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Abstract

In the context of school choice, we experimentally study how behavior and outcomes are
affected when, instead of submitting rankings in the student proposing or receiving deferred
acceptance (DA) mechanism, participants make decisions dynamically, going through the
steps of the underlying algorithms. Our main results show that, contrary to theory, (a) in
the dynamic student proposing DA mechanism, participants propose to schools respecting
the order of their true preferences slightly more often than in its static version while, (b)
in the dynamic student receiving DA mechanism, participants react to proposals by always
respecting the order and not accepting schools in the tail of their true preferences more often
than in the corresponding static version. As a consequence, for most problems we test, no
significant differences exist between the two versions of the student proposing DA mechanisms
in what stability and average payoffs are concerned, but the dynamic version of the student
receiving DA mechanism delivers a clear improvement over its static counterpart in both
dimensions. In fact, in the aggregate, the dynamic school proposing DA mechanism is the
best performing mechanism.
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1 Introduction

Motivation

In school choice programs, parents can express preferences regarding the assignment of their chil-
dren. Abdulkadiroglu and Sénmez [1| show that prominent assignment procedures in the US had
serious shortcomings (e.g., inefficiencies, manipulability) and employed matching theory to find
a remedy. Under the student proposing deferred acceptance (DA) mechanism suggested in Ab-
dulkadiroglu and Sénmez [1], students submit an ordered list of schools to a central authority
that then employs a matching algorithm to determine the final allocation of students to schools.
This mechanism induces therefore a “static” game in which the students’ strategies (or rankings,
i.e., ordered lists) may or may not correspond to their true preferences. Their seminal paper has
triggered a considerable theoretical and a growing experimental literature.

Much of the experimental literature has concentrated on showing that under the static student
proposing deferred acceptance (DA) mechanism subjects do not realize that it is in their best inter-
est to report the ranking that coincides with their true preferences (truth—telling). The reported
truth—telling rates are between 47% and 75% in Chen and Kesten [4], 64% in Chen and Sénmez
[6], between 44% and 65% in Klijn, Pais, and Vorsatz [19], and between 67% and 82% in Pais
and Pintér [22|. Similarly, it is well known for the static school proposing DA mechanism, that
is, when schools are making proposals and students are receiving offers, that in general students
have incentives to misrepresent their true preferences. Featherstone and Mayefsky [10] however
find in a laboratory experiment that subjects reveal their true preferences too often (manipulate
not often enough).

The objective of our paper is to analyze by means of a laboratory experiment whether behavior
is affected and better outcomes are obtained if, instead of submitting rankings to a central
authority, subjects make decisions dynamically. Dynamic implementations of matching algorithms
are used in college admissions in Brazil (Aygiin and Bo [2]) and in Inner Mongolia (Chen and
Kesten [5]), and in school choice in the Wake County Public School System (Dur et al. [8]). In the
dynamic mechanisms we test in this paper, subjects go through the steps of an algorithm, either
the student proposing or the school proposing DA. In the former case, subjects are prompted
to send a new application upon receiving a rejection and, in the latter case, to immediately
react to each offer received. This step by step approach may help subjects in an experiment to
understand better how the underlying algorithm works. More importantly, by receiving feedback
about their current status (direct experience), subjects have the possibility to use the infor-
mation received, adapt behavior, and revise their strategies while the assignment process proceeds.

Theory

We first provide a theoretical analysis of the extensive—form games induced by the dynamic student
proposing and the dynamic school proposing DA mechanisms when each school has exactly one
seat. These results help to understand the incentives in the dynamic games and serve as a null



hypothesis for our experiment (when compared with the incentives in the static implementations).

For the student proposing DA mechanism we find that every Nash equilibrium outcome of
the static game is also a Nash equilibrium outcome of the dynamic game. Since the set of stable
matchings is a subset of the set of Nash equilibrium outcomes of the static game (see, e.g., Haeringer
and Klijn [15]), every stable matching can also be sustained as an equilibrium outcome of the
dynamic game. However, while proposers have incentives to submit lists that coincide with their
true preferences in the static game, we show by means of an example that the strategy of “going
down the list with respect to the true preferences,” i.e., always applying to the best school that
a student has not applied to yet, is not a weakly dominant strategy in the dynamic game, even
though it remains a best reply when the other players also act according to a list (not necessarily
corresponding to their true preferences).

We show for the school proposing DA mechanism that the set of Nash equilibrium outcomes
is equal to the set of stable matchings. Then, since the set of Nash equilibrium outcomes in the
static game is equal to set of stable matchings whenever each school has exactly one seat (Gale and
Sotomayor [13], Roth [24]), we can conclude that the sets of Nash equilibrium outcomes coincide
for both implementations in our setting. Moreover, it is well known that the static mechanism
is manipulable and that the set of “truncation” strategies, whereby the student removes a tail
of least preferred schools from her true preference list, is strategically exhaustive in the sense
that for each strategy a student may use, the induced match can be replicated or improved upon
by some truncation of her true preferences (see, e.g., Jaramillo et al. [18] and Roth and Vande
Vate [25]). Nevertheless, in the dynamic game we can construct strategy profiles so that for all
truncations of the true preferences, going down the list with respect to the truncation is not
a best reply. So, a wider range of behavior can again be supported for the dynamic implementation.

Laboratory experiments

Our laboratory experiment is designed to analyze the effects of a dynamic implementation of the
DA mechanism. We consider four problems with four students and four schools with one seat each
that differ in the degree of heterogeneity of preferences of students and priorities of schools. In
consistence with the theoretical analysis, subjects assume the role of students, schools are passive
and simply follow their priorities. In order to account for the possibility of learning, each problem is
played six times throughout an experimental session. Our treatment conditions correspond to the
different matching mechanisms. The two benchmark treatments are the static student proposing
DA mechanism (treatment CI) and the static school proposing DA mechanism (treatment CS).
These treatments are compared with their dynamic counterparts, the dynamic student proposing
DA mechanism (treatment DI) and the dynamic school proposing DA mechanism (treatment DS).

The experimental results show that subjects are often not truthful as proposers, but they respect
the true order of their preferences slightly more often in treatment DI than in treatment CI. This
difference is however not strong enough to find a clear overall improvement of the dynamic over the
static implementation in terms of stability and efficiency (average payoffs). On the other hand, for
the school proposing DA mechanism it turns out that subjects react to proposals by respecting their



true order and by not accepting schools in the tail of their true preferences significantly more often
in the dynamic than in the static implementation. As a consequence, stable matchings are reached
with a significantly higher frequency and average payoffs are substantially higher in treatment DS
than in treatment CS. In fact, the dynamic school proposing DA mechanism outperforms even the
two student proposing DA mechanisms in these two dimensions.

A couple of experimental papers look into dynamic implementations of deferred acceptance.
Haruvy and Unver [17] study repeated interactions between the two sides of the market. They
do so under two information levels on others’ preferences and, contrary to our experiment,
allow proposers to repeat offers. Haruvy and Unver [17] find that acting according to the true
preferences is a good predictor of proposers’ behavior, particularly under low information, and
that the proposer optimal stable matching is reached in most cases. Our paper is more closely
related to a recent study by Echenique, Wilson, and Yariv [9], who report an array of laboratory
experiments where subjects go through the steps of the DA algorithm. One important difference
with respect to our study is that in Echenique, Wilson, and Yariv [9] both sides of the market
are active, whereas we take schools to be passive. Consequently, in our setting subjects do not
have to form beliefs about the behavior of the other side of the market, a simplification that
could help in making better decisions. This is true in what receivers’ behavior is concerned, as
receivers fail to truncate in Echenique, Wilson, and Yariv [9], while often reverting to this strategy
in our treatment DS. In fact, and as mentioned above, receivers act according to a truncation
significantly more in the dynamic school proposing DA than in its static version, a comparison
that is absent in Echenique, Wilson, and Yariv [9]. Moreover, in Echenique, Wilson, and Yariv
[9] a stable matching (mainly the receiver optimal one) is reached in about 48% of the cases. We
obtain higher frequencies (between 68% in treatment CI and 90% in treatment DS), which may
be explained by the fact that our experiment is simpler as markets are smaller.

Organization

We proceed as follows. In Section 2, we introduce the experimental design and procedures. Section
3 contains the theoretical analysis. In Section 4, we present and discuss our experimental results.
In Section 5, we conclude. The detailed experimental instructions are relegated to the Appendix.

2 Laboratory experiment

Our experiment is designed to analyze the differences between a static and a dynamic implementa-
tion of the DA mechanism in school choice problems. The students i1, is, 73 and i4 seek to obtain
a seat at the schools s1, so, s3, and s4. Each school offers exactly one seat. The preferences of the
students and the priorities of the schools in the four problems subjects face during the experiment
are depicted in Table 1. The information in Table 1 is common knowledge.

We selected the four problems in such a way that a wide variety of situations is covered. In
Problem 1, each student is ranked last in her most preferred, third in her second most preferred,



Problem 1 Preferences Priorities

il ig ig i4 S1 So S3 Sa

Best match S1 So  S3 S84 io 93  Ig4 11

Second best match sy  s3  s4 s i3 g 11 o

Third best match S3 S4 S1 S92 i4 il ig i3

Fourth best match S4 S1 S92 S3 il ig i3 i4
Problem 2 Preferences Priorities

il ig ig i4 S1 SS9 S3 Sa

Best match So S3 S4 S io 19 Ig4 14

Second best match s3  s4 81 So i1 i3 13 11

Third best match S4 S1 S9 S3 i3 i4 i1 ig

Fourth best match S1 S92 S3 Sa i4 il ig i3
Problem 3 Preferences Priorities

il ig ig i4 S1 So S3 Sa

Best match So So  S4 S4 io 94 Ig4 19

Second best match s; s3 s3 s i3 13 11 11

Third best match S3 S4 S1 S92 i4 il ig i3

Fourth best match Sa S1 S92 S3 il ig i3 i4
Problem 4 Preferences Priorities

il ig ig i4 S1 SS9 S3 Sa

Best match $s1 S1 S1  S1 i1 11 11 11

Second best match sy s S9  So (VR U DR )

Third best match S3 S3 S3 S3 i3 i4 i3 i3

Fourth best match Sa Sa S4 Sa ig i3 i4 i4

Table 1: Preferences of students over schools (left) and priorities of schools over students (right).

second in her third most preferred, and first in her least preferred school. This problem thus
resembles a situation where preferences (and priorities) are heterogeneous and the tension between
the two sides of the market is maximal. The other extreme case, homogenous preferences (and
priorities in the relevant parts) and no conflict between the two sides of the market, corresponds
to Problem 4. Problems 2 and 3 are intermediate situations.

During the experiment, subjects assume the role of students. Schools are not strategic players.
Given the information in Table 1, the subjects’ task in the static mechanisms is to submit a
ranking over schools (not necessarily the true preferences) to be used by a central clearinghouse
to assign students to schools. Subjects are free to submit a list of less than four schools. So, for



example, a subject is allowed to submit the ranking s3,s;. We consider two static mechanisms,
the “student proposing deferred acceptance” (treatment CI) and the “school proposing deferred
acceptance” (treatment CS) mechanisms. For the particular school choice settings at hand, the
two mechanisms are as follows:

STATIC MECHANISMS (CI AND CS)

Step 1.
(CI) Each student sends an application to the school she ranked first. If a student did not
list any school, then she will not send any application.

Each school temporarily accepts the applicant with the highest priority and rejects all
other applicants.

(CS) Each school offers a seat to its highest priority student.

Each student temporarily accepts the school she likes best according to her submitted
ranking and rejects all other offers.

Step 2.

(CI) Each student who got rejected in the previous step sends an application to her next
highest ranked school. If there is no such school, then the student will not send any
application.

Among the previously retained (if any) and new applications, each school temporarily
accepts the applicant with the highest priority and rejects all other applicants.

(CS) Each school that got rejected in the previous step makes an offer to its next highest
priority student.

Among the previously retained (if any) and new offers, each student temporarily accepts
the school she likes best according to her submitted ranking and rejects all other offers.

Steps 3, 4, ...

(CI) Step 2 is repeated until no more applications are rejected. Each student is assigned
to the school that holds her application. If a student got rejected by all schools she
ranked, she is left unmatched.

(CS) Step 2 is repeated until no more offers are rejected. Each student is assigned to the
school she holds the offer from. If a student does not hold an offer, she is left unmatched.



In our dynamic implementations students do not submit a ranking to the central clearinghouse.

Instead, they go through each step of the corresponding static algorithm. So, while the static

mechanisms induce a simultaneous move game, in the dynamic implementation subjects face a

sequential move game. The descriptions of the dynamic versions of the student proposing DA

mechanism (treatment DI) and the school proposing DA mechanism (treatment DS) are as follows:

DyNAMIC MECHANISMS (DI AND DS)

Phase 1.

(DD)

(DS)

Each student is asked to send an application that either contains the name of a school
or is left empty. If a student decides to send an empty application, she will not be able
to send future applications.

Each school temporarily accepts the applicant with the highest priority and rejects all
other applicants.

Each student is informed about the status of the application, that is, if it is retained
or whether it got rejected. If a student sent an empty application, she is informed that
she did not obtain a seat.

Each school offers a seat to its highest priority student.

Each student decides to retain at most one of the offers received.

Phase 2.

(DD)

The students who sent an application to a school in the previous phase and got rejected
are asked to send a new application (that consists of a school the student has not yet
applied to or is left empty). If a student decides to send an empty application, she will
not be able to send future applications.

Among the previously retained (if any) and new applications, each school temporarily
accepts the applicant with the highest priority and rejects all other applicants.

Each student who sent a new application to a school and each student whose application
was retained in the previous phase is informed about the status of the application,
that is, if it is retained or whether it got rejected. Each student who sent an empty
application is informed that she did not obtain a seat.

Whenever a school’s offer is rejected by a student, the school makes an offer to its next
highest priority student.

Each student who received at least one new offer can retain at most one offer (among
the new offers and the retained one, if it exists).



Phases 3, 4, ...

(DI) Phase 2 is repeated until each student decides not to send any further application, has
been rejected by all schools, or has her application retained by a school. Each student
is assigned to the school that holds her application. If a student got rejected by all
schools or sent an empty application, she is left unmatched.

(DS) Phase 2 is repeated until no more offers are rejected. Each student is assigned to the
school she holds the offer from. If a student does not hold an offer, she is left unmatched.

The experiment was programmed within the z—Tree toolbox provided by Fischbacher [12] and
carried out at Lineex (www.lineex.es) hosted at the University of Valencia. In total, 192 under-
graduates from various disciplines participated in the experiment. We run one session with 48
subjects per treatment. At the beginning of the session, subjects were anonymously matched into
groups of four. Within each group, one subject was assigned the role of student ¢;, another subject
the role of iy, and so forth. Groups and roles did not change over the course of the experiment.
Participants were told that the experiment would take a total of 24 rounds and that preferences and
priorities would change each six rounds. Before the first round, subjects went individually over an
illustrative example in order to get used to the matching procedure. Afterwards, we implemented
a trial period that was not taken into account for payment. This helped subjects to get familiar
with the computer software. At the beginning of each round, the computer screen presented the
preferences of all group members and the priorities of the four schools. Subjects took then their
respective decisions. At the end of each round, subjects got to know the outcome of the matching
process. In treatments DI and DS, due to the sequential nature of the game, subjects knew the
status of their application at each point of the process. No explicit information about the behavior
of the other group members was provided. At the end of the experiment, one round was randomly
selected for payment. Subjects received 24, 20, 16, and 12 experimental currency units (ECU) if
they ended up in their most, second most, third most, and least preferred school. They got 7 ECU
if they remained unmatched. Each ECU was worth 1 Euro.!

3 Theory

In this section we start with the definition of a school choice problem and then provide a broad
description of the extensive—form games induced by the two dynamic mechanisms, DI and DS.
Since the two mechanisms differ in very important aspects, we then focus on each game in turn.

3.1 School choice problem

A school choice problem is a five-tuple (I, S, q, Ps, P;) where

IThe experimental instructions and programs are available from the authors upon request.



I is a finite set of students (individuals).

S is a finite set of schools.

qs = 1 for each s € S, where ¢, is the number of seats at s € S.

Pg = (P;)ses is a profile of strict priority relations for schools, where P; is a complete,
irreflexive, and transitive binary relation over I U {s} for s € S.

P; = (P));cr is a profile of strict preference relations for students, where P; is a complete,
irreflexive, and transitive binary relation over S U {i} for i € I.

We say that s € S finds ¢ € I acceptable if and only if i P,;s and that ¢ € [ finds s € S acceptable
if and only if sP;i. In the problems we consider, a matching of students to schools is a function
w:IUS — ITUS such that for alli € [ and s € S:

o u(i) € SU{i},
e u(s) € TU{s}, and

e s = (i) if and only if i = u(s),

where the notation v = p(v) means that agent v is unmatched under p and v' = u(v) denotes that
agent v’ is agent v’s partner under matching . We let M denote the set of matchings.

A matching p is individually rational if and only if p(v)P,v for all v € V. Moreover, we say
that a pair (i, s) blocks the matching y if and only if sP;u(i) and ¢Psu(s). Since in the problems
we consider each school finds each student acceptable and likewise each student finds each school
acceptable, every matching in M is individually rational. Therefore, we say that a matching is
stable if there is no pair that blocks it. We denote by S(P) the set of all stable matchings. The set of
stable matchings is always non—empty (Gale and Shapley [13]). Moreover, for each problem, there
is a student optimal stable matching that is weakly preferred by all students to any other stable
matching in S(P); similarly, there is a school optimal stable matching that is weakly preferred by
all firms to any other stable matching in S(P) (Gale and Shapley [13]).

3.2 General description of the extensive—form games

Given the definition of a school choice problem, we are now in a position to describe the extensive—
form games agents play when confronted with the dynamic mechanisms, DI and DS. The extensive—
form games are composed of the following elements:

e A finite set of players I, which corresponds to the set of students.



A set of actions A; = SU{i} for each student i. In DI, this set includes all possible proposals
that might potentially be made by ¢ at some point in the game, including the “no school”
option (modelled as proposing to oneself). In DS, choosing s means to hold the proposal
from school s and to reject every other proposal that might have been received or held from
a previous step, and to choose i means rejecting all proposals. We let A = U, A;.

A set of nodes or histories X, where

— the initial node or empty history x is an element of X,

— each © € X \ {x¢} takes the form = = (ay,as, ..., a;) for some finitely many actions
a; € A, and

— if (a1, ag,...,ax) € X \ {zo} for some k > 1, then (ay,ag,...,ax—1) € X \ {zo}.

When z = (2, ay,...,a;), k > 1, we say that 2’ is a predecessor of .

We let A(z) = {a € A: (x,a) € X} denote the set of actions available to a student whose
turn it is to move after history x € X. Clearly, we have A(z) C S U {i} for all x € X where
it is student ¢’s turn to move.

A set of end nodes £ = {z € X : (z,a) ¢ X for all a € A}.

A function ¢ : X \ E — I that indicates whose turn it is to move at each decision node in
X\ E.

We let X; = {x € X\ F: (z) =i} denote the set of decision nodes belonging to student i.
A partition & of the set of decision nodes X \ F, such that if x and 2’ are in the same element
of the partition, then (i) ¢(z) = ¢(2’), and (i7) A(x) = A(z’). The information available to
student ¢(z) when, after history z, it is her turn to move is described by (), the element
of the partition & that contains x.

We let & = {S(x) : x € X \ E with «(x) = i} denote the set of information sets belonging
to student 7.

An outcome function g : F — M that associates each terminal history with a matching.

For each student ¢ € I, a preference ordering P; of schools.

We are now in a position to give a definition of a strategy in this extensive—form game.

Definition 1: A (pure) strategy for student ¢ in this extensive—form game is a function o; : §; — A
such that 0;(3(x)) € A(z), for all z € X;.

Finally, even though we have provided a general description of the games induced by both DI

and DS, they are clearly different mechanisms. For example, the set of actions available at a node
x and the set of students allowed to move depend on the particular rules of the games induced by
each mechanism. In Sections 3.3 and 3.4, we focus on each of these games in turn.
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3.3 Game induced by DI

Two rules of DI, which we describe next, are of special importance.

Rule 1: In DI students cannot pass turns, i.e., if a student sends an application to “no school” at
some step, she is not allowed to send applications at future steps.

Rule 2: In DI a student cannot send an application to a school more than once.

Whenever a student makes a new proposal it is because she was rejected and by Rule 2 she
makes a new proposal to “no school” or to a school she has not proposed to before. Moreover, by
Rule 1, after proposing to “no school” the student can no longer make proposals.

Therefore, in what the strategy of a student is concerned, her observed decisions induce an
ordered list. Formally, consider student ¢, a profile of strategies 0 = (0;,0_;) leading to = € E,
and let z',..., 2% k > 1, denote all the predecessors of  where student i proposes. Without loss
of generality, let 27 be a predecessor of 2/t j =1,... k— 1.

Definition 2: In the game induced by DI, the ordered list revealed by student v in the play of o is
Q7 = 0:i(S(2h)), ..., 0:(S(2F)), if 03(S(2%)) = i, and Q7 = 73(S(2Y)), . .., 0:(S(2*)), i, otherwise.

Note that no two elements of this list are the same, so that this is a strict partial order of
schools, having i as a last element. In fact, by Rule 1, ¢ can only be the last element of this list
and, by Rule 2, no school can appear twice.

Claim 1: The outcome of the game induced by DI when students use ¢ coincides with the outcome
of the game induced by CI when students submit the ordered lists revealed in the play of o.

Proof. Immediate from the definition of ordered lists revealed in the play of a strategy profile and
from the fact that DI emulates CI. O

Still, the information revealed in the play of a strategy leading to a particular terminal node
may only provide a partial order of schools, so that several (complete) orders may be compatible
with it. Moreover, the strategy space is clearly much wider in DI than in CI, so that one strategy
in DI may lead to different revealed ordered lists.

A class of strategies that deserves attention for its simplicity is the class of preference strategies.
A student using a preference strategy always proposes to the best ranked school that she has not
proposed to yet according to some preference ordering. Formally, consider student i, let @); be
an ordered list of preferences over the elements of S U {i}, and let maxg,(S’) be the best ranked
element according to @); in the set 8" C S U {i}, with ¢ € 5.

Definition 3: In the game induced by DI, o; is a preference strategy if there exists an ordered list
Q)i for student i such that for all z € X;, 0;,(3(x)) = maxg,(A(z)). In this case, we say that o; is
the preference strategy consistent with Q;.

11



Remark 1: When student ¢ uses the preference strategy consistent with @);, the ordered list that
is revealed (at least partially) in any play of the game is Q;.

Claim 2: Every Nash equilibrium outcome in the game induced by CI is a Nash equilibrium
outcome in the game induced by DI.

Proof. See the Appendix. ]

Haeringer and Klijn [15] show that every stable and possibly some unstable matchings (when
the priority structure exhibits so-called Ergin cycles) can be sustained in Nash equilibrium in the
game induced by CI. It therefore follows from Claim 2 that the same result holds in the game
induced by DI.

Finally, whereas submitting the true preferences to the static mechanism is a weakly dominant
strategy (Dubins and Freedman |7] and Roth [23]), the preference strategy consistent with the true
preferences is not weakly dominant in the game induced by DI. In fact, when the other players
use strategies that are not preference strategies, deviating from the preference strategy consistent
with the true preferences may trigger the revelation of other, more favorable ordered lists by the
other students and lead to a better outcome.

Claim 3: In the game induced by DI, the preference strategy consistent with the true preferences
is in general not a weakly dominant strategy.

Proof. See the Appendix. O

Additionally, in the game induced by DI, due to the lack of information on others’ moves (as the
game proceeds a student remembers her own proposals and schools’ reactions to these proposals),
there are very few proper subgames, and those that do exist appear only at the end of the tree. It
follows that the concept of subgame perfect Nash equilibrium does not allow us to refine the set
of predicted outcomes either and our best prediction for the obtained matchings is a superset of
the Nash equilibrium outcomes in the game induced by CI.

3.4 Game induced by DS

It is a well known fact that the set of Nash equilibrium outcomes of the game induced by CS
when each school has one seat coincides with the set of stable matchings (Gale and Sotomayor
[13], Roth [24]). In the following Claim, we show that the set of Nash equilibrium outcomes in
the game induced by DS coincides with the set of stable matchings and, therefore, with the set of
Nash equilibrium outcomes in the game induced by CS.

Claim 4: The set of Nash equilibrium outcomes in the game induced by DS coincides with the
set of stable matchings.

Proof. See the Appendix. O

12



The following rule of DS is of special importance.

Rule 3: In DS once a student holds the proposal of a school, she can only reject it upon receiving
and holding another school’s proposal.

Since in the game induced by DS a student can receive a proposal from a school at most once, we
can guarantee that the decisions made by a student along the path of a play reveal a strict partial
order of schools. Moreover, each school whose proposal is held by a student is revealed to be better
than being unmatched in which case, by Rule 3, being unmatched cannot be revealed preferred
to being assigned to that school. Therefore, the rules of the game guarantee that transitivity can
never be violated. Formally, consider student i, a profile of strategies ¢ = (0;,0_;) leading to
x € E, and let S’ be the set of schools held by student 7 in the course of play of o.

Definition 4: The ordered list that is revealed by student i in the play of o is Q7 =i, when S’ = (),
and is Qf = sy, ..., 51,4, where 57 € 5", j=1,...,k, is the 4" school whose proposal is held by i
in the course of play of o.

Claim 5: The outcome of the game induced by DS when students use ¢ coincides with the outcome
of the game induced by CS when students submit the ordered lists revealed in the play of o.

Proof. Immediate from the definition of ordered lists revealed in the play of a strategy profile and
from the fact that DS emulates CS. 0

As it happens in the game induced by DI, the class of preference strategies is of particular
interest. A student using a preference strategy always holds the proposal from the best ranked
school in some ordered list of schools among those schools that propose at some step and the school
whose proposal may be held from a previous step (if any). Formally, consider student i and let Q;
be an ordered list over the elements of S U {i}.

Definition 5: In the game induced by DS, o; is a preference strategy for student ¢ if there exists
an ordered list @); such that for all x € X;, 0,(S(z)) = maxg,(A(x)). In this case, we say that o;
is the preference strategy consistent with Q);

Preference strategies are a natural form of behavior and Claim 6 refers to a particular subclass,
the subclass of preference strategies consistent with a truncation of the true preferences.

In the game induced by CS, a student employs a truncation strategy if she removes a tail of least
preferred partners from the true preference list. For example, if the true ranking is so, s3, s4, S1,
then so, s3 is a truncation strategy, but s, s4 is not. In the game induced by CS, truncations may
play an important role given that, for each strategy a student may use, the induced match can
be replicated or improved upon by some truncation of the true preferences of the student (Roth
and Vande Vate [25]). This fact, together with Claim 5 imply that, in the game induced by DS,
given a profile of preference strategies for the students other than 7, there is a best reply for 7 that
consists of a preference strategy consistent with a truncation of the true preferences.
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Nevertheless, for some profiles of strategies of the other players (including strategies other than
preference strategies), there is no strategy consistent with a truncation of the true preferences that
can be a best reply in DS. Therefore, contrary to what happens in CS, when choosing a best reply,
agents cannot restrict to the class of truncations.

Claim 6: Consider the game induced by DS. Given a strategy—profile of all but one student 7,
there need not be a best reply of student ¢ that is a preference strategy consistent with a truncation
of her true preferences.

Proof. See the Appendix. n

Finally, we can also show that, as it happens in DI, given the low level of information on other
players’ chosen strategies, the game induced by DS has very few subgames and subgame perfect
Nash equilibrium does not give us sharper predictions on the possible outcomes. Therefore, in the
game induced by DS, the set of subgame perfect Nash equilibrium outcomes coincides with the set
of Nash equilibrium outcomes.

4 Experimental results

We now present the results of our experiment. First, we analyze the behavior of the subjects
(Section 4.1). Afterwards, we show how behavior affects stability (Section 4.2) and welfare (Section
4.3).

4.1 Behavior

Dubins and Freedman [7] and Roth [23] show that subjects have incentives to reveal preferences
truthfully in treatment CI. Nevertheless, it is well documented in the experimental literature that
agents do not always realize that it is in their best interest to reveal their true preferences when
confronted with centralized strategy—proof mechanisms (see, e.g., Calsamiglia et al. [3], Chen and
Kesten [4], Chen and Sénmez 6], Featherstone and Niederle [11], Guillen and Hing [14], Klijn et al.
[19],]20], and Pais and Pintér [22]). We analyze whether a dynamic implementation of the student
proposing DA algorithm where, as the algorithm proceeds, subjects receive feedback about their
previous applications and corresponding decisions, mitigates or aggravates this problem.

Given some student’s true preferences, we write s* for the school that is ranked in k-th position
(from best to worst), i.e., the k-th best school. For example, if the student’s true ranking is
S9, 83,54, 51, then s* = 5.

Consider the mechanism CI. Haeringer and Klijn [15] show that a strategy that does not rank
all schools is weakly dominated. Now suppose a student ranks all schools. Haeringer and Klijn
[15] show that a strategy that for some i < j ranks school s/ somewhere above/before school s’ is
weakly dominated by a strategy that is obtained by switching s/ and s' back in the (true) relative
order. Therefore, the number of such switches can be employed to measure a subject’s degree of
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(ir)rationality. For example, if the true ranking is ss, s3, s4, 57 and a subject reports in treatment
CI the list sy4, s, she switches schools s and s and schools s? and s®. But we do not have any
information on how she for instance relates schools s? and s*.

Now consider the mechanism DI. Obviously the induced game has a much richer structure than
that of CI. In particular, strategies can be much more complex. And, in fact, by Claim 3, the
preference strategy consistent with the true preferences need not be weakly dominant. For this
reason, we expect at least as many switches —i.e., situations in which a student first proposes to a
school s/ and in a later step to a better school s' (i < j)— as in the case of CI, except that now we
should take into account that there is only limited information about the student’s strategy. More
precisely, we will often not be able to determine whether a subject would make an irrational switch,
simply because the game has not reached a situation in which this could happen/be observed.

HYPOTHESIS 1A: Subjects switch pairs weakly more often in treatment DI than in treatment CI.

Table 2 presents for each 7,5 with i < j in row s’ — s/ the frequency with which (the better)
school s’ is switched with (the worse) school s7.

CI Problem DI Problem
All 1 2 3 4 All 1 2 3 4
st — 2 0.32 042 032 027 0.32 0.28 030 022 0.24 0.35
st — g3 0.25 0.34 0.21 0.15 0.28 0.10 0.08 0.04 0.05 0.23
st — st 0.14 0.20 0.14 0.10 0.12 0.08 0.11 0.05 0.00 0.14
s2 — 53 0.19 027 0.15 0.18 0.17 0.13 0.10 0.07 0.08 0.26
52— st 0.11 017 0.08 0.12 0.07 0.11 0.15 0.10 0.02 0.17
s3— st 0.08 0.15 0.07 0.04 0.05 0.30 0.51 0.38 0.15 0.17
Truth—telling 0.51 042 055 053 0.53 0.62 059 0.72 0.72 046

Table 2: Frequencies that two schools are switched under the static (left) and dynamic (right) student
proposing DA mechanisms. Significant treatment effects obtained from panel data regressions with in-
dividual random effects are indicated in boldface for the treatment with the higher frequency. We also
display the frequency of subjects that cannot be rejected to tell the truth.

The left part of the table shows that subjects often switch pairs in treatment CI. Also, in each
of the four problems, the switching frequency is highest for the pair s' — s? and lowest for the pair
s3 — s*. A comparison with the right part of the table reveals that switching frequencies tend to
be lower in treatment DI. For example, in Problems 1-3 there are very few subjects who apply to
their third best or worst school without having applied before to their most preferred or second
most preferred school. Consequently, it is no surprise that the switching frequencies for several of
the pairs involving s! are significantly higher in treatment CI. On the other hand, we can also see

that in Problems 1,2, and 4, subjects switch the pair s® — s* significantly more often in treatment
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DI than in treatment CI. Finally, and with respect to the aggregated data, we find that the pairs

st — 52 st — 5% st —s* and s? — &3

3

are switched more often in treatment CI than in treatment
DI, while the pair s* — s* is switched more often in treatment DI than in treatment CI.

Table 2 also shows the frequencies with which subjects cannot be rejected to tell the truth. In
treatment CI this is equal to determining the frequencies that subjects submit lists equal to their
true preferences, while we calculate in treatment DI the frequencies whether subjects “go down the
list” (a subject applies first to her most preferred school; then, if she got rejected at some point
of the game, an application to the second most preferred school is submitted; and so forth, until
the game stops). One observes higher frequencies in treatment DI for Problems 1-3, which is due
to two effects: subjects switch less pairs in these problems in treatment DI and frequencies are ex
ante biased towards treatment DI since not all of the possible comparisons are observed in this

treatment.

Result 1A: With the exception of the pairs s> — s* and s> — s*, subjects switch pairs more often in
treatment CI than in treatment DI. Moreover, in Problems 1-3 there are substantially more subjects
who cannot be rejected to tell the truth in treatment DI than in treatment CI.

The static school proposing mechanism differs from the static student proposing mechanism in
that students have now incentives to manipulate. In the dynamic implementation of the school
proposing mechanism we would like to find out whether subjects understand that truth—telling
might not always be optimal. More specifically, as a natural counterpart to Hypothesis 1A, we now
seek to study whether and how a dynamic implementation of the school proposing DA algorithm
may change subjects’ behavior.

Consider the mechanism CS. As mentioned in Section 3.4, a notable class of manipulations is
that of strategies that involve a truncation of the true preferences. Obviously, truncation strategies
have a very simple structure relative to the true preferences. But maybe more importantly, the
set of truncation strategies is known to be strategically exhaustive, i.e., each school a student is
matched to when manipulating her preferences can be obtained or strictly improved upon by using
some truncation strategy (Roth and Vande Vate [25]). Truncation strategies have been observed
in practice, for instance, in the sorority rush (Mongell and Roth [21]). Therefore, it is of interest
to determine to which extent subjects employ truncation strategies in our experiment.

Now consider the mechanism DS. Similarly to the previous discussion on CI and DI, the mech-
anism DS induces a much richer game than CS. Additionally, according to Claim 6, the class of
preference strategies consistent with truncations need not be strategically exhaustive. Therefore,
we expect subjects to truncate weakly less often in treatment DS than in treatment CS. We do
note however that there is only limited information about the students’ strategies in treatment
DS. More precisely, we are often not able to determine whether a subject employs a strategy based
on a truncated list, simply because the game has not reached a situation in which this could be
concluded.

HYPOTHESIS 1B: Subjects truncate weakly less often in treatment DS than in treatment CS.
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First, it turns out that under CS subjects switch pairs with frequencies that are similar to those
presented in Table 2 for treatment CI, while under DS almost no subject accepts an offer from a
school s/ after having temporarily accepted before an offer from a more preferred school s* (i < 7).
In fact, aggregated over all problems and pairs s* — s/ (i < j), the switching frequency is 25% in
treatment CS but only 2% in treatment DS.

We now present in Table 3 the frequencies that an offer from a school is acceptable. More
precisely, for CS we consider the frequency that a school is ranked in the submitted list. For DS
we consider the frequency that an offer from a school is accepted in some step of the algorithm
conditional on that the subject does not hold an offer from another school.

CS Problem DS Problem
All 1 2 3 4 All 1 2 3 4
st 0.96 097 098 0.92 0.96 0.99 099 1.00 0.99 1.00
52 0.96 0.97 093 0.99 0.93 0.90 0.82 098 0.82 0.98
53 0.87 0.95 0.86 0.80 0.88 0.67 0.62 055 0.56 0.93
st 0.78 0.84 0.75 0.74 0.80 0.44 0.45 0.44 0.02 0.83
Truncation 0.46 031 043 0.52 0.58 0.98 096 099 0.97 0.99

Table 3: Frequencies that a school is acceptable under the static (left) and dynamic (right) school propos-
ing DA mechanisms. Significant treatment effects obtained from panel data regressions with individual
random effects are indicated in boldface for the treatment with the higher frequency. We also display the
frequency of subjects that cannot be rejected to use a truncation strategy.

The table shows that only a few schools are declared unacceptable in the static school proposing
DA mechanism. Also, the data for this mechanism is consistent in the sense that for all i < 7, the
frequency that school s° is accepted is greater than or equal to the frequency with which school s/
is accepted (the only exception is the pair s —s? in Problem 3). This consistency can also be found
in treatment DS, but, most importantly, the acceptance rates of s2, s®, and s* are substantially
lower in Problems 1-3. Hence, it is no surprise that the aggregated acceptance rates for those
schools are significantly lower in treatment DS than in treatment CS.

In the last row of Table 3 we display the frequency of subjects that cannot be rejected to use
a truncation strategy (which nonetheless take different meanings in the treatments CS and DS).
We see that only a few subjects can be rejected to play truncation strategies in treatment DS.
Recall that the information we can collect from the decisions of the subjects in treatment DS is
limited due to the nature of the mechanism. For example, if a subject initially receives only an
offer from s? that she accepts and rejects later on offers from s® and s*, we can only conclude that
the ordered list of preferences revealed by this subject in the play of the game includes s? and that
s? is better ranked than both s* and s?, but we do not know how s and s* compare and whether
these two schools would be accepted in case the subject was not holding s?’s proposal in the first
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place. Since there are many truncation strategies that are consistent with the supposed behavior,
we cannot reject that she behaves according to a truncation. This is different for a subject who
rejects an offer from s? in the first step of the algorithm and temporarily accepts an offer from s*
in the second step. Such a subject’s strategy is clearly not a preference strategy consistent with a

truncation of the true preferences.

Result 1B: In Problems 1-3 subjects accept offers from low ranked schools significantly less often
in treatment DS than in treatment CS. Moreover, there are substantially more subjects who cannot
be rejected to play truncation strategies in treatment DS than in treatment CS.

4.2 Stability

Stability is the central solution concept in matching markets. In the problems we consider, a
matching is said to be “blocked” if there is a student that prefers to be assigned to some school
with a slot that is either available or occupied by another student with a lower priority. Then,
a matching is “stable” if no student can form a blocking pair with any school. Problem 1 has
four stable matchings. In the student optimal stable matching, which is obtained in treatments
CI and DI when all students reveal their preferences truthfully, each student is assigned to her
top school. Similarly, the school optimal stable matching, the matching obtained in treatments
CS and DS under truth—telling, is such that each student is assigned to her worst school. In the
two “compromise” stable matchings all students are assigned to their second most and third most
preferred school, respectively. Problem 2 has 3 and Problem 3 has 2 stable matchings. Finally,
there is one stable matching in Problem 4 (where for each k = 1,...,4, student i) is matched to
school s;) and all four mechanisms coincide under truth-telling.

There is no reason to expect that stability is higher under the dynamic implementations of the
mechanisms. In fact, according to Claim 2, all Nash equilibrium outcomes in CI (which includes
all stable and possibly some unstable matchings) can also be sustained in Nash equilibrium in the
game induced by DI. Moreover, according to Claim 4, the set of Nash equilibrium outcomes of
the game induced by DS is the set of stable matchings which hence coincides with the set of Nash
equilibrium outcomes in CS.

HYPOTHESIS 2: The frequency of stable matchings is not higher under the dynamic implemen-
tations.

Nevertheless, we have already seen that, for Problems 1-3, the likelihood of switching pairs of
schools in the student proposing mechanisms and of behaving in a way consistent with a truncation
of the true preferences in the school proposing mechanisms depends on whether we consider the
static or the dynamic implementations. We now analyze whether and how these different behaviors
affect the rates of stable outcomes.

Figure 1 plots the frequency with which a stable matching is reached over the course of the
experiment.
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Figure 1: Frequencies of stable matchings. Since the number of stable matchings ranges from 1 (Problem
4) to 4 (Problem 1), comparisons across problems are meaningless.

There are stark differences between the treatments. The dynamic school proposing DA mech-
anism seems to perform best among all four mechanisms. In Problems 1-3 it visibly outclasses
not only its natural peer, the static school proposing DA mechanism, but also the two student
proposing DA mechanisms. On the other hand, there are hardly any differences between the two
student proposing DA mechanisms. This intuition is confirmed if we look at the overall frequencies
of stable matchings (63.89% in treatment CI, 68.08% in treatment DI, 70.49% in treatment CS,
and 90.01% in treatment DS).

We run four random effects estimations, one for each problem, to assess treatment differences
(Table 4). Our explanatory variables are three dummy variables that identify the different treat-
ments: the variable “Student proposing” (/3;) takes value 1 in treatments CI and DI and 0 in
treatments CS and DS, the variable “Static” (f3) takes value 1 in treatments CI and CS and 0
in treatments DI and DS, and the variable “Student proposing x Static” (f,) takes value 1 in
treatment CI and 0 in the other three treatments. Since each problem is played six times, we also
include the variable “Repetition” (which takes values from 1 to 6) in order to account for learn-
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ing effects within a problem. In this setting, differences across treatments are evaluated against
treatment DS which serves as a benchmark. In particular, §3 measures the differences between
treatments CS and DS, while §5 + (3, assesses the difference between treatments CI and DI.

Problem 1  Problem 2 Problem 3  Problem 4

Constant (8p) 0.8354*** 0.9139*** 0.8326*** 0.8444***
(0.0862)  (0.0487)  (0.0640)  (0.0069)
Repetition (84) 0.0113 0.0167 0.0280* 0.0017
(0.0203)  (0.0126)  (0.0127)  (0.0013)
Student proposing (82) —0.3333***  —0.3194**  —0.2083 —0.0001
(0.0927)  (0.1183)  (0.1107)  (0.0058)
Static (83) —0.2222** —0.1806** —0.5139***  —0.0042
(0.0697)  (0.0620)  (0.1039)  (0.0068)
Student proposing x Static (54) 0.1528 0.1389 0.4583* —0.0055
(0.1340)  (0.1605)  (0.1856)  (0.0112)
R? 0.0648 0.0458 0.0701 0.0155
Observations 1152 1152 1152 1152

Table 4: Random effects estimations on the frequency of reaching a stable matching. Errors are clustered
on matching groups. *** indicates significance at p = 0.001 (two-sided), ** indicates significance at p = 0.01
(two-sided), and * indicates significance at p = 0.05 (two-sided). The qualitative insights remain the same

if we employ probit estimations.

In consistence with Figure 1, the value of 3 in Table 4 is significantly smaller than 0 in
Problems 1-3; that is, the likelihood of reaching a stable matching in treatment DS is higher than
in treatment CS (by 22 percentage points in Problem 1, 18 percentage points in Problem 2, and
52 percentage points in Problem 3). Next, we apply x*-tests to see whether the value of 33+ 34 is
significantly different from zero. Since this hypothesis is rejected at p = 0.05 in all four problems,
there are no treatment differences between CI and DI.

Mechanism Overall Problem 1 Problem 2 Problem 3 Problem 4
Static Student Proposing 2.87% 4.43% 3.21% 2.26% 1.56%
Dynamic Student Proposing  3.80% 5.90% 5.12% 2.78% 1.39%
Static School Proposing 4.02% 3.91% 3.30% 6.60% 2.25%
Dynamic School Proposing 1.41% 1.56% 0.69% 1.56% 1.83%

Table 5: Frequencies of blocking pairs.

We conclude this part of our analysis by presenting in Table 5 the percentage of student—school
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pairs that can block a resulting matching. The data shows that fewer blocking pairs can be formed
under the static student proposing DA mechanism than under the dynamic student proposing
DA mechanism (the only exception is Problem 4) and that the dynamic implementation outper-
forms the static implementation when the school proposing DA mechanism is employed (the only
exception is again Problem 4). The overall difference between the static and the dynamic imple-
mentation is considerably larger for the school than for the student proposing DA mechanism (2.61
percentage points versus 0.93 percentage points), which reaffirms our findings from the regressions
that differences are only significant for the school proposing mechanism.

Result 2: The frequency of stable matchings is the same for treatments CI and DI. In Problems
1-3, the frequency of stable matchings is significantly higher in treatment DS than in treatment

CS.

4.3 Welfare

For the dynamic mechanisms to be reasonable alternatives for the standard static mechanisms, it is
crucial that decisions under the former mechanisms also translate into higher payoffs. And, given
the results above that compare the set of Nash equilibrium outcomes in the dynamic and static
mechanisms, there is a priori no reason to expect that the dynamic implementations present
an improvement over their static counterparts in this dimension. In fact, switching the order
of schools is a weakly dominated strategy in CI and the unique Nash equilibrium outcome in
undominated strategies in this mechanism is the student optimal stable matching, which maximizes
total payoffs in all problems. By contrast, there are no weakly dominant strategies in DI and the
set of equilibrium outcomes is a superset of the set of stable matchings (Claim 2), thus containing
inefficient matchings. On the other hand, in what the school proposing mechanisms are concerned,
by Claim 4, the set of Nash equilibrium outcomes in both mechanisms equals the set of stable
matchings. Moreover, if all subjects use truncation strategies in CS —which are know to be
strategically exhaustive under this mechanism— a stable matching is obtained as long as subjects
do not truncate above their partners under the student optimal stable. In fact, by truncating,
stable matchings that correspond to higher average payoffs may be obtained.

HYPOTHESIS 3: Average payoffs are not higher under the dynamic implementations.

Nevertheless, with respect to the school proposing DA mechanisms, there are only very few subjects
who can be rejected to play a preference strategy consistent with a truncation of the true preferences
in treatment DS compared to treatment CS (Result 1B). And, with respect to the student proposing

4 are switched

DA mechanisms, we have seen in Result 1A that all pairs except for s —s* and 53 —s
less often in treatment DI than in treatment CI. The fact that subjects actually switch less (or act
according to the true preferences more often) under DI, may imply that the student optimal stable
matching is obtained more often than what theoretic results imply, so that welfare levels may be

higher than expected.
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Figure 2 plots the relative payoffs over the course of the experiment. In this figure, a value of
0.7 indicates that a subject earned on average 70% of her maximal payoff of 24 ECU. Since it is not
always possible to assign all students to their most preferred school, comparisons across problems
should be taken with care.

1 - Static Student Proposing 2 - Static School Proposing

0.9
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0.7

0.6

3 - Dynamic Student Proposing 4 - Dynamic School Proposing
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0.8

0.7
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Figure 2: Relative payoffs per round in each of the four treatments. The student (school) optimal stable
matching leads to a relative payoff of 1 (0.5) in Problem 1, 1 (0.67) in Problem 2, 0.92 (0.67) in Problem
3, and 0.75 (0.75) in Problem 4.

We can make three main observations. First, there are hardly any differences between the
four mechanisms in Problem 4. Second, the dynamic school proposing DA mechanism leads to
substantially higher payoffs than the static school proposing DA mechanism in Problems 1-3. And
third, the two student proposing DA mechanisms perform similarly in Problems 1-3. Finally,
aggregated over all problems, relative payoffs are 0.8112 in treatment CI, 0.8259 in treatment DI,
0.7139 in treatment CS, and 0.8472 in treatment DS. This is suggestive evidence that over the
course of the experiment the dynamic implementation of the school proposing DA mechanism
performs not only better than the static school proposing DA mechanism, but also does not yield
lower payoffs than the two student proposing mechanisms.
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To see whether these visual insights are confirmed, we run again random effects regressions,
using the same explanatory variables as in the subsection on stability (Table 6).

Problem 1  Problem 2  Problem 3  Problem 4

Constant (S3,) 0.7830***  0.8470***  0.8796™*  0.7340***
(0.0190) (0.0182) (0.0142) (0.0280)
Repetition (8;) 0.0224***  0.0086***  0.0085"**  0.0021
(0.0024) (0.0020) (0.0017) (0.0015)
Student proposing (32) —0.0387 —0.0159 —0.0350 0.0043
(0.0241) (0.0277) (0.0204) (0.0381)
Static (8s3) —0.2635***  —0.1208***  —0.1462***  —0.0029

(0.0198) (0.0237) (0.0167) (0.0392)

Student proposing x Static (84)  0.2117***  0.0953***  0.1609***  0.0065
(0.0295) (0.0341) (0.0278) (0.0539)

R2 0.2122 0.0485 0.0867 0.0025
Observations 1152 1152 1152 1152

Table 6: Random effects estimations on the relative payoff per subject. Errors are clustered on matching
groups. *** indicates significance at p = 0.001 (two-sided), ** indicates significance at p = 0.01 (two-sided),

and * indicates significance at p = 0.05 (two-sided).

Supporting the conclusions drawn from the observation of Figure 2, the expected payoff of a subject
in Problem 4 is the same in all four treatments and very close to the expected payoff associated
with the unique stable matching, namely 0.75 (=18 ECU). More importantly, we can see that in
Problems 1-3, the value of 3 is negative and significantly different from zero at p = 0.001; that
is, payoffs in these problems are higher in treatment DS than in treatment CS (by 6.32 ECU in
Problem 1, 2.90 ECU in Problem 2, and 3.51 ECU in Problem 3). The payoff difference between
CS and DS in Problem 1 is particularly high. Finally, we apply x*-tests to see whether there are
differences between treatments CI and DI. We find for Problem 1 that payoffs are significantly
higher in treatment DI at p = 0.05. The corresponding payoff difference is 1.24 ECU. There are
no significant payoff differences between CI and DI for Problems 2 and 3.

Result 3: In Problems 1-3, payoffs are significantly higher in treatment DS than in treatment
CS. In Problem 1, payoffs are significantly higher in treatment DI than in treatment CI.

5 Conclusion

Abdulkadiroglu and Sénmez [1] show that the student proposing DA mechanism has nice theoretical
properties in that revealing one’s preferences truthfully is a weakly dominant strategy in the
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induced static game, so that the student optimal stable matching is obtained as a consequence.
However, when the mechanism is brought to the laboratory it is commonly found that untrained
subjects behave strategically even though they should not. It is thus the objective of this paper
to analyze whether better experimental outcomes can be obtained if, instead of submitting lists,
subjects make decisions dynamically by going through each of the underlying matching algorithms.

Our theoretical results for the dynamic student proposing DA mechanism show that if players
use a “going down the list” strategy, that is, they take a ranking of schools (that may or may not
coincide with their true preferences) and always send an application to the better ranked school
they have not yet applied to, then the outcome is equal to the outcome of the static game when
the corresponding lists are submitted to the central planner. But since the dynamic game allows
for richer strategies, it is not true that going down the list with respect to one’s true preferences
is a weakly dominant strategy, so that in a laboratory experiment a wider range of behavior
could be expected under the dynamic implementation. We nevertheless find experimentally that
subjects tend to switch fewer pairs of schools at the top of their true preference under the dynamic
implementation of the student proposing DA mechanism, even though these differences are not
strong enough to substantially affect outcomes in terms of stability (63.89% in the static and
68.08% in the dynamic mechanism) and relative efficiency (0.8112 in the static and 0.8259 in the
dynamic mechanism).

We also consider the static and the dynamic school proposing DA mechanisms. Students
typically have incentives to manipulate the static mechanism, for instance by using truncation
strategies, which are strategically exhaustive in this context. Since there are truncation strategies
that are a best reply under the static but not under the dynamic mechanism, theoretically a wider
range of behavior can again be supported for the dynamic implementation. Perhaps surprisingly,
we find in our laboratory experiment that the dynamic school proposing DA mechanism does not
only outperform the corresponding static implementation in terms of stability (70.49% in the static
and 90.01% in the dynamic mechanism) and relative efficiency (0.7139 in the static and 0.8472 in
the dynamic mechanism), but also the two student proposing DA mechanisms. This is because if
an offer from some school is temporarily accepted under the dynamic implementation, subjects do
not switch that school for a worse one later on, which is crucial for preventing unstable outcomes
to occur. The overall switching frequency in the static implementation, on the other hand, is
with 25% rather high and close to that of the static student proposing DA mechanism. Moreover,
it is only under the dynamic school proposing DA mechanism that subjects learn that it can be
worthwhile in terms of payoffs to reject offers from less desirable schools.
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Appendix — proofs

Proof of Claim 2

Let @ be a Nash equilibrium in the game induced by CI leading to u. Let o be the profile of
preference strategies consistent with ¢ in the game induced by DI. By Claim 1 and Remark 1, o
leads to p. We show that o is a Nash equilibrium of the game induced by DI. By contradiction,
assume that g; is a profitable deviation for some student 7 in the game induced by DI and let Q; be
the ordered list that is revealed by student ¢ in the play of (6;,0_;). By Claim 1, the outcome of the
game induced by DI when students use (6;,0_;) coincides with the outcome of the game induced
by CI when students submit (Ql, (Q)—;). Therefore, QZ is a profitable deviation for ¢ against ()_; in
the game induced by CI, which contradicts the initial assumption that () is a Nash equilibrium in
the game induced by CI. U

Proof of Claim 3

Consider Problem 1. We show that the preference strategy for i; that is consistent with her true
preferences is not a weakly dominant strategy. Let o_;, be a preference profile of students {i, i3, 4}
such that

if j = iy then o; prescribes to apply to s, in the first phase and whenever she gets rejecte

1) if j = iy then o ibes t ly t in the first ph d wh he gets rejected
by s to apply to s3 (when rejection by s, takes place in first phase) and s; (when rejection
by sy takes place in second or later phase);

(2) if j = i3 then o, is the preference strategy consistent with @Q;, = s1, so;

(3) if j = i4 then o, is the preference strategy consistent with @;, = sa.

Let o;, be the preference strategy consistent with );, = s3. Obviously, o;, is not consistent
with the true preferences P;,. Next, we compute the matching obtained in the game induced by
DI when the students play strategy profile o. Notation: ¢ — s indicates that student ¢ makes an
offer to school s.

Phase 1:
offers: i1,i9 — $9, 13 — $1 and iy — sy
tentative matching: 7, — s9, 13 — s1, 14 — 54
Phase 2:
offers: iy — s3
final matching: ©; — s9, io — S3, 13 — S1, 14 — S4
Let o; be consistent with the true preferences P, = s1, 53, 53,54. We compute the matching
obtained in the game induced by DI when the students play strategy profile o’ = (07, ,0_;,).

Phase 1:
offers: iq,i3 — s1, 19 — S9 and iy — S4
tentative matching: i — s9, 13 — S1, i4 — Sy
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Phase 2:

offers: i1 — sy

tentative matching: 4y — s9, 13 — Sy, t4 — Sy

Phase 3:

offers: i9 — 51

tentative matching: 7; — sq, 19 — s1, 14 — 54

Phase 4:

offers: i3 — s9

tentative matching: 79 — s1, i3 — So, 14 — S4

Phase 5:

offers: i1 — s3

final matching: iy — s3, 19 — S1, 13 — So, 14 — S4

Since i, prefers s, (obtained at o) to s3 (obtained at ¢’), the preference strategy for i; consistent
with her true preferences is not a weakly dominant strategy in the extensive-form game. U

Proof of Claim 4

Let us start by showing that every equilibrium outcome is stable. By contradiction, let a matching
i ¢ S(P) be reached in equilibrium o. Since all schools are acceptable for all students in the
problems we consider, this means that there exists a blocking pair, i.e., a pair (s,i) such that
sP;u(i) and iPsu(s). Given that proposals are issued according to the schools’ preferences, it must
have been the case that ¢ received school s’s proposal and rejected it at some point. Therefore,
consider a strategy o/ for student ¢ that coincides with the strategy o;, except for the fact that once
s’s proposal is received, it is held and every other proposal is rejected. Using this strategy against
the strategies of the other students o_; guarantees that ¢ is matched to s (the game proceeds in
exactly the same way as before up to the point when student ¢ does not reject the offer from s and
thus ends up matched to s). Since sP;u(i), the strategy o) is a profitable deviation for student i
and o is not an equilibrium.

To show that every matching p € S(P) can be reached in equilibrium consider the strategy
profile o where each student i holds p(i)’s proposal whenever received and rejects every other
proposal. Clearly, o leads to u. Moreover, there is no profitable deviation for any student 7. In
fact, for every s € S such that sP;u(i), by stability of u, we have u(s)Psi. Hence, by definition of
o_i, s proposes ji(s) before proposing ¢ and p(s) holds this proposal and ends up matched to s.0J

Proof of Claim 6

Consider Problem 3. Let i = i4. Let 0_; be a preference profile of students {i;,is,i3} such that
for any information set Z € J; with j # 4, o, prescribes that

(1) if j =4y and j receives only an offer from s3, she keeps it;
if j =4, and j receives only an offer from s4, she rejects it;
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if 7 = 4; and j receives only an offer from both s3 and s4, she keeps the offer from s, (and
rejects the offer from s3);

(2) if j = iy receives or retains an offer from s, she keeps it (and rejects any other offer);
(3) if j = i3 receives or retains an offer from sy, she keeps it (and rejects any other offer).
Let o; be a strategy such that in any information set Z € S;, o; prescribes that

(4a) if i does not retain a school and receives only an offer from both sy and s3, she keeps the
offer from s3 (and rejects the offer from ss);

(4b) if i retains or receives only an offer from sy, she keeps it (and rejects any other offer).

Since s9P;s3, it follows from (4a) that o; is not a preference strategy consistent with a truncation
of the true preferences. Next, we compute the matching obtained in the game induced by DS when
the students play strategy profile 0. Notation: s — ¢ indicates that school s makes an offer to
student 7.

Phase 1:

offers: sq1,54 — 19 and s9, 83 — iy

tentative matching: 79 — s1, 14 — S3

Phase 2:

offers: sy — i3 and s4 — 73

tentative matching: 79 — s1, i3 — So, 14 — S3
Phase 3:

offers: s4 — i3

tentative matching: 79 — sy, i3 — So, 14 — S3
Phase 4:

offers: s4 — 14

tentative matching: 179 — sy, i3 — So, 14 — Sy
Phase 5:

offers: s3 — 3

final matching: 7; — s3, i — S1, 13 — S9, 14 — S4

Note that at ¢ student 74 is matched to her most preferred school.

Let 0! be a preference strategy consistent with a truncation P! of student 4’s true preferences
P, = s4,51,82,s3. We compute the matching obtained in the game induced by DS when the
students play strategy profile o’ = (0}, 0_;). We distinguish between two cases.
CASE 1: P! = s4, 81,82 or Pl = 54,51, 89, $3.
Phase 1:
offers: s1, 54 — iy and s9, 83 — iy
tentative matching: io — s1, 14 — $o
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Phase 2:

offers: s3 — 17 and s4 — 7

tentative matching: 21 — s4, 19 — S1, 74 — So

Phase 3:

offers: sz — 19

tentative matching: 1, — sy4, 19 — S1, 94 — So

Phase 4:

offers: s3 — i3

final matching: iy — s4, 19 — S1, 14 — Sg OF i1 — Sy, ig — S1, 13 — S3, 14 — So

CASE 2: P! =0, P! = sy, or P} = s4,51.

Phase 1:

offers: sq1,54 — 19 and s9, 53 — iy

tentative matching: 75 — s1

Phase 2:

offers: sy — 13 and s3, 54 — 71

tentative matching: 71 — sS4, 15 — S1, 13 — S

In the remainder of the algorithm s3 will only make an offer to students iy and i3. However,
according to their strategies, students 75 and i3 will retain their schools s; and s;. Hence, the final
matching is given by i1 — sy, 19 — S1, i3 — So.

In each of the two cases, student i4 is not matched to her most preferred school, which completes
the proof of the claim. O

30



