
 

 

 

 

 

 

 

Barcelona GSE Working Paper Series  

Working Paper nº 956 

 

Rank Gaps and the Size of the Core for 
Roommate Problems  

Paula Jaramillo 
Çagatay Kayi 

Flip Klijn 

February 2017 



Rank Gaps and the Size of the Core

for Roommate Problems∗
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Abstract

This paper deals with roommate problems (Gale and Shapley, 1962) that are solvable,

i.e., have a non-empty core (set of stable matchings). We study the assortativeness

of stable matchings and the size of the core by means of maximal and average rank

gaps. We provide upper bounds in terms of maximal and average disagreements in the

agents’ rankings. Finally, we show that most of our bounds are tight.
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1 Introduction

Gale and Shapley (1962, Example 3) introduce the so-called roommate problems as follows:

“An even number of boys wish to divide up into pairs of roommates.” Each agent is endowed

with a preference relation which is assumed to be a linear order and hence can be represented

by a preference list (or so-called ranking). In addition, it is often assumed that all agents are

mutually acceptable, i.e., preferred to remaining single. A roommate problem is a particular
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instance of hedonic coalition formation (Bogomolnaia and Jackson, 2002) as well as network

formation (Jackson and Watts, 2002).1 The central solution concept for roommate problems

is the core, i.e., the stable matchings (partitions of agents in pairs) such that no pair of agents

prefer one another to their assigned partners. Gale and Shapley (1962) exhibit an unsolvable

roommate problem, i.e., a roommate problem in which there is no stable matching. This

stands in contrast with the existence of stable matchings for two-sided matching problems.

To show where our results fit in and complement the growing literature2 on roommate

problems it is helpful to first discuss closely related papers. Irving (1985) presents a poly-

nomial time algorithm that for any roommate problem either outputs a stable matching or

“no” if none exists.3 Using Irving’s (1985) algorithm, Tan (1991, Theorem 6.7) provides a

necessary and sufficient condition for the existence of a stable matching in roommate prob-

lems. Pittel (1993, Theorem 1) shows that for random roommate problems the expected

number of stable matchings equals e
1
2 when n → ∞, where n is the number of agents.4 He

also proves that the probability pn that a random roommate problem with n agents has a

stable matching is bounded from below by a (very slowly) decreasing function of n (Pittel,

1993, p.1470).5 Finally, Pittel (1993, Theorems 3 and 4) shows that when stable match-

ings exist, they are likely to be “well-balanced,” in the sense that at each stable matching

matched agents “are likely to be close” to the top of each other’s preference lists.6

Chung (2000) takes a different approach by providing a number of sufficient conditions

(for the existence of a stable matching) that are economically interpretable. More specifically,

he first presents a sufficient condition for the existence of a stable matching called “no-odd-

rings.” Then, he provides economically interesting preference domains that satisfy no-odd-

rings: the Beckerian domain, single-peaked domains, single-dipped domains, and preference

domains that are obtained when agents are representable by points in a metric space such

that closer agents are preferred to more distant ones.

In view of Chung’s (2000) findings it seems of interest to further explore solvable room-

mate problems and analyze their stable matchings. Using the tools provided in Holzman and

Samet (2014), we complement Pittel’s (1993, Theorems 3 and 4) results in a non-probabilistic

1We refer to Demange and Wooders (2004) and Jackson (2008) for surveys on coalition and network

formation.
2We refer to the books of Gusfield and Irving (1989) and Manlove (2013) and the review of Gudmundsson

(2014) for comprehensive overviews of the literature on roommate problems.
3Irving’s (1985) algorithm has worst case complexity O(n2) in time and space (here, n is the number of

agents). Mertens (2015a) provides a modification of Irving’s (1985) algorithm that has average time and

space complexity O(n
3
2 ) for random roommate problems.

4See also the simulations in Kwanashie (2015, Figure 8.3) which show that random roommate problems

are likely to admit few stable matchings even if n grows large.
5Mertens (2015b) derives an explicit formula for pn and computes exact values of pn for n ≤ 12.
6For the precise but rather technical details we refer to Pittel (1993, Theorems 3 and 4).
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way. More specifically, the first question we are interested in is the extent to which stable

matchings are assortative (Section 3). As a measure of assortativeness we take the resem-

blance of the “ranks” that the two members of any matched pair at a stable matching assign

to one another. Here, rank refers to the position where an agent appears in the preference

list (or ranking) of some other agent.7 We consider both the maximal and the average rank

gap (difference in mutual ranks) over all pairs of matched agents. For each of the two assor-

tativeness measure we provide upper bounds in terms of the “disagreements” over agents.

The disagreement over an agent is the difference between the maximal and the minimal

rank of the agent in the other agents’ rankings. Our first result is an upper bound of the

maximal rank gap in terms of the maximal disagreement (Theorem 1). Moreover, we show

that the bound is tight for any population size (Proposition 1): for any n, there is a solvable

roommate problem with n agents such that there is a stable matching whose maximal rank

gap coincides with the bound given in Theorem 1. Next, we focus on the average rank gap.

Corollary 1 and Theorem 2 provide two distinct upper bounds for the average rank gap over

all pairs of matched agents. Corollary 1 is a bound in terms of the maximal disagreement,

while Theorem 2 is a bound in terms of the average disagreement. By means of two examples

we show that neither bound is always better than the other (Examples 1 and 2).

The second question we are interested in is the size of the core (Section 4). We measure

the size of the core by means of the rank gap that exists between each agent’s least preferred

and most preferred partner among all stable matchings. There are again two natural ways

to proceed: first, we consider the maximal rank gap in the core, and second, we consider

the average rank gap in the core. We provide an upper bound for the maximal rank gap

in the core in terms of maximal disagreement (Theorem 3) and show its tightness for any

population size (Proposition 2). For the average rank gap in the core we provide an upper

bound in terms of average disagreement (Theorem 4) and show its tightness (Proposition 3)

for an infinite number of population sizes.

Among the earlier mentioned papers, our paper is most closely related to Holzman and

Samet (2014) who study (two-sided) marriage problems (Gale and Shapley, 1962), which are

known to be related to, yet structurally different from roommate problems.8 In a marriage

problem, agents are either male or female, and a man (woman) only wants to be matched

to a woman (man) or to him(her)self (which is the least preferred option in Holzman and

Samet, 2014). Holzman and Samet (2014) study rank gaps at stable matchings and the size

of the core, and provide upper bounds that are “essentially” tight. We conveniently adjust

their definitions and tools to tackle our questions for roommate problems. Obviously, our

class of (one-sided) roommate problems is not a subclass of the class of (two-sided) marriage

7So, more preferred agents have a smaller rank.
8For instance, unlike roommate problems, the core of any marriage problem is non-empty (Gale and

Shapley, 1962, Theorem 1) and is a distributive lattice (Roth and Sotomayor, 1990, Theorems 2.16 and 3.8).
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problems. However, since in our roommate problems all agents are mutually acceptable, the

class of marriage problems is not a subclass of our class of roommate problems either. In

short, our results and those of Holzman and Samet (2014) are not directly comparable.

The remainder of the paper is organized as follows. In Section 2, we describe the room-

mate problem. In Sections 3 and 4, we present our results on the rank gaps at stable

matchings and the size of the core, respectively.

2 Model

There is a finite set of agents N = {1, 2, . . . , n} where n is an even positive integer. Each

agent i has a strict preference relation over being matched to another agent in N\{i} and

being unmatched (or having an outside option) which is denoted by i. For each i, agent i’s

preferences can be represented by a ranking, i.e., a bijection ri : N → {1, 2, . . . , n} such

that for j, j′ ∈ N , ri(j) < ri(j
′) if and only if agent i prefers j to j′. The integer ri(j) is

the rank of j in agent i’s ranking. Hence, more preferred agents have a smaller rank. In

particular, the agent ranked first is i’s most preferred roommate, the agent ranked second is

i’s second most preferred agent, and so on. We adopt the quite common assumption from the

literature that being unmatched is each agent’s least preferred option, i.e., for each i ∈ N ,

ri(i) = n. Let r ≡ (ri)i∈N be the list of rankings. A (roommate) problem (Gale and

Shapley, 1962) is given by (N, r), or shortly r.

A matching is a function µ : N → N of order two, i.e., for all i ∈ N , µ(µ(i)) = i.

If j ∈ µ(i) then we say that i and j are matched to one another and that they are (each

other’s) mates at µ. Equivalently, a matching can be written as a partition of N in pairs

and singletons.

A pair {i, j} ⊆ N is a blocking pair for matching µ if ri(j) < ri(µ(i)) and rj(i) < rj(µ(j)).

A matching µ is stable if there is no blocking pair. Let S(r) denote the set of stable

matchings at r. A coalition T ⊆ N is a blocking coalition for matching µ if there exists a

matching µ′ such that µ′(T ) = T , for all i ∈ T , ri(µ
′(i)) ≤ ri(µ(i)) and for some j ∈ T ,

rj(µ
′(j))<rj(µ(j)). The core is the set of matchings that cannot be blocked by any coalition.

Alcalde (1994) shows that the core equals S(r). A roommate problem is solvable if its core

is non-empty. Not all roommate problems are solvable (Gale and Shapley, 1962, Example 3).

We focus on the class of solvable roommate problems and study their stable matchings. Since

there is an even number of agents and since being unmatched is each agent’s least preferred

option, each stable matching at a solvable roommate problem consists of exactly n
2

pairs of

agents.
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3 Rank gaps at stable matchings

In this section, we aim to quantify how different an arbitrary stable matching is from being

assortative. Let r be a solvable roommate problem and µ ∈ S(r). Matching µ is assortative

if for all i ∈ N , ri(µ(i)) = rµ(i)(i). Hence, the difference between µ and assortativeness can

be measured through the rank gaps (or r-gaps) γr(i, j) ≡ |ri(j)− rj(i)| where i and j are

mates at µ. The maximal r-gap between mates at µ is given by

ΓM(r, µ) ≡ max
{i,j}∈µ

γr(i, j).

We first provide a bound of the maximal r-gap between mates at µ in terms of maximal

disagreement. For each i∈N , the disagreement that the agents in N\{i} have over agent i

is given by δr(i) ≡ maxj∈N\{i} rj(i)−minj∈N\{i} rj(i). The maximal disagreement at r

is given by

∆M(r) ≡ max
i∈N

δr(i).

Theorem 1. [Bound for maximal rank gap between mates.]

Let r be a solvable roommate problem. Then, for each stable matching µ ∈ S(r),

ΓM(r, µ) ≤ B1(r) ≡


0 if n = 2;

2 if n = 4;

2∆M(r)− 1 if n ≥ 6.

Proof. Let r be a solvable roommate problem. Let n = 2. Then, ri(j) = 1 for all i, j ∈ N
with i 6= j and at the unique stable matching µ the two agents are matched to one another.

One immediately verifies that ΓM(r, µ) = 0.

Let n = 4. Then, for each stable matching µ and each {i, j} ∈ µ, γr(i, j) ≤ 3 − 1 = 2.

Hence, ΓM(r, µ) ≤ 2.

Let n ≥ 6. Let µ ∈ S(r) and {i, j} be a pair of mates at µ, i.e., µ(i) = j. We prove that

ri(j)− rj(i) ≤ 2∆M(r)− 1.

By definition of ri(j), agent i prefers each of the ri(j) − 1 agents in J ′ ≡ {j′ ∈ N :

ri(j
′) < ri(j)} to agent j. Let j′ ∈ J ′. Since µ is stable, rj′(i

′) < rj′(i) where i′ ≡ µ(j′). Then,

0 < −rj′(i′)+rj′(i), which is equivalent to [rj(i
′)−rj(i)] < [rj(i

′)−rj(i)]−rj′(i′)+rj′(i). Since

rj(i
′)− rj′(i′) ≤ δr(i′) ≤ ∆M(r) and rj′(i)− rj(i) ≤ δr(i) ≤ ∆M(r), we have rj(i

′)− rj(i) <
2∆M(r). Hence, rj(i

′) < rj(i) + 2∆M(r). Therefore, µ(j′) is among the rj(i) + 2∆M(r)− 1

most preferred options of agent j. Hence, since |J ′| = ri(j) − 1 and for all j′′, j′′′ ∈ J ′

with j′′ 6= j′′′, µ(j′′) 6= µ(j′′′), we have that all ri(j) − 1 agents in µ(J ′) are among the

rj(i) + 2∆M(r)− 1 most preferred options of agent j.
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Now notice that trivially ∆M(r) > 0 and hence rj(i) < rj(i) + 2∆M(r). So, i is also

among the rj(i) + 2∆M(r)− 1 most preferred options of agent j. Since i 6∈ µ(J ′),9 there are

|µ(J ′) ∪ {i}| = ri(j)− 1 + 1 agents among the rj(i) + 2∆M(r)− 1 most preferred options of

agent j. Hence, ri(j) ≤ rj(i) + 2∆M(r)− 1, which completes the proof.

Next, we show that for each n ≥ 2 the bound provided in Theorem 1 is in fact tight.

Proposition 1. [Tightness of bound for maximal rank gap between mates.]

For each n ≥ 2, there is a solvable roommate problem r such that for some stable matching

µ ∈ S(r),

ΓM(r, µ) = B1(r).

Proof. The case n = 2 follows from the proof of Theorem 1.

Let n = 4. Consider the problem (N, r) with N = {1, 2, 3, 4} and r given by Table 1. Each

column represents the ranking of an agent where higher placed agents are more preferred

agents. For instance, column 1 shows that agent 1’s most preferred roommate is agent 2, his

second most preferred roommate is agent 3, and his third most preferred roommate is agent 4.

Since being unmatched is each agent’s least preferred option, we have omitted the option

of being unmatched in the table. The unique stable matching at r is µ = {{1, 2}, {3, 4}},
the boxed matching in Table 1. So, r is solvable. Since γr(1, 2) = 0 and γr(3, 4) = 2,

ΓM(r, µ) = 2. Hence, ΓM(r, µ) = 2 = B1(r).

r1 r2 r3 r4

2 1 1 3

3 3 2 1

4 4 4 2

Table 1: Rankings in Proposition 1 when n = 4.

Let n = 6. Consider the problem (N, r) with N = {1, 2, ..., 6} and r given by Table 2. The

unique stable matching at r is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed matching in Table 2.

So, r is solvable. Since γr(1, 2) = 3, γr(3, 4) = 0, and γr(5, 6) = 0, we have ΓM(r, µ) = 3. It

is easy to verify that δr(1) = δr(4) = δr(6) = 2, δr(5) = 1, and δr(2) = δr(3) = 0. Hence,

∆M(r) = 2. So, ΓM(r, µ) = 3 = 2∆M(r)− 1 = B1(r).

9Suppose i ∈ µ(J ′). Then, i = µ(j′) for some j′ ∈ J ′. Since i = µ(j), we obtain the contradiction

j = j′ ∈ J ′. Hence, i 6∈ µ(J ′).
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r1 r2 r3 r4 r5 r6

3 3 4 3 3 3

4 1 1 1 4 4

5 4 5 5 6 5

6 5 6 6 1 1

2 6 2 2 2 2

Table 2: Rankings in Proposition 1 when n = 6.

Let n ≥ 8. We construct a problem (N, r) with N = {1, 2, ..., n} as follows. For conve-

nience, Table 3 illustrates our construction for n = 10. First, we require that the agents in

{1, 2, ..., 6} order their options in the same way as in Table 2 (see boldfaced part of Table 3)–

we will refer to this condition as “restricted problem.” Second, we impose the following

additional conditions on the rankings:

(1) For each agent j ∈ {7, 8, ..., n}, r2(j) = j − 1.

(2) For each agent i ∈ N\{2}, ri(2) = n− 1.

(3) For each agent i ∈ {1, 3, 4, 5, 6} and each agent j ∈ {7, 8, ..., n}, ri(j) = j − 2.

(4) Let i ∈ {8, 10, ..., n} be even. Then, (4a) for each agent j ∈ {3, 4, ..., i
2
+1}, ri(j) = j−2,

(4b) ri(i−1) = i
2
, (4c) ri(1) = i

2
+1, and (4d) for each agent j ∈ { i

2
+2, i

2
+3, ..., i−2},

ri(j) = j.

(5) For each even agent i ∈ {8, 10, ..., n−2} and each agent j ∈ {i+1, ..., n}, ri(j) = j−2.

(6) For each odd agent i ∈ {7, 9, ..., n − 1} and each agent j ∈ N\{i, i + 1}, (6a) ri(j) =

ri+1(j) and (6b) ri(i+ 1) = i+1
2

.

Consider the matching µ such that for each odd agent i ∈ N , µ(i) = i + 1 (the starred

matching in Table 3). We show that µ is stable at r. Let σ be the order such that σ =

(σ1, σ2, ..., σn) = (3, 4, 5, 6, ..., n−1, n, 1, 2). For each odd k ∈ {1, 3, ..., n−1}, {σk, σk+1} ∈ µ.

By the restricted problem, (4a), (4b), and (6), for each odd k ∈ {1, 3, ..., n − 1} and each

l > k + 1, we have rσk(σk+1) < rσk(σl) and rσk+1
(σk) < rσk(σl). Hence, for each odd

k ∈ {1, 3, ..., n−1}, σk and σk+1 are each other’s most preferred agent in N\{σ1, σ2, ..., σk−1}.
Hence, µ is stable. (So, in particular, r is solvable.) For each odd k ∈ {3, 5, ..., n − 1},
γr(σk, σk+1) = 0 and γr(σ1, σ2) = r1(2)−r2(1) = (n−1)−2 = n−3. Hence, ΓM(r, µ) = n−3.

7



Rank r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
1 3 3 4∗ 3∗ 3 3 3 3 3 3
2 4 1∗ 1 1 4 4 4 4 4 4
3 5 4 5 5 6∗ 5∗ 5 5 5 5
4 6 5 6 6 1 1 8∗ 7∗ 6 6
5 7 6 7 7 7 7 1 1 10∗ 9∗

6 8 7 8 8 8 8 6 6 1 1
7 9 8 9 9 9 9 9 9 7 7
8 10 9 10 10 10 10 10 10 8 8
9 2∗ 10 2 2 2 2 2 2 2 2

(1) (3) (2)

(4a)

(6a) (5)

(4d)

(4b)
(4c)

(6a)

(6b)

Table 3: Rankings in Proposition 1 when n = 10 (the boldfaced part is consistent with Table 2).

Next, we calculate for each i ∈ N , the disagreement over agent i, δr(i), to determine

∆M(r) = maxi∈N δ
r(i).

(i) By the restricted problem, (4c), and (6a), δr(1) = rn(1)− r2(1) =
(
n
2

+ 1
)
− 2 = n

2
− 1.

(ii) By (2), δr(2) = 0.

(iii) By the restricted problem, (4a), and (6a), δr(3) = 0, δr(4) = 2, and δr(5) = 1.

(iv) By (4) and (6), for each odd agent i ∈ {7, 9, ..., n − 3}, δr(i) = ri+2(i) − ri+1(i) =

i−
(
i+1
2

)
. The maximum of δr(i) is achieved at i = n− 3 where δr(n− 3) = rn−1(n−

3)− rn−2(n− 3) = (n− 3)−
(
n−3+1

2

)
= n

2
− 2.

(v) By the restricted problem, (4), and (6), for each even agent i ∈ {6, 8, ..., n − 2},
δr(i) = ri+1(i)− ri−1(i) = i− i

2
. The maximum of δr(i) is achieved at i = n− 2 where

δr(n− 2) = rn−1(n− 2)− rn−3(n− 2) = (n− 2)−
(
n−2
2

)
= n

2
− 1.

(vi) By (1), (3), (4b), (5), and (6a), δr(n−1) = r2(n−1)−rn(n−1) = (n−2)−
(
n
2

)
= n

2
−2.

(vii) By (1), (3), (5), and (6), δr(n) = r2(n)− rn−1(n− 2) = (n− 1)−
(
n
2

)
= n

2
− 1.

Finally, from (i)–(vii) it follows that ∆M(r) = maxi∈N δ
r(i) = n

2
− 1. Hence, we have

B1(r) = 2∆M(r)− 1 = 2
(
n
2
− 1
)
− 1 = n− 3 = ΓM(r, µ).
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An alternative approach to quantify the difference between a stable matching and assor-

tativeness is to look at the average rank gap instead of the maximal rank gap. Formally, the

average r-gap between mates at µ is defined as10

ΓA(r, µ) ≡ 2

n

∑
{i,j}∈µ

γr(i, j).

As an immediate corollary to Theorem 1 we obtain a bound for the average rank gap between

mates at a stable matching.

Corollary 1. [First bound for average rank gap between mates.]

Let r be a solvable roommate problem. Then, for each stable matching µ ∈ S(r),

ΓA(r, µ) ≤ B1(r).

Our next result provides an alternative bound for the average gap between mates at a

stable matching. The average disagreement at r is defined as

∆A(r) ≡ 1

n

∑
i∈N

δr(i).

Theorem 2 shows that the average gap at a stable matching can be bounded by means of

the average disagreement.

Theorem 2. [Second bound for average rank gap between mates.]

Let r be a solvable roommate problem. Then, for each stable matching µ ∈ S(r),

ΓA(r, µ) ≤ 4∆A(r) + 1 ≡ B2(r).

Proof. Let r be a solvable problem. Let µ ∈ S(r). Let N0 ≡ {i ∈ N : ri(µ(i)) > rµ(i)(i)}.
Note that |N0| ≤ n

2
. If N0 = ∅, then the statement follows trivially.

Suppose N0 6= ∅. Let i0 ∈ N0. Let Mi0 be the set of ri0(µ(i0)) − 1 agents µ(j) with

j ∈ N such that i0 strictly prefers agent µ(j) to µ(i0). Since µ ∈ S(r), for each j ∈ N with

µ(j) ∈Mi0 we have

rµ(j)(j) < rµ(j)(i
0). (1)

Let k ∈ N . Obviously, there are maxi∈N\{i0} ri(i
0) − 1 agents in N that in rk obtain a

rank that is strictly smaller than maxi∈N\{i0} ri(i
0). Hence, there are at least

max

{
0 ,
(
ri0(µ(i0))− 1

)
−
(

max
i∈N\{i0}

ri(i
0)− 1

)}
= max

{
0 , ri0(µ(i0))− max

i∈N\{i0}
ri(i

0)

}
agents j ∈ N with µ(j) ∈ Mi0 that in rk obtain a rank that is weakly larger than the num-

ber maxi∈N\{i0} ri(i
0), i.e., rk(j) ≥ maxi∈N\{i0} ri(i

0). Note that rk(j) ≥ maxi∈N\{i0} ri(i
0)

10Recall that any stable matching consists of n
2 pairs of agents.
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implies maxi∈N\{j} ri(j) ≥ maxi∈N\{i0} ri(i
0) unless j = k. Hence, there are at least

max
{

0 , ri0(µ(i0))−maxi∈N\{i0} ri(i
0)− 1

}
agents j ∈ N with µ(j) ∈ Mi0 and that sat-

isfy

max
i∈N\{j}

ri(j) ≥ max
i∈N\{i0}

ri(i
0). (2)

Let Pi0 be the set of agents j with µ(j) ∈ Mi0 that satisfy (1) and (2). From the above

it immediately follows that

|Pi0| ≥ ri0(µ(i0))− max
i∈N\{i0}

ri(i
0)− 1. (3)

Let P ≡ ∪i0∈N0Pi0 . For each j ∈ P , let Qj ≡ {i0 ∈ N0 : j ∈ Pi0}. Since each j ∈ P

satisfies (1) for each i0 ∈ Qj, agent µ(j) gives a smaller rank to j than to each of the agents

i0 in Qj, which implies that rµ(j)(j) + |Qj| ≤ maxi0∈Qj
rµ(j)(i

0). Hence, for each j ∈ P ,

rµ(j)(j) ≤ max
i0∈Qj

rµ(j)(i
0)− |Qj| ≤ max

i0∈Qj

max
i∈N\{i0}

ri(i
0)− |Qj|, (4)

where the second inequality follows from µ(j) 6= i0. (By definition of Mi0 , i
0 strictly prefers

agent µ(j) to µ(i0). Since i0 is the worst option for i0, it follows that µ(j) 6= i0.) Since each

j ∈ P satisfies (2) with respect to each i0 ∈ Qj, we also have that for all j ∈ P ,

max
i∈N\{j}

ri(j) ≥ max
i0∈Qj

max
i∈N\{i0}

ri(i
0). (5)

Inequalities (4) and (5) imply that for all j ∈ P ,

|Qj| ≤ max
i∈N\{j}

ri(j)− rµ(j)(j) ≤ max
i∈N\{j}

ri(j)− min
i∈N\{j}

ri(j) = δr(j), (6)

where the second inequality follows from j 6= µ(j) (because µ is stable). Then,∑
i0∈N0

[
ri0(µ(i0))− max

i∈N\{i0}
ri(i

0)− 1

]
≤
∑
i0∈N0

|Pi0| =
∑
j∈P

|Qj| ≤
∑
j∈P

δr(j) ≤
∑
i∈N

δr(i), (7)

where the first and second inequalities follow from (3) and (6), respectively. Moreover,∑
i0∈N0

[
max

i∈N\{i0}
ri(i

0)− rµ(i0)(i0)
]
≤
∑
i0∈N0

[
max

i∈N\{i0}
ri(i

0)− min
i∈N\{i0}

ri(i
0)

]
=
∑
i0∈N0

δr(i0). (8)

Adding inequalities (7) and (8) yields∑
i0∈N0

[
ri0(µ(i0))− rµ(i0)(i0)

]
− |N0| ≤

∑
i∈N

δr(i) +
∑
i0∈N0

δr(i0) ≤ 2
∑
i∈N

δr(i).

Hence,

ΓA(r, µ) =
2

n

∑
{i,j}∈µ

|ri(j)− rj(i)| =
2

n

∑
i0∈N0

[
ri0(µ(i0))− rµ(i0)(i0)

]
≤ 2

n

(
2
∑
i∈N

δr(i) + |N0|

)
≤ 4∆A(r) +

2

n
|N0| ≤ 4∆A(r) + 1.
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Bound B1 is useful for roommate problems where the maximal disagreement is “small”

relative to the average disagreement. Bound B2, on the other hand, is useful for roommate

problems where the maximal disagreement is “large” relative to the average disagreement.

We illustrate this in the following examples where we exhibit two solvable roommate problems

r1 and r2 such that B1(r1) > B2(r1) and B2(r2) > B1(r2).

Example 1. [Solvable roommate problem r1 with B1(r1) > B2(r1).]

Consider the problem (N, r1) with N = {1, 2, ..., 6} and r1 = r given by Table 4. The unique

stable matching at r1 is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed matching in Table 4. So, r1 is

solvable.

r1 r2 r3 r4 r5 r6

3 3 4 3 3 3

4 4 1 1 4 4

5 5 5 5 6 5

6 6 6 6 1 1

2 1 2 2 2 2

Table 4: Rankings in Example 1.

It is easy to verify that δr
1
(1) = 3, δr

1
(4) = δr

1
(6) = 1, and δr

1
(2) = δr

1
(3) = δr

1
(5) = 0.

Hence, B1(r1) = 2∆M(r1)−1 = 2×3−1 = 5 and B2(r1) = 4∆A(r1)+1 = 4× 3+0+0+1+0+1
6

+

1 = 13
3

. Therefore, B1(r1) > B2(r1). �

Example 2. [Solvable roommate problem r2 with B2(r2) > B1(r2).]

Consider the problem (N, r2) with N = {1, 2, ..., 6} and r2 = r given by Table 2. The unique

stable matching at r2 is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed matching in Table 2. So, r2 is

solvable.

It is easy to verify that δr
2
(1) = δr

2
(4) = δr

2
(6) = 2, δr

2
(5) = 1, and δr

2
(2) = δr

2
(3) = 0.

Hence, B1(r2) = 2∆M(r2)−1 = 2×2−1 = 3 and B2(r2) = 4∆A(r2) = 4× 2+0+0+2+1+2
6

+1 =
17
3

. Therefore, B2(r2) > B1(r2). �

Finally, we have carried out computer simulations to study the performance of B1 and

B2 as upper bounds for ΓA. Our simulations suggest that neither bound is tight, but we

have not been able to formally prove this.

4 Size of the core

In this section, we quantify the size of the core of a solvable roommate problem in terms of

rank gaps. We first introduce some notation. Let r be a solvable roommate problem. For

11



each i ∈ N , a stable mate of i is an agent who is matched to i at a stable matching, i.e.,

j is a stable mate of i if there is µ ∈ S(r) such that µ(i) = j. For each i ∈ N , we denote

i’s best stable mate by µB(i) and i’s worst stable mate by µW (i), i.e., there are

stable matchings µ′, µ′′ ∈ S(r) such that µB(i) = µ′(i) and µW (i) = µ′′(i) and for all stable

matchings µ ∈ S(r), ri(µ
B(i)) ≤ ri(µ(i)) ≤ ri(µ

W (i)). Note that in general the functions

µB : N → N and µW : N → N are not matchings.

Lemma 1 shows that whenever an agent obtains his best stable mate the latter obtains

his worst stable mate, and vice versa.

Lemma 1. Let r be a solvable roommate problem. For each i ∈ N , µW (µB(i)) = i and

µB(µW (i)) = i.

Proof. Let r be a solvable roommate problem. Let i ∈ N . Let j ≡ µB(i). Suppose

to the contrary that µW (j) 6= i. By definition of µW (j), there is µ ∈ S(r) such that

µ(j) = µW (j) 6= i and rj(i) < rj(µ(j)). Moreover, by definition of µB(i), ri(j) < ri(µ(i)).

Hence, {i, j} blocks µ, a contradiction to µ ∈ S(r). Hence, µW (j) = i. Hence, µW (µB(i)) = i.

Next, we prove the second statement. Note that µB is injective. (To see this, suppose

that there are distinct i, i′ ∈ N such that µB(i) = µB(i′) = j. From the first statement it

follows that i = µW (µB(i)) = µW (µB(i′)) = i′, which contradicts i 6= i′.) Since N is finite

and µB : N → N is injective, µB is bijective. Let i ∈ N . There is (exactly one) j ∈ N

such that µB(j) = i. From the first statement, µW (µB(j)) = j. So, µW (i) = j. Substituting

j = µW (i) in µB(j) = i yields the desired conclusion.

Similarly to Section 3, as a first measure of the size of the core we consider the maximal

rank gap in the core. Formally, the maximal r-gap in the core of r is given by

ΓM(r) ≡ max
i∈N

ri(µ
W (i))− ri(µB(i)).

The following result is immediate.

Theorem 3. [Bound for maximal rank gap in core.]

Let r be a solvable roommate problem. Then, ΓM(r) ≤ n− 2 ≡ B3(r).

Next, we show that for each n ≥ 2 the bound provided in Theorem 3 is in fact tight.

Proposition 2. [Tightness of bound for maximal rank gap in core.]

For each n ≥ 2, there is a solvable roommate problem r such that ΓM(r) = B3(r).

Proof. If n = 2, then ri(j) = 1 for all i, j ∈ N with i 6= j and at the unique stable

matching µ the two agents are matched to one another. One immediately verifies that

ΓM(r, µ) = n− 2 = 0.

12



r1 r2 r3 r4 r5 . . . rn−1 rn

2 3∗ 4 5∗ 6 . . . n 1∗

n∗ 1
... 3 4∗ . . . n− 2∗ n− 1

...
...

...
...

... . . .
...

...
...

... 2∗
...

... . . .
...

...

Table 5: Rankings in Proposition 2 when n ≥ 4.

Let n ≥ 4. Consider any problem (N, r) with N = {1, 2, ..., n} and r such that for each

agent i ∈ N\{n}, ri(i+ 1) = 1 and rn(1) = 1 and for each agent i ∈ N\{1, 3}, ri(i− 1) = 2,

r1(n) = 2, and r3(2) = n− 1, as illustrated in Table 5.

Let µ be the matching such that for each odd agent i ∈ N , µ(i) = i+ 1 and for each even

agent i ∈ N , µ(i) = i− 1 (the boxed matching in Table 5). We show that µ is stable. At µ,

each odd agent is matched to his most preferred agent and each even agent only is willing

to block with a particular odd agent. Hence, there is no blocking pair for µ. So, µ is stable.

(So, in particular, r is solvable.)

Let µ∗ be the matching such that for each odd agent i ∈ N\{1}, µ∗(i) = i − 1 and

µ∗(1) = n and for each even agent i ∈ N\{n}, µ∗(i) = i + 1 and µ∗(n) = 1 (the starred

matching in Table 5). We show that µ∗ is stable. At µ∗, each even agent is matched to his

most preferred agent and each odd agent in N\{3} is only willing to block with a particular

even agent. Therefore, there is no blocking pair for µ∗. Hence, µ∗ is stable.

Since by definition ΓM(r) ≤ n − 2, it follows from r3(µ
W (3)) − r3(µB(3)) ≥ r3(µ

∗(3)) −
r3(µ(3)) = r3(2)− r3(4) = n− 2 that ΓM(r) = n− 2 = B3(r).

Alternatively, we can measure the size of the core by averaging the gap between the worst

and best stable mates over all agents. Formally, the average r-gap in the core of r is

given by

ΓA(r) ≡ 1

n

∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]
.

An immediate corollary to Theorem 3 is the following bound for the average rank gap in the

core.

Corollary 2. [First bound for average rank gap in core.]

For each solvable roommate problem r, ΓA(r) ≤ B3(r).

The next result provides a better bound than B3 for the average rank gap in the core.
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Theorem 4. [Second bound for average rank gap in core.]

For each solvable roommate problem r, ΓA(r) ≤ ∆A(r) ≡ B4(r).

Proof. Let r be a solvable roommate problem. It follows from Lemma 1 that∑
i∈N

ri(µ
W (i)) =

∑
j∈N

rµB(j)(j) and
∑
i∈N

ri(µ
B(i)) =

∑
j∈N

rµW (j)(j).

Therefore,
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]

=
∑

j∈N
[
rµB(j)(j)− rµW (j)(j)

]
. Then, since

∑
j∈N

[
rµB(j)(j)− rµW (j)(j)

]
≤
∑
j∈N

[
max
i∈N\{j}

ri(j)− min
i∈N\{j}

ri(j)

]
=
∑
j∈N

δr(j),

it follows that ΓA(r) = 1
n

∑
i∈N
[
ri(µ

W (i))− ri(µB(i))
]
≤ 1

n

∑
i∈N δ

r(i) = ∆A(r).

Lemma 2. [Comparison of bounds for average rank gap in core.]

For each solvable roommate problem r, B4(r) ≤ B3(r).

Proof. Let r be a solvable problem. Suppose that B4(r) > B3(r), i.e., 1
n

∑
i∈N δ

r(i) =

∆A(r) > n − 2. Then,
∑

i∈N δ
r(i) > n(n − 2). Note that

∑
i∈N δ

r(i) is maximal if each

agent is ranked first by some agent and is ranked (n−1)st by some other agent. In this case,∑
i∈N δ

r(i) = n(n − 2). Hence, the inequality is not possible. Therefore, for each solvable

problem r, B4(r) ≤ B3(r).

Our final result shows the tightness of the bound B4 for an infinite number of population

sizes n.

Proposition 3. [Tightness of bound B4 for average rank gap in core.]

For each n = 6l where l is a positive integer, there is a solvable roommate problem r such

that

ΓA(r) = B4(r).

Proof. Let n = 6l where l is a positive integer. We construct a problem (N, r) such that

N = {1, 2, ..., n} with n = 6l. Table 6 illustrates the construction for the case where n = 12,

i.e., l = 2. We impose the following restrictions on the rankings of N :

(1) For each k ∈ {0, 1, ..., l − 1} and each i ∈ {1, 2}, we have ri+6k(i + 6k + 1) = 1.

For each k ∈ {0, 1, ..., l − 1} and each i ∈ {5, 6}, we have ri+6k(i + 6k − 1) = 1,

r3+6k(3 + 6k − 2) = 1, and r4+6k(4 + 6k + 2) = 1.
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Rank r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
1 2 3 1∗ 6 4∗ 5 8 9 7∗ 12 10∗ 11
2 5 6∗ 4 3 1 2∗ 11 12∗ 10 9 7 8∗

3
4
5
6
7
8 10 11 12 10 11 12 10 11 12 11∗ 12 10
9 7 8 9 7 8 9 9∗ 7 8 7 8 9
10 4 5 6 5∗ 6 4 4 5 6 4 5 6
11 3∗ 1 2 1 2 3 1 2 3 1 2 3

(1)

(2)

(3)

(4)

(5)

(6)

Table 6: Rankings in Proposition 3 when n = 12. Matchings µ1 (underlined), µ2 (starred), and

µ3 (boldfaced).

(2) For each k ∈ {0, 1, ..., l − 1} and each i ∈ {1, 2}, we have ri+6k(i + 6k + 4) = 2.

For each k ∈ {0, 1, ..., l − 1} and each i ∈ {5, 6}, we have ri+6k(i + 6k − 4) = 2,

r3+6k(3 + 6k + 1) = 2, and r4+6k(4 + 6k − 1) = 2.

(3) For each k ∈ {0, 1, ..., l−1} and each i ∈ {2, 3}, we have ri+6k(i+ 6k−1) = n−2k−1.

For each k ∈ {0, 1, ..., l−1} and each i ∈ {4, 5}, we have ri+6k(i+ 6k+ 1) = n−2k−2,

r1+6k(1 + 6k + 2) = n− 2k − 1, and r6+6k(6 + 6k − 2) = n− 2k − 2.

(4) For each i ∈ {1, 2, 3}, each p ∈ {1, 2, ..., 2l − 1}, and each k ∈ {0, 1, ..., p− 1}, we have

ri+3p(i+ 3k) = n− k − 1.

(5) For each i ∈ {1, 2, 3}, each p ∈ {0, 1, ..., l}, and each k ∈ {p + 1, ..., 2l − 1}, we have

ri+3p(i+ 3k) = n− k − 1.

(6) Each agent i ∈ N places the agents in N\{i} that have not been assigned yet to a

rank in arbitrary order (so that they get ranks 3 up to n− 2l − 1).

First, we show that the rankings are well-defined i.e., there is no incompatibility in the

construction above. In (1), we describe the first row of the table and in (2), the second

row of the table. Note that for each agent’s ranking, the agent in row 1 differs from the

one in row 2. In (3), we describe a threshold row for each agent which will represent his

largest rank at a stable matching. Note that for each s ∈ {0, 1, ..., 2l− 1} and for each agent

i ∈ {1 + 3s, 2 + 3s, 3 + 3s}, the agent in the threshold row is again an agent in the set

{1 + 3s, 2 + 3s, 3 + 3s} and has not appeared in the construction before (i.e., (1) and (2)). In
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(4), we describe the ranks below the threshold row for each agent. Note that for each agent

i, these ranks are only for certain agents j with j < i (and they have not appeared before).

In (5), we describe some ranks above the threshold row for each agent. Note that for each

agent i, these ranks are only for certain agents j with j > i (and they have not appeared

before). Conditions (4) and (5) are symmetric in the sense that for any two agents i, j ∈ N ,

agent i has agent j in some rank described by (4) if and only if agent j has agent i in some

rank described by (5).

Next, we define three matchings µ1, µ2, and µ3. Let µ1 be the matching such that for

each odd agent i ∈ N , µ1(i) = i + 1 (the underlined matching in Table 6). Let µ2 be the

matching such that for each k ∈ {0, 1, ..., l−1}, µ2(1+6k) = 3+6k, µ2(2+6k) = 6+6k, and

µ2(4 + 6k) = 5 + 6k (the starred matching in Table 6). Let µ3 be the matching such that for

each k ∈ {0, 1, ..., l− 1}, µ3(1 + 6k) = 5 + 6k, µ3(2 + 6k) = 3 + 6k, and µ3(4 + 6k) = 6 + 6k

(the boldfaced matching in Table 6). We show that µ1 is stable. Because of the symmetry

in our construction, the stability of µ2 and µ3 follows from similar arguments. For each

k ∈ {0, 1, ..., l − 1}, we have

r1+6k(µ
1(1 + 6k)) = r1+6k(1 + 6k + 1) = 1 since 1 + 6k is odd and (1),

r2+6k(µ
1(2 + 6k)) = r2+6k(2 + 6k − 1) = n− 2k − 1 since 2 + 6k is even and (3),

r3+6k(µ
1(3 + 6k)) = r3+6k(3 + 6k + 1) = 2 since 3 + 6k is odd and (2),

r4+6k(µ
1(4 + 6k)) = r4+6k(4 + 6k − 1) = 2 since 4 + 6k is even and (2),

r5+6k(µ
1(5 + 6k)) = r5+6k(5 + 6k + 1) = n− 2k − 2 since 5 + 6k is odd and (3), and

r6+6k(µ
1(6 + 6k)) = r6+6k(6 + 6k − 1) = 1 since 6 + 6k is even and (1).

At µ1, for each k ∈ {0, 1, ..., l−1}, agents 1+6k and 6+6k are matched to their most preferred

agent. For each k ∈ {0, 1, ..., l − 1}, agents 3 + 6k and 4 + 6k are only willing to block with

particular agents, namely 1+6k and 6+6k, respectively, but as we have just noticed each of

the latter agents is matched to his most preferred agent. It only remains to prove that there

is no blocking pair contained in the set {2+6k : k = 0, 1, ..., l−1}∪{5+6k : k = 0, 1, ..., l−1}.
First, for each k, k′ ∈ {0, 1, ..., l − 1} such that k′ < k, we have

r2+6k(2 + 6k′) = r2+6k(2 + 3(2k′))
by (4)
== n− 2k′ − 1 > n− 2k − 1 = r2+6k(µ

1(2 + 6k)),

r5+6k(5 + 6k′) = r5+6k(2 + 3(1 + 2k′))
by (4)
== n− 2k′ − 2 > n− 2k − 2 = r5+6k(µ

1(5 + 6k)), and

r2+6k(5 + 6k′) = r2+6k(2 + 3(1 + 2k′))
by (4)
== n− 2k′ − 2 > n− 2k − 1 = r2+6k(µ

1(2 + 6k)).

Second, for each k, k′ ∈ {0, 1, ..., l − 1} such that k′ ≤ k, we have

r5+6k(2 + 6k′) = r5+6k(2 + 3(2k′))
by (4)
== n− 2k′ − 1 > n− 2k − 2 = r5+6k(µ

1(5 + 6k)).

Hence, there is no blocking pair for µ1. So, µ1 is stable. (So, in particular, r is solvable.)
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Finally, we prove that the bound is tight, i.e., ΓA(r) = B4(r). We first calculate for each

i ∈ N , δr(i), to obtain
∑

i∈N δ
r(i). By (1), for each i ∈ N , minj∈N\{i} rj(i) = 1. By (3),

(4), and (5), for each s ∈ {0, 1, ..., 2l − 1} and each i ∈ {1 + 3s, 2 + 3s, 3 + 3s}, we have

maxj∈N\{i} rj(i) = n− s− 1. Then,∑
i∈N

δr(i) =
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

δr(j + 3s)

=
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

[(n− s− 1)− 1] =
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

(n− s− 2)

=
∑

s∈{0,...,2l−1}

3(n− s− 2) = 6l(n− 2)−
∑

s∈{0,...,2l−1}

3s

= 6l(6l − 2)− 3(2l − 1)2l

2
= 30l2 − 9l.

Next, we consider
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]
. For each i ∈ N , let Wi and Bi be the

worst mate and the best mate in {µ1(i), µ2(i), µ3(i)}, respectively. For each k ∈ {0, 1, ..., l−1}
and each j ∈ {1, 2, 3}, we have

rj+6k(Wj+6k)− rj+6k(Bj+6k) = (n− 2k − 1)− 1 = n− 2k − 2.

Similarly, for each k ∈ {0, 1, ..., l − 1} and each j ∈ {4, 5, 6}, we have

rj+6k(Wj+6k)− rj+6k(Bj+6k) = (n− 2k − 2)− 1 = n− 2k − 3.

Hence,∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]
≥
∑
i∈N

[ri(Wi)− ri(Bi)]

=
∑

k∈{0,...,l−1}

∑
j∈{1,...,6}

[rj+6k(Wj+6k)− rj+6k(Bj+6k)]

=
∑

k∈{0,...,l−1}

∑
j∈{1,2,3}

(n− 2k − 2) +
∑

k∈{0,...,l−1}

∑
j∈{4,5,6}

(n− 2k − 3)

=
∑

k∈{0,...,l−1}

3(n− 2k − 2 + n− 2k − 3)

=
∑

k∈{0,...,l−1}

3(2n− 4k − 5) = 3l(2n− 5)−
∑

k∈{0,...,l−1}

12k

= 36l2 − 15l − 12l(l − 1)

2
= 30l2 − 9l.

From Theorem 4 and
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]
≥
∑

i∈N δ
r(i), it follows that for each

i ∈ N , Wi = µW (i) and Bi = µB(i), and more importantly,

ΓA(r) =
1

n

∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]

= 5l − 3

2
=

1

n

∑
i∈N

δr(i) = B4(r).
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