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Abstract

The case for progressive income taxation is often based on the classic result of Jakobsson

(1976) and Fellman (1976), according to which progressive and only progressive income

taxes—in the sense of increasing average tax rates on income—ensure a reduction in in-

come inequality. This result has been criticized on the ground that it ignores the possible

disincentive effect of taxation on work effort, and the resolution of this critique has been

a long-standing problem in public finance. This paper provides a normative rationale for

progressivity that takes into account the effect of an income tax on labor supply. It shows

that a tax schedule is inequality reducing only if it is progressive—in the sense of in-

creasing marginal tax rates on income, and identifies a necessary and sufficient condition

on primitives under which progressive and only progressive taxes are inequality reducing.

Keywords: progressive taxation; income inequality; incentive effects of taxation.

JEL classifications: D63, D71.

1 Introduction

A prominent and largely studied normative rationale for progressive income taxation derives

from the fundamental result of Jakobsson (1976) and Fellman (1976), which asserts that

progressive and only progressive income taxes—in the sense of increasing average tax rates

on income—reduce income inequality (regardless of the income distribution they are applied
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to) according to the relative Lorenz dominance criterion.1 Jakobsson (1976) and Fellman

(1976) were early contributors to a vast literature on the redistributive effects of tax systems

initiated by Musgrave and Thin (1948).2 This literature is for the most part framed in terms

of exogenous income. In particular, while the work of Jakobsson (1976) and Fellman (1976)

has been extended in various directions,3 treatments that incorporate the disincentive effects

of taxation tend to emphasize negative results, such as the existence of non-pathological

consumer preferences for which progressive tax schedules increase income inequality. As

shown in Ebert and Moyes (2007), the Jakobsson-Fellman result can be extended to the

case of endogenous income, but in this case inequality reducing tax schedules are no longer

completely characterized by average rate progressivity. Instead, the effect of a tax on gross

incomes, in addition to its shape, determines the redistributive effect.4 In particular, a

progressive tax schedule may well increase income inequality if the associated elasticity of

gross income with respect to non-taxed income is large enough. Allingham (1979) and Ebert

and Moyes (2003, 2007) provide examples of such progressive tax schedules.

In this paper we recover a version of the Jakobsson-Fellman result that takes into account

the incentive effects of taxation.5 Our first result states that a piecewise linear tax schedule

is inequality reducing (i.e., it reduces income inequality whatever the distribution of abilities)

only if it is marginal-rate progressive (i.e., it exhibits nondecreasing marginal tax rates on

income) (Theorem 1). A second result asserts that the set of all inequality reducing tax

schedules is precisely the set of all marginal-rate progressive tax schedules if and only if

the linear tax schedules are inequality reducing (Theorem 2). This property of linear taxes

is then characterized in terms of first principles (essentially a condition on preferences),

which allows us to identify a class of utility functions for which income taxes are inequality

reducing if and only if they are marginal-rate progressive (Theorem 3 and Corollary 3). Some

additional results and illustrative examples are also provided in Section 3.

The main results are formulated within the standard Mirrlees model (see Mirrlees, 1971),

which provides a suitable framework for the analysis of nonlinear income taxation with

endogenous labor supply, and rest on mild assumptions. First, the set of admissible tax

schedules is defined as the set of all continuous, piecewise linear maps from pre-tax incomes

to tax liabilities that are nondecreasing and preserve the pre-tax ranking of income (i.e.,

marginal tax rates are less than unity). Second, consumers require an increasingly large

1A second normative rationale for income tax progressivity is based on the principle of equal sacrifice, which
dates back to Samuelson (1947). See Young (1990); Berliant and Gouveia (1993); Ok (1995); Mitra and Ok
(1996, 1997); D’Antoni (1999). Progressive income taxation has also been studied from a positive perspective as
an equilibrium outcome of a voting game (e.g., see Snyder and Kramer, 1988; Marhuenda and Ortuño-Ortín,
1995; Roemer, 1999; Carbonell-Nicolau and Klor, 2003; Carbonell-Nicolau and Ok, 2007).

2See Lambert (2002) for a survey.
3See, e.g., Kakwani (1977); Hemming and Keen (1983); Eichhorn et al. (1984); Liu (1985); Formby et al.

(1986); Thon (1987); Latham (1988); Thistle (1988); Moyes (1988, 1994); Le Breton et al. (1996); Ebert and
Moyes (2000); Ju and Moreno-Ternero (2008).

4See also Onrubia et al. (2005) and Preston (2007).
5See Section 4 for a discussion of the relationship between our results and the Jakobsson-Fellman result.
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and unbounded compensation for an extra unit of labor as their leisure time tends to zero.6

Finally, consumer preferences satisfy agent monotonicity, a condition introduced by Mirrlees

(1971, Assumption B, p. 182) and named by Seade (1982). This condition requires that

the marginal rate of substitution of gross income for consumption be nonincreasing with

productivity, and, as pointed out by Mirrlees (1971), is equivalent to the condition that, in

the absence of taxation, consumption does not decrease as the wage rate increases.

The paper is organized as follows. Section 2 lays out the formal setting. The main results,

together with sketches of their proofs, are presented in Section 3. Technical proofs are

relegated to the Appendix.

2 The model

Consider an economy with a finite number n ≥ 2 of individuals. The welfare of an individual is

measured by a continuous utility function u :R+× [0,1]→R defined over consumption-labor

pairs (c, l) ∈R+× [0,1] such that u(·, l) is strictly increasing in c for each l ∈ [0,1), and u(c, ·)
is strictly decreasing in l for each c > 0. It is assumed that u is strictly quasiconcave on

R++× [0,1) and twice continuously differentiable on R++× (0,1).7 For (c, l) ∈R++× (0,1), let

MRS(c, l) :=−ul(c, l)
uc(c, l)

denote the marginal rate of substitution of labor for consumption, where

uc(c, l) := ∂u(c, l)
∂c

and ul(c, l) := ∂u(c, l)
∂l

.

(Observe that MRS(c, l)≥ 0 for each (c, l).) We assume that, for each c > 0,

lim
l→1− MRS(c, l)=+∞ and lim

l→0+ MRS(c, l)<+∞. (1)

The second condition is readily acceptable. According to the first condition, the compensation

required by an individual for an extra unit of working time tends to infinity as the agent’s

leisure time approaches zero.8

Let U denote the set of all utility functions satisfying the above conditions.9

6In other words, the marginal rate of substitution of labor for consumption tends to infinity as leisure time
vanishes.

7Following the tradition of the literature on optimal taxation, it is assumed that u is common across agents;
accordingly, this map carries a connotation of “social norm.”

8This condition is used in Lemma 2.
9All these conditions are readily acceptable, except, perhaps, the first limit condition in (1) (which we just

described intuitively). Many standard utility functions belong to the class U . See Remark 3 and footnote 12 for
some concrete examples. For an instance of a utility function not in U (precisely because it violates the first
limit condition in (1)), consider the case of a constant marginal rate of substitution of labor for consumption
(i.e., the case when labor and consumption are perfect substitutes).
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Prior to formulating the agents’ utility maximization problem, we need the formal defin-

ition of a tax schedule. Throughout the sequel we confine attention to nondecreasing and

order-preserving piecewise linear tax schedules.

Definition 1. Let (α0, t, y) = (
α0, (t0, ..., tK ), (y0, ..., yK )

)
, where α0 ≥ 0, K ∈Z+, tk ∈ [0,1) for

each k ∈ {0, ...,K}, tk 6= tk+1 whenever k ∈ {0, ...,K −1} and K ≥ 1, and 0 = y0 < ·· · < yK . A

piecewise linear tax schedule is a real-valued map T on R+ uniquely determined by

(α0, t, y) as follows:

T(y) :=



−α0 + t0 y if 0= y0 ≤ y≤ y1,

−α0 + t0 y1 + t1(y− y1) if y1 < y≤ y2,
...

...

−α0 + t0 y1 + t1(y2 − y1)+·· ·+ tK−1(yK − yK−1)+ tK (y− yK ) if yK < y.

Here T(y) is interpreted as the tax liability for gross income level y.

Letting yK+1 := +∞, the tax schedule corresponding to the vector (α0, t, y) can be suc-

cinctly expressed as

T(y)= tk y−αk for yk ≤ y≤ yk+1, k ∈ {0, . . . ,K},

where αk :=αk−1 + (tk − tk−1)yk for k ∈ {1, . . . ,K}.

We write (α0, t, y) and the associated map T interchangeably. The set of piecewise linear

tax schedules is denoted by T .

Individuals differ in their abilities. An ability distribution is a vector a= (a1, . . . ,an) ∈
Rn++ such that a1 ≤ ·· · ≤ an (that is, without loss of generality, individuals are sorted in

ascending order according to their ability). The set of all ability distributions is denoted by

A .

An agent of ability a > 0 who chooses l ∈ [0,1] units of labor and faces a tax schedule

T ∈ T consumes c = al −T(al) units of the good and obtains a utility of u(c, l). Thus, the

agent’s problem is

max
l∈[0,1]

u (al−T(al), l) . (2)

Because the members of U and T are continuous, for given u ∈U , a > 0, and T ∈T , the

optimization problem in (2) has a solution, although it need not be unique. A solution
function is a map lu : R++ ×T → [0,1] such that lu(a,T) is a solution to (2) for each

(a,T) ∈ R++×T . The pre-tax and post-tax income functions associated to a solution

function lu, denoted by yu :R++×T →R+ and xu :R++×T →R+ respectively, are given by

yu(a,T) := alu(a,T) and xu(a,T) := alu(a,T)−T
(
alu(a,T)

)
.

The superscript u will sometimes be omitted to lighten notation.
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Given a > 0, let Ua :R+× [0,a] →R be defined by Ua(c, y) := u
(
c, y

a
)
. For (c, y,a) ∈R3++

with y< a, define

Ua
c (c, y) := ∂Ua(c, y)

∂c
, Ua

y (c, y) := ∂Ua(c, y)
∂y

, and ηa(c, y) :=−
Ua

y (c, y)

Ua
c (c, y)

.

Observe that ηa(c, y) can be viewed as the marginal rate of substitution of gross income for

consumption at (c, y) for an agent with ability a.

The following condition plays an important role in the proofs of our main results. It was

introduced by Mirrlees (1971, Assumption B, p. 182) and termed agent monotonicity by Seade

(1982).

Definition 2. A utility function u ∈U satisfies agent monotonicity if ηa(c, y)≥ ηa′
(c, y) for

each (c, y) ∈R2+ and 0< a < a′ with y< a.

Agent monotonicity is a single-crossing condition on the agents’ indifference curves in the

space of gross income-consumption pairs (y, c). It is equivalent to the condition that (in the

absence of taxation) consumption is a nondecreasing function with respect to productivity, for

any non-wage income (Mirrlees, 1971, p. 182). A sufficient condition for agent monotonicity

is that consumption is not an inferior good (i.e., it does not decrease as lump-sum income

increases) (Myles, 1995, p. 136).

The set of all the members of U satisfying agent monotonicity is represented as U ∗.10

An income distribution is a vector z = (z1, ..., zn) ∈Rn+ of incomes arranged in increasing

order, i.e., z1 ≤ ·· · ≤ zn; here z1 denotes the income of the poorest agent, z2 denotes the income

of the second poorest agent, and so on.

In this paper we use the standard relative Lorenz ordering to make inequality com-

parisons between income distributions. Given two income distributions z = (z1, ..., zn) and

z′ = (z′1, ..., z′n) with z1, z′1 > 0, we say that z is at least as equal as z′ if z Lorenz dominates
z′, i.e., if ∑k

i=1 zi∑n
i=1 zi

≥
∑k

i=1 z′i∑n
i=1 z′i

, for all k ∈ {1, ...,n}.

For u ∈ U ∗, and given pre-tax and post-tax income functions yu and xu, an ability

distribution a = (a1, ...,an) ∈ A and a tax schedule T ∈ T determine a pre-tax income
distribution

yu(a,T) := (
yu(a1,T), ..., yu(an,T)

)
and a post-tax income distribution

xu(a,T) := (
xu(a1,T), ..., xu(an,T)

)
.11

10See Remark 3 and footnote 12 for examples of utility functions in U ∗. Agent monotonicity is a mild
requirement, and it is not easy to find preferences that violate it. As per our previous remark, any such
preferences would necessarily treat consumption as an inferior good.

11Under the agent monotonicity condition, in both cases the vector components are arranged in increasing
order. See Lemma 1 below.
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In the absence of taxation, i.e., if T ≡ 0, one has yu(a,0)= xu(a,T).

Definition 3. Let u ∈ U . A tax schedule T ∈ T is income inequality reducing with
respect to u, which we denote as (u-iir), if xu(a,T) Lorenz dominates yu(a,0) for each ability

distribution a := (a1, ...,an) ∈A and for each pre-tax and post-tax income functions yu and

xu.

The functions yu and xu are uniquely determined at almost every point of their domain

(cf. Lemma 1 below). The quantifier for yu and xu in Definition 3 deals with the cases when

these maps are not uniquely defined.

3 The main results

We begin by defining two important subclasses of the set T of piecewise linear tax schedules.

Definition 4. A tax schedule T ∈T is marginal-rate progressive if it is a convex function.

The set of all marginal-rate progressive tax schedules in T is denoted by Tprog.

Definition 5. A tax schedule T ∈ T is linear if T(y) = −α0 + t0 y for all y ∈R+ and some

α0 ≥ 0 and t0 ∈ [0,1).

The set of all linear tax schedules in T is denoted by Tlin.

We now present the first two main results of the paper. Theorem 1 states that only

marginal-rate progressive tax schedules can be inequality reducing.12 Theorem 2 asserts

that if the linear members of T are inequality reducing, then the set of all inequality reducing

tax schedules is precisely the set of marginal-rate progressive tax schedules.

Theorem 1. Given u ∈U ∗, a tax schedule in T is u-iir only if it is marginal-rate progressive.

Theorem 2. Given u ∈U ∗, the set of all u-iir tax schedules in T equals Tprog if and only if
the members of Tlin are u-iir.

Remark 1. The reader may wish to consider tax schedules that are inequality reducing not

only for a fixed utility function u ∈U ∗ but rather for all utility functions u in some subdomain

U ∗∗ of U . Given U ∗∗ ⊆U , call a tax schedule T ∈T income inequality reducing with
respect to U ∗∗ (U ∗∗-iir) if (xu(a1,T), ..., xu(an,T)) Lorenz dominates (yu(a1,0), ..., yu(an,0))
for each pre-tax and post-tax income functions yu and xu, each (a1, ...,an) ∈A , and every u ∈
U ∗∗. Theorems 1 and 2 immediately give the following variants in terms of this strengthening

of Definition 3.

Corollary 1 (to Theorem 1). Given U ∗∗ ⊆ U ∗, a tax schedule in T is U ∗∗-iir only if it is
marginal-rate progressive.

12It is easy to find preferences and taxes for which the converse of Theorem 1 is false. Consider, for example,
the utility function u(c, l)= c− 1

1−l , together with the linear tax T(y)= 0.5y, with associated labor supply function
l(a,T)=max

{
0,1− ((1− t)a)−0.5}

. While T is marginal-rate progressive, the ratios x(3,T)
y(3,0) = 0.217< 0.293= x(4,T)

y(4,0)
increase as the ability goes from 3 to 4, implying that T is not u-iir (according to Lemma 3).
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Corollary 2 (to Theorem 2). Given U ∗∗ ⊆ U ∗, the set of all U ∗∗-iir tax schedules in T

equals Tprog if and only if the members of Tlin are U ∗∗-iir.13

The main proofs of Theorem 1 and Theorem 2 are furnished in Subsection 3.1. Before

presenting these proofs, we set ourselves the important task of providing necessary and suffi-

cient conditions on primitives under which marginal-rate progressive and only marginal-rate

progressive taxes are inequality reducing. This will be accomplished by first characterizing

the preferences for which the members of Tlin are inequality reducing (in Theorem 3 below);

this characterization will then allow us to present a variant of Theorem 2 in terms of first

principles (see Corollary 3 below). A number of additional results and illustrative examples

will also be provided.

In the particular case when T is a member of Tlin with T(y)=−b, where b ≥ 0, we write

lu(a,b) for lu(a,T), yu(a,b) for yu(a,T), and xu(a,b) for xu(a,T). In this case, lu(a,b) can be

viewed as the labor supply for an agent of ability a who is endowed with a monetary sum

b prior to her choice of labor income. For each (a,b) ∈R++×R+, lu(a,b) is a solution to the

problem

max
l∈[0,1]

u (al+b, l) . (3)

Since u is strictly quasiconcave on R++× [0,1), for each (a,b) ∈R++×R+, there is a unique

solution lu(a,b) to (3).14 It is not difficult to show that for given b ≥ 0, the derivative of the

map

a 7→ lu(a,b) (4)

exists for all but perhaps one a > 0.15

13Observe that in the particular case when U ∗∗ =U ∗, Corollary 2 is vacuous, for we know (as per the last
example in Remark 3 below (see footnote 22)) that there exist preferences for which no proportional tax is
inequality reducing.

14More generally, for (a,b) ∈R++×R such that a+b > 0, call lu(a,b) the (unique) solution to the problem

max
l∈[0,1]

u (al+b, l) .

The assumptions on u ensure that lu(a,b) ∈ [0,1) for all (a,b) ∈R++×R with a+b > 0.
15For each (a,b) ∈R++×R with a+b > 0, the solution lu(a,b) satisfies

MRS(alu(a,b)+b, lu(a,b))=−
∂u(alu(a,b)+b,lu(a,b))

∂l
∂u(alu(a,b)+b,lu(a,b))

∂c

≥ a,

with equality if lu(a,b)> 0. Define F : {(a,b, s) ∈R++×R× (0,1) : as+b > 0}→R by

F(a,b, s)=−
∂u(as+b,s)

∂l
∂u(as+b,s)

∂c

−a.

Because u is twice continuously differentiable on R++× (0,1), F is continuously differentiable. Furthermore,
given (a,b) ∈R++×R with a+b > 0, if there exists s∗ ∈ (0,1) such that F(a,b, s∗)= 0, and since it is straightfor-
ward to verify that ∂F(a,b,s∗)

∂s 6= 0, it follows from the Implicit Function Theorem that the partial derivatives of
the map (a,b) 7→ lu(a,b) exist for every (a,b) ∈R++×R+ such that lu(a,b)> 0. In addition, for (a,b) ∈R++×R+
with lu(a,b)= 0 and MRS(alu(a,b)+b, lu(a,b))> a, there exists an open set Va in R++ containing a such that
lu(a′,b)= 0 for all a′ ∈Va, implying that ∂lu(a,b)

∂a is well-defined. Because for given b ≥ 0, there is at most one
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For (a,b) ∈R++×R+, define

ζu(a,b) := ∂(alu(a,b)+b)
∂a

· a
alu(a,b)+b

and ξu(a,b) := ∂lu(a,b)
∂a

· a
lu(a,b)

; (5)

these are, respectively, the elasticity of income with respect to ability and the elasticity of
labor supply with respect to ability at ability level a and endowment b.16

Let Û denote the universe of utility functions u ∈U ∗ satisfying the following two condi-

tions:

• ζu(a,b)≤ ζu(a,0) for all (a,b) ∈R++×R+; and

• the map a 7→ ζu(a,0) defined on R++ is nondecreasing.17

Remark 2. Since ζu(a,0)= 1+ξu(a,0) (see the proof of Proposition 1), the second bullet point

in the previous definition can be equivalently stated as follows: the map a 7→ ξu(a,0) defined

on R++ is nondecreasing.

The following result states that the members of Û , and only the members of Û , render

linear tax schedules inequality reducing.18

Theorem 3. For u ∈U ∗, the members of Tlin are u-iir if and only if u ∈ Û .

The proof of Theorem 3 is relegated to Appendix A.

Theorem 3 can now be combined with Theorem 2 to obtain a necessary and sufficient

condition on primitives under which marginal-rate progressive and only marginal-rate

progressive taxes are inequality reducing.

Corollary 3. For u ∈U ∗, the set of all u-iir tax schedules in T is precisely Tprog if and only
if u ∈ Û .

Remark 3. The set Û is nonempty. Indeed, any utility function of the Cobb-Douglas form

u(c, l) := Acα(1− l)β, where A, α, and β are positive constants, is a member of Û .19 In

addition, the so-called GHH preferences (cf. Greenwood et al., 1988), given by

u(c, l) := 1
1−σ

(
c− l1+χ

1+χ
)1−σ

,

a > 0 such that lu(a,b)= 0 and MRS(alu(a,b)+b, lu(a,b))= a, it follows that the derivative of the map in (4)
exists for all but perhaps one a > 0.

16As per the assertion in the previous paragraph, these elasticities are well-defined almost everywhere.
17See footnote 16.
18The following version of Theorem 3 can be proven for the case of proportional taxation: a proportional tax

schedule of the form T(y) = t0 y is u-iir if and only if the map a 7→ ζu(a,0) defined on R++ is nondecreasing.
Because ζu(a,0)= 1+ξu(a,0), the latter condition can be equivalently stated as follows: the map a 7→ ξu(a,0)
defined on R++ is nondecreasing.

19In this case, the elasticity of income with respect to ability, ζu(a,b), is either zero (when lu(a,b)= 0) or a
a+b

(if lu(a,b)> 0), implying that conditions (ii) and (iii) are satisfied. In addition, because alu(a,b)+b = α
α+β (a+b)

is increasing in a, it follows from Mirrlees (1971, p. 182) that u satisfies condition (i), agent monotonicity.
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where σ and χ are positive constants and σ 6= 1, also satisfy the conditions (i)-(iii).20,21

Finally, we should point out that there are utility functions that do not belong to Û . For

example, the map u(c, l) :=p
c+p

1− l satisfies (i)-(ii) but not (iii).22

A subset of Û can be characterized in terms of the elasticity of labor supply with respect

to ability, as defined in (5). Let ̂̂
U denote the universe of utility functions u ∈U ∗ satisfying

the following two conditions:

• ξu(a,b)≤ ξu(a,0) for all (a,b) ∈R++×R+; and

• the map a 7→ ξu(a,0) defined on R++ is nondecreasing.23

The next result states that ̂̂
U is a strict subset of Û .

Proposition 1. ̂̂
U á Û .

The proof of Proposition 1 is relegated to Appendix B.

Proposition 1, combined with Corollary 3, immediately gives the following result.

Corollary 4. Given u ∈ ̂̂
U , the set of all u-iir tax schedules in T equals Tprog.

3.1 Proofs of Theorem 1 and Theorem 2

In this subsection, we present the main arguments for the proofs of Theorem 1 and Theorem

2 and relegate technical details to the Appendix. The proof of Theorem 3, which is technical

in nature, is furnished in Appendix A. We begin with three preparatory lemmas. The first

lemma says that pre-tax and post-tax income functions are monotone in a, and that the

solution to the agents’ maximization problem (2) is almost always unique. This result is

well-known (see Mirrlees, 1971, Theorem 1 and the ensuing discussion on p. 183).

Lemma 1. Let u ∈ U ∗, T ∈ T . For every pre-tax and post-tax income functions yu and xu,
the maps a 7→ yu(a,T) and a 7→ xu(a,T) are nondecreasing on R++. Moreover, given T ∈ T ,
there is a unique solution to (2) for all a > 0, except for a set of measure zero.

20As defined in Greenwood et al. (1988), the domain for l is the set of all the nonnegative reals. Thus, this
specification does not exactly conform to the condition imposed here that the range of acceptable values for l
should be the unit interval. This is a minor point, for our results extend to the case when the upper bound for l
is +∞.

21For this specification, yu(a,b)= a a
1
χ +b is increasing in a, implying that u satisfies the agent-monotonicity,

condition (i). Moreover, ζu(a,b)= θaθ
aθ+b , where θ := 1+χ

χ
, which yields

ζu(a,0)= θ ≥ θ
aθ

aθ+b
= ζu(a,b) and

∂ζu(a,b)
∂a

= θ2 baθ−1

(aθ+b)2
≥ 0,

implying that conditions (ii) and (iii) hold.
22For this utility function, we have ∂ζu(a,0)

∂a =− 1
(a+1)2 , implying that no proportional tax schedule is u-iir (recall

footnote 18).
23See footnote 16.
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Figure 1: Figure for Theorem 1

Lemma 2. Given u ∈U , (c, y) ∈R2++, and q ∈ (0,+∞), there exists an a > y such that ηa(c, y)=
q.24

The proof of Lemma 2 is relegated to Appendix C.

The third lemma gives an alternative characterization of an inequality reducing tax

schedule (recall Definition 3); its proof is relegated to Appendix D.25

Lemma 3. Given u ∈U ∗, a tax schedule T ∈T is u-iir if and only if for any ability distribu-
tion a ∈A and for any pre-tax and post-tax income functions yu and xu,

xu(ai,T)
yu(ai,0)

≥ xu(ai+1,T)
yu(ai+1,0)

∀i ∈ {1, . . . ,n−1}.

3.1.1 Proof of Theorem 1

The following lemma plays an essential role in the proof of Theorem 1.

Lemma 4. Let u ∈U ∗ and T ∈T , and let xu be a post-tax income function. Then the map
a 7→ xu(a,T) is continuous on R++ if and only if T is marginal-rate progressive.

The formal proof of Lemma 4 is given in Appendix E. Here we provide intuition for this

result. Consider the agents’ budget line in the space of pre-tax and post-tax income pairs

24Feasibility requires a ≥ y (recall that l = y
a and l ≤ 1), and the lemma states that there is an a > y such that

ηa(c, y)= q.
25Lemma 3 is analogous to Lemma 1 in Jakobsson (1976), Proposition 2.1 in Moyes (1994), and Lemma 2 in

Ebert and Moyes (2007).
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(y, x) for a given tax schedule. If agents face a marginal-rate progressive tax schedule T, this

budget line is concave, and since preferences satisfy strict quasiconcavity, there is a unique

optimal pre-tax and post-tax income pair for each agent; in this case the continuity of the

map a 7→ xu(a,T) follows from Berge’s Maximum Theorem. Under a non-convex tax T, on the

other hand, the budget line must be non-concave somewhere, as the black line in Figure 1. In

this case there are multiple optimal pre-tax and post-tax income pairs for some ability level,

say a∗ (points (y, x) and (y, x) in Figure 1). Given the agent monotonicity condition (recall

Definition 2), this multiplicity generates a discontinuity of the map a 7→ xu(a,T) at a∗. Thus,

continuity of the map a 7→ xu(a,T) implies convexity of T.

Given Lemma 4, Theorem 1 can be concisely proven as follows. Take u ∈U ∗. By Lemma

3, we only need to find, for each T ∈ T that is not marginal-rate progressive, a ∈ A and

pre-tax and post-tax income functions yu and xu violating (3). Note that given yu and xu,

an ability distribution a ∈ A will violate (3) if the map a 7→ xu(a,T) defined on R++ has a

discontinuity point and the map a 7→ yu(a,0) defined on R++ is continuous. Indeed, in this

case, letting a∗ > 0 be a discontinuity point for the map a 7→ xu(a,T),

lim
a↑a∗ xu(a,T)< lim

a↓a∗ xu(a,T) and lim
a↑a∗ yu(a,0)= lim

a↓a∗ yu(a,0),

since xu is nondecreasing (Lemma 1), implying

lim
a↑a∗

xu(a,T)
yu(a,0)

< lim
a↓a∗

xu(a,T)
yu(a,0)

.

Thus, Theorem 1 is a consequence of Lemma 4. (Observe that xu(·,T) = yu(·,0) whenever

T ≡ 0.)

3.1.2 Proof of Theorem 2

To lighten notation, we will omit the superscript u throughout the proof.

It is clear that if the set of all u-iir tax schedules in T equals Tprog, then the members of

Tlin are u-iir.

Suppose that the members of Tlin are u-iir. By Theorem 1 it follows that the set of all

u-iir tax schedules in T is contained in Tprog. It remains to show the reverse containment.

Let T = (α0, t, y) ∈T be marginal-rate progressive (recall Definition 1). By Lemma 3, we only

need to show that condition (3) holds for any ability distribution a ∈A and for any pre-tax

and post-tax income functions yu and xu.

Now, for each income threshold yk of T, define the linear tax schedule Tk(y) := tk y−αk

for k ∈ {0, ...,K}, where αk :=αk−1 + (tk − tk−1)yk for k ∈ {1, . . . ,K}.

Pre-tax and post-tax income functions, y and x, are uniquely defined, since preferences

are strictly quasiconcave and the tax function T is convex. For k ∈ {1, ...,K}, define the

abilities a−
k and ak such that

a−
k :=min

{
a : y(a,Tk−1)= yk

}
and ak :=max

{
a : y(a,Tk)= yk

}
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Figure 2: Figure for Theorem 2

(see Figure 2). Lemma 2 guarantees that a−
k and ak exist and are well-defined for all

k ∈ {1, . . . ,K}.

Furthermore, since T is marginal-rate progressive (and hence tk−1 < tk for all k ∈
{1, . . . ,K}), agent monotonicity (Definition 2) implies that a−

k ≤ ak < a−
k+1.26

Next, define the following family of sets covering (0,+∞):

A :=
{
(0,a−

1 ],
{[

a−
k ,ak

]}K
k=1 ,

{[
ak,a−

k+1
]}K−1

k=1 , [aK ,+∞)
}

.

We first show that condition (3) is satisfied for ability distributions contained in each element

of the family A.

(i) Consider first the interval (0,a−
1 ]. Observe that y(a,T)= y(a,T0) for all a ≤ a−

1 . Because

T0 is a linear tax, it is u-iir, and so Lemma 3 gives

x(a,T)
y(a,0)

= x(a,T0)
y(a,0)

≥ x(a′,T0)
y(a′,0)

= x(a′,T)
y(a′,0)

∀a ≤ a′ ≤ a−
1 . (6)

(ii) For [aK ,+∞), a symmetric argument shows that

x(a,T)
y(a,0)

≥ x(a′,T)
y(a′,0)

∀aK ≤ a ≤ a′. (7)

26Observe that, letting xk = x(a−
k ,T)= x(ak,T), ηa−

k (xk, yk)= 1− tk−1 > 1− tk = ηak (xk, yk). On the other hand,
ηak (xk+1, yk+1)> 1− tk = ηa−

k+1 (xk+1, yk+1).



13

(iii) Now consider the interval [a−
k ,ak] for k ∈ {1, . . . ,K}. Observe that

y(ak,T)= y(ak,Tk)= yk = y(a−
k ,Tk−1)= y(a−

k ,T).

Hence, by monotonicity of the map a 7→ y(a,T) (Lemma 1) , y(a,T) = yk for all a ∈
[a−

k ,ak]. Therefore, because y(a′,0)≥ y(a,0) for all a−
k ≤ a ≤ a′ ≤ ak by Lemma 1,

x(a,T)
y(a,0)

= yk −T(yk)
y(a,0)

≥ yk −T(yk)
y(a′,0)

= x(a′,T)
y(a′,0)

∀a,a′ ∈ [a−
k ,ak], a ≤ a′. (8)

(iv) Finally, consider the interval [ak,a−
k+1] for k ∈ {1, . . . ,K −1}. By construction, we have

y(a,T)= y(a,Tk) for all a ∈ [ak,a−
k+1]. Therefore, since Tk is a linear (hence u-iir) tax,

Lemma 3 gives

x(a,T)
y(a,0)

= x(a,Tk)
y(a,0)

≥ x(a′,Tk)
y(a′,0)

= x(a′,T)
y(a′,0)

∀a,a′ ∈ [ak,a−
k+1], a ≤ a′. (9)

Combining equations (6)-(9) we obtain (3) for every a ∈A .

4 Concluding remarks

This paper provides a normative foundation for progressive income taxes. Our work—

which goes beyond the classic results of Jakobsson (1976) and Fellman (1976) in that it

takes into account the disincentive effects of taxation on work effort—relies on three basic

conditions: the agent monotonicity condition, which is standard in the literature on nonlinear

taxation with endogenous labor supply; piecewise linearity of admissible tax schedules, an

ubiquitous feature of actual statutory tax schedules; and an increasingly large marginal rate

of substitution of labor for consumption for vanishingly small amounts of leisure time. The

latter condition fails in the Jakobsson-Fellman setting, viewed in the Mirrlees framework as

the particular case of costless work effort.

Theorem 1 implies that tax schedules aimed at reducing income inequality must be

marginal-rate progressive. In other words, only marginal-rate progressive tax schedules

can secure a reduction in consumption inequality compared to a situation with no taxes.27

Theorem 2 can be combined with Theorem 3 to obtain a necessary and sufficient condition on

primitives under which the members of Tprog, and only the members of Tprog, are inequality

reducing (see Corollary 3).

We conclude with a philosophical comment. This paper focuses on the reduction of

income inequality through the tax system, as does virtually all the related literature. Some

authors have suggested that considering instead the welfare inequality reducing properties

of taxes might be more reasonable. After all, individuals ultimately care about their well-

27When individual incomes are subjected to different rounds of taxation, an analyst may wish to study the
inequality reducing properties of the composition of different tax schedules. Le Breton et al. (1996) address this
issue in the context of exogenous income. The extension of their analysis to the case of endogenous income is
left for future research.
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being. While we believe that this idea deserves further investigation, we would like to

point out that a meaningful characterization of the welfare inequality reducing properties

of progressive tax schedules seems problematic even in the standard context of exogenous

incomes. Indeed, consider the marginal-rate progressive (hence income inequality reducing)

tax function T(y) := y−ln(y+1), together with the utility function u(x) := ln(x); since the ratio
u(y−T(y))

u(y) = ln(ln(y+1))
ln(y) is strictly increasing in y, it follows from Lemma 1 in Jakobsson (1976)

that T is welfare inequality increasing.28,29 The point raised here pertains to Lorenz-based

measures ranking “welfare” distributions, according to some “social norm.” A different, but

related, issue concerns the characterization of the Lorenz ordering in terms of classes of

social norms. This characterization draws on the link between statistical measures and social

welfare, and takes different forms. For income distributions with the same mean, the Lorenz

ordering used in this paper is equivalent to welfare dominance in terms of any Schur-concave
(resp. quasiconcave) social norm (cf. Kolm (1969), Atkinson (1970), Dasgupta et al. (1973),

and Rothschild and Stiglitz (1973)). For income distributions with different means, welfare

dominance characterizes the ranking induced by the generalized Lorenz curve (cf. Shorrocks

(1983)), which scales up the ordinary Lorenz curve by the mean of the distribution. The

generalized Lorenz ordering is not generally equivalent to the relative Lorenz ordering.

Appendix

This section presents the proofs of Theorem 3, Proposition 1, Lemma 2, Lemma 3, and

Lemma 4. For the convenience of the reader, each proof is preceded by a restatement of the

corresponding result.

A Proof of Theorem 3

Theorem 3. For u ∈U ∗, the members of Tlin are u-iir if and only if u ∈ Û .

Proof. Given u ∈U ∗, the members T(y)=−b+ t0 y of Tlin are u-iir if and only if the map

a 7→ xu(a,T)
yu(a,0)

= a(1− t0)lu(a,T)+b
alu(a,0)

= a(1− t0)lu((1− t0)a,b)+b
alu(a,0)

(10)

28According to Ebert and Moyes (2007, footnote 19), in the case of exogenous income, the Jakobsson-Fellman
result can be stated in terms of welfare inequality if and only if the utility function is isoelastic, i.e., it takes the
form u(x)= χxξ, where χ and ξ are constants.

29A further complication is given by the strong cardinal nature of the notion of welfare inequality, which
imposes conditions on sums and ratios of utility indices that are generally violated by order-preserving utility
transformations. We thank an anonymous referee for raising this point.
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defined on R++ is nonincreasing for every (b, t0) ∈R+× [0,1) (cf. Lemma 3).30 Equivalently,

the members of Tlin are u-iir if and only if

(1− t0)
(
(1− t0)a′ ∂lu((1−t0)a′,b)

∂a + lu((1− t0)a′,b)
)
a′lu(a′,0)

(a′lu(a′,0))2

−
((1− t0)a′lu((1− t0)a′,b)+b)

(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

(a′lu(a′,0))2 ≤ 0

(11)

for every (a′,b, t0) ∈R++×R+× [0,1).31 Since the above inequality can be expressed as

(1− t0)a′
(
(1− t0)a′ ∂lu((1−t0)a′,b)

∂a + lu((1− t0)a′,b)
)

(1− t0)a′lu((1− t0)a′,b)+b
≤

a′
(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

a′lu(a′,0)
,

or, equivalently, as

ζu((1− t0)a′,b)≤ ζu(a′,0), (12)

we see that the members of Tlin are u-iir if and only if (12) holds for every (a′,b, t0) ∈R++×
R+× [0,1). This is equivalent to the following condition: for every (a′,b, t0) ∈R++×R+× [0,1),

ζu((1− t0)a′,b)≤ ζu((1− t0)a′,0)≤ ζu(a′,0). (13)

Consequently, for u ∈U ∗, the members of Tlin are u-iir if and only if u ∈ Û .32 ■

B Proof of Proposition 1

Proposition 1. ̂̂
U á Û .

Proof. First, observe that, after some manipulation, we can write

ζu(a,b)= alu(a,b)
alu(a,b)+b

(1+ξu(a,b))= H(a,b)(1+ξu(a,b)), (14)

where H(a,b) := alu(a,b)
alu(a,b)+b .

The (weak) containment is established in two steps.

Step 1. We show that if ξu(a,0) is nondecreasing in a then so is ζu(a,0). Take a ∈R++.

Since H(a,0)= 1, (14) becomes

ζu(a,0)= 1+ξu(a,0),
30The last equality follows from the fact that both lu(a,T) and lu((1− t0)a,b) are solutions to the problem

max
l∈[0,1]

u((1− t0)al+b, l).

31More precisely, the map defined in (10) is nonincreasing for every (b, t0) ∈R+× [0,1) if and only if for every
(b, t0) ∈R+× [0,1), (11) holds for all but perhaps one a′ > 0.

32Ebert and Moyes (2007) use inequalities analogous to (12) and (13) to derive the sufficient conditions (b-1)
and (b-2) in their Proposition 2.
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implying that ζu(a,0) is nondecreasing in a if and only if ξu(a,0) is nondecreasing in a.

Step 2. We show that if ξu(a,b)≤ ξu(a,0) for all (a,b) ∈R++×R+, then ζu(a,b)≤ ζu(a,0)

for all (a,b) ∈R++×R+.

Take (a,b) ∈R++×R+. Since H(a,0)= 1, (14) gives

ζu(a,b)
ζu(a,0)

= H(a,b)
1+ξu(a,b)
1+ξu(a,0)

.

Observe that H(a,b)= alu(a,b)
alu(a,b)+b ≤ 1 and, by assumption, ξu(a,b)≤ ξu(a,0). Therefore, both

factors are less or equal to one, implying that ζu(a,b)≤ ζu(a,0).

Finally, the map u(c, l) := c(1− l) is a member of Û (see Remark 3 and footnote 19) but

does not belong to ̂̂
U .33 ■

C Proof of Lemma 2

Lemma 2. Given u ∈U , (c, y) ∈R2++, and q ∈ (0,+∞), there exists an a > y such that ηa(c, y)=
q.34

Proof. Observe that

lim
a→∞η

a(c, y)= lim
a→∞

1
a

MRS(c, y/a)= 0 and lim
a↓y

ηa(c, y)= lim
a↓y

1
a

MRS(c, y/a)=+∞.

Since the map a 7→ ηa is continuous, the lemma follows from the Intermediate Value Theorem.

■

D Proof of Lemma 3

Lemma 3. Given u ∈U ∗, a tax schedule T ∈T is u-iir if and only if for any ability distribu-
tion a ∈A and for any pre-tax and post-tax income functions yu and xu,

xu(ai,T)
yu(ai,0)

≥ xu(ai+1,T)
yu(ai+1,0)

∀i ∈ {1, . . . ,n−1}. (15)

Proof. We adapt the proof of Lemma 2 in Ebert and Moyes (2007).35

(⇐) A tax schedule is u-iir if condition (15) holds for any a ∈ A and any pre-tax and

post-tax income functions yu and xu. This is a direct consequence of Theorem 2.4 in Marshall

et al. (1967), since for each a ∈A , xu(ai,T)> 0 and yu(ai,0)> 0 for each i ∈ {1, . . . ,n}.36

33Indeed, for 0< b < a, ξ(a,b)= b
a−b , and so ξ(a,0)= 0< ξ(a,b). Hence, u ∉ ̂̂

U .
34Feasibility requires a ≥ y (recall that l = y

a and l ≤ 1), and the lemma states that there is an a > y such that
ηa(c, y)= q.

35In their proof, Ebert and Moyes (2007) assume the existence of a unique solution to the agents’ maximization
problem in (2), while we allow for multiple maximizers. Our proof is otherwise identical in substance with that
in Ebert and Moyes (2007).

36See also Chapter 5 in Marshall et al. (2011), where B.1.b only requires
∑n

j=1 yu(a j,0) > 0 instead of
yu(ai,0)> 0 for each i.
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(⇒) Suppose that there exists a ∈A and xu and yu such that

xu(ah,T)
yu(ah,0)

< xu(ah+1,T)
yu(ah+1,0)

for some h ∈ {1, . . . ,n−1}. (16)

Choose a∗ := (
a∗

1, . . . ,a∗
n
)

where a∗
1 := ah and a∗

i := ah+1 for i ∈ {2, . . . ,n}. By definition, a∗
1 <

a∗
2 = ·· · = a∗

n. It follows that xu(a∗
1,T)= xu(ah,T) and xu(a∗

i ,T)= xu(ah+1,T) for i ∈ {2, . . . ,n}.

And similarly for y. From (16),

xu(a∗
1,T)

yu(a∗
1,0)

< xu(a∗
2,T)

yu(a∗
2,0)

= ·· · = xu(a∗
n,T)

yu(a∗
n,0)

.

Appealing to Marshall et al. (2011, B.1.b in Chapter 5),(
xu(a∗

1,T)∑
j xu(a∗

j ,T)
, . . . ,

xu(a∗
n,T)∑

j xu(a∗
j ,T)

)

is majorized by (
yu(a∗

1,0)∑
j yu(a∗

j ,0)
, . . . ,

yu(a∗
n,0)∑

j yu(a∗
j ,0)

)
.37

Therefore,
k∑

i=1

(
xu(a∗

i ,T)∑
j xu(a∗

j ,T)

)
≤

k∑
i=1

(
yu(a∗

i ,0)∑
j yu(a∗

j ,0)

)
∀k ∈ {1, . . . ,n}.

That is, (yu(a∗
1,0), ..., yu(a∗

n,0)) Lorenz dominates (xu(a∗
1,T), ..., xu(a∗

n,T)), and hence T is not

u-iir. ■

E Proof of Lemma 4

Lemma 4. Let u ∈U ∗ and T ∈T , and let xu be a post-tax income function. Then the map
a 7→ xu(a,T) is continuous on R++ if and only if T is marginal-rate progressive.

Proof. Take u ∈U ∗ and T = (α, t, y) ∈T . First observe that T is marginal-rate progressive

(i.e., convex) if and only if the map y 7→ x = y−T(y) defined on R+ is concave.

(⇐) Let T be marginal-rate progressive. Because the map y 7→ x(y) := y−T(y) is concave

and u(c, l) is strictly quasiconcave (and strictly increasing (resp. decreasing) in c (resp. l)),
for each a > 0 the problem

max
y∈[0,a]

u
(
y−T(y),

y
a

)
(17)

has a unique solution. Consequently, there is a unique map that assigns to each ability level

a > 0 the pre-tax income y(a) that solves (17), and by virtue of Berge’s Maximum Theorem,

this map is continuous. But then the map a 7→ y(a)−T(y(a)) defined on R++ is continuous. In

other words, for any post-tax income function xu, the map a 7→ xu(a,T) is continuous on R++.

37For x, y ∈Rn, in increasing arrangement, we say that x is majorized by y if
∑k

i=1 xi ≤∑k
i=1 yi for k = 1, . . . ,n−1

and
∑n

i=1 xi =∑n
i=1 yi. (Marshall et al., 2011, p. 8.)
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Figure 3: Figure for Lemma 4

(⇒) To prove the converse assertion we assume that T is not marginal-rate progressive

and show that the map a 7→ xu(a,T) has a discontinuity point in R++.

If T is not marginal-rate progressive, the map x(y) is not concave. Define

y∗ := inf
{
y ∈R+ : x(y)|[0,y∗] is concave

}
.

It is easy to see that y∗ = yk∗ for some k∗ ∈ {1, ...,K}. In addition, the restriction of x(y) to

[yk∗−1, yk∗+1] is convex (here yK+1 :=+∞) and (x∗ := y∗−T(y∗), y∗) À 0 and 0 < 1− tk∗−1 <
1− tk∗ . Applying Lemma 2 it follows that there exist 0< a∗ < a∗∗ such that

ηa∗
(x∗, y∗)= 1− tk∗ and ηa∗∗

(x∗, y∗)= 1− tk∗−1,

implying xu(a∗,T)< x∗ < xu(a∗∗,T) and xu(a,T) 6= x∗ for all a ∈ (a∗,a∗∗). (Refer to Figure 3.)

If the map a 7→ xu(a,T) were continuous on R++, the Intermediate Value Theorem would give

α ∈ (a∗,a∗∗) with xu(α,T)= x∗, a contradiction. We conclude that the map a 7→ xu(a,T) has a

discontinuity point in R++. ■
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