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1 Introduction

In many contexts where the basic incentive property of strategy-proofness can be met by
non-trivial social choice functions, it becomes natural to investigate whether some of them
may not only be immune to manipulation by individuals, but can also resist manipulation
by groups of coordinated agents. In previous work (Barberà, Berga, and Moreno, 2010 and
2016) we have identi�ed conditions under which, surprisingly, all social choice functions that
are immune to manipulations by individuals will also be free from group manipulation. But
this is not always the case. In particular, many interesting strategy-proof rules in separable
environments1 will indeed be group manipulable. In these cases, we shall argue that not all
group manipulations represent an equally serious threat, because some strategic movements
by coalitions are credible, while others are not. To make this point precise, we de�ne several
notions of immunity to credible group manipulations and characterize subclasses of social
choice rules that satisfy them in speci�c environments. We concentrate especially in the
following: we say that a deviation leading to a pro�table improvement for a group is credible
if no individual member of the group would gain from not following the agreed upon strategy
under the assumption that all others stick to the agreement. Hence, a group manipulation is
credible if the set of prescribed strategies for those individuals who plan to deviate are a Nash
equilibrium in the induced game where these agents could use any other preference instead,
while those of the rest of agents remain �xed.2 And then we say that a rule is immune to
credible group manipulations if no set of agents can �nd a pro�table deviation away from
the truth that is credible. We illustrate the strength of our new de�nition, which is more
demanding than individual but weaker than group strategy-proofness, by characterizing some
families of rules in separable environments, and distinguishing between those that can meet
our new requirement and those that cannot. The issue of credibility of group deviations
has been formalized in alternative ways, one of which is based on the recursive de�nition of
coalition-proof Nash equilibrium (see Bernheim et al., 1987). In fact, Peleg and Sudhölter
(1999) applied this concept to the same environment that we analyze, and concluded that all
rules that are strategyproof in that environment are also coalition-proof. In the same paper,
these authors (see also Peleg, 1998) de�ne strong coalition proofness, again recursively based.
Surprisingly, this turns out to be equivalent, in our context, to our non-recursive concept of
immunity. Let us remark again that our notion of immunity, and that of strong coalition-
proofness, allows for a classi�cation and characterization of di¤erent strategy-proof rules
according to their degree of group manipulability.
After this Introduction we provide notation and de�nitions in Section 2. Section 3

presents characterization results in two speci�c contexts. We start with the problem faced
by voters who must select a set of entrants to a club, as described in Barberà, Sonnenschein,
and Zhou (1991). We concentrate on quota rules: voters can support all candidates they like,
and then those who receive at least a �xed number of votes, q, are chosen. In the domain of

1We use this expression loosely here. Formal de�nitions of the environments we refer to are given in the
Section 3.

2Actually, the concept remains the same if the possible deviations of manipulators are limited to either
following the prescription or revealing their true preferences. See Section 4 for a deeper discussion of this
and related points.
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separable preferences, we show that rules based in quota 1 or n (where n is the number of
voters) are immune to credible deviations, while all other rules in the class are not. Hence,
very extreme distributions of power among voters are needed to guarantee immunity. We
then turn to a general version of choice among multi-dimensional alternatives under sepa-
rable preferences, also called multidimensional single-peaked. We build on Moulin (1980),
Border and Jordan (1983) and Barberà, Gul, and Stacchetti (1993). The cases we consider
include the previous example and many more. We restrict attention to a large class of rules
that are strategy-proof in this context, and again characterize those within the class that
are immune to credible deviations by groups. Again, a requirement in the form of unanimity
plays a crucial role in separating these rules for all the rest, those that are credibly ma-
nipulable. Section 4 discusses alternative de�nitions of credibility for group manipulations,
establishes the equivalence of several apparently di¤erent formulations, and the di¤erences
with other potential de�nitions, whose proofs are also examined. Section 5 concludes with
some �nal remarks. The Appendix contains proofs that are not essential for the continuity
of our arguments.

2 The model and de�nitions: immunity and credibility

Let N = f1; :::; ng be the set of agents and A be the set of alternatives. Preferences are
complete, re�exive, and transitive binary relations on alternatives. Let U denote such set of
preferences. For i 2 N , Ri denotes agent i�s preferences on A. As usual, Pi and Ii denotes the
strict and indi¤erence preference relation induced by Ri, respectively. A preference pro�le
RN = (R1; :::; Rn) 2 U � ::: � U = Un is a n-tuple of preferences on A. It can also be
represented by RN = (RC ; RNnC) 2 Un when we want to stress the role of coalition C in N .
We call a subpro�le of agents in C as RC 2 �i2CU = U c.
A social choice function (or rule) f on Un is a function f : Un ! A.
At this point it is worth mentioning that although we de�ne our main concept and state

our results in Sections 2 and 4 assuming that the set of preferences is the same for all agents,
all de�nitions and results would be correct and straightforwardly obtained if we allowed
agents�sets of preferences to be di¤erent. We assume equal sets of preferences since this is
the case of our application in Section 3.
Let us de�ne some incentive-related properties of social choice functions. The best known

non-manipulability axiom is that of strategy-proofness. In its usual form it requires the truth
to be a dominant strategy for each agent. However, we provide a more general de�nition
which encompasses strategy-proofness and also considers the option that several agents eval-
uate the possibility of joint deviations.

De�nition 1 Let f be a social choice function on Un. Let RN 2 Un and C � N . A
subpro�le R0C 2 U c such that R0i 6= Ri for all i 2 C is a pro�table deviation of coalition C
against pro�le RN (for f) if f(R0C ; RNnC)Pif(RN) for any agent i 2 C.

Pro�table deviations are usually called (group) manipulations in the standard de�nitions
of group and individual strategy-proofness. Throughout the paper we shall assume that
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among pro�table deviations for single agents there is always one that is best.3

De�nition 2 A social choice function f on Un is manipulable at RN 2 Un by coalition
C � N if there exists a pro�table deviation of coalition C against pro�le RN ; say R0C 2 U c.
A social choice function is group strategy-proof if it is not manipulable by any coalition
C � N .

When we consider only deviations by single agent coalitions we have strategy-proofness.

De�nition 3 A social choice function f on Un is manipulable at RN 2 Un by agent i 2 N if
there exists a pro�table deviation of agent i against pro�le RN ; say R0i 2 U . A social choice
function is strategy-proof if it is not manipulable by any agent i 2 N .

Remark that, formally, strategy-proofness is a much weaker condition than group strategy-
proofness in any of its versions. In many environments and in spite of this de�nitional gap,
individual strategy-proof rules end up also being group strategy-proof.4 But, of course, in
many other situations this equivalence may not hold, and even when there are attractive
strategy-proof rules, they are open to manipulation by groups. In this paper, we concen-
trate on a form of manipulation that is intermediate between those of individual and group
strategy-proofness and that is based on the notion of credible pro�table deviations, those
where no agent in the deviating coalition can gain by not declaring those preferences she
was supposed to use as part of the group strategy. Formally,

De�nition 4 Let f be a social choice function on Un. Let RN 2 Un and C � N . We say
that R0C 2 U c a pro�table deviation of C against RN is credible if for all i 2 C and all
Ri 2 U , then f(R0C ; RNnC)Rif(Ri; R0Cnfig; RNnC).

On other terms, a pro�table deviation by C from RN = (RC ; RNnC) is credible if R0C is
a Nash equilibrium of the game among agents in C, when these agents strategies are their
admissible preferences and the outcome function is f(�; RNnC):

De�nition 5 A social choice function f on Un is immune to credible deviations if for
any RN 2 Un, any C � N , there is no credible pro�table deviation of C against RN (that
is, for any pro�table deviation R0C 2 U c of C against RN there exists i 2 C such that
f(Ri; R

0
Cnfig; RNnC)Pif(R

0
C ; RN jC) for some Ri 2 U).5

Immunity to credible deviations means that no pro�table deviation of any coalition is
credible at any pro�le. Observe that group strategy-proofness implies immunity to cred-
ible deviations as de�ned above. However, in general the converse implication fails (see
Proposition 1 below). Moreover, as Lemma 1 shows, immunity to credible deviations im-
plies strategy-proofness. And strategy-proofness implies immunity to credible deviations by
singletons.

3The existence of a best deviation is guaranteed when the number of alternatives, and those of preferences
are �nite. Moreover, the condition will also hold under standard assumptions.

4See Le Breton and Zaporozhets (2009), Barberà, Berga, and Moreno (2010), and Barberà, Berga, and
Moreno (2016).

5For short, we use the expression "immunity to credible deviations" instead of "immunity to credible
pro�table deviations" since, by De�nition 4, a credible deviation is pro�table.
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Lemma 1 Any social choice function f on Un that is immune to credible deviations is
strategy-proof.

Proof. By contradiction, let RN 2 Un, i 2 N , and R0i 2 U such that R0i 6= Ri and
f(R0i; RNnfig)Pif(RN) and R

0
i be such that it is a best deviation for agent i (which, as already

stated, we assume to exist). By immunity to credible deviations, there exists Ri 2 U , such
that f(Ri; RNnfig)Pif(R0i; RNnfig) which contradicts that R

0
i is a best deviation for i.

3 Applications

We have remarked in the introduction that in some important domains one can de�ne
strategy-proof rules that are, however, not group strategy-proof. In this section we illus-
trate the strength of our new de�nition, by showing that it allows to di¤erentiate between
di¤erent rules that are all manipulable by groups, but with di¤erent degrees of credibility. In
fact, we can characterize the subfamilies of strategy-proof, anonymous, and onto rules that
are immune to credible group manipulations, and separate them from those that are not.
We concentrate on the analysis of strategy-proof rules in contexts where alternatives

are multidimensional and preferences are multidimensional single-peaked, since it is a very
well studied case admitting a large family of non-trivial, strategy-proof social choice rules
which are, nonetheless, group manipulable. Hence, it is a natural testing ground for our
presumption that some of them may be immune to credible manipulations while others are
not.
For expositional purposes, we have chosen to �rst discuss a special case of the general

model, one where alternatives are sets of candidates, preferences are over sets and satisfy a
separability condition. After that, we turn to the general case. The reader who prefers to
stick to the initial example can already appreciate the broad lines of the arguments leading
to our characterizations. Likewise, the reader who prefers the general (and somewhat more
involved) arguments may want to skip the special case.
Now, let us comment that the distinction between those strategy-proof rules in our con-

text that are immune to group deviations and those that do not depend on the existence of
some �privileged�alternative in each dimension that will be chosen unless all agents agree
otherwise.6 In that limited sense, our immune rules satisfy a form of solidarity among agents
that has been presented as a normative requirement in a di¤erent context (Thomson, 1993,
1999). However, we prefer to remain agnostic regarding the desirability of using those rules,
rather than others that may be vulnerable to credible group deviations but provide a more
even treatment to di¤erent alternatives. At any rate, our characterization is based on re-
marks that hinge upon our own de�nition of credibility and do not depend on any normative
considerations.
Let us anticipate the reasons why we may be able to avoid credible deviations under

certain rules and not in others. The explanation at this point will necessarily be sketchy,

6To be more precise, observe that for the setting studied in Section 3.2, such privileged alternative may
not exist in one dimension. This is because in the one dimensional setting each strategy-proof rule is also
group strategy-proof.
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as it comes before formal statements, but we hope it may help the reader. Take an agent
i who is considering to participate in a pro�table deviation involving agents in coalition S,
and in case of participation is asked to reveal a preference R0i rather than her true preference
Ri. Suppose that, if all other members of the deviating coalition do follow the strategies
they are asked to, then i will not be able to alter the resulting outcome, regardless of
whether she still declares R0i or any other preference. Then we can say that this agent
is individually redundant. And if all agents involved in a jointly bene�cial deviation are
individually redundant in that sense, their joint bene�cial actions will constitute a Nash
equilibrium and their threat will be credible. Now, how can one make voters redundant? By
creating coalitions and strategies that support their objectives �in excess�. Say that they
need one agent to deviate in a certain manner, but actually ask two of them to do it. Then,
each one becomes �redundant� for the purposes of the decision, but not of course for the
credibility of the threat. Our reasoning along the proofs that follow goes in that direction.
Rules that allow for threats to be reinforced by involving more agents than those who are
strictly necessary to obtain a gain will be vulnerable to credible deviations.
After these motivational comments, we introduce our general framework and de�nitions.
Let K= f1; :::; Kg be a �nite set of K � 2 coordinates and for each k 2 K, let Bk =

[ak; bk] with ak < bk be an integer interval. Our alternatives are K-dimensional vectors in

B =
KQ
k=1

Bk. To stress the role of a set of coordinates kS, we will write x =
�
xkS ; xKnkS

�
2 B.

We endow B with the L1-norm. That is, for any x 2 B,

kxk =
KX
k=1

j xk j :

Given x; y 2 B, the minimal box containing x and y is de�ned by

MB(x; y) = fz 2 B : kx� yk = kx� zk+ kz � ykg :
We restrict attention to the case where individual preferences are antisymmetric and

thus, have a unique best alternative that we denote by � (Ri).
We now impose a restriction on preferences which is a natural extension of single-

peakedness to the multidimensional setting.

De�nition 6 A preference Ri 2 U is multidimensional single-peaked if for any z; y 2 B,
if y 2MB (z; � (Ri)) then yRiz.

Let S � U be the set of multidimensional single-peaked preferences on B. Under this
preference restriction � (Ri) = (� 1 (Ri) ; :::; �K (Ri)) 2 B where � j (Ri) is the best (or top)
alternative of Ri in dimension j.
Multidimensional single-peakedness has two basic implications. One is that the restriction

of preferences to alternatives that only di¤er in a single dimension, while holding the values
in all other dimensions �xed, has its best element at the same value than the absolute best
alternative. Informally, the projection of the top in any dimension is the top of the projection;
and this is independent of the values at which we may have �xed the rest of dimensions.
The other implication is that any of these one-dimensional restrictions is single-peaked.
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It is known in the literature (Barberà, Gul, and Stacchetti, 1993) that the class of multi-
dimensional Generalized Median Voter Schemes (GMVS) are the only strategy-proof social
choice functions in our setting, where multidimensional GMVS can be written as K unidi-
mensional GMVS, one for each dimension. In this paper we restrict attention to a particular
subclass of GMVS that is a K-dimensional extension of what Moulin (1980) called general-
ized Condorcet winner rules.
For each k 2 K, let Pk = fp1k; :::; pn�1k g be an ordered list of n � 1 values in Bk where

p1k � ::: � pn�1k . In what follows, we shall use K lists of such values, one for each dimension,
as de�nitional parameters.

De�nition 7 We say that f : Sn ! B, f = (f1; :::; fK) is a generalized Condorcet winner
rule if for any pro�le RN 2 Sn, for any k 2 K, fk(RN) = medf� k(R1); :::; � k(Rn); p1k; :::; pn�1k g,
where Pk(f) = fp1k; :::; pn�1k g is a list of parameters in Bk.7

Remark 1. Generalized Condorcet winner rules constitute the set of anonymous, onto,
strategy-proof rules in multidimensional single-peaked domains (see Barberà, Gul, and Stac-
chetti, 1993).
Remark 2. When all parameters in De�nition 7 have the same value for some dimension

k, we say for short that the list of parameters is degenerate in that dimension. That does
not mean, however, that these rules are not interesting. See our discussion in Section 5.

3.1 Choosing sets of candidates

Before engaging in a full analysis of those rules that are immune in a general framework, we
consider a simple case proposed in Barberà, Sonnenschein, and Zhou (1991). These authors
discuss situations where there exists a set O of K potential candidates or objects out of
which a set of agents must choose the new members of a club, and they characterize the
voting rules that may be strategy-proof when preferences are separable. For the bene�t of
the reader who prefers to stick to this simple case, we analyze it separately, but let us start
by saying that it is simply a special case of our more general result discussed in the following
subsection. This is because any set of candidates can be described by its characteristic
function, assigning value 1 to those that are in the set and 0 to those outside it. Hence, in
terms of the alternatives, this is a special case where Bk can take only two values, 0 and
1, in each dimension. As for the restriction of preferences, their notion of separability is
equivalent to multidimensional single-peakedness when adapted to their limited context.8

As we have observed for the general case, here again the best element in any dimension
will be found at the value of the absolute best in that dimension (now 0 or 1), and the
implication of single-peakedness is immediate because the variable in each dimension only
takes two values.
Individual preferences are linear orders on the set 2O (including the empty set). Given

any preference R on 2O, we de�ne the set of "good" objects G(O; R) = fok 2 O : fokgP?g
and the set of "bad" objects OnG(O; R) = fok 2 O : ?Pfokgg.

7The notation med denotes the median(s) of an ordered list. In the present de�nition this will be unique.
8See also Border and Jordan (1983), Le Breton and Sen (1999), Le Breton and Weymark (1999) who

have analyzed a model with separable preferences in continuous multidimensional spaces.
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De�nition 8 R is a separable preference on 2O if and only if for any set T and any object
ol =2 T , T [ folgPT if ol 2 G(O; R).

In words, adding a new good object to any set makes the union better than the original set
and adding a bad object makes it worse. Now S denote the set of all separable preferences.
In this setting there exist strategy-proof social choice functions. In particular, the set of

such functions that are anonymous, neutral, and satisfy voter sovereignly coincides with the
family of voting by quota rules, f : Sn ! 2O de�ned as follows:

De�nition 9 Let q 2 f1; :::; ng. The social choice function f on Sn de�ned so that for any
RN 2 Sn,

f(RN) = fok 2 O : jfi : ok 2 G(O; Ri)gj � qg
is called voting by quota q.

However, none of these voting by quota rules are group strategy-proof. And yet, we will
show that some of them are immune to credible deviations, while others are not.
Before providing a characterization theorem allowing to distinguish between those rules

that are immune and those that are not, we present two examples with 5 voters and 2
candidates. The set of all separable preferences when K = 2 is detailed in Table 1.

R1 R2 R3 R4 R5 R6 R7 R8

? ? o1 o1 o2 o2 fo1; o2g fo1; o2g
o1 o2 ? fo1; o2g ? fo1; o2g o1 o2
o2 o1 fo1; o2g ? fo1; o2g ? o2 o1

fo1; o2g fo1; o2g o2 o2 o1 o1 ? ?

Table 1. The set of all separable preferences when K = 2.

Example 1 Voting by quota 1: each agent declares her best set of objects and any object
that is declared as good by some agent is selected.
Consider the pro�le where R1 = R3, R2 = R5 and for any other agent Ri = R1 the outcome
would be fo1; o2g, whereas 1 and 2 could vote for ? and get a preferred outcome.
This proves that the rule is group manipulable. Notice, however, that after having agreed on
voting for empty, any of the two agents could simply keep voting for their preferred candidate,
and obtain an even better result, provided the other sticks to her announcement. Hence, this
group manipulation will not be credible. We leave it to the reader to check that any other
group manipulation under this rule will fail to be credible. Hence, in this example, voting by
quota 1 is immune to credible deviations. As we shall see the result generalizes.

Example 2 Voting by quota 3: each agent declares her best set of objects and any object
that is declared as good by at least three agents is selected.
Consider now the pro�le where R1 = R2 = R3, R3 = R4 = R5 and R5 = R7. Then,
the outcome would be fo1; o2g. Now, if agents 1 and 2 agree to vote for ?, and so do
agents 3 and 4, the coalition of these four agents can manipulate and have the outcome to
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be ?, that they all prefer to fo1; o2g. Hence, the rule is group manipulable. Moreover, this
particular manipulation is credible, because as long as the rest of deviators complies with the
agreement, no single agent can pro�table deviate from it. Hence, the rule is not immune to
credible deviations in this case.
Notice, however, that there would be other pro�table deviations that would not be credible.
For example, the one where only 1 and 3 agreed to drop their support to their preferred
alternative.

In fact, we can prove the following general result.

Proposition 1 Let n = 2 or n > 3. Then, voting by quota 1 and n are the only voting by
quota rules satisfying immunity to credible deviations.

Proof. To prove that voting by quota 1 is never subject to credible pro�table deviations,
notice that any pro�table deviation by a group must involve agents who do not vote for
some of the candidates they like (since they can always get them without anyone�s help). In
exchange these agents can get others not to vote for candidates that they dislike.
Let RN 2 Sn, C be a coalition that has a pro�table deviation R0C against RN . Note that
f(RN) " f(R0C ; RNnC) (otherwise, if f(RN) $ f(R0C ; RNnC), by quota 1, for any candidate
o 2 f(R0C ; RNnC)nf(RN), o =2 G(O; Ri) for any i 2 N . By separability, for any i 2 N ,
f(RN)Pif(R

0
C ; RNnC) and R

0
C could not be a pro�table deviation, which is a contradiction).

Thus, there exists a candidate o such that o 2 f(RN)nf(R0C ; RNnC). Observe that for each
such candidate o 2 f(RN)nf(R0C ; RNnC), since f is voting by quota 1, there is at least
one individual i 2 C such that o 2 G(O; Ri) and o =2 G(O; R0i). But now if i declares a
preference Ri such that G(O; Ri) = G(O; R0i) [ fog, the outcome f(Ri; R0Cnfig; RNnC) =
f(R0C ; RNnC) [ fog, which is, by separability, strictly better for i under Ri than what she
would get by following the agreed upon strategy. Therefore, no pro�table deviation is credible
under quota 1. A similar argument applies for quota n.
This already proves the proposition for the case n = 2 since there only the two extreme
quotas can be used. From now on we treat the case n > 3.
To prove that any voting by quota rule q, q 6= f1; ng violates immunity to credible deviations
we construct pro�les against which there is a credible pro�table deviation by some coalition.
We begin by the case K = 2 and then argue that this can be embedded in a general pro�le
presenting the same deviations whenever K > 2.

Let n be odd. We distinguish three subcases.
(1) q > n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�1

2

agents are such that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of
n�1
2
agents are such that o2Pj fo1; o2gPj?, and the preference of the remaining agent l is

such that �(Rl) = fo1; o2g. Observe that f(RN) = ?. Let C be the coalition of all agents
except agent l, let R0C be such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that since
f(R0C ; RNnC) = fo1; o2g, R0C is a pro�table deviation of C against RN . Finally, R0C is credible
since no agent can change the outcome by a unilateral deviation since n > 3.
(2) q = n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�1

2

agents are such that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of
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n�1
2
agents are such that o2Pj fo1; o2gPj?, and the preference of the remaining agent l is

such that �(Rl) = ?. Observe that f(RN) = ?. Let C be the coalition of all agents
except agent l, let R0C be such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that since
f(R0C ; RNnC) = fo1; o2g, R0C is a pro�table deviation of C against RN . Finally, R0C is credible
since no agent can change the outcome by a unilateral deviation since n > 3.
(3) q < n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�12 agents

are such that o1Pi?Pi fo1; o2g, the preferences of any agent j in a di¤erent set of n�12 agents
are such that o2Pj?Pj fo1; o2g, and the preference of the remaining agent l is such that
�(Rl) = ?. Observe that f(RN) = fo1; o2g. Let C be the coalition of all agents except agent
l, let R0C be such that each agent i 2 C, �(R0i) = ?: Observe that since f(R0C ; RNnC) = ?,
R0C is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can
change the outcome by a unilateral deviation since n > 3.

Let n be even. We distinguish two subcases.
(1) q > n

2
. Let RN be as follows: the preferences of any agent i in a set of n2 agents are such

that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of n2 agents are such
that o2Pj fo1; o2gPj?. Observe that f(RN) = ?. Let C be the coalition of all agents, let R0C
be such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that since f(R0C ; RNnC) = fo1; o2g,
R0C is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can
change the outcome by a unilateral deviation.
(2) q � n

2
. Let RN be as follows: the preferences of any agent i in a set of n2 agents are such

that o1Pi?Pi fo1; o2g, the preferences of any agent j in a di¤erent set of n2 agents are such
that o2Pj?Pj fo1; o2g. Observe that f(RN) = fo1; o2g. Let C be the coalition of all agents,
let R0C be such that each agent i 2 C, �(R0i) = ?: Observe that since f(R0C ; RNnC) = ?, R0C
is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can change
the outcome by a unilateral deviation.

This is easily extended to the case K > 2 by considering pro�les where agents preferences
are like the ones described in each case above for objects 1 and 2, while all the agents share
exactly the same preferences concerning other objects for all cases analyzed (for example,
ok 2 G(O; bRi) for each ok 2 Onfo1; o2g, each i 2 N and each individual preference bRi used
in the analyzed cases).

Our next proposition covers the case n = 3, which is not contemplated by the previous
one.

Proposition 2 When n = 3 and K = 2, any voting by quota rule is immune to credible
deviations. When n = 3 and K � 3, voting by quota 1 and 3 are the only voting by quota
rules satisfying immunity to credible deviations.

Proof. Let N = f1; 2; 3g and K = 2. For voting by quotas 1 and 3 the same argument
in Proposition 1 applies. Consider voting by quota 2. As already remarked in Barberà,
Sonnenschein, and Zhou (1991) this rule is not only strategy-proof but also e¢ cient. Thus
the only coalitions with pro�table deviations consist of two agents. Let RN , C = fi; jg, and
R0C be a pro�table deviation of C against RN .

To be a pro�table deviation, observe that, by separability and voting by quota 2, either (1)
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both candidates are chosen under (R0C ; RNnC) but none under RN ; or (2) no candidate is
chosen under (R0C ; RNnC) but both are chosen under RN , or (3) only one candidate is chosen
under RN and only the other candidate is chosen under (R0C ; RNnC).

In the �rst case, for each candidate, one of the agents in C considered that candidate not
good under Ri but good under R0i. In the second case, for each candidate, one of the agents
in C considered that candidate good under Ri but not good under R0i. In the third case,
what said in the second case holds for the candidate chosen under RN and what said in the
�rst case holds for the candidate chosen under (R0C ; RNnC).

In the three cases, either declaring Ri such that a good candidate under R0i not to be
under Ri, or supporting a bad one will be an individual pro�table deviation with respect to
(R0C ; RNnC). Thus, R

0
C is not credible.

LetN = f1; 2; 3g andK = 3. For voting by quota 1 and 3 the same argument in Proposition 1
applies. To prove that voting by quota 2 violates immunity to credible deviations we provide
an example of a credible pro�table deviation against a pro�le. Let RN be as follows: the
preferences of agent 1 are such that �(R1) = o1 and fo1; o2; o3gP1?, the preferences of agent
2 are such that �(R2) = o2 and fo1; o2; o3gP2?, and the preferences of agent 3 are such that
�(R3) = o3 and fo1; o2; o3gP3?. Observe that f(RN) = ?. Let C = N , and R0N be such
that each agent i 2 C, �(R0i) = fo1; o2; o3g. Since f(R0N) = fo1; o2; o3g, R0N is a pro�table
deviation of C against RN . Finally, R0N is credible since no agent can change the outcome
by a unilateral deviation.
This is easily extended to the caseK > 3 by considering pro�les where agents preferences are
like the ones described in each case above for objects 1, 2, and 3, while all the agents share
exactly the same preferences concerning other objects for all cases analyzed (for example,
ok 2 G(O; bRi) for each ok 2 Onfo1; o2; o3g, each i 2 N and each individual preference bRi
used in the analyzed cases).

3.2 The general case: choosing from a grid

We now consider the general case where the set of possible choices in each dimension is
not binary, as discussed in Barberà, Gul, and Stacchetti (1993). As we mentioned above,
we consider K � 2 since for K = 1 any strategy-proof rule is also group strategy-proof
and thus immune to credible pro�table deviations. The following three propositions allow
us to identify the class of generalized Condorcet winner rules that are immune to credible
deviations. Notice that Propositions 3 and 4 completely characterize the case with at least
four agents in the society. Proposition 4 also covers the case of two agents. The case of three
agents, requiring special treatment, is provided by Proposition 5.
As we have already remarked, our analysis in the preceding subsection is a special case of

what comes ahead. Let us then use some of the intuition we got from the previous analysis
to anticipate the results that come. In the choice of sets example (with the necessary
quali�cations regarding number of voters and alternatives) the rules that emerge as not
being vulnerable are those where unanimity is required to either impose each alternative,
or to avoid it. In a similar spirit, we will see that, for functions that are not vulnerable in
the general case there must be a speci�c privileged value in the interval corresponding to
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each dimension, and that only unanimous decisions against the prevalence of this particular
value will avoid its selection. Hence, immunity to credible deviations requires a privileged
treatment of one alternative per dimension, and a unanimity requirement to escape it.

Here are the Propositions.

Proposition 3 Let n > 3. Let f be a generalized Condorcet winner rule. If f is de�ned by
lists of parameters that are non-degenerate in at least two dimensions, then f is not immune
to credible deviations.

Proposition 4 Let n � 2. Let f be a generalized Condorcet winner rule. If f is de�ned by
lists of parameters that are degenerate in at least K � 1 dimensions, then f is immune to
credible deviations.

Proposition 5 Let n = 3. Any generalized Condorcet winner rule de�ned by lists of pa-
rameters such that are non-degenerate in two dimensions is immune to credible deviations.
Any generalized Condorcet winner rule de�ned by non-degenerate lists of parameters in at
least three dimensions is not immune to credible deviations.

Note that for societies with two agents, generalized Condorcet winner rules have only one
parameter, thus, since the list of parameters is degenerate in each dimension, Proposition 4
covers the 2-agents case. Moreover, although we only use the result in Proposition 4 for the
cases n = 2 and n � 4, we prove it for the 3-agents case for completeness.

Now we turn to the proof of the above Propositions.

Proof of Proposition 3. Let f be a generalized Condorcet winner rule with two dimen-
sions, say 1 and 2, for which P1(f) and P2(f) are not degenerate. Consider the median(s),
medP1(f) and medP2(f) of these parameters�lists. These medians may be unique or consist
of two contiguous points, say med�Pk(f) < med+Pk(f), for each k 2 f1; 2g.
In all cases below, in any pro�le we will de�ne the preferences of each agent in N concerning
dimensions di¤erent from 1 and 2 to be the same and with top at some point xk in Bk,
k 2 Knf1; 2g.
Assume �rst that for each k 2 f1; 2g, med�Pk(f) 6= med+Pk(f). This can only happen if n
is odd and thus the number of parameters is even. Consider a partition of N into three sets,
N , eN , and l where l is a singleton and such that #N = # eN . Let the projections of RN in di-
mensions 1 and 2 be as follows. For agents inN , let the k�dimensional top bemed+Pk(f) for
k 2 f1; 2g. For agents in eN , let the k�dimensional top bemed�Pk(f) for k 2 f1; 2g. Agent l
has the 1�dimensional top atmed+P1(f) and the 2� dimensional top atmed�P2(f). Also as-
sume for agents inN[ eN that (med�P1(f);med+P2(f); xKnf1;2g)Pi(med+P1(f);med�P2(f); xKnf1;2g).
Observe that fk(RN) = � k(Rl) for each k 2 f1; 2g and fk(RN) = xk for each k 2 Knf1; 2g:
This is because, for each k 2 f1; 2g, � k(Rl) tie-breaks when computing fk as the median
of all tops and parameters in Bk. Let C = N [ eN and let R0C be such that for each agent
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i 2 C, � 1(R0i) = med�P1(f), � 2(R0i) = med+P2(f):
9 Observe that fk(R0C ; RNnC) = � k(R

0
i)

for k 2 f1; 2g, and fk(R0C ; RNnC) = xk for each k 2 Knf1; 2g. This is because, for each
k; fk(R

0
C ; RNnC) is the top for individual preferences in (R

0
C ; RNnC) for n � 1 agents and it

coincides withmed�P1(f) in dimension 1 and withmed+P2(f) in dimension 2. By de�nition,
this shows that R0C is a pro�table deviation of C against RN .

Moreover, for each dimension k 2 f1; 2g, since fk(R0C ; RNnC) is eithermed�Pk(f) ormed+Pk(f)
and, given that n > 3; there are at least two parameters smaller or equal than fk(R0C ; RNnC) =
med�Pk(f) or greater or equal than fk(R0C ; RNnC) = med

+Pk(f).

Therefore, fk(R0C ; RNnC) receives at least n + 1 total votes for each k 2 f1; 2g. Hence, the
pro�table deviation R0C is credible and f is not immune to credible deviations.

Assume now that for at least some k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f).
Remember that med�Pk(f) 6= med+Pk(f) can only hold if n is odd and therefore the num-
ber of parameters is even. Because of that in the case where the above equality holds for
only one of the two dimensions but not for the other can only happen when n is odd. This
distinction is used along the rest of the proof because in one case a partition will only use
two sets of agents N , eN while in other cases we will have to add a singleton l to it.
For n odd, let N , eN , and agent l be the elements of a partition of N such that #N = # eN =
n�1
2
. For n even, let, N , eN a partition of N such that #N = # eN = n

2
. Let RN be as follows.

The preferences of agents in N are such that in the dimension 1 the top is either med+P1(f)
when med�P1(f) 6= med+P1(f), or medP1(f), otherwise. In dimension 2 the top is either
med+P2(f) when med�P2(f) 6= med+P2(f), or the highest parameter strictly smaller than
medP2(f) if it exists and med�P2(f) = med+P2(f); or the lowest parameter strictly greater
than medP2(f), otherwise. The preferences of agents in eN are such that in dimension 1 the
top is either med�P1(f) when med�P1(f) 6= med+P1(f), or the highest parameter strictly
smaller than medP1(f) if it exists and med�P1(f) = med+P1(f); or the lowest parameter
strictly greater than medP1(f), otherwise. In dimension 2 the top is either med�P2(f) when
med�P2(f) 6= med+P2(f), or medP2(f), otherwise.
Preferences of agent l (only required if n is odd) are de�ned as follows: Rl is such that
in dimension 1 agent l�s top is either � 1(Rj), j 2 N when med�P1(f) 6= med+P1(f), or
the highest parameter strictly smaller than medP1(f) if such parameter exists or the lowest
parameter strictly greater than medP1(f), otherwise. In dimension 2 the top of agent l is
either either � 2(Ri), i 2 eN when med�P2(f) 6= med+P2(f), or the highest parameter strictly
smaller than medP2(f) if such parameter exists or the lowest parameter strictly greater than
medP2(f), otherwise.

From now on let i 2 eN and j 2 N . We also assume that for any agent m 2 N [eN; (� 1(Ri); � 2(Rj); xKnf1;2g) Pm(� 1(Rj); � 2(Ri); xKnf1;2g). Observe that fk(RN) = � k(Rl) if
med�Pk(f) 6= med+Pk(f), and fk(RN) = medPk(f) otherwise for each k 2 f1; 2g, and that
fk(RN) = xk for each k 2 Knf1; 2g. This is because, for each k 2 f1; 2g, � k(Rl) tie-breaks
when computing fk as the median of all tops and parameters in Bk in the case where only
for one k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f) and thus n is odd. And for each

9In words, to de�ne R0C notice that by changing their vote the agents in N vote for the tops of those ineN in dimension 1, while agents in eN vote for the top of those in N in dimension 2.
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k 2 f1; 2g, medPk(f) tie-breaks when computing fk as the median of all tops and parameters
in Bk in the case where for both k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f). Let C =
N [ eN and let R0C be such that for each agent j 2 N , � 1(R0j) = � 1(Ri) and � k(R0j) = � k(Rj)
for each k 2 Knf1g, and for each i 2 eN , � 2(R0i) = � 2(Rj) and � k(R0i) = � k(Ri) for each
k 2 Knf2g. Observe that fk(R0C ; RNnC) = � k(R

0
i) for k 2 f1; 2g, and fk(R0C ; RNnC) = xk

for each k 2 Knf1; 2g. This is because, for each k where med�Pk(f) = med+Pk(f),
fk(R

0
C ; RNnC) is the top for individual preferences in (R

0
C ; RNnC) for n agents. For each

k where med�Pk(f) 6= med+Pk(f), fk(R0C ; RNnC) is the top for the preferences for n � 1
agents in (R0C ; RNnC) and coincides either with med

�Pk(f) or med+Pk(f). By de�nition,
this shows that R0C is a pro�table deviation of C against RN .

Moreover, for the dimensions where med�Pk(f) = med+Pk(f) there is a parameter at
fk(R

0
C ; RNnC). For the dimensions where med

�Pk(f) 6= med+Pk(f), fk(R0C ; RNnC) is either
med�Pk(f) ormed+Pk(f) and, given that n > 3; there are at least two parameters smaller or
equal than fk(R0C ; RNnC) = med

�Pk(f) or greater or equal than fk(R0C ; RNnC) = med
+Pk(f).

Therefore, fk(R0C ; RNnC) receives at least n + 1 total votes for each k 2 f1; 2g. Hence, the
pro�table deviation R0C is credible and f is not immune to credible deviations.

Before we prove Propositions 4 and 5, we need some de�nitions, claims and lemmas.
Let SBk be the set of all unidimensional (strict) single-peaked preferences on Bk (for a

formal de�nition see, for example, De�nition 6 when B is an integer interval).

De�nition 10 Let f be a generalized Condorcet winner rule. For any k 2 K, de�ne Fk :
(SBk)

n ! Bk such that for any eRN 2 (SBk)n, Fk( eRN) = fk(RN) for any RN 2 Sn such that
� k(Ri) = �( eRi) for any i 2 N .
Note that Fk is well-de�ned since fk is tops-only and any RN as de�ned will work.

Moreover, Fk is a unidimensional generalized Condorcet winner rule as in De�nition 7.

De�nition 11 Let f be a generalized Condorcet winner rule, R0C be a pro�table deviation
of C against RN for f and let k 2 K such that fk(R0C ; RNnC) 6= fk(RN). We say that agent
i 2 C is losing according to Ri at (R0C ; RNnC) in dimension k 2 K if�

fk(RN); fKnfkg(R
0
C ; RNnC)

�
Pif(R

0
C ; RNnC).

De�ne Lk(f;RC0 ; RN) =
�
i 2 C : i is losing according to Ri at (R0C ; RNnC) in dimension k 2 K

	
.

Similarly, we say that agent i 2 C is winning according to Ri at (R0C ; RNnC) in dimension
k 2 K if

f(R0C ; RNnC)Pi
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
.

De�neWk(f;RC0 ; RN) =
�
i 2 C : i is winning according to Ri at (R0C ; RNnC) in dimension k 2 K

	
.

In short, when no confusion may arise, we will say that i is losing or winning in dimension
k and we denote the sets of losers and winners as Lk and Wk, respectively. Note that Lk
and Wk is a partition of C by de�nition since preferences are strict. That is, Lk [Wk = C
and Lk \Wk = ?.
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Claim 1 Let i 2 C � N , Ri 2 S, x 2 B. De�ne bRi 2 S such that (1) �( bRi) = �(Ri), (2)
for any k 2 K, for any zk; wk 2 Bk, for xKnfkg,�

zk; xKnfkg
� bPi �wk; xKnfkg�, �

zk; xKnfkg
�
Pi
�
wk; xKnfkg

�
, and

(3) for any k 2 K, for any zKnfkg; wKnfkg 2 BKnfkg, for any yk; vk 2 Bk,�
yk; zKnfkg

� bPi �vk; zKnfkg�, �
yk; wKnfkg

� bPi �vk; wKnfkg� .
We leave the proof to the reader. Note however, that bRi exists and additively repre-

sentable separable preferences work. A separable preference (as de�ned in Le Breton and
Sen, 1999) induces the same ordering over dimension j for any alternative. Claim 1 says that
starting from any preference relation R and any alternative x, we can construct a separable
preference where the ordering in each dimension is the one induced by R over that dimension
relative to alternative x.

Claim 2 Let f be a generalized Condorcet winner rule and let R0C be a pro�table deviation
of C against RN for f . Then:
(i) For any agent i 2 C, there exists k 2 K for which fk(R0C ; RN jC) 6= fk(RN) such that
f(R0C ; RNnC)Pi

�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
.

(ii) If agent i 2 C is such that f(R0C ; RNnC)Pi
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
for some k, then

there exists another agent j 2 C such that
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pjf(R

0
C ; RNnC).

(iii) For any k 2 K, there is an agent i 2 C such that
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pif(R

0
C ; RNnC).

In words: (i) any agent in the pro�table deviating coalition is winning in some dimension,
(ii) if an agent in the pro�table deviating coalition is winning in some dimension, there is
another agent in the deviating coalition losing in the same dimension. Part (iii) ensures that
there is at least a losing agent in each dimension.
We now turn to stating Lemmas 2 and 3.

Lemma 2 Let f be a generalized Condorcet winner rule and let R0C be a pro�table deviation
of C against RN for f . There exist k; k0 2 K and i; j 2 C such that the following holds:�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pif(R

0
C ; RNnC),

�
fk0(RN); fKnfk0g(R

0
C ; RNnC)

�
Pjf(R

0
C ; RNnC),�

fk0(R
0
C ; RNnC); fKnfk0g(R

0
C ; RNnC)

�
Pi
�
fk0(RN); fKnfk0g(R

0
C ; RNnC)

�
, and�

fk(R
0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
Pj
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
.

Lemma 2 formalizes the idea that in any pro�table deviation there exist two agents and
two dimensions where agents are exchanging roles and helping each other.

Lemma 3 Let f be a generalized Condorcet winner rule, R0C be a pro�table deviation of C
against RN for f and k be such that Pk(f) is degenerate. If there exists i 2 C winning at
(R0C ; RNnC) in dimension k, then, the pro�table deviation R

0
C is not credible.
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Lemma 3 says that a credible pro�table deviation relative to a generalized Condorcet
winner rule cannot involve an agent winning in a degenerate dimension.
The proofs of Claim 2, and those of Lemmas 2 and 3 are in the Appendix. Finally, we

can provide a proof for Propositions 4 and 5.

Proof of Proposition 4. Consider f as in the statement. By contradiction, let RN 2 Sn,
C � N , and R0C 2 Sc be a pro�table deviation of C against RN . By Lemma 2, there exist
k; k0 2 K and i; j 2 C such that�

fk(RN); fKnfkg(R
0
C ; RNnC)

�
Pi
�
fk(R

0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
;�

fk(R
0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
Pj
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
;�

fk0(R
0
C ; RNnC); fKnfk0g(R

0
C ; RNnC)

�
Pi
�
fk0(RN); fKnfk0g(R

0
C ; RNnC)

�
; and�

fk0(RN); fKnfk0g(R
0
C ; RNnC)

�
Pj
�
fk0(R

0
C ; RNnC); fKnfk0g(R

0
C ; RNnC)

�
:

By hypothesis, either Pk(f) or Pk0(f) is degenerate (or both).10 By Lemma 3, R0C is not a
credible pro�table deviation. This ends the proof.

Proof of Proposition 5. To prove the �rst statement, let f be a generalized Condorcet
winner rule with lists of parameters, denoted in each dimension k as p�k � p+k ; and such that
they are non-degenerate in exactly two dimensions. To prove that f is immune to credible
deviations, let RN 2 S3, C � N = f1; 2; 3g, and R0C 2 Sc be a pro�table deviation of C
against RN . If the pro�table deviation is such that there is an agent that is winning in a
dimension k for which Pk(f) is degenerate. Thus, by Lemma 3, R0C would not be a credible
pro�table deviation. Now assume that agents are winning at (R0C ; RNnC) in dimensions k
for which Pk(f) is not degenerate. By Lemma 2, there must be agents in C winning at
(R0C ; RNnC) in the two dimensions with non-degenerate list of parameters Pk(f). Without
loss of generality, assume that these dimensions are 1 and 2. By strategy-proofness, C has
at least two agents. Without loss of generality, by anonymity and Lemma 2, suppose that
agents 1 and 2 belong to C and that agent 1 is winning while agent 2 is losing at (R0C ; RNnC)
in dimension 1 and the opposite holds in dimension 2. Consider the following two cases
depending on the size of the deviating coalition.

Case 1: C = f1; 2g.
Since agent 3�s preferences are �xed, we can assume now that we have 3 �xed parameters
in each dimension, two of them di¤erent: p�k , p

+
k , and �(R3). Consider dimension 1. First,

observe that

f1(RN); f1(R
0
f1;2g; R3) 2

�
min

�
� 1(R3); p

�
1

	
;max

�
� 1(R3); p

+
1

	�
:

Since agent 1 is winning and agent 2 is losing at (R0f1;2g; R3) in dimension 1, then � 1(R1)must
be strictly placed on one side of f1(RN), while � 1(R2)must be weakly placed on the other side
of f1(RN). Moreover, for both i 2 f1; 2g, � 1(R0i) must be strictly in the same side of f1(RN)
and in fact in the same side as � 1(R1) is. Then, note that agent 2 announcing R2 such that

10For n = 2 any list of parameters is degenerate in all dimensions since all parameters take the same value.
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� 1(R2) = � 1(R2) and for each k 2 Knf1g, � k(R2) = � k(R02) would be winning at (R2; R01; R3)
in dimension 1 and by separability she would be better o¤f(R2; R01; R3)P2f(R

0
f1;2g; R3) which

means that R0f1;2g is not a credible pro�table deviation.
Case 2: C = f1; 2; 3g.
Since R0N 2 Sn is a pro�table deviation of C against RN , agent 3 is winning at R0N in some
dimension. Without loss of generality, suppose that agent 3 is winning at R0N in dimension
1 (otherwise, by anonymity a similar argument would apply). We already assumed that
agent 1 is winning and agent 2 is losing at R0N in dimension 1. If f1(RN) 2

�
p�1 ; p

+
1

�
,

then � 1(R2) = f1(RN) since agent 2 is losing at R0N , and also both � 1(R1) and � 1(R3)
must be strictly on a di¤erent side of f1(RN). But then, R0C would not be a pro�table
deviation where agents 1 and 3 are winning at R0N in dimension 1. Thus, f1(RN) � p�1
or f1(RN) � p+1 : Suppose f1(RN) � p�1 (a symmetric argument would apply for the other
case). Observe �rst that for each i 2 f1; 2; 3g, � 1(Ri) � f1(RN): Since agent 2 is the only
agent losing at R0N in dimension 1, � 1(R2) = f1(RN) and � 1(R1); � 1(R3) < f1(RN), and thus
f1(R

0
C ; RNnC) < f1(RN). Then, note that agent 2 announcing R2 such that � 1(R2) = � 1(R2)

and for each k 2 Knf1g, � k(R2) = � k(R
0
2) would be winning at (R2; R

0
f1;3g) in dimension

1 and by separability she would be better o¤ f(R2; R0f1;3g)P2f(R
0
f1;2;3g) which means that

R0f1;2;3g is not a credible pro�table deviation.
For all cases we obtain that the pro�table deviation is not credible which shows the �rst
statement in the proposition.

To prove the second statement, let f be a generalized Condorcet winner rule with lists of
parameters, denoted in each dimension k as p�k � p+k ; and such that they are non-degenerate
in at least three dimensions. Assume they are dimensions 1, 2, and 3. To prove that f is
not immune to credible deviations, we provide an example of a credible pro�table deviation
against a pro�le. In any pro�le we will de�ne the preferences of each agent in N concerning
dimensions di¤erent from 1, 2, and 3 to be the same and with top at some point xk in Bk,
k 2 Knf1; 2; 3g.
Let RN 2 S3 be as follows in dimensions 1, 2, and 3: de�ne the preferences of agent 1 such
that �(R1) =

�
p+1 ; p

�
2 ; p

�
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P1
�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
, the prefer-

ences of agent 2 such that �(R2) =
�
p�1 ; p

+
2 ; p

�
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P2
�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
,

and the preferences of agent 3 such that �(R3) =
�
p�1 ; p

�
2 ; p

+
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P3�

p�1 ; p
�
2 ; p

�
3 ; xKnf1;2;3g

�
. Observe that f(RN) =

�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
. Let C = N , and R0N

such that each agent i 2 C, �(R0i) =
�
p+1 ; p

+
2 ; p

+
3

�
. Since f(R0N) =

�
p+1 ; p

+
2 ; p

+
3

�
, R0N is a

pro�table deviation of C against RN . Finally, R0N is credible since no agent can change the
outcome by a unilateral deviation.
This ends the proof.

4 Some alternative formulations of credibility, and their
consequences

We believe that our de�nition of a credible deviation is quite attractive. But others could
be conceivable, and in this section we shall discuss other possible proposals, and relate them
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to ours.
We could take several directions to obtain alternative de�nitions of immunity. First, we

concentrate on varying the notion of credibility to which we devote more attention.
To favor the comparison, let us go back to the interpretation of credibility that we already

proposed after De�nition 4. A pro�table deviation by C from RN = (RC ; RNnC) is credible
if R0C is a Nash equilibrium of the game among agents in C, when these agents strategies
are their admissible preferences and the outcome function is f(�; RNnC): Starting from this,
we shall discuss, then, three possible variants of the credibility concept.
The �rst variant will be one where, instead of letting agents in C to have any choice of

preferences as a strategy, we restrict them to either use strategy R0i or to revert to strategy
Ri. The resulting notion of a credible deviation will be weaker than ours. However, we will
show that the set of rules that are immune to credible deviations will be the same (after a
minimal quali�cation) under either de�nition. This is expressed in Proposition 6.
A second variant will require that in order to be (extensively) credible, the deviation

R0C should be a Nash equilibrium for the game where all agents (whether or not they are
part of C) can play any preference, and f is the outcome function. If the initial function
f is assumed to be strategy-proof (an assumption that we do not need under our original
de�nition), then again the set of rules immune to credible deviations will still be the same
under either de�nition (see Proposition 7). However, the equivalence is not true if our f
function is not a priory restricted to be strategy-proof, as shown in Example 3.
A third variant of our de�nition of credibility would result from simply changing our

original one, but ask the deviation to be a strong Nash, rather than a Nash equilibrium.
The rationale for such proposal would be to allow for several agents to coordinate when
defecting from the agreed upon joint manipulation. We will show that under this de�nition,
all of the rules we consider will be immune to credible deviations (see Proposition 8).11

We now present formal arguments to make the preceding discussion more precise. We
also state some results whose proofs are included in Appendix.

De�nition 12 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is (type 1) credible if
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC) for all i 2 C. A social choice function f on Un is im-

mune to (type 1) credible deviations if for any RN 2 Un, any C � N , there is no (type
1) credible pro�table deviation of C against RN .

Proposition 6 Any social choice function f on Un is immune to credible deviations if and
only if f is immune to (type 1) credible deviations.

De�nition 13 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is (type 2) credible if
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNn(C[fig)) for all i 2 N and all Ri 2 U . A social choice func-

tion f on Un is immune to (type 2) credible deviations if for any RN 2 Un, any C � N ,
there is no (type 2) credible pro�table deviation of C against RN .

11The same will hold if instead allowing agents to use any preferences, they are only assumed to use their
true and the manipulative one.
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Proposition 7 Any strategy-proof social choice function f on Un is immune to credible
deviations if and only if f is immune to (type 2) credible deviations.

The following example shows that the latter immunity concept does not imply strategy-
proofness. Therefore, the concept may be useful to apply in contexts where strategy-
proofness is not to be expected, but one may still be interested in discussing the diversity of
manipulative actions by groups of voters.

Example 3 Immunity to (type 2) credible deviations does not imply strategy-proofness under
appropriately restricted domains.12

Let K = 2, N = f1; 2g, and for i 2 N , let the set of admissible preferences for both agents
be S, that is, preferences de�ned as in Table 2.

R1 R2 R3 R4 R1
0

R2
0

R3
0

R4
0

? o1 o1 fo1; o2g ? o2 o2 fo1; o2g
o1 ? fo1; o2g o1 o2 ? fo1; o2g o2
o2 fo1; o2g ? o2 o1 fo1; o2g ? o1

fo1; o2g o2 o2 ? fo1; o2g o1 o1 ?

Table 2. The set S of all separable preferences when K = 2.
Consider the social choice function f de�ned as in Table 3.

f R1
0
2 ; R

20
2 R3

0
2 ; R

40
2 R32; R

4
2 R12; R

2
2

R31; R
4
1 o1 o2 o1 o1

R11; R
2
1 o2 o1 o1 o1

R1
0
1 ; R

20
1 o2 o2 o1 o2

R3
0
1 ; R

40
1 o2 o2 o2 o1

Table 3. The social choice function f de�ned on S2.
Note that in the direct revelation game induced by this social choice function, no agent has
a dominant strategy. Hence, the rule is not strategy-proof (thus, violating immunity to both
credible and (type 1) credible deviations). Also notice that the grand coalition has no pro�table
deviation. Hence, all pro�table deviations involve a single agent, and for each one of them,
the remaining agent can respond with a new pro�table deviation. Hence, the social choice
function is immune to (type 2) credible deviations, even if not strategy-proof.

De�nition 14 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is strongly credible if
f(R0C ; RN jC)Rif(RS; R

0
CnS; RNnC) for all S � C, for all RS 2 U s and for some i 2 S.

A social choice function f on Un is immune to strongly credible deviations if for any
RN 2 Un, any C � N , there is no strongly credible pro�table deviation of C against RN .
12This example can be straightforwardly generalized when agents have di¤erents sets of preferences: Let

R1 = fR1; R2; R3; R4g, R2 = fR1
0
; R2

0
; R3

0
; R40g in Table 2, and f de�ned by the �rst two rows and columns

in Table 3.
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Proposition 8 All generalized Condorcet winner rules are immune to strongly credible de-
viations.

Let us say that we are aware that the idea of credibility may have other expressions.
As already noted in the Introduction, Bernheim, Peleg, and Whinston (1986) introduced
the concept of coalition-proof Nash equilibrium, and Peleg and Sudhölter (1999) studied
its application to the set of strategy-proof voting rules in multidimensional single-peaked
preference domains. This equilibrium notion turns out not to be discriminating, since all
Generalized Median Voter Schemes satisfy it. That conclusion is the same as the one we
obtain under our notion of strong credibility (Proposition 8) although they obtain it under
weaker assumptions: we assume anonymity and ontoness. Peleg (1998) and Peleg and Sud-
hölter (1999) proposed the notion of strong coalition-proofness. The latter paper comments,
by means of an example, that not all strategy-proof rules de�ned on the multidimensional
single-peaked domain satisfy this condition. One can show that, in spite of its complicated
formulation, their notion of strong coalition-proofness essentially boils down to requiring our
basic notion of immunity to credible deviations in our context.13 Hence, we can read their
example as an announcement that there is room for the analysis we have just provided, iden-
tifying and characterizing those functions among generalized Condorcet winner rules that
satisfy these conditions and those that do not. Another related paper is due to Serizawa
(2006), who de�nes an immunity notion in the line in our paper that only considers pro�table
deviations by pairs of agents.
Alternative de�nitions of credibility could also be obtained by weakening the notion of a

pro�table deviation allowing some, though not all, deviators to report their original prefer-
ence. In this case, the new set of pro�table deviations would be larger than ours. However,
the resulting immunity notion would be equivalent to the one we use (see De�nitions 5 or
14). Also notice that if indi¤erences are allowed one could also consider additional types of
deviations and allowing some of the agents in the deviating coalition to weakly gain by devi-
ating jointly. We do not go further in this direction because in our application all preferences
are strict (see Serizawa, 2006).

5 Final remarks

We have studied the incentives of groups of agents to cooperate in manipulating social
choice functions, by formalizing di¤erent notions of credibility, and characterized subclasses
of strategy-proof rules that may be immune to credible manipulations by groups in multidi-
mensional single-peaked preference domains.
The voting rules we have identi�ed are interesting in several respects.
One interesting aspect is e¢ ciency. It is clear that strategy-proof rules cannot be fully

e¢ cient unless they satisfy a strong notion of group strategy-proofness. Yet, those that
satisfy our intermediate property have the interesting feature that any departure from their
prescribed outcomes leading to an e¢ cient one would not be credible. Thus, they are, in
that sense, e¢ cient up to credibility constraints.

13For a formal proof of this, see the proof of Proposition 9 in the Appendix.
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Another interesting conclusion of our analysis is that those rules that imply extreme
distributions of voting power are immune to credible deviations from truth-telling. One
could think that this distribution is uneven or unfair. However, the class of Generalized
Condorcet winner rules that are obtained when the de�nitional parameters are concentrated
in a single point do coincide, in each dimension, with those characterized by Thomson (1993,
1999) as being the only methods that satisfy an attractive normative property. His property,
that Thomson calls �welfare domination under preference replacement�, requires that when
one agent changes preferences and modi�es the social outcome, all other agents�welfare must
change in the same direction. Hence, we not only found exactly what are the conditions that
allow immunity, but also discovered that they may be partially justi�ed in terms of pre-
existing normative concepts.
Finally, let us acknowledge that the treatment of strategic considerations by the di¤erent

agents is somewhat asymmetric. Indeed, groups are allowed to form in order to manipulate,
but our main concept of credibility only considers single-agent non-cooperative departures
from cooperative agreements, à la Nash. This invites for further re�ection regarding these
and other issues of coalition formation, that we hope to keep developing in further work.
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Appendix

We �rst present the proofs of Claim 2, and Lemmas 2 and 3 used in the proofs of
Proposition 4 and 5 in Section 3.2. For that, we need De�nition 15.

De�nition 15 Let i 2 N , Ri 2 S, k 2 K, let Sk(Ri) =
�
Rki 2 SBk : �(Rki ) = � k(Ri)

	
where

SBk is the set of all unidimensional (strict) single-peaked preferences on Bk and �(Rki ) is the
best alternative of Rki in Bk.

We call a Rki 2 Sk(Ri) � SBk a unidimensional single-peaked preference on Bk induced
from Ri.

Proof of Claim 2 Let f be a generalized Condorcet winner rule and let R0C be a pro�table
deviation of C againstRN for f . To prove part (i), de�neK =

�
k 2 K : fk(R0C ; RN jC) 6= fk(RN)

	
.

Without loss of generality, let K = f1; :::; kg, k denoting its cardinality. By contradiction,
suppose that there exists i 2 C such that for any k 2 K, agent i is not winning according
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to Ri at (R0C ; RNnC) in dimension k. That is, agent i is losing at (R
0
C ; RNnC) in dimen-

sion k:
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pi f(R

0
C ; RNnC). Let bRi be de�ned by Claim 1 given x =

f(R0C ; RNnC). By part (2) of Claim 1, we have that for any k 2 K,
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
bPif(R0C ; RNnC). In particular, for k = 1, we obtain �f1(RN); fKnf1g(R0C ; RNnC)� bPif(R0C ; RNnC).
Now, proceed as follows: de�ne k � 1 steps and in each step t 2 f1; :::; k � 1g replace
ft+1(R

0
C ; RNnC) by ft+1(RN) in

�
ft(RN); ff1;:::;t�1g(RN); fKnft+1;:::;kg(R

0
C ; RNnC); fKnK(R

0
C ; RNnC)

�
.

By transitivity of preferences we will obtain that f(RN) bPif(R0C ; RNnC) which will be the de-
sired contradiction. To check the contradiction, note that by part (1) in Claim 1 and by
tops-onliness of the generalized Condorcet winner rule f , if R0C is a pro�table deviation of
C against RN , R0C is also a pro�table deviation of C against ( bRC ; RNnC).
Consider the �rst step, t = 1, and change f2(R0C ; RNnC) by f2(RN). By part (3) of Claim 1
applied for k = 2, zKnf2g = (f1(RN); fKnf1;2g(R0C ; RNnC)) and wKnf2g = fKnf2g(R

0
C ; RNnC) we

obtain the following:

(f2(RN); zKnf2g) bPi(f2(R0C ; RNnC); zKnf2g), (f2(RN); wKnf2g) bPi(f2(R0C ; RNnC); wKnf2g).
Note that (f2(RN); wKnf2g) bPi(f2(R0C ; RNnC); wKnf2g) (equivalently, (f2(RN); fKnf2g(R0C ; RNnC))bPif(R0C ; RNnC)) holds since by part (2) of Claim 1 applied for k = 2, z2 = f2(RN),
w2 = f2(R

0
C ; RNnC) we obtain the following:

(f2(RN); fKnf2g(R
0
C ; RNnC)) bPif(R0C ; RNnC), (f2(RN); fKnf2g(R

0
C ; RNnC))Pif(R

0
C ; RNnC).

And moreover, the latter strictness preference relationship holds by hypothesis at the begin-
ning of this proof. Thus, we get that

(f2(RN); f1(RN); fKnf1;2g(R
0
C ; RNnC)) bPi(f2(R0C ; RNnC); f1(RN); fKnf1;2g(R0C ; RNnC)):

Repeating exactly the same argument for any t 2 f2; :::; k � 1g, we will obtain our desired
contradiction: f(RN) bPif(R0C ; RNnC) which ends the proof of part (i).
To prove part (ii), by contradiction let i 2 C be winning at (R0C ; RNnC) in some dimension k
and suppose that for any other agent j 2 Cnfig, j is also winning at (R0C ; RNnC) in k. That
is, suppose that for any j 2 Cnfig, f(R0C ; RNnC)Pj

�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
holds.

We now proceed to de�ne unidimensional single-peaked preferences for dimension k using
De�nition 15 as follows: for any j 2 NnC, let Rkj 2 Sk(Rj); for any i 2 C, let R0ki 2 Sk(R0i),
and for any l 2 C let Rkl 2 Sk(Rl) such that for any xk; yk 2 Bk,

xkP
k
l yk , (xk; fKnfkg(R

0
C ; RNnC))Pl(yk; fKnfkg(R

0
C ; RNnC)).

Note that Rkl is well-de�ned. Let xk = fk(R
0
C ; RNnC) and yk = fk(RN). Then, we obtain

by de�nition of Rkl that for any j 2 Cnfig, fk(R0C ; RNnC)P kl fk(RN). By De�nition 10, by
any l 2 C, Fk(R0kC ; RkNnC)P kl Fk(RkN). Observe that this last expression is a contradiction to
group strategy-proofness of generalized Condorcet winner rules. This ends the proof of part
(ii).
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To prove part (iii), by contradiction suppose that there exists k 2 K such that for any agent
i 2 C, f(R0C ; RNnC)Pi

�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
(*). Now, by De�nition 15, let Rki , R

0k
i be

the induced one dimensional preferences on Bk as follows:
For i 2 NnC, take any Rki 2 Sk(Ri). For i 2 C, take R0ki 2 Sk(R0i). For i 2 C, take
Rki 2 Sk(Ri) such that x = f(R0C ; RNnC). That is, for any xk,yk 2 Bk,

ykP
k
i xk ,

�
yk; fKnfkg(R

0
C ; RNnC)

�
P ki
�
xk; fKnfkg(R

0
C ; RNnC)

�
.

Observe that by De�nition 10, Fk(RkN) = fk(RN) and Fk(R
0k
C ; R

k
NnC) = fk(R

0
C ; RNnC). Thus,

combining the latter equality with expression (*), we obtain that for any k and any agent
i 2 C, Fk(R0C ; RNnC)P ki Fk(RN) holds. And this contradicts that Fk be a group strategy-
proof. This end the proof of part (iii). �

Proof of Lemma 2 Let f be a generalized Condorcet winner rule and let R0C be a
pro�table deviation of C against RN for f . Consider, for each dimension k, the sets Lk �
Lk(f;RC0 ; RN) and Wk � Wk(f;RC0 ; RN), that is, the partition of agents in C de�ned by
the ones winning and the ones losing at (R0C ; RNnC) in dimension k (see De�nition 11). By
part (i) of Claim 2 for any agent in C there is k 2 K such that i 2 Wk. By part (ii) of
Claim 2 there exists a di¤erent agent j in C such that j 2 Lk. Again, by part (i) of Claim
2, j 2 Wk0 for some k0 2 Knfkg. If some agent i 2 Wk belongs to Lk0, the result holds.
Otherwise, suppose that for any i 2 Wk, i =2 Lk0. Since Lk [Wk = Lk0 [Wk0 = C, then
Wk $ Wk0 and Lk0 $ Lk (note that Lk0 6= Lk since j 2 Lk \Wk0). Take now an agent l 2 Lk0
which exists by part (ii) of Claim 2. By part (i) of Claim 2, l 2 Wk00 for some k00 2 K. If
some agents i 2 Wk0, i 2 Lk00, then the result holds.
Otherwise, suppose that for any i 2 Wk0, i =2 Lk00. Since Lk0 [Wk0 = Lk00 [Wk00 = C, then
Wk0 $ Wk00 and Lk00 $ Lk0 $ Lk (note that Lk00 6= Lk0 since j 2 Lk0 \Wk00). Since there is a
�nite number of agents in Lk and a �nite number of k, we will obtain the result for some k.
Otherwise, there would be a k� such that Lk� = ? which is a contradiction to part (iii) of
Claim 2. �

Proof of Lemma 3 Let f be a generalized Condorcet winner rule, R0C be a pro�table
deviation of C against RN for f and k be such that Pk(f) is degenerate. Since i 2 Wk, then
fk(R

0
C ; RNnC) 6= fk(RN). Consider two cases.

In the �rst case, in RN each agent�k-dimensional top is placed in the same side of the para-
meters�unique position. Without loss of generality, assume that the k-dimensional tops are
to the left of the parameter. Note that fk(RN) is the top closest to the single parameter.
Since i 2 Wk, then fk(R0C ; RNnC) < fk(RN). Otherwise, if fk(R

0
C ; RNnC) > fk(RN), by single-

peakedness14, we obtain
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pi
�
fk(R

0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
con-

tradicting that i 2 Wk. Then, by de�nition of f , for any l 2 N such that � k(Rl) = fk(RN)
then l 2 C and � k(R0l) � fk(R

0
C ; RNnC) < fk(RN). And, by single-peakedness, for any

such l 2 C,
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
Pl
�
fk(R

0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
. Take any

of such agents, say j 2 C. Take pro�le (R0C ; RNnC) and let j 2 C announce Rj such

14In this proof and that of Proposition 8, when we say "by single-peakedness" we mean both, unidimen-
sional single-peaked on Bk and multidimensional single-peaked on B.
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that � k(Rj) = � k(Rj) and for each k0 2 Knfkg, � k0(Rj) = � k0(R
0
j). By de�nition of f ,

fk(Rj; R
0
Cnfjg; RNnC) = fk(RN) and fKnfkg(Rj; R0Cnfjg; RNnC) = fKnfkg(R

0
C ; RNnC). There-

fore, f(Rj; R0Cnfjg; RNnC)Pjf(R
0
C ; RNnC) by single-peakedness, which means that R

0
C is not

a credible pro�table deviation.
In the second case, in both sides of the single parameter there is at least one agents�
top given RN . Thus, fk(RN) is the single parameter. Suppose, without loss of general-
ity, that fk(R0C ; RNnC) < fk(RN). Observe that by de�nition of f , there exists j 2 C
such that � k(R0j) < fk(R

0
C ; RNnC) < � k(Rj). Then, by single-peakedness, for agent j 2 C,�

fk(RN); fKnfkg(R
0
C ; RNnC)

�
Pj
�
fk(R

0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
. As in the above case, take

pro�le (R0C ; RNnC) and let agent j 2 C announce Rj such that � k(Rj) = � k(Rj) and for each
k0 2 Knfkg, � k0(Rj) = � k0(R

0
j). By de�nition of f , fk(Rj; R

0
Cnfjg; RNnC) = fk(RN) and

fKnfkg(Rj; R
0
Cnfjg; RNnC) = fKnfkg(R

0
C ; RNnC). Thus, f(Rj; R

0
Cnfjg; RNnC)Pjf(R

0
C ; RNnC) by

single-peakedness meaning that R0C is not a credible pro�table deviation. This ends the
proof. �

We now prove Propositions 6, 7, and 8 stated in Section 4.

Proof of Proposition 6 By de�nition immunity to (type 1) credible deviations im-
plies immunity to credible deviations. To prove the converse, let RN 2 Un, C � N ,
and R0C 2 U c be a pro�table deviation of C against RN . Suppose that for all i 2 C,
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC). By Lemma 1 f is strategy-proof, thus f(R

0
C ; RN jC)Ii

f(Ri; R
0
Cnfig; RNnC) for all i 2 C: By immunity to credible deviations, there exists i 2 C

such that f(Ri; R0Cnfig; RNnC)Pif(R
0
C ; RN jC) for some Ri 2 U . By these two facts, for some

i 2 C, f(Ri; R0Cnfig; RNnC)Pif(Ri; R0Cnfig; RNnC) which contradicts strategy-proofness. �

Proof of Proposition 7 By de�nition immunity to credible deviations implies im-
munity to (type 2) credible deviations. To prove the converse, let RN 2 Un, C � N ,
and R0C 2 U c be a pro�table deviation of C against RN . Suppose that for all i 2 C,
f(R0C ; RNnC)Rif(Ri; R

0
Cnfig; RNnC) for all Ri 2 U . Thus, f(R0C ; RNnC)Rif(Ri; R0Cnfig; RNnC)

for all i 2 C. By immunity to (type 2) credible deviations, there exists i 2 N such that
f(Ri; R

0
Cnfig; RNn(C[fig))Pif(R

0
C ; RNnC) for some Ri 2 U . Suppose that agent i 2 C. Since

f is strategy-proof, f(R0C ; RNnC)Iif(Ri; R
0
Cnfig; RNnC) for all i 2 C. Then, we have that for

some i 2 C, f(Ri; R0Cnfig; RNnC)Pif(Ri; R0Cnfig; RNnC) which contradicts strategy-proofness.
Therefore, it must be that agent i 2 NnC. Thus, f(Ri; R0C ; RNn(C[fig))Rif(Ri; R0C ; RNn(C[fig))
by strategy-proofness, and therefore we obtain f(Ri; R0C ; RNn(C[fig))Pif(R

0
C ; RNnC) for some

i 2 NnC which contradicts that f is single-valued and R0i = Ri. �

Proof of Proposition 8 Let f be a generalized Condorcet winner rule with lists of
parameters, denoted in each dimension k as p�k � p+k . To prove that f is immune to strongly
credible deviations, let RN 2 Sn, C � N , and R0C 2 Sc be a pro�table deviation of C against
RN . Since R0C is a pro�table deviation, by part (i) of Claim 2, there must exist at least one
dimension k in which fk(RN) 6= fk(R0C ; RNnC) and some agent i 2 C is winning. By part (ii)
of Claim 2, there is an agent j 2 Cnfig who is losing in that dimension k. Let C and eC be a
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partition of C such that C = fi 2 C : is winning in dimension kg and eC = fj 2 C : is losing
in dimension kg. Suppose, without loss of generality, that fk(R0C ; RNnC) < fk(RN). By
de�nition of C, for any i 2 C, � k(Ri) < fk(RN). By de�nition of eC, � k(Rj) > fk(R0C ; RNnC).
We distinguish two cases:
Case 1. For any j 2 eC, � k(Rj) � fk(RN). Since fk(R0C ; RNnC) < fk(RN), then for any
l 2 C, � k(R0l) � fk(RN). Also, it must happen that for some j 2 eC, � k(Rj) = fk(RN). Let
S = fj 2 eC : � k(Rj) = fk(RN)g. Then for any l 2 S, let Rl be such that � k(Rl) = � k(Rl)
and � k0(Rl) = � k0(R

0
l) for any k

0 2 Knfkg. Thus fk(RS; R0CnS; RNnC) = fk(RN) and by
single-peakedness f(RS; R0CnS; RNnC)Plf(R

0
C ; RNnC) for any l 2 S. Which means that R0C is

not strongly credible.
Case 2. For some j 2 eC, � k(Rj) > fk(RN). Let S = fj 2 eC : �(Rj) � fk(RN) and
� k(R

0
l) 6= � k(Rl)g. Since fk(R0C ; RNnC) < fk(RN), S is not empty. Then for any l 2

S, let Rl be such that � k(Rl) = � k(Rl) and � k0(Rl) = � k0(R
0
l) for any k

0 2 Knfkg. By
de�nition of f , fk(RS; R0CnS; RNnC) = fk(RN) and for any k

0 2 Knfkg, fk0(RS; R0CnS; RNnC) =
fk0(R

0
C ; RNnC). Thus, by single-peakedness, f(RS; R

0
CnS; RNnC)Plf(R

0
C ; RNnC) for any l 2 S,

meaning that R0C is not strongly credible. �

As promised in Section 4, we now prove the equivalence in our context between strong
coalition-proofness as de�ned by Peleg and Sudhölter (1999) and our immunity to credible
deviations of f . To do so, we �rst introduce the notion of strong coalition-proofness for
revelation games.

A revelation game in strategic form is a system G(f; bRN) = (N;A; (U)i2N ; f; bRN) where
N is the set of players, A is the set of outcomes, U the (non-empty) set of strategies of each
agent (the set of all possible preferences as de�ned in Section 2), f is a function from prefer-
ence pro�les to A, and bRN is a speci�c pro�le of preferences. Then, given a game G(f; bRN), a
coalition C � N , C 6= ?, and a pro�le eRN 2 Un, the reduced game of G(f; bRN) with respect
to C and eRN is the game in strategic form GC;

eRN (f eRNnC ; bRC) = (C;A; (U)i2C ; f
eRNnC ; bRC)

where C is the set of players, A is the set of outcomes, U the (non-empty) set of strategies
of each agent, f eRNnC : U c ! A is a function such that f eRNnC (RC) = f(RC ; eRNnC) for all
RC 2 U c, and bRC is the pro�le of preferences.
De�nition 16 Let G(f; bRN) = (N; (U)i2N ; f; bRN) be a revelation strategic game. We say
that eRN 2 Un is a strong coalition-proof Nash equilibrium if (1) eRN is a Nash equilib-
rium of G(f; bRN); and (2) for every C � N , C 6= ?, and every Nash equilibrium R0C
of GC; eRN (f eRNnC ; bRC), there exists i 2 C such that f eRNnC ( eRC) = f( eRN) bRif(R0C ; eRNnC) =
f
eRNnC (R0C) .
De�nition 17 A social choice function f on Un is strong coalition-proof if for any RN 2
Un truthtelling is a strong coalition-proof Nash equilibrium of G(f;RN).

The strategy space for each agent is U , and the outcome function is f .
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Proposition 9 Any strong coalition-proof social choice function f is immune to credible
deviations. The converse holds when best deviations exist.

Proof of Proposition 9 By contradiction, suppose that f is not immune to credible
deviations. That is, there exist RN , and a deviation R0C of C against RN that is pro�table,
f(R0C ; RNnC)Pif(RN), and credible, f(R

0
C ; RNnC)Rif(Ri; R

0
Cnfig; RNnC) for all Ri 2 U and

for all i 2 C. The latter implies that R0C is a Nash equilibrium of the reduced game GC;RN .
Since f is strong coalition-proof, then RN is a strong coalition-proof Nash equilibrium of
G(f;RN). By condition (2) in De�nition 16 there must exist an agent i 2 C such that
f(RN)Rif(R

0
C ; RNnC) contradicting that R

0
C is a pro�table deviation of C against RN .

To show the converse, assume that there exist best deviations. Let f be immune to credible
deviations and take any RN . We have to show that truthtelling is a strong coalition-proof
Nash equilibrium of G(f;RN). By Lemma 1, f is strategy-proof. Therefore, RN is a Nash
equilibrium of G(f;RN) (part (1) in De�nition 16). Take C � N , C 6= ?, and any Nash
equilibrium R0C of G

C;RN . Since f is immune to credible deviations, no pro�table deviation
can be credible, that is, there exists an agent i 2 C such that f(RN)Rif(R0C ; RNnC).
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