)
An equivalent assumption that delivers the same average forecast error is that a fraction α ∈ [0, 1] of firms

that does not observe the monetary shock. With these definitions, we can write the output deviation from

steady as the negative of average markup gaps (as in (27)) plus the aggregate forecast error as follows:

Ỹt = −
∫ 1

0
µ̂t(z) dz + Ft (28)

Figure VI compares the output response, the average forecast error, and the adjustment frequency

for a fully disclosed (α = 1) and a fully undisclosed (α = 0) monetary shock. From Panel A and columns

3 and 4 of Table II, we observe that the output effect is more than doubled and the half-life more than

tripled when moving from disclosed to undisclosed shock. There are two forces that contribute to this

amplification. First, the frequency overshoot disappears (Panel C). The low uncertainty firms that reacted

immediately with an undisclosed shock, now have the largest forecast errors. Second, there is additional

persistence coming from the average forecast error (Panel B), which is the result of heterogeneity in

uncertainty. High uncertainty firms put a high weight ω(Ωt(z)) on signals and incorporate the monetary

shock quickly into their estimates; whereas low uncertainty firms put a low weight on signals and take a

long time to incorporate the monetary shock, increasing the persistence of the average forecast error.

Figure VI: Undisclosed vs. Disclosed Monetary Shock
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5.2 Aggregate uncertainty and nominal shocks

The second exercise explores the output response to a monetary shock when it occurs at the same time

as an aggregate uncertainty shock. The motivation for this exercise is to provide an explanation to the

empirical finding that monetary policy is less effective when economic uncertainty is higher. The strategy

is for an undisclosed monetary shock to interact with an exogenous and synchronized uncertainty shock of

size κΩ̄, where Ω̄ ≡ Ez[Ω(z)] is the average uncertainty across firms and κ ∈ {0, 1, 4}. The magnitude and

persistence of uncertainty shocks are comparable to the ones documented in Bloom (2009) and Jurado,

Ludvigson and Ng (2015).

Figure VII shows the output impulse-response, the average forecast error, and average uncertainty

for each experiment and Table III reports the statistics. Panel A shows that a monetary shock paired

with a small uncertainty shock reduces the output response by half; and if it is paired with a high

uncertainty shock, the output effects are significantly reduced. Besides the positive relationship between

adjustment frequency and uncertainty that underlies all our exercises, aggregate uncertainty shocks reduce

the persistence of forecast errors. This can be seen in Panel B, which shows that the average forecast

error Ft converges faster to zero when uncertainty is higher. Finally, in Panel C we observe that the

uncertainty shocks are short-lived, as average uncertainty converges back to its steady state level after a

few months.

Figure VII: Responses to Monetary Shock and Synchronized Uncertainty Shock
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B. Average Forecast Error
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Table III: Monetary and synchronized uncertainty shock (multiple of benchmark)

Monetary + Uncertainty Shock
Output Effect No Ω shock Small Ω shock Large Ω shock

κ = 0 κ = 1 κ = 4

Total effect (M) 6.47 4.00 1.96
Half-life (t0.5) 5.17 2.74 1.13

As multiples of benchmark case, reported in Column (1) in Table III.

31



5.3 Price age and responsiveness to monetary shocks

The third and last exercise explores the relevance of price age – a proxy for firm uncertainty – in explaining

the responsiveness of prices to the monetary shock. For this purpose, we follow the methodology used

to estimate the pass-though of exchange rates shocks into prices as in Gopinath, Itskhoki and Rigobón

(2010) and Berger and Vavra (2013).

We consider a random walk process for the log deviations of money supply from its steady state,

lnMt+1 = lnMt+σMεt+1, with εt+1 ∼ N (0, 1). We consider a volatility σM = 0.001 at weekly frequency.

The monetary shock is observable. We then generate a panel of prices for N = 10, 000 firms denoted

with i and for T = 1000 periods denoted with t. Price spells are denoted with k. For each firm, we will

record the dates of a price change {τ ik}k, the duration of each price spell {ageit,k}k, and the size of the

price change {∆pit,k}k. For each spell k, price ageit,k is computed as the difference between t and the date

of her last price change τ it,k; and the cumulative nominal shock ∆cM
i
t is measured as the money supply

deviations from steady state between price changes: ∆cM
i
t ≡ lnMt − lnM i

τi .

Our specification regresses the size of price changes into the cumulative monetary shock, the price’s

age at the moment of the price change, and an interaction term.

∆pit = β∆cM
i
t + δ0age

i
t + δ1(ageit ×∆cM

i
t ) + εit (29)

The coefficient on the cumulative monetary shock, β, measures the pass-through of the nominal shock

into the price and it is expected to be close to one as the monetary shocks are observable. Our learning

model predicts a negative coefficient δ0 for age – as older prices have smaller Ss bands–, and a negative

coefficient δ1 for the interaction term – as older prices are less responsive to the monetary shock–. Since

all our firms are equal in their stochastic processes, we do not include fixed effects. Results from different

specifications of this regression are reported in Table IV. All coefficients are significative at 1%, considering

robust standard errors.

Table IV: Price Age and Nominal Pass-Through (Benchmark calibration)

Variable (1) (2) (3)

Monetary shock (β) 1.06∗∗∗ 1.06∗∗∗ 1.325∗∗∗

Age (δ0) 0.0001∗∗∗ 0.001∗∗∗

Age × Monetary shock (δ1) −0.028∗∗∗

R2 0.29 0.29 0.35
N 1,222,676

Superscript ∗∗∗ denotes statistical significance at 1% level, considering robust standard errors.

The results are in line with our model’s predictions. The estimated passthrough coefficient β̂ is close to

one when it is the only regressor and when age is included, and it goes above one in the full specification.

The estimated coefficient for the interaction of age and passthrough δ̂1 is negative and economically

important: passthrough is 50% smaller for 24 weeks old price compared to a 4 weeks old price. Lastly,

the estimated coefficient for age δ̂0 is not economically important.
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6 Conclusions

Central banks around the world use models that produce large and persistent output responses to mon-

etary shocks at business cycle frequency. These models have two main building blocks, namely Calvo

pricing and strategic complementarities, which together generate the desired inertia in inflation. How-

ever, the evidence on such mechanisms is controversial. The model of menu costs and uncertainty cycles

developed in this paper is an alternative to those assumptions that generates persistent output responses,

while also explaining micro evidence on decreasing hazard rates and age dependent price statistics. Fur-

thermore, the model can explain recent evidence regarding the effectiveness of monetary policy during

highly uncertain times and the way in which forecast error dynamics are shaped by uncertainty.

In this paper, productivity regime changes are assumed to be independent across firms. An interesting

extension is the introduction of correlated regime changes across firms, which would capture aggregate

shocks such as tax changes. Another extension could consider regime changes coming from a source

within the firm, for instance, arising from the innovation process. In this case, the creation and life-cycle

of a product would be linked to its pricing decision and the pricing of other products in the firm. Finally,

given its tractability, our learning framework with regime changes could be used to study the impact of

government policy changes or disaster risk on financial markets, complementing the literature on learning

in financial markets (see Pastor and Veronesi (2009) for a survey).
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Baley, I., Kochen, F. and Sámano, D. (2015). Price duration and pass-through. Mimeo, Banco de
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A Appendix

Preliminaries: Infinitesimal generator and its adjoint operator

(A) Infinitesimal generator. The infinitesimal generator of (µ̂,Ω) denoted by A, applied to a continuous bounded

function φ : R◦ → R is given by

Aφ(X(t)) ≡ lim
dt↓0

E[φ(X(t+ dt))− φ(X(t))]

dt

For our problem, the generator is given by:

Aφ(µ̂t,Ωt) =
σ2
f − Ω2

t

γ
φΩ(µ̂t,Ωt) +

Ω2
t

2
φµ̂2(µ̂t,Ωt) + λ

[
φ

(
µ̂,Ωt +

σ2
u

γ

)
− φ(µ̂,Ωt)

]
(A.1)

A key property of our generator A is the lack of interaction terms between uncertainty and markup gap estimates.

This property is implied by the passive learning process in which the firm cannot change the quality of the information

flow by changing her markup.

Proof. To obtain the generator A, first we get a formula for a jump-diffusion process analogous to Itø’s formula. We

follow Theorem 1.16 of Øksendal and Sulem (2010). Let B(t) be an m-dimensional Brownian motion and {N(dt)} are

l independent Poisson random measures each with intensity λj . Then consider a multidimensional Itō-Lévy process

X(t), where each component is given by

dXi(t) = αi(t)dt+

m∑
j=1

σij(t)dBj(t) +

l∑
j=1

∫
R
γij(t)Nj(dt)

Let Xc(t) be the continuous part of X(t) (obtained by removing the jumps). Also let Y (t) = φ(t,X(t)). Then changes

in Y (t) arise from increments in Xc(t) plus the jumps coming from N :

dY (t) =
∂φ

∂t
(t,X(t))dt+

n∑
i=1

∂φ

∂xi
(t,X(t))[αi(t)dt+ σi(t)dBt] +

1

2

n∑
i,j=1

(σσ′)ij(t)
∂2φ

∂xi∂xj
(t,X(t))dt

+

l∑
k=1

∫
R

{
[φ(t,X(t−) + γk(t)]− φ(t,X(t−))

}
Nk(dt)

where γk is column k of the n× l matrix γ and σi is row i of σ. To apply this formula in our context, use

X(t) = [µ̂t, Ωt]
′, B(t) = [dẐt, 0]′, N(t) = [0 q(t)]′, α1(t) = 0, α2(t) =

σ2
f − Ω2

γ
, σ11(t) = Ωt, γ1(t) =

σ2
u

γ

and all other entries equal to zero. Finally, apply expectations and obtain (A.1) (note that E[N1(dt)] = λdt).

(A∗) Adjoint operator. The adjoint of A, denoted by A∗, is such that < Aφ, f >=< φ,A∗f >, where <,> denotes the

L2-inner product. It is given by

A∗f(µ̂,Ω) = −
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) + λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
(A.2)

Proof. To obtain the adjoint operator, let us apply the definition.

< Aφ, f >=

∫ ∞
σf

∫
|µ̂|≤µ̄(Ω)

{
σ2
f − Ω2

γ
φΩ(µ̂,Ω) +

Ω2

2
φµ̂2(µ̂,Ω) + λ

[
φ

(
µ̂,Ω +

σ2
u

γ

)
− φ(µ̂,Ω)

]}
f(µ̂,Ω)dµ̂dΩ

Let us simplify each integral and isolate φ(µ̂,Ω) from other terms. We highlight it in bold to make it easier to track.
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(i) The first integral is computed by integration by parts with respect to Ω. We also assume that limx→∞ φ(µ̂, x) = 0.∫ ∫
φΩ(µ̂,Ω)

σ2
f − Ω2

γ
f(µ̂,Ω)dµ̂dΩ =

∫
φ(µ̂, x)

σ2
f − x2

γ
f(µ̂, x)

∣∣∣∞
σf

dµ̂︸ ︷︷ ︸
=0

−
∫ ∫

∂

∂Ω

(
σ2
f − Ω2

γ
f(µ̂,Ω)

)
φ(µ̂,Ω)dµ̂dΩ

=

∫ ∫ (
−
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω)

)
φ(µ̂,Ω)dµ̂dΩ

(ii) The second integral is computed integrating by parts twice with respect to µ̂:∫ ∫
Ω2

2
φµ̂2(µ̂,Ω)f(µ̂,Ω)dµ̂dΩ =

∫
Ω2

2

[
f(x,Ω)φµ̂(x,Ω)− fµ̂(x,Ω)φ(x,Ω)

∣∣∣µ̄(Ω)

−µ̄(Ω)
+

∫
fµ̂2(µ̂,Ω)φ(µ̂,Ω)dµ̂

]
dΩ

=

∫ ∫
Ω2

2
fµ̂2(µ̂,Ω)φ(µ̂,Ω)dµ̂dΩ

where the first term is equal to zero since f(µ̄(Ω),Ω) = f(−µ̄(Ω),Ω) = 0 and φ(µ̄(Ω),Ω) = φ(−µ̄(Ω),Ω) = 0.

(iii) For the third integral, we split the Ω domain in two disjoint sets and use a change of variable to rewrite it as:∫ ∫
λ

[
φ

(
µ̂,Ω +

σ2
u

γ

)
− φ(µ̂,Ω)

]
f(µ̂,Ω)dµ̂dΩ =

∫ ∞
σf+

σ2
u
γ

∫
|µ̂|≤µ̄(Ω)

λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
φ (µ̂,Ω) dµ̂dΩ

−
∫ σf+

σ2
u
γ

σf

∫
|µ̂|≤µ̄(Ω)

f(µ̂,Ω)φ(µ̂,Ω)dµ̂dΩ

=

∫ ∫
λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]
φ(µ̂,Ω)dµ̂dΩ

For the second equality, notice that f ’s second argument only takes positive values. We define f to be equal to

zero outside its domain, and therefore f
(
µ̂,Ω− σ2

u
γ

)
φ(µ̂,Ω) = 0 for all Ω ∈ [σf , σf +

σ2
u
γ

]. Therefore, we can

add the missing terms and integrate over the complete domain.

Putting all the integrals together we recover the adjoint operator A∗:∫ ∫ {
−
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) + λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f (µ̂,Ω)

]}
︸ ︷︷ ︸

A∗

φ(µ̂,Ω)dµ̂dΩ = < φ,A∗f >
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Proposition 1 is proved in a more general setup, where the state has a non-zero drift.

Proposition 1 (Filtering Equations, Including Drift). Let the following processes define the state and the signal

(state) dµt = Fµtdt+ σfdWt + σuutdqt (A.3)

(observation) dst = Gµtdt+ γdZt

(initial conditions for state) µ0 ∼ N (a, b)

(initial conditions for observations) s0 = 0

where Wt, Zt ∼Wiener Process, qt ∼ Poisson(λ), ut ∼ N (0, 1)

Let the information set (with continuous sampling) be It = σ {sh, qh : h ∈ [0, t]}. Then the posterior distribution of the state

is Normal, i.e. µt|It ∼ N (µ̂t,Σt), where the posterior mean µ̂t ≡ E[µt|It] and posterior variance Σt ≡ E[(µt − µ̂t)2|It]
satisfy the following stochastic processes:

dµ̂t =
(
F − G2Σt

γ2

)
µ̂tdt+ GΣt

γ2 dst, µ̂0 = a (A.4)

dΣt =
(

2FΣt + σ2
f −

G2Σ2
t

γ2

)
dt+ σ2

udqt, Σ0 = b

Furthermore, the first filtering equation can be written as

dµ̂t = Fµ̂tdt+
G2Σt
γ

dẐt

where Ẑt is the innovation process given by dẐt = 1
γ

(dst − µ̂tdt) = 1
γ

(µt − µ̂t)dt + dZt and it is one-dimensional Wiener

process under the probability distribution of the firm independent of dqt.

Finally, using the definition of uncertainty Ωt ≡ γΣt, and substituting F = 0 and G = 1, we obtain the filtering equations

used in the text:

dµ̂t = ΩtdẐt, µ̂0 = a (A.5)

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dqt, Ω0 =

b

γ
(A.6)

Proof. The strategy of the proof has three steps, each established in a Lemma.

(I) We show that the solution Mt ≡ [µt, st] to the system of stochastic differential equations in (A.3), conditional on the

history of Poisson shocks Qt = σ{qr|r ≤ t}, follows a Gaussian process.

(II) µt|It is Normal and can be obtained as the limit of a discrete sampling of observations;

(III) The recursive estimation formulas obtained with discrete sampling converge to (A.4).12

Now we elaborate on the three steps.

Lemma 1. Let Mt ≡ [µt, st] be the solution to (A.3) and Qt = σ{qr|r ≤ t}. Then Mt|Qt is Normal.

Proof. Fix a realization ω and let Nt(ω) be the quantity of jumps between 0 and t, which is a number known at t. Applying

Picard iterative process to (A.3) and considering the initial conditions, we obtain the following sequences

µk+1
t = µ0 + F

∫ t

0

µkτdτ + σfWt + σf

Nt(ω)∑
i=1

ui

sk+1
t = G

∫ t

0

µkτdτ + γZt

Assume that µ0
t is Normal. As an induction hypothesis, assume that Mk

r |Qt ≡ [µkr , s
k
r |Qt] is Normal for all r ≤ t. Note that

(µ0,Wr, Zr) are Normal random variables independent of Qt; the term
∑Nr(ω)
i=1 ui|Qt is Normal since it is a fixed sum of

Nr(ω) Normal random variables; and finally, the term
∫ r

0
µkτdτ is a Riemann integral of Normal variables by the induction

12In the Online Appendix, we derive additional details and a formal convergence proof.
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hypothesis. Given that the linear combination of Normals is Normal, then Mk+1
r |Qt ≡ [µk+1

r , sk+1
r |Qt] is Normal as well for

r ≤ t. Therefore, for each r ≤ t, we have a sequence of Normal random variables {Mk
r |Qt}∞k=0.

To show Normality of Mt|Qt, notice that Mk
r |Qt = Mk

r |Qr and Mk
r |Qr converges in L2 to Mr (wee chapter 5 of Øksendal

(2007)). Since the limit in L2 of Normal variables is Normal, Mt is Normal. Therefore the solution to the system of stochastic

differential equations, conditional to the history of Poisson shocks, i.e. Mt|Qt, is a Gaussian process.

Lemma 2. The conditional distribution of the state µt|It is Normal, µt|It ∼ N
(
E [µt|It] ,E

[
(µt − E [µt|It])2 |It

])
, and the

conditional mean and variance can be obtained as the limit of a discrete sampling of observations.

Proof. Let ∆ ≡ 1
2n

and define an increasing sequence of σ-algebras {Int }∞n=0 using the dyadic set as follows:

Int = σ {sr, qh : r ∈ {0,∆, 2∆, 3∆, . . . } , r ≤ t, h ∈ [0, t]}

Let Mn
t ≡ µt|Int be the estimate at time t produced with discrete sampling. The following properties are true.

(i) For each n, Mn
t is a Normal random variable. By the previous Lemma (µt, sr1 , sr2 , . . . , srn)|Qt is Normal; by properties

of Normals, Mn
t is also Normal.

(ii) For each n, Mn
t has finite variance. This is a direct implication of Normality.

(iii) Let I∞t ≡ σ{U∞n=1I
n
t } be the σ-algebra generated by the union of the discrete sampling information sets. For each t,

Mn
t converges to some limit M∞t ≡ µt|I∞t as n → ∞. Since Int is a increasing sequence of σ-algebras, by the Law of

Iterated Expectations Mn
t is a martingale with finite variance, therefore it converges in L2. Given that the limit of

Normal random variables is Normal, the limit M∞t is a Normal random variable as well.

Mn
t →L2 M∞t ∼ N (E [µt|I∞t ] ,E

[
(µt − E [µt|It])2 |I∞t

]
Since signals st are continuous (in particular left-continuous) and the dyadic set is dense in the interval [0, t], the information

set obtained as the limit of the discrete sampling is equal to the information set obtained with continuous sampling:

I∞t = σ {sh, qh : h ∈ [0, t]}. Therefore, the estimate obtained with the limit of discrete sampling converges (in L2) to the

estimate with continuos sampling (see Davis (1977) for more details in this topic).

M∞t →L2 µt|It ∼ N
(
E [µt|It] ,E

[
(µt − E [µt|It])2 |It

])

Lemma 3. Let ∆ ≡ 1
2n

and define In,∗t as the information set before measurement (used to construct predicted estimates)

In,∗t = σ {sr−1, qh |r ∈ {0,∆, 2∆, 3∆, . . . }, r ≤ t, h ∈ [0, t]}

and define µ̂nt = E[µt|In,∗t ] and Σnt = E[(µt − µ̂t)2 |In,∗t ]. Then the laws of motion of {µ̂nt ,Σnt } converge weakly to the

solution of (A.4), namely the laws of motion for {µ̂t,Σt}, where µ̂t ≡ E[µt|It] and Σt ≡ E[(µt − µ̂t)2 |It].

Proof. Before we derive the processes for the estimate and its conditional variance, an explanation of why we use the

information set In,∗t instead of Int is due. The reason is convenience, as the first information set produces independent

recursive formulas for the predicted estimate µt|σ{U∞i=1I
n,∗
t } and it is easier to show its convergence. Let us show that the

union of information sets are equal, i.e. σ{U∞i=1I
n
t } = σ{U∞i=1I

n,∗
t }, and thus the way we construct the limit is innocuous.

Trivially, we have that σ{U∞i=1I
n,∗
t } ⊂ σ{U∞i=1I

n
t }. For the reverse to be true σ{U∞i=1I

n
t } ⊂ σ{U∞i=1I

n,∗
t }, it is sufficient to

show that signals s are continuous, since left-continuous filtrations of continuous process are always continuous. To show

that signals are continuous, notice that they can be written as st =
∫ t

0
µsds + γZt, which is an integral of a finite set of

discontinuities plus a Wiener process, and thus they are continuous.
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Now let us derive the laws of motion. Considering an interval ∆, then the processes in (A.3) can be written as

µt = µt−∆ + F

∫ t

t−∆

µτdτ +
√

∆σ2
f εt + σuut(qt − qt−∆), µ−∆ ∼ N (µ̂∆,Σ∆)

st = st−∆ +G

∫ t

t−∆

µτdτ +
√

∆γ2ηt, s0 = 0

(qt − qt−∆) ∼i.i.d


1 with probability 1− e−λ∆ − o(∆2)

0 with probability e−λ∆ − o(∆2)

> 1 with probability o(∆2)

εt, ηt, ut ∼i.i.d N (0, 1)

First order approximations of the integral yield
∫ t
t−∆

µτdτ = µt−∆∆ + ξt = µt∆ + ξ̃t, where ξt and ξ̃t are Normal random

variables conditional on Qt, with E[ξt] = o(∆2), E[ξ2
t ] = o(∆2), E[ξ̃t] = o(∆2) and E[ξ̃t] = o(∆2). Substituting these

approximations above, we can express the laws of motion for µ, s as follows:

µt = (1 + F∆)µt−∆ +
√

∆σ2
f εt + σuut(qt − qt−∆) + o(∆2)

st = st−∆ +G∆µt +
√

∆γ2ηt + o(∆2)

Since the model is Gaussian, we use the Kalman Filter to estimate the conditional mean µ̂nt = E[µt|In,∗t ] and variance

Σnt = E[(µt − µ̂t)2 |In,∗t ]. The recursive formulas are

µ̂nt+∆ = (1 + ∆F ) µ̂nt +Kn
t (st − st−∆ −∆G(1 + ∆F )µ̂nt ) + o(∆2)

Σnt+∆ = (1 + ∆F )2 Σnt γ
2

Σnt G
2∆ + γ2

+ σ2
f∆ + (qt+∆ − qt)σ2

u + o(∆2)

Kn
t = (1 + ∆F )

Σnt G

Σnt G
2∆ + γ2

Notice that since ut has mean zero, the known arrival of a Poisson shock does not affect the estimate. However, it does

affect the variance by adding a shock of size σ2
u. Rearranging and doing some algebra, the previous system can be written as

µ̂nt+∆ − µ̂nt =
(
F −GϕI(∆)

)
µ̂t∆ + ϕI(∆) (st − st−∆) + o(∆2), ϕI(∆) ≡ Σnt G

Σ2
tG

2∆ + γ2

Σnt+∆ − Σnt =
(
ϕII(∆) + σ2

f

)
∆ + (qt+∆ − qt)σ2

u + o(∆2), ϕII(∆) ≡
[
γ2(2F + F 2∆)−G2Σnt

Σnt G
2∆ + γ2

]
Σnt

Taking the limit as n → ∞ (or ∆ → 0), we see that ϕI(∆) → ΣtG
γ2 and ϕII(∆) → 2FΣt − G2Σ2

t
γ2 , which yield exactly

the same laws of motion that can be obtained with the continuous time Kalman-Bucy filter. Therefore, the laws of motion

obtained with discrete sampling are locally consistent with the continuous time filtering equations in (A.4) (see Online

Appendix for more details, where we follow closely Theorem 1.1, Chapter 10 of Kushner and Dupuis (2001). ).

To conclude the proof, use the structure of the signal to rewrite the law of motion in innovation representation as

dµ̂t = Fµ̂tdt+
GΣt
γ

(
G

γ
(µt − µ̂t) dt+ dZt

)
= Fµ̂tdt+

GΣt
γ

dẐt

where dẐt ≡ G
γ

(µt − µ̂t) dt + dZt is the innovation process. We now show dẐt is a Wiener process. Applying the law of

iterated expectations:

E[(µt − µ̂t)|σ{µ̂s : s ≤ t}] = E [E [ (µt − µ̂t)| It] |σ{µ̂s : s ≤ t}] = E[(µ̂t − µ̂t)|σ{µ̂s : s ≤ t}] = 0

Since E[(µt− µ̂t)|σ{µ̂s : s ≤ t}] = 0 ∀t and dZt is a Wiener process, we apply corollary 8.4.5 of Øksendal (2007) and conclude

that dẐt is a Weiner process as well.
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Proposition 2 (Stopping time problem). Let (µ̂0,Ω0) be the firm’s current state immediately after the last markup

adjustment. Also let θ̄ = θ
B

be the normalized menu cost. Then the optimal stopping time and reset markup gap (τ, µ′) solve

the following problem:

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0

−e−rsµ̂2
sds+ e−rτ

(
− θ̄ + max

µ′
V (µ′,Ωτ )

)∣∣∣I0

]
(9)

subject to the filtering equations in Proposition 1.

Proof. Let {τi}∞i=1 be the series of dates where the firm adjusts her markup gap and {µi}∞i=1 the series of reset markup gaps.

Given an initial condition µ0 and a law of motion for the markup gaps, the sequential problem of the firm is expressed as

follows:

max
{µτi ,τi}

∞
i=1

E

[
∞∑
i=0

e−rτi+1

(
−θ̄ −

∫ τi+1

τi

e−r(t−τi+1)µ2
tdt

)]
(A.7)

Using the definition of variance, we can write the condition expectation of the markup gap at time t as:

E[µ2
t |It] = E[µt|It]2 + V[µt|It] = µ̂2

t + V[µt|It] = µ̂2
t + (σ2

f + λσ2
u)t = µ̂2

t + Ω∗
2
t

where in the last equality we use the definition of fundamental uncertainty Ω∗. Use the Law of Iterated Expectations in

(A.7) to take expectation given the information set at time t. Use the decomposition above to write the problem in terms

of estimates:

E

[
∞∑
i=0

e−rτi+1

(
−θ̄ −

∫ τi+1

τi

e−r(t−τi+1)E
[
µ2
t

∣∣∣It] dt)]

E

[
∞∑
i=0

e−rτi+1

(
−θ̄ −

∫ τi+1

τi

e−r(t−τi+1)(µ̂2
t + Ω∗

2
t)dt

)]

E

[
∞∑
i=0

e−rτi+1

(
−θ̄ −

∫ τi+1

τi

e−r(t−τi+1)µ̂2
tdt

)]
− Ω∗

2E

[
∞∑
i=0

∫ τi+1

τi

te−rtdt

]
︸ ︷︷ ︸

sunk cost

The last term in the previous expression is a constant number, and it arises from the fact that the firm will never learn the

true realization of the markup gap. It is considered a sunk cost in the firm’s problem since she cannot take any action to

alter its value; therefore, we can ignore it from her problem. To compute its value, note that the term inside the expectation

is equal to:

∞∑
i=0

∫ τi+1

τi

te−rtdt =

∞∑
i=0

[
e−rτi(1 + rτi)− e−rτi+1(1 + rτi+1)

r2

]
=
e−rτ0(1 + rτ0)

r2

where the sum is telescopic and all terms except the first cancel out. Therefore, the sunk cost term becomes:

−Ω∗
2E
[
e−rτ0(1 + rτ0)

r2

]
<∞

Using the previous results, the sequential problem in (A.7) can be written in terms of estimates instead of the true realizations:

max
{µτi ,τi}

∞
i=1

E

[
∞∑
i=0

e−rτi+1

(
−θ̄ −

∫ τi+1

τi

e−r(t−τi+1)µ̂2
tdt

)]

Given the stationarity of the problem and the stochastic processes, we apply the Principle of Optimality to the sequential

problem and express it as a sequence of stopping time problems where the state is given by (µ̂t,Ωt):

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0

−e−rtµ̂2
tdt+ e−rτ [−θ̄ + max

µ′
V (µ′,Ωτ )]

]
subject to the filtering equations.
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Proposition 3 (HJB Equation). Let V (µ̂,Ω) be the value of the firm and Vx denote the derivative of V with respect to

x. For all states inside the inaction region R, V satisfies:

1. the Hamilton-Jacobi-Bellman (HJB) equation:

rV (µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
VΩ(µ̂,Ω) +

Ω2

2
Vµ̂2(µ̂,Ω) + λ

[
V

(
µ̂,Ω +

σ2
u

γ

)
− V (µ̂,Ω)

]

2. the value matching condition that sets equal the value of adjusting and not adjusting at the border:

V (0,Ω)− θ̄ = V (µ̄(Ω),Ω)

3. two smooth pasting conditions, one for each state: Vµ̂(µ̄(Ω),Ω) = 0, VΩ(µ̄(Ω),Ω) = VΩ(0,Ω.

Proof. Start from the recursive representation of the value function as a stopping time problem derived in Proposition 2.

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0

−e−rtµ̂2
tdt+ e−rτ [−θ̄ + max

µ′
V (µ′,Ωτ )]

]
dµ̂t = ΩtdẐt

dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dqt

To obtain the HJB, consider the value function inside the continuation region. Then for a small interval dt we can write:

V (µ̂t,Ωt) = −µ̂2
tdt+ e−rdtE[V (µ̂t+dt,Ωt+dt)]

(1− e−rdt)V (µ̂t,Ωt) = −µ̂2
tdt+ e−rdtE[V (µ̂t+dt,Ωt+dt)− V (µ̂t,Ωt)]

rV (µ̂t,Ωt)dt = −µ̂2
tdt+ (1− rdt)E[V (µ̂t+dt,Ωt+dt)− V (µ̂t,Ωt)]

rV (µ̂t,Ωt) = −µ̂2
t + lim

dt↓0
(1− rdt)E[V (µ̂t+dt,Ωt+dt)− V (µ̂t,Ωt)]

dt

rV (µ̂t,Ωt) = −µ̂2
t +AV (µ̂t,Ωt)

where in the second line we have subtracted e−rdtV (µ̂t,Ωt) from both sides, in the third line we have approximated e−rdt

with 1− rdt, in the fourth line we divide by dt and then take the limit dt→ 0, and finally in the fifth line we recognized the

definition of the generator. Substituting the generator A from (A.1) we obtain the HJB equation:

rV (µ̂,Ω) = −µ̂2 +

(
σ2
f − Ω2

γ

)
VΩ(µ̂,Ω) +

1

2
Ω2Vµ̂2(µ̂,Ω) + λ

[
V

(
µ̂,Ω +

σ2
u

γ

)
− V (µ̂,Ω)

]
The value matching condition that sets equal the value of adjusting and not adjusting at the border:

V (µ̄(Ω),Ω) = V (0,Ω)− θ̄

To derive the smooth pasting conditions, we follow Øksendal and Sulem (2010) and get two two smooth pasting conditions,

one for each state, by taking the derivative on both sides of the value matching:

Vµ̂(µ̄(Ω),Ω) = 0, VΩ(µ̄(Ω),Ω) = VΩ(0,Ω)
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Proposition 4 (Inaction region). For r and θ̄ be small, the border of the inaction region µ̄(Ω) is approximated by

µ̄(Ω) =

(
6θ̄Ω2

1 + Lµ̄(Ω)

)1/4

, with Lµ̄(Ω) =
Ω2 − Ω∗2

γ

3

2

(
6θ̄Ω∗2

)1/4
(10)

The elasticity of µ̄(Ω) with respect to Ω is equal to

E(Ω) ≡ 1

2
− 3

γ

(
6θ̄Ω∗2

)1/4
Ω2 (11)

Lastly, the reset markup gap is equal to µ̂′ = 0.

Proof. The plan for the proof is as follows. First we use the optimality conditions to derive a differential equation that

characterizes the border of the inaction region as a function of uncertainty. Second, we approximate the solution of the

inaction region. For this proof and the rest to follow we use the following notation for partial derivatives:

Vµ̂ ≡
∂V

∂µ̂
, Vµ̂2 ≡ ∂2V

∂µ̂2
, VΩ ≡

∂V

∂Ω
, Vµ̂2,Ω ≡

∂3V

∂Ω∂µ̂2

1. Optimality conditions: The optimality conditions of the problem are given by:

rV (µ̂,Ω) = −µ̂2 + λ

[
V

(
µ̂,Ω +

σ2
u

γ

)
− V (µ̂,Ω)

]
+
σ2
f − Ω2

γ
VΩ(µ̂,Ω) +

Ω2

2
Vµ̂2(µ̂,Ω) (A.8)

V (µ̄ (Ω) ,Ω) = V (0,Ω)− θ̄ (A.9)

Vµ(µ̄ (Ω) ,Ω) = 0 (A.10)

VΩ(µ̄ (Ω) ,Ω) = VΩ(0,Ω) (A.11)

2. Taylor approximation of V and value matching. For a given level of uncertainty Ω, we do a 4th order Taylor

expansion on the first argument of V around zero:

V (µ̂,Ω) = V (0,Ω) +
Vµ̂2(0,Ω)

2!
µ̂2 +

Vµ̂4(0,Ω)

4!
µ̂4

Odd terms do not appear due to the symmetry of the value function around 0. Evaluating at the border and combining

with the value matching condition (A.9) we obtain:

− θ̄ = Vµ̂2(0,Ω)
µ̄(Ω)2

2
+ Vµ̂4(0,Ω)

µ̄(Ω)4

24
(A.12)

3. Taylor approximation of Vµ and smooth pasting. For a given level of uncertainty Ω, we do a 3rd order Taylor

expansion on the first argument of Vµ around zero:

Vµ(µ̂,Ω) = Vµ̂2(0,Ω)µ̂+
Vµ̂4(0,Ω)

3!
µ̂3

Again the odd derivatives are zero. Evaluate at the border, multiply both sides by µ̄(Ω)
2

and combine with the smooth

pasting condition (A.10) to obtain:

0 = Vµ̂2(0,Ω)
µ̄(Ω)2

2
+ Vµ̂4(0,Ω)

µ̄(Ω)4

12
(A.13)

4. Inaction border (as a function of V ): Combine the relationships between the 2nd and 4th derivatives of V in

(A.12) and (A.13):

θ̄ = µ̄(Ω)4 Vµ̂4(0,Ω)

24
= −µ̄(Ω)2 Vµ̂2(0,Ω)

4
(A.14)

From the previous equality, we obtain an expression for the border of inaction:

µ̄(Ω) =

(
24θ̄

Vµ̂4(0,Ω)

)1/4

(A.15)
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5. Characterize Vµ̂4(0,Ω): Taking second derivatives of the HBJ in (A.8) with respect to µ̂:

rVµ̂2(µ̂,Ω) = −2 + λ

(
Vµ̂2

(
µ,Ω +

σ2
u

γ

)
− Vµ̂2(µ̂,Ω)

)
+
σ2
f − Ω2

γ
Vµ̂2Ω(µ̂,Ω) +

Ω2

2
Vµ̂4(µ̂,Ω)

= −2− Ω2 − Ω∗2

γ
Vµ̂2Ω(µ̂,Ω) +

Ω2

2
Vµ̂4(µ̂,Ω)

where we have used a Taylor approximation of the second argument of Vµ̂2

(
µ̂,Ω +

σ2
u
γ

)
around Ω:

Vµ̂2

(
µ̂,Ω +

σ2
u

γ

)
= Vµ̂2 (µ̂,Ω) + Vµ̂2Ω (µ̂,Ω)

σ2
u

γ

and substituted the definition of fundamental uncertainty Ω∗.

Taking the limit r → 0, evaluating at µ̂ = 0, and rearranging:

Vµ̂4(0,Ω) =
4

Ω2

(
1 +

Ω2 − Ω∗2

γ

Vµ̂2Ω(0,Ω)

2

)
=

4

Ω2

(
1 + Lµ̄(Ω)

)
where we define the learning component as

Lµ̄(Ω) ≡ Ω2 − Ω∗2

γ

Vµ̂2Ω(0,Ω)

2
(A.16)

Therefore, the border of the inaction region in (A.15) is given by:

µ̄(Ω) =

(
6θ̄Ω2

1 + Lµ̄(Ω)

)1/4

(A.17)

6. Characterize Vµ̂2Ω(0,Ω). Recall from (A.14) that

−θ̄ = µ̄(Ω)2 Vµ̂2(0,Ω)

4

Take derivative with respect to Ω on both sides and then multiply by µ̄(Ω)
2

:

0 = µ̄(Ω)2 Vµ̂2Ω(0,Ω)

4
+ µ̄(Ω)

Vµ̂2(0,Ω)

2
µ̄Ω(Ω)

= µ̄(Ω)3 Vµ̂2Ω(0,Ω)

8
+ µ̄(Ω)2 Vµ̂2(0,Ω)

4
µ̄Ω(Ω)

= µ̄(Ω)3 Vµ̂2Ω(0,Ω)

8
− θ̄µ̄Ω(Ω)

In the last line we have substituted again (A.15). Rearranging, we obtain the expression

Vµ̂2Ω(0,Ω) =
8θ̄

µ̄(Ω)3
µ̄Ω(Ω)

Substituting back into (A.16), we obtain that the border of the inaction region is given by:

µ̄(Ω) =

(
6θ̄Ω2

1 + Lµ̄(Ω)

)1/4

, µ̄(Ω∗) =
(
6θ̄Ω∗2

)1/4
Lµ̄(Ω) =

Ω2 − Ω∗2

γ
µ̄Ω(Ω)

4θ

µ̄(Ω)3
, Lµ̄(Ω∗) = 0

This is an Abel differential equation of the first kind13. Unfortunately, no closed-form solution is available. Therefore,

we proceed to approximate it around fundamental uncertainty Ω∗.

13An Abel differential equation of the first kind takes the form y′ = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x), and in our case

y ≡ µ̄, x ≡ Ω, f3(x) ≡ − γ
4θ̄

1
Ω2−Ω∗2 , f2(x) ≡ − 3γ

2
Ω2

Ω2−Ω∗2 , and f1(x) = f0 ≡ 0
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7. Approximation of policy around Ω∗. Using the condition µ̄(Ω∗) =
(
6θ̄Ω∗2

)1/4
, we have that

dµ̄(Ω∗)

dΩ
4µ̄(Ω∗)

(
µ̄(Ω∗)2 + Ω∗

2θ̄

γ

)
= 6θ̄Ω∗2 (A.18)

Given that
(
µ̄(Ω∗)2 + 2Ω∗

γ
θ̄
)
≈ µ̄(Ω∗)2, we have that

dµ̄(Ω∗)

dΩ
=

3

2

(
6θ̄Ω∗2

)1/4
(A.19)

Therefore

µ̄(Ω) =

(
6θ̄Ω2

1 + Lµ̄(Ω)

)1/4

Lµ̄(Ω) =
Ω2 − Ω∗2

γ

3

2

(
6θ̄Ω∗2

)1/4
(A.20)

Define Γ(Ω) ≡
V
µ̂2,Ω

(0,Ω)

2
and Λ(Ω) ≡ Γ(Ω) Ω2−Ω∗2

γ
, which are characterized next.

8. Characterize Γ(Ω). The cross-derivative Γ(Ω) ≡
V
µ̂2,Ω

(0,Ω)

2
= ∂

∂Ω

V
µ̂2 (0,Ω)

2
is given by:

∂

∂Ω

Vµ̂2(0,Ω)

2
=

∂

∂Ω

[
−
Vµ̂4(0,Ω)µ̄(Ω)2

12

]

=
∂

∂Ω

−
(

1 +
V
µ̂2,Ω

(0,Ω)

2
Ω2−Ω∗2

γ

)
3Ω2

Ωθ̄2
(

1 +
Vµ̂2,Ω(0,Ω)

2

Ω2 − Ω∗2

γ

)−1/2


=

∂

∂Ω

[
−12θ̄2

Ω

(
1 +

Vµ̂2,Ω(0,Ω)

2

Ω2 − Ω∗2

γ

)1/2
]

Using the definition of Γ(Ω) write the previous equation recursively as:

Γ(Ω) =
∂

∂Ω

[
−12θ̄2

Ω

(
1 + Γ(Ω)

Ω2 − Ω∗2

γ

)1/2
]

(A.21)

9. Characterize Λ(Ω): Note that: Λ(Ω∗) = 0, Λ′(Ω∗) = 2 Ω∗

γ
Γ(Ω∗), and using (A.21) Γ(Ω∗) = 12θ̄2

Ω∗2 . A first order

Taylor approximation of Λ(Ω) around Ω∗ yields:

Λ(Ω) = Λ(Ω∗) + Λ′(Ω∗)(Ω− Ω∗) = 2Ω∗Γ(Ω∗)
Ω− Ω∗

γ
=

24θ̄2

γ

[
Ω

Ω∗
− 1

]
10. Finally, substitute Λ(Ω) into the cutoff value to obtain:

µ̄(Ω) ≈ (6θ̄Ω2)1/4
(

1 +
24θ̄2

γ

[
Ω

Ω∗
− 1

])−1/4

(A.22)

11. Compute elasticity Now we compute the elasticity of the cutoff with respect to uncertainty, which is given by

Eφ,Ω ≡ ∂ ln µ̄(Ω)
∂ ln Ω

. Applying logs to (A.22) we obtain:

ln µ̄(Ω) =
1

2
ln Ω− 1

4
ln
(

1 +
3

2γ

(
6θ̄Ω∗2

)1/4 [
Ω2 − Ω∗2

] )
Since ln(1 + x) ≈ x for x small, taking the derivative we get the result:

Eφ,Ω ≡
1

2
− 3

γ

(
6θ̄Ω∗2

)1/4
(A.23)

12. Smooth pasting condition for Ω is implied by (A.15):

First, let us compute the derivative of the inaction region with respect to uncertainty:

µ̄Ω(Ω) =
d

dΩ

(
4θ̄

−Vµ̂2(0,Ω)

)1/2

=
µ̄(Ω)

2

1

Vµ̂2(0,Ω)
Vµ̂2Ω(0,Ω)
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Recall from (A.14) that

−θ̄ = µ̄(Ω)2 Vµ̂2(0,Ω)

4

Take derivative with respect to Ω on both sides, then substitute the expression for elasticity above, and rearrange:

0 =
d

dΩ
θ̄ =

d

dΩ

(
Vµ̂2(0,Ω)µ̄(Ω)2

4

)

= Vµ̂2Ω(0,Ω)
µ̄(Ω)2

4
+
µ̄(Ω)

2
µ̄Ω(Ω)Vµ̂2(0,Ω)

= Vµ̂2Ω(0,Ω)
µ̄(Ω)2

4
+
µ̄(Ω)

2

[
µ̄(Ω)

2

1

Vµ̂2(0,Ω)
Vµ̂2(0,Ω)Vµ̂2Ω(0,Ω)

]
= Vµ̂2Ω(0,Ω)

µ̄(Ω)2

4
+
µ̄(Ω)2

4
Vµ̂2Ω(0,Ω)

= Vµ̂2Ω(0,Ω)

(
µ̄(Ω)2

2!
+
µ̄(Ω)4

4!

)
=

d

dΩ

(
Vµ̂2(µ̂,Ω)− Vµ̂2(0,Ω)

)∣∣∣∣
µ̂=µ̄(Ω)

= VΩ(µ̄ (Ω) ,Ω)− VΩ(0,Ω)
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Proposition 5 (Conditional Expected Time). Let r and θ̄ be small. The expected time for the next price change

conditional on the state, denoted by E[τ
∣∣µ̂,Ω], is approximated as:

E[τ
∣∣µ̂,Ω] =

µ̄(Ω)2 − µ̂2

Ω2
(1 + Lτ (Ω)) where Lτ (Ω) ≡

(
Ω

Ω∗
− 1

)
(1− E(Ω∗))

(
4γ(6θ̄)1/2

γ + 2(6θ̄)1/2

)
(12)

If the elasticity of the inaction region with respect to uncertainty is lower than unity and signal noise is large, then the

expected time between price changes (i.e. E[τ
∣∣0,Ω]) is a decreasing and convex function of uncertainty.

Proof. Let T (µ̂,Ω) denote the expected time for the next price change given the current state, i.e. E[τ
∣∣µ̂,Ω]. The proof

consists of four steps. First, we establish the HJB equation for T (µ̂,Ω) and its corresponding border condition. We apply

a first order approximation to the HJB equation on the second state to compute the value with uncertainty jump. Second,

we do a second order Taylor approximation of T (µ̂,Ω) around (0,Ω), and substitute both the HJB and the border condition

into this approximation. This delivers an expression for the expected time that depends on two multiplicative terms: (i) the

distance between the markup gap estimate and the border of the inaction region, normalized by uncertainty; and (ii) a term

that measures the effect of uncertainty changes into the expected time. Third, we approximate term (ii) around fundamental

uncertainty Ω∗. Lastly, we show that if E < 1, then time for between price adjustments T (0,Ω) is decreasing in uncertainty.

1. HJB equation, jump approximation, and border condition. Consider a small interval dt. Then T (µ̂,Ω) can

be written recursively as:

T (µ̂t,Ωt) = 1dt+ E [T (µ̂t+dt,Ωt+dt)]

Passing T to the right hand side, dividing by dt and taking the limit dt→ 0:

0 = 1 + lim
dt↓0

E [T (µ̂t+dt,Ωt+dt)− T (µ̂t,Ωt)]

dt

Recognizing the definition of the generator, we obtain the following HJB equation:

0 = 1 +AT (µ̂,Ω)

Substituting the infinitesimal generator A from (A.1) we obtain:

0 = 1 + λ

[
T

(
µ̂,Ω +

σ2
u

γ

)
− T (µ̂,Ω)

]
+

(σ2
f − Ω2)

γ
TΩ(µ̂,Ω) +

Ω2

2
Tµ̂2(µ̂,Ω)

We approximate the uncertainty jump with a linear approximation to the second state:

T

(
µ̂,Ω +

σ2
u

γ

)
≈ T (µ̂,Ω) +

σ2
u

γ
TΩ(µ̂,Ω)

Substituting the approximation and using the definition of fundamental uncertainty Ω∗, we obtain:

0 = 1 +
Ω∗2 − Ω2

γ
TΩ(µ̂,Ω) +

Ω2

2
Tµ̂2(µ̂,Ω) (A.24)

The border condition states that at the border of action, the expected time is equal to zero:

T (µ̄(Ω),Ω) = 0 (A.25)

2. Approximation of T (µ̂,Ω). A second order Taylor approximation of T (µ̂,Ω) in the first state around µ̂ = 0 yields:

T (µ̂,Ω) = T (0,Ω) +
Tµ̂2(0,Ω)

2
µ̂2 (A.26)

• To compute T (0,Ω), we evaluate (A.26) at (µ̄(Ω),Ω) and use the border condition in (A.25):

T (0,Ω) = −
Tµ̂2(0,Ω)

2
µ̄(Ω)2
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• To compute Tµ̂2(0,Ω)/2, we evaluate the HJB in (A.24) at (0,Ω) and solve for it:

Tµ̂2(0,Ω)

2
= − 1

Ω2

[
1 + TΩ(0,Ω)

Ω∗2 − Ω2

γ

]
Substitute both terms into the Taylor approximation and rearrange:

T (µ̂,Ω) =
µ̄(Ω)2 − µ̂2

Ω2
(1 + Lτ (Ω)) (A.27)

where Lτ (Ω) ≡ TΩ(0,Ω) Ω∗2−Ω2

γ
measures the effect of uncertainty changes on the expected time and Lτ (Ω∗) = 0.

3. Approximation around Ω∗. A first order Taylor approximation of Lτ (Ω) around Ω∗ yields:

Lτ (Ω) = Lτ (Ω∗) + LτΩ(Ω∗)(Ω− Ω∗) = −2Ω∗

γ
TΩ(0,Ω∗)(Ω− Ω∗)

To characterize TΩ(0,Ω∗), take the partial derivative of (A.27) with respect to Ω and evaluate it at (0,Ω∗):

TΩ(Ω∗, 0) = −2µ̄(Ω)2

Ω∗3
(1− E(Ω∗))

(
1 +

2

γ

µ̄(Ω∗)2

Ω∗

)−1

= −2(1− E(Ω∗))

Ω∗2

( 2γ(6θ̄)1/2

γ + 2(6θ̄)1/2

)
where E(Ω∗) is the elasticity of the inaction region at Ω∗. Substitute back into Lτ (Ω) and arrive to

Lτ (Ω) = 2

(
Ω

Ω∗
− 1

)
(1− E(Ω∗))

(
2γ(6θ̄)1/2

γ + 2(6θ̄)1/2

)
Finally, we arrive at the result

T (µ̂,Ω) =
µ̄(Ω)2 − µ̂2

Ω2

[
1 +A

(
Ω

Ω∗
− 1

)]
where A ≡ 2(1−E(Ω∗))

(
2γ(6θ̄)1/2

γ+2(6θ̄)1/2

)
is a positive constant since the elasticity E(Ω∗) is lower than unity. Furthermore,

A is close to zero for small menu costs and large signal noise, as in our calibration.

4. Decreasing and convex in uncertainty. The expected time between price changes is equal to T (0,Ω):

T (0,Ω) =
µ̄(Ω)2

Ω2

[
1 +A

(
Ω

Ω∗
− 1

)]
Its first derivative with respect to uncertainty is given by:

∂T (0,Ω)

∂Ω
=

µ̄(Ω)2

Ω3

(
2(E(Ω)− 1)

[
1 +A

(
Ω

Ω∗
− 1

)]
+A

Ω

Ω∗

)
If A is close to zero (as it is the case with small menu costs and large signal noise) we obtain:

∂T (0,Ω)

∂Ω
= −2

µ̄(Ω)2

Ω3
(1− E(Ω)) < 0

which is negative because the elasticity E(Ω) is lower than unity. Finally, the second derivative

∂2T (0,Ω)

∂Ω2
= 4

µ̄(Ω)2

Ω4

[(
3

2
− E(Ω)

)
(1− E(Ω)) +

Ω

2
E ′(Ω))

]
> 0

which is positive since the elasticity is lower than unity and increasing in uncertainty. Therefore, the expected time

is decreasing and convex in uncertainty.
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Proposition 6 (Uncertainty and Frequency). The following relationship between uncertainty dispersion, average price

duration, and price change dispersion holds:

E[Ω2] =
V[∆p]

E[τ ]
(13)

Proof. See Proposition 1 in Álvarez, Le Bihan and Lippi (2014) for a derivation of this result for the case of a fixed uncertainty

level Ωt = σ. Here we extend the proof for the case of stochastic uncertainty, but most of the steps are analogous to their

proof.

The process for markup estimation is given by dµ̂t = ΩtdBt. Using Itō’s Lemma we have that

d(µ̂2
t ) = Ω2

tdt+ 2µtΩtdBt

Therefore d(µ̂2
t )− Ω2

tdt is a martingale. Using the Optional Sampling Theorem we have that

E
[
µ̂2
τ −

∫ τ

0

Ω2
sds
∣∣∣(µ,Ω) = (0, Ω̃)

]
= 0 (A.28)

since the stochastic process inside the µ̂2
t −

∫ t
0

Ω2
sds is a martingale. Therefore we can write (A.28) as:

E
[
µ̂2
τ

∣∣∣(µ0,Ω0) = (0, Ω̃)
]

= E
[∫ τ

0

Ω2
sds
∣∣∣(µ0,Ω0) = (0, Ω̃)

]
Now we will integrate both sides using the renewal density r(Ω) (See proposition 8). This is the distribution of uncertainty

of adjusting firms. The LHS is equal to the expectation of the square of price changes or the variance of price changes since

the mean is zero ∫ ∞
0

E
[
µ̂2
τ

∣∣∣(µ0,Ω0) = (0, Ω̃)
]
dS(Ω̃) = E[(∆p)2] = V[(∆p)] (A.29)

On the RHS, note that
∫∞

0
E[
∫ τ

0
Ω2
sds|(µ0,Ω0) = (0, Ω̃)]r(Ω̃)dΩ̃ is the expected local time L for the payoff function Ω2

s.

Following Stokey (2009), we express the local time in state domain instead of the time domain:∫ ∞
0

E
[∫ τ

0

Ω2
sds
∣∣∣(µ0,Ω0) = (0, Ω̃)

]
r(Ω̃)dΩ̃ =

∫ ∞
0

(∫
µ̂,Ω

L(0, Ω̃; µ̂,Ω)Ω2dµ̂dΩ

)
r(Ω̃)dΩ̃

=

∫
µ̂,Ω

(∫ ∞
0

L(0, Ω̃; µ̂,Ω)r(Ω̃)dΩ̃

)
Ω2dµ̂dΩ

= E[τ ]

∫
µ̂,Ω

(∫ ∞
0

L(0, Ω̃; µ̂,Ω)

E[τ ]
r(Ω̃)dΩ̃

)
Ω2dµ̂dΩ

= E[τ ]

∫
µ̂,Ω

Ω2f(µ̂,Ω)dµ̂dΩ

= E[τ ]E[Ω2] (A.30)

where f is the joint density. Putting together (A.29) and (A.30) we get the result:

V[∆p]

E[τ ]
= E[Ω2]
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Proposition 7 (Conditional Hazard Rate). Without loss of generality, assume the last price change occurred at t = 0 and

let Ω0 > σf be the level of uncertainty. There are no infrequent shocks (λ = 0) and a constant inaction region µ̄(Ωτ ) = µ̄0.

Denote derivatives with respect to τ with a prime (h′τ ≡ ∂h/∂τ).

1. The estimate’s unconditional variance, denoted by Vτ (Ω0), is given by:

Vτ (Ω0) = σ2
fτ + LVτ (Ω0) (14)

where LVτ (Ω0) ≡ γ(Ω0 − Ωτ ), with LV0 (Ω0) = 0, limτ→∞ LVτ (Ω0) = γ(Ω0 − σf ), and equal to:

LVτ (Ω0) = γΩ0 − γσf

 Ω0
σf

+ tanh
(
σf
γ
τ
)

1 + Ω0
σf

tanh
(
σf
γ
τ
)


2. Vτ (Ω0) is increasing and concave in duration τ : V ′τ (Ω0) > 0 and V ′′τ (Ω0) < 0. Furthermore, the following cross-

derivatives with initial uncertainty are positive:

∂Vτ (Ω0)

∂Ω0
> 0,

∂V ′τ (Ω0)

∂Ω0
> 0,

∂|V ′′τ (Ω0)|
∂Ω0

> 0

3. The hazard of adjusting the price at date τ , conditional on Ω0, is characterized by:

hτ (Ω0) =
π2

8

V ′τ (Ω0)

µ̄2
0︸ ︷︷ ︸

decreasing in τ

Ψ

(
Vτ (Ω0)

µ̄2
0

)
︸ ︷︷ ︸
increasing in τ

(15)

where Ψ(x) ≥ 0, Ψ(0) = 0, Ψ′(x) > 0, limx→∞Ψ(x) = 1, first convex then concave, and it is given by:

Ψ(x) =

∑∞
j=0 αj exp (−βjx)∑∞
j=0

1
αj

exp (−βjx)
, αj ≡ (−1)j(2j + 1), βj ≡

π2

8
(2j + 1)2

4. Exists a τ∗(Ω0) such that the slope of the hazard rate is negative for τ > τ∗(Ω0), and τ∗(Ω0) is decreasing in Ω0.

Proof. Assume λ = 0, initial conditions (µ̂0,Ω) = (0,Ω0), and a constant inaction region at µ̄0 ≡ µ̄(Ω) = µ̄(Ω0). Without

loss of generality, we assume the last price change occurred at t = 0. First we derive expressions for two objects that will

be part of the estimate’s unconditional variance: the state’s unconditional variance E0[µ2
τ ] and the estimate’s conditional

variance Στ . All moments are conditional on the initial conditions, but we do not make it explicit for simplicity.

1. State’s unconditional variance Since the state evolves as dµτ = σfdWτ , we have that µτ = µ0 + σfWτ , with

W0 = 0 and µ0 ∼ N (0,Σ0). Therefore, the state’s unconditional variance at time τ (after the last price change at

t = 0) is given by:

E0[µ2
τ ] = E0[(µ0 + σfWτ )2] = E0[µ2

0 + 2µ0σfE0[(Wτ −W0)] + σ2
fE0[(Wτ −W0)2] = E0[µ2

0] + σ2
fτ = Σ0 + σ2

fτ (A.31)

where we have use the properties of the Wiener process.

2. Estimate’s conditional variance. The conditional forecast variance evolves as dΣτ =
(
σ2
f − Σ2

γ2

)
dτ . Assuming an

initial condition Σ0 such that Σ0 > γσf , the general solution to the differential equation is given by

Στ = σfγ tanh

[
σfγc+

σf
γ
τ

]

Evaluation at the initial condition, we get Σ0 = σfγ tanh [γσfc] and therefore c = 1
σfγ

tanh−1
(

Σ0
σfγ

)
. Back into (2)

and using properties of the hyperbolic tangent,

Στ = σfγ tanh

[
tanh−1

(
Σ0

σfγ

)
+
σf
γ
τ

]
= σfγ

 Σ0
σfγ

+ tanh
(
σf
γ
τ
)

1 + Σ0
σfγ

tanh
(
σf
γ
τ
)
 (A.32)

Since tanh(0) = 0 and tanh(+∞) = 1 we confirm that Στ = Σ0 at τ = 0 and limτ→∞ Στ = σfγ.
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3. Estimate’s unconditional variance. Recall that the estimate follows dµ̂τ = ΩτdẐτ . Since λ = 0, uncertainty

evolves deterministically as dΩτ = 1
γ

(σf − Ωτ ). Given the initial condition µ̂0 = 0, the solution to the forecast

equation is µ̂τ =
∫ τ

0
ΩsdẐs. By definition of Itō’s integral

∫ τ
0

ΩsdẐs = lim(τi+1−τi)→0

∑
τi

Ωτi(Ẑτi+1 − Ẑτi). The

increments’ Normality and the fact that Ωτi is deterministic imply that for each τi, Ωτi(Ẑτi+1 − Ẑti) is Normally

distributed as well. Since the limit of Normal variables is Normal, we have that markup gap’s estimate at date τ ,

given information set I0, is also Normally distributed. Let Vτ ≡ E0[µ̂2
τ ] denote the estimate’s unconditional variance,

then µ̂τ |I0 ∼ N (0,Vτ ). To characterize Vτ , start from its definition and add and subtract µt:

Vτ ≡ E0[µ̂2
τ ] = E0[µ2

τ ] + E0[(µ̂τ − µt)2]− 2E0[(µ̂τ − µτ )µτ ] = E0[µ2
τ ]− Στ (A.33)

where we that E0[(µ̂τ −µτ )µτ ] = E0[(µ̂τ −µτ )2] = Σt, implied by the orthogonality of the innovation and the forecast:

µτ − µ̂τ ⊥ µ̂τ . Substituting expressions (A.31) and (A.32) into (A.33) and using Ωτ = γΣτ , we get:

Vτ = σ2
fτ + γ (Ω0 − Ωτ ) = σ2

fτ + γ

Ω0 − σf

 Ω0
σf

+ tanh
(
σf
γ
τ
)

1 + Ω0
σf

tanh
(
σf
γ
τ
)
 = σ2

fτ + LVτ (A.34)

where we define the learning component as:

LVτ ≡ γ

Ω0 − σf

 Ω0
σf

+ tanh
(
σf
γ
τ
)

1 + Ω0
σf

tanh
(
σf
γ
τ
)


The hyperbolic tangent function is defined as tanh(x) ≡ ex−e−x
ex+e−x , and has the following properties: tanh(0) = 0,

limx→±∞ tanh(x) = ±1, tanh′(x) = 1− tanh2(x).
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Useful derivatives The first and second derivatives of the learning component with respect to τ are given by:

∂LVτ
∂τ

= σ2
f

(
Ω0

σf
− 1

) 1− tanh2
(
σf
γ
τ
)

[
1 + Ω0

σf
tanh

(
σf
γ
τ
)]2 > 0

∂2LVτ
∂τ2

= −2σf
γ

tanh

(
σf
γ
τ

)1 +
Ω0

σf

1− tanh2
(
σf
γ
τ
)

1 + Ω0
σf

tanh
(
σf
γ
τ
)
 ∂LVτ

∂τ
< 0

The derivative of the learning component with respect to uncertainty is:

∂LVτ
∂Ω0

= γ −
1− tanh2

(
σf
γ
τ
)

[
1 + Ω0

σf
tanh

(
σf
γ
τ
)]2 , positive for large γ, large Ω0, and large τ

Furthermore, the following relationship and signs hold:

∂LVτ
∂τ

= σ2
f

(
Ω0

σf
− 1

)(
γ − ∂LVτ

∂Ω0

)
,

∂2LVτ
∂τ∂Ω0

> 0,

∣∣∣∣ ∂3LVτ
∂τ2∂Ω0

∣∣∣∣ > 0
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4. Stopping time distribution. Let F (σ2
fτ, µ̄0) be the cumulative distribution of stopping times obtained from a

problem with perfect information which considers a Brownian motion with unconditional variance of σ2
fτ , initial

condition 0, and a symmetric inaction region [−µ̄0, µ̄0]. Following Kolkiewicz (2002) and Álvarez, Lippi and Paciello

(2011)’s Online Appendix, the density of stopping times is given by:

f(τ) =
π

2
x′(τ)

∞∑
j=0

αj exp (−βjx(τ)) , where x(τ) ≡
σ2
fτ

µ̄2
0

, αj ≡ (2j + 1)(−1)j , βj ≡ (2j + 1)2 π
2

8

The process x(τ) is equal to the ratio of volatility and the width of the inaction region. Since we assumed con-

stant inaction regions, x only changes with volatility. In our case, the estimate’s unconditional variance is given

by Vτ (Ω0). Using a change of variable, the distribution of stopping times becomes F (Vτ (Ω0), µ̄0) with density

f(τ |Ω0) = f(Vτ (Ω0), µ̄0). We can apply the previous formula using x ≡ Vτ (Ω0)

µ̄2
0

and the same sequences of αj and βj .

5. Hazard rate. Given the stopping time distribution, the conditional hazard rate is computed using its definition:

hτ (Ω0) ≡ f(τ |Ω0)∫∞
τ
f(s|Ω)ds

=
f(Vτ (Ω0), µ̄0)∫∞

τ
f(Vs(Ω0), µ̄0)ds

=
V ′τ (Ω0)

∑∞
j=0 αj exp

(
−βj Vτ (Ω0)

µ̄2
0

)
∫∞
τ
V ′s(Ω0)

∑∞
j=0 αj exp

(
−βj Vs(Ω0)

µ̄2
0

)
ds

(A.35)

Let uj(s) ≡ αj exp
(
−βj Vs(Ω0)

µ̄2
0

)
, then duj(s) ≡ −αjβjµ̄2

0
V ′s(Ω0) exp

(
−βj Vs(Ω0)

µ̄2
0

)
ds. Exchanging the summation with

the integral, the denominator is equal to:

∞∑
j=0

−µ̄2
0

βj

∫ ∞
τ

duj(s)ds =

∞∑
j=0

−µ̄2
0

βj
uj(s)

∣∣∣∞
τ

=

∞∑
j=0

µ̄2
0

βj
uj(τ) = µ̄2

0

∞∑
j=0

αj
βj

exp

(
−βj
Vs(Ω0)

µ̄2
0

)
=

8µ̄2
0

π2

∞∑
j=0

1

αj
exp

(
−βj
Vs(Ω0)

µ̄2
0

)

where in the last equality we use
αj
βj

= (2j+1)(−1)j

(2j+1)2 π
2

8

= 8
π2 (2j + 1)−1(−1)j = 8

π2
1
αj

. Substituting back into (A.35):

hτ (Ω0) =
π2

8µ̄2
0

Ψ

(
Vτ (Ω0)

µ̄2
0

)
V ′τ (Ω0) (A.36)

where we define Ψ(x) ≡
∑∞
j=0 αj exp(−βjx)∑∞
j=0

1
αj

exp(−βjx)
as in Álvarez, Lippi and Paciello (2011)’s Online Appendix. The function

Ψ(x) is increasing, first convex then concave, with Ψ(0) = 0 and limx→∞Ψ(x) = 1.

6. Hazard rate’s slope. Taking derivative of the hazard rate with respect to duration τ yields:

h′τ ∝
∂2LVτ
∂τ2︸ ︷︷ ︸
<0

Ψ

(
Vτ
µ̄2

0

)
︸ ︷︷ ︸
→1

+

σ2
f +

∂LVτ
∂τ

µ̄2
0

2

︸ ︷︷ ︸
>0

Ψ′
(
Vτ
µ̄2

0

)
︸ ︷︷ ︸
→0

For small τ , Ψ’s derivative is very large and the second positive term dominates; as τ increases, the function Ψ and

its derivative Ψ′ converge to 1 and 0 respectively, and therefore the first term – which is negative – dominates. By

the Intermediate Value Theorem, there exists a τ∗(Ω0) such that the slope is zero.

Taking the cross-derivative with respect to uncertainty and using the equivalence between derivatives stated above:

∂h′τ
∂Ω0

∝ Ψ

(
Vτ
µ̄2

0

)
︸ ︷︷ ︸
→1

∂3LVτ
∂τ2∂Ω0︸ ︷︷ ︸
<0

+ Ψ
′′
(
Vτ
µ̄2

0

)
︸ ︷︷ ︸
→0−

σ2
f +

∂LVτ
∂τ

µ̄2
0


2

∂LVτ
∂Ω0

1

µ̄2
0︸ ︷︷ ︸

>0

+ Ψ
′
(
Vτ
µ̄2

0

)
︸ ︷︷ ︸
→0

1

µ̄2
0

 ∂2LVτ
∂τ2

∂LVτ
∂Ω0︸ ︷︷ ︸

<0

+
2σ2
f

µ̄2
0

∂2LVτ
∂τ∂Ω0

(
1 +

(
Ω0

σf
− 1

)(
γ −

∂LVτ
∂Ω0

))
︸ ︷︷ ︸

>0


Since Ψ′ and Ψ′′ converge to 0 as τ increases, the first term dominates. Then the slope of the hazard rate becomes

more negative as initial uncertainty increases. This means that the cutoff duration τ∗(Ω0) is decreasing with Ω0.
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Proposition 8 (Renewal distribution). Let f(µ̂,Ω) be the joint density of markup gaps and uncertainty in the population

of firms. Let r(Ω) be denote the density of uncertainty conditional on adjusting, or renewal distribution. Assume the inaction

region is increasing in uncertainty (i.e. µ̄′(Ω) > 0). Then we have the following results:

• For each (µ̂,Ω), we can write the joint density as f(µ̂,Ω) = h(Ω)g(µ̂,Ω), where g(µ̂,Ω) is the density of markup gap

estimates conditional on uncertainty and h(Ω) is the marginal density of uncertainty.

• The ratio between the renewal and marginal distributions of uncertainty is approximated by

r(Ω)

h(Ω)
∝ |gµ̂(µ̄(Ω),Ω)|Ω2 (16)

where g(µ,Ω) solves the following differential equation

Ω2 − Ω∗2

γ
gΩ(µ̂,Ω) +

Ω2

2
gµ̂2(µ̂,Ω) = 0

with border conditions:

g(µ̄(Ω),Ω) = 0

∫ µ̄(Ω)

−µ̄(Ω)

g(µ,Ω)dµ = 1

• If Ω = Ω∗, then the ratio is proportional to the inverse of the expected time between price adjustments. Then if the

inaction region’s elasticity to uncertainty is lower than unity, the ratio is an increasing function of uncertainty:

r(Ω∗)

h(Ω∗)
∝ Ω∗2

µ̄(Ω∗)2
=

1

E[τ |(0,Ω∗)] (17)

Proof. The strategy for the proof is as follows. We derive the Kolmogorov Forward Equation (KFE) of the joint ergodic

distribution using the adjoint operator. Then we find the zeros of the KFE to characterize the ergodic distribution.

1. Joint distribution. Let f(µ̂,Ω) : [−∞,∞]×[σf ,∞]→ R be the ergodic density of markup estimates and uncertainty.

Define the region:

R◦ ≡ {(µ̂,Ω) ∈ [−∞,∞]× [σf ,∞] such that |µ̂| < µ̄ (Ω) & µ̂ 6= 0} (A.37)

where µ̄ (Ω) is the border of the inaction region. Thus R◦ is equal to the continuation region except µ̂ 6= 0. Then the

function f has the following properties:

a) f is continuous

b) f is zero outside the continuation region. Given Ω, f(x,Ω) = 0 ∀x /∈ (−µ̄(Ω), µ̄(Ω)). In particular, it is zero at

the borders of the inaction region:

f(−µ̄(Ω),Ω) = 0 = f(µ̄(Ω),Ω), ∀Ω

c) f is a density: ∀(µ̂,Ω) ∈ R◦, we have that f(µ̂,Ω) ≥ 0 and
∫

Ω≥σf

∫
|µ̂|≤µ̄(Ω)

f(µ̂,Ω)dµ̂dΩ = 1

d) For any state (µ̂,Ω) ∈ R◦, f is a zero of the Kolmogorov Forward Equation (KFE):

A∗f(µ̂,Ω) = 0

Substituting the adjoint operator A∗ obtained in (A.2) we write the KFE as:

−
σ2
f − Ω2

γ
fΩ(µ̂,Ω) +

2Ω

γ
f(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) + λ

[
f

(
µ̂,Ω− σ2

u

γ

)
− f(µ̂,Ω)

]
= 0 (A.38)

We compute f
(
µ̂,Ω− σ2

u
γ

)
with a first order Taylor approximation: f

(
µ̂,Ω− σ2

u
γ

)
≈ f(µ̂,Ω) − σ2

u
γ
fΩ(µ̂,Ω).

Substituting this approximation, collecting terms, and using the definition of fundamental uncertainty Ω∗, the

KFE becomes:
2Ω

γ
f(µ̂,Ω) +

Ω2 − Ω∗2

γ
fΩ(µ̂,Ω) +

Ω2

2
fµ̂2(µ̂,Ω) = 0 (A.39)
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with two border conditions:

∀Ω f(|µ̄(Ω)|,Ω) = 0 ;

∫
Ω≥σf

∫
|µ̂|≤µ̄(Ω)

f(µ̂,Ω)dµ̂dΩ = 1 (A.40)

2. Marginal density of uncertainty Let h(Ω) : [σf ,∞] → R be the uncertainty’s ergodic density; it solves the

following KFE

A∗h =
2Ω

γ
h(Ω) +

Ω2 − Ω∗2

γ
hΩ(Ω) = 0

and a border condition limΩ→∞ h(Ω) = 0.

3. Factorization of f . For each (µ̂,Ω), guess that we can write f as a product of the ergodic density of uncertainty h

and a function g as follows:

f(µ̂,Ω) = h(Ω)g(µ̂,Ω) (A.41)

Substituting (A.41) into (A.39) and rearranging

0 =
2Ω

γ
h(Ω)g(µ̂,Ω) +

Ω2 − Ω∗2

γ
[hΩ(Ω)g(µ̂,Ω) + h(Ω)gΩ(µ̂,Ω)] +

Ω2

2
h(Ω)gµ̂2(µ̂,Ω)

= g(µ̂,Ω)

[
2Ω

γ
h(Ω) +

Ω2 − Ω∗2

γ
hΩ(Ω)

]
︸ ︷︷ ︸

KFE for h

+h(Ω)

[
Ω2 − Ω∗2

γ
gΩ(µ̂,Ω) +

Ω2

2
h(Ω)gµ̂2(µ̂,Ω)

]

=
Ω2 − Ω∗2

γ
gΩ(µ̂,Ω) +

Ω2

2
gµ̂2(µ̂,Ω)

where in the second line we regroup terms and recognize the KFE for h, in the third line we set the KFE of h equal to

zero because it is uncertainty’s ergodic density and divide by h as it is assumed to be positive. To obtain the border

conditions for g, substitute the decomposition (A.41) into (A.40):

∀Ω h(Ω)g(|µ̄(Ω)|,Ω) = 0 ;

∫
Ω≥σf

∫
|µ̂|≤µ̄(Ω)

h(Ω)g(µ̂,Ω)dµ̂dΩ = 1 (A.42)

Since h > 0, we can eliminate it in the first condition and get a border condition for g:

g(|µ̄(Ω)|,Ω) = 0

Then assume that for each Ω, g integrates to one. Use this assumption into the second condition:∫
Ω≥σf

h(Ω)

[∫
|µ̂|≤µ̄(Ω)

g(µ̂,Ω)dµ̂

]
dΩ =

∫
Ω≥σf

h(Ω)dΩ = 1

Therefore, by the factorization method, the ergodic distribution h is also the marginal density h(Ω) =
∫
|µ̂|≤µ̄(Ω)

f(µ̂,Ω)dµ̂

and g is the density of markup gap estimates conditional on uncertainty g(µ̂,Ω) = f(µ̂|Ω) = f(µ̂,Ω)
h(Ω)

.

4. Renewal density The renewal density is the distribution of firm uncertainty conditional on a price adjustment. For

each unit of time, the fraction of firms that adjusts at given uncertainty level is given by three terms (the terms

multiplied by 2 take into account the symmetry of the distribution around a zero markup gap):

r(Ω) ∝ 2f(µ̄(Ω),Ω)
σ2
f − Ω2

γ
+ λ

∫ µ̄(Ω−σ2
u/γ)

−µ̄(Ω−σ2
u/γ)

f

(
µ,Ω− σ2

u

γ

)
I (µ̂ > µ̄ (Ω)) dµdΩ + 2|fµ̂(µ̄(Ω),Ω)|Ω

2

2
(A.43)

The first term counts price changes of firms at the border of the inaction region that suffer a deterministic decrease

in uncertainty; by the border condition f(µ̄(Ω),Ω) = 0, this term is equal to zero. The second term counts price

changes due to jumps in uncertainty. These firms had an uncertainty level of Ω− σ2
u
γ

right before the jump; under the

assumption that µ̄(Ω) is increasing in uncertainty, this term is also equal to zero since all markup estimates that were

inside the initial inaction region remain inside the new inaction region. The last term counts price changes of firms at

the border of the inaction region that suffer either a positive or negative change in the markup gap estimate (hence

the absolute value). This term is the only one different from zero. Substituting the factorization of f , we obtain a
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simplified expression for the renewal distribution in terms of g:

r(Ω)

h(Ω)
∝ |gµ̂(µ̄(Ω),Ω)|Ω2 (A.44)

5. Characterize g when Ω = Ω∗. If Ω = Ω∗, then the conditional distribution of markup gaps g can be further

characterized:

gµ2(µ̂,Ω∗) = 0; g(µ̄(Ω∗),Ω∗) = 0;

∫ µ̄(Ω∗)

−µ̄(Ω∗)
g(µ̂,Ω∗)dµ̂ = 1 g ∈ C (A.45)

To solve this equation, integrate twice with respect to µ̂:

g(µ̂,Ω∗) = |C|µ̂+ |D|

To determine the constants |C| and |D|, we use the border conditions:

0 = g(µ̄(Ω∗),Ω∗) = |C|µ̄(Ω∗) + |D|

1 =

∫ µ̄(Ω∗)

−µ̄(Ω∗)
g(µ̂,Ω∗)dµ =

∫ µ̄(Ω∗)

−µ̄(Ω∗)
(|C|µ̂+ |D|)dµ =

(
|C|
2
µ̂2 + |D|µ̂

) ∣∣∣µ̄(Ω∗)

−µ̄(Ω∗)
= 2µ̄(Ω∗)|D|

From the second equality, we get that

D =
1

2µ̄(Ω∗)

Then substituting in the first equality:

|C| = − |D|
µ̄(Ω∗)

= − 1

2µ̄(Ω∗)2

Lastly, since gµ2(µ̂,Ω∗) ≥ 0, we obtain :

g(µ, Ω̂) =


1

2µ̄(Ω∗)

(
1 + µ̂

µ̄(Ω∗)

)
if µ̂ ∈ [−µ̄(Ω̂), 0]

1
2µ̄(Ω∗)

(
1− µ̂

µ̄(Ω∗)

)
if µ̂ ∈ (0, µ̄(Ω̂)]

(A.46)

This is a triangular distribution in the µ̂ domain for each Ω (see next figure).

6. Ratio when Ω = Ω∗. By the previous result, the ratio of the renewal to marginal distributions at Ω∗ is equal to:

r(Ω∗)

h(Ω∗)
= |gµ̂(µ̄(Ω∗),Ω∗)|Ω∗2 =

Ω∗2

2µ̄(Ω∗)2
(A.47)

Since the inaction region’s elasticity to uncertainty is lower than unity, this ratio is increasing in uncertainty.
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