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Abstract

We study the extent to which the widely used Boston Mecha-
nism (BM) fosters ability and socioeconomic segregation across public
schools. Our model encompasses an endogenous component of school
quality �determined by the peer group� and an exogenous one, so
that there is at least one bad school ex-ante. Even with no residen-
tial priorities, BM generates ability sorting between a priori equally
good public schools: an elitist public school emerges. A richer model
with some preference for closer schools and �exible residential choice
does not eliminate this e¤ect. It rather worsens the peer quality of
the nonelitist good school. The existence of private schools makes
the best public school more elitist, while the bad school loses peer
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quality. Their presence may also engender socioeconomic segregation.
The main alternative assignment mechanism, Deferred Acceptance, is
resilient to such sorting e¤ects.
Key-words: School choice, mechanism design, peer e¤ects, local pub-
lic goods.
JEL classi�cation numbers: I21, H4, D78.

1 Introduction

School choice has expanded in many countries in recent decades. In partic-
ular, public school choice systems with centralized assignment of children to
schools are currently used in a large fraction of OECD countries (Musset,
2012). Yet, we still have a limited understanding about how such systems
impact educational and other social outcomes, and the debate is accordingly
heated.
Advocates defend that expanding school choice could be a tide that lifts

all boats, allowing equal access to higher quality schooling for all. Two impor-
tant arguments in favor of this view are that choice introduces competition,
pushing schools to be more productive,1 and that a­ uent families always had
choice �as they could a¤ord private schooling or housing in expensive areas�
so that expanding choice improves equity by allowing poor households to
choose as well (e.g. Friedman, 1955; Hoxby, 2003).2 In sharp contrast, crit-
ics argue that expanding choice could exacerbate educational inequality and
harm vulnerable students, increasing segregation across schools, and leaving
them behind in lower quality ones. Arguments in this side of the debate
include that schools usually prefer students from better-o¤ socioeconomic
backgrounds, that better-o¤ parents exercise choice more often, that they
make better informed choices, and that low income households have their
e¤ective choice sets restricted, as they cannot so easily a¤ord transport and

1While several theoretical contributions explain why school competition may harm
school productivity in the presence of reputation e¤ects or asymmetric information (De
Fraja and Landeras, 2004; MacMillan, 2004, MacLeod and Urquiola, 2008, but see also
Hoxby, 1999), recent empirical evidence supports the existence of positive productivity
e¤ects of school competition (see Hoxby, 2000, 2003, 2007; Gibbons et al., 2010, OECD,
2014).

2Indeed, it has been shown that, under certain stylized conditions, speci�c forms of
school choice could be the solution to school and neighborhood segregation (see Epple and
Romano, 2003, 2008).
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other indirect costs (e.g. Smith and Meier, 1995; Musset, 2012; OECD, 2012;
Hastings, Kane and Staiger, 2010).3

Two di¤erent and disconnected literatures in economics study the impact
of school choice on social outcomes: 1) the literature on multi-community
models of local public good provision, inspired by Tiebout (1956), and 2) the
mechanism design literature that studies the implications of using alterna-
tive mechanisms to assign children to schools, initiated by Abdulkadiroglu
and Sonmez (2003). The former endogenizes school quality through the peer
group e¤ect, but oversimpli�es the assignment problem assuming that chil-
dren are assigned to their local school.4 The choice of where to live embeds
the choice of school and, since better-o¤ households are willing to pay more
for school quality, socioeconomic segregation across communities and their
schools ensues.5 In that setting, frictionless school choice (with no transport
costs or capacity constraints) indeed prevents segregation within the public
sector (Epple and Romano, 1998, 2003).6 Epple and Romano (2003) con-
jecture that their results would extend to a model where public schools had
limited capacity and overdemands were resolved through lotteries, but do
not provide relevant details of the school choice mechanism used (e.g. what
happens with children excluded from their �rst choice).7

3Theoretical work has also underpinnded some of these concerns (e.g. Epple and Ro-
mano, 1998).

4Tiebout (1956) is written as a response to the result of Musgrave (1939) and Samuelson
(1954) that, due to the preference revelation problem, �no "market-type" solution exists
to determine the level of expenditures on public goods.�Tiebout suggested that a solution
could exist for local public goods, at least in large and decentralized multi-community
systems. The idea is that in such settings households e¤ectively "shop" for local public
goods by choosing which community to live in, and so where to pay local taxes and consume
local public goods (See Wooders, 1999).

5Early contributions explain how decentralized school �nance can lead to income segre-
gation across the school districts of a metropolitan area: school quality di¤erences emerge
and sustain segregation because: (i) higher-income communities, with a larger tax base,
vote for larger levels of education spending, and (ii) the income elasticity of demand (e.g.
Epple et al., 1984, 1993) . More recent contributions explain that the peer group e¤ect
and other neighbourhood externalities can be su¢ cient to trigger segregation across the
schools or neighbourhoods of a single district, and explore di¤erent equity, e¢ ciency and
policy implications of that observation (e.g. De Bartolome, 1990; Bénabou, 1996; Epple
and Romano, 2003; De Fraja and Martinez-Mora, 2014).

6Epple and Romano (2003) also study the e¤ects of transport costs and �nd that full
residential segregation and partial school segregation by income would emerge in equilib-
rium.

7Other important contributions to this literature include Bénabou (1993), which il-
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The second literature takes school quality and residence as given and
ignores the presence of private schools to focus on the role played by the
details of the assignment mechanism. Started by Abdulkadiroglu and Sön-
mez (2003), that literature reveals the importance of the rules applied to
resolve overdemands when limited school capacities preclude the immediate
satisfaction of parents��rst choices. It formally analyzes the game generated
by a centralized system where families submit a ranking of schools and a
set of rules determines who gets accepted in an overdemanded school and
what options are left for rejected applicants. These rules de�ne the so-called
school choice mechanisms, which often include priorities for applicants living
in the neighborhood of the school or having a sibling in the school. Ab-
dulkadiroglu and Sönmez (2003), and a fruitful literature derived from it,
de�ne several properties that these mechanisms should satisfy and establish
a trade-o¤ between e¢ ciency (satisfying parents preferences) and stability
(respecting priorities).8

Our paper builds a bridge between these two strands of the literature.
We construct a model of centralized public school choice with partly endoge-
nous school quality,9 with private schools and where families choose where
to live. There is a continuum of agents that are characterized by their type
(socioeconomic background or ability), with preferences for school quality,
money and nearby schools.10 Our framework allows us to gain a better un-

lustrates how socioeconomic segregation may create poverty traps and ghettos; Durlauf
(1996), which explains how socioeconomic segregation can perpetuate income inequality
across generations; or Nechyba (2000), which shows how the existence of private schools
may reduce socioeconomic segregation by severing the link between a household place of
residence and the school the child attends.

8This tradeo¤ has been argued to be small �Chen and Sönmez (2006) question its
relevance through lab experiments.

9In line with Epple and Romano (2011), we de�ne peer e¤ects as any in�uence that a
student has in the learning of her class or school mates. There is a large and growing body
of literature studying the empirical relevance of peer e¤ects and the mechanisms through
which they a¤ect the educational process. A consensus exists that they matter, and that
a �better�peer group enhances performance (Epple and Romano, 2011; Sacerdote, 2011).
We also introduce observable exogenous quality di¤erences that vertically di¤erentiate the
public school system.
10The robustness analysis presented in the Appendix proves that our results hold with a

di¤erent characterization of exogenous quality di¤erences and with an arbitrary number of
districts and schools. Moreover, it contains an extension of the model in which households
di¤er along two dimensions: parental income and child ability. Qualitative results do not
change.
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derstanding of the impact school choice design has on socioeconomic sorting
into schools and neighborhoods. In particular, we show that ex-ante identical
schools become unequal under the widely used Boston mechanism if a third
school is exogenously worse. That is, we �nd that the Boston mechanism
facilitates the creation of elite schools within the public system, where only
su¢ ciently high types self-select into. The introduction of private schools in
the model exacerbates this e¤ect. Preference for residence location close to
school does not qualitatively a¤ect these results. It rather worsens the peer
quality of nonelitist public schools. Segregation across public schools occurs
both according to children�s abilities and to family income. In our view, it
is surprising that the assignment to public, tuition-free schools is a¤ected
by families� di¤erences in both income and ability. Methodologically, our
results are novel in the literature because we introduce a particular, widely
used, well-de�ned assignment mechanism, instead of assuming �exible (per-
fect) school choice.
As a policy recommendation, Epple and Romano (2008) propose a voucher

system to avoid segregation with private schools. In their proposal, private
schools can select students and optimal vouchers compensate for externalities
so that schools are indi¤erent among all students: equal quality ensues. Since
our approach relies on the speci�cs of the assignment mechanism to public
schools, we instead propose another popular mechanism as a solution: De-
ferred Acceptance. There has been a wide literature on the good properties
of this mechanism: strategy-proofness, stability-constrained e¢ ciency under
strict priorities, and protection of nonstrategic families (see among others
Gale and Shapley 1962, Roth 1985, Erdil and Sönmez 2006, and Pathak
and Sönmez 2010.) Our paper adds another property to the list of good
properties: resilience to segregation across a priori identically good public
schools.
We cite two recent pieces of related theoretical work. An ongoing research

by Cantillon (2014) suggests that group admission quotas can avoid the emer-
gence of segregation when preferences are endogenously determined by peer
quality. Avery and Pathak (2015) compare school heterogeneity when there
is neighborhood-based assignment and when �exible choice is implemented
when residential choice between local and an adjacent town is incorporated
in the model.
Recent empirical results make it plausible that self selection by parents

of di¤erent types outweighs the incentives for schools to compete for stu-
dents through improving their quality. Work by Calsamiglia et al. (2014)
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and Calsamiglia and Güell (2015) provides empirical evidence showing that
priorities play a large role in the �nal allocation of students to schools when
residential priorities exist.11 Although they do not consider peer e¤ects or
residential choices explicitly, the sorting e¤ects that we identify in BM seem
empirically plausible in the light of their results. Similarly, Calsamiglia et
al. (2014) �nds that a substantial fraction of families taking risks in the city
of Barcelona opt for a private school if they do not get the desired school,
empirically validating the channel that private schools play when BM is used.
The rest of the paper is organized as follows. Section 2 studies the base

model with no private schools nor preference for nearby schools. Section
3 includes the presence of private schools into the base model. Section 4
includes preference for geographical proximity into the base model. Section
5 includes a discussion about an alternative mechanism that mostly avoids
segregation issues: Deferred Acceptance. Section 6 concludes. An Appendix
includes long proofs as well as extended models including an arbitrary number
of schools and bidimensional types (income and ability.)

2 The base model

The model represents a single school district with three equally sized public
schools that provide tuition-free education.12 Schools are indexed with j =
1; 2; 3. Total school capacity is assumed to be identical to the number of
children residing in the city, and each school has a capacity 1=3. A population
of households (indistinctly called families, agents, children or students) with
mass normalized to 1 lives in the city. Every household consists of a parent,
who takes decisions, and a school-aged child. Household type is denoted
with t 2 D �

�
t; t
�
, and it is distributed in the population according to a

continuous and strictly increasing distribution function� (t) with full support
D. We denote with t� the � quantile of �, i.e. �(t�) = �. Types can
be interpreted as parental human capital or wealth, which determines both
household income and its ability to bene�t from school quality (Bénabou,
1996).

Schools j di¤er along two dimensions: peer quality qj and an exogenous
school component, denoted �j. Let �j be the (nonatomic) distribution of

11That is the case in most OECD countries (OECD, 2012).
12This is only for expositional simplicity. Our results can be generalized to an economy

with an arbitrary number of schools (see Appendix 2).
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students�types conditional on being assigned to school j. Denote the peer
quality as:

qj = q(�j)

13where q(�) is continuous14 and monotonic in the �rst-order stochastic dom-
inance sense:15 �j FOSD �i implies qj > qi: This functional form accommo-
dates simple setups such as quality as the average type in the distribution
of students. It nevertheless covers much richer setups. It accommodates,
for example, a setting where a smaller proportion of children with ability
below a certain threshold and a larger proportion of children with ability
above a larger threshold enhance quality, as in Summers and Wolfe (1977).
The quality function is �exible in the way we rank two schools that are not
ranked according to �rst-order domination. Then this function may extend
as well to a setting where quality is a¤ected by the degree of heterogeneity
in abilities at the school, as in Bénabou (1996).

Preferences. In the base model, households care about their o¤springs�
human capital, which depends on peer quality, qj and the exogenous school
characteristics �j; of the school the children attend to. A household of
type t assigned to school j obtains a utility V (qj;�j; t) = h(qj; t) + �j.
In the presence of uncertainty about the �nal allocation, household�s payo¤
is simply the expected value of V: The exogenous quality element enters
linearly and it a¤ects all households equally.16 We assume that h is strictly
increasing, continuous, bounded above and strictly supermodular (if q0 > q,
then h(q0; t)� h(q; t) is increasing in t.)
We impose that there is a bad school and two equally good schools: �1 =

�2 = � > 0 = �3: The purpose of this assumption is to illustrate how the
presence of a bad school can generate segregation even across schools that are
a priori equally good. Furthermore, we will make either one of the following
assumptions.

Assumption 1 Ghetto School: � > h(q(�t�t1=3); �t)� h(q(�t�t1=3); �t)
13When �j collapses to a degenerate distribution with a single value t; we use the

notation q(t):
14It is continuous according to the distance d(�;�0) =

R �t
t
j�(t)� �0(t)jdt:

15�j FOSD �i if for all t 2 D we have �i(t) � �j(t); and the inquality is strict for some
t:
16We consider an alternative speci�cation of preferences for � in Appendix 5. In the

alternative modelling, school 3 quality is discounted by a factor � < 1. Results are quali-
tatively identical.
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where �t�t� is the truncated distribution of students�types above t� and
�t�t� denotes the truncated distribution of students�types below t�.

Assumption 2 Limited Complementarity: 8� � 1=3;

h(q(�t�t�); �t)� h(q(3��t�t� + (1� 3�)�t�t�); �t)
< 2 � [h(q(�t�t�); t�)� h(q(3��t�t� + (1� 3�)�t�t�); t�)]

where 3��t�t� + (1� 3�)�t�t� is a convex combination between distrib-
utions �t�t� and �t�t� ; with respective weights 3� and 1� 3�:
Roughly speaking, the �rst assumption establishes a lower bound on the

exogenous quality di¤erence between good and bad schools. The second
assumption instead caps the supermodularity of h, that is, the ability of
higher types to pro�t more than lower types from peer quality di¤erences.
No priorities. We consider setups where schools have no priorities over

students in the school assignment procedure. When priorities for neigh-
borhood exist the equilibrium analysis requires including residential choice
prior to the school choice assignment. It can be easily shown that in such a
model individuals segregate between neighborhoods and schools, with hous-
ing prices capitalizing the marginal valuation for having a better peers in that
neighborhood school. This does not add much to standard results already
known under neighborhood school assignment (e.g. Bénabou 1996, Epple
and Romano 2003.) What we illustrate in this paper is that priorities are
not necessary for the Boston Mechanism to generate segregation.

Strategies and timing. Each family is asked to submit a ranking of the
three schools. We use "i � j � k" for the list where school i is ranked �rst,
school j second and school k last. Let R(t) be the (possibly mixed) ranking
strategy of household t.
The base model has a single stage. Given an assignment mechanism M ,

each household type t submits a ranking of the three schools. The rules
speci�ed inM determine an assignment of children to schools. The allocation
of children to schools in turn determines the peer groups and the academic
quality of schools, q1; q2; q3. Finally, payo¤s are realized.

Equilibria. Our equilibrium concepts are the following:
An equilibrium given a mechanism M is a tuple of beliefs about qualities
(q̂1; q̂2; q̂3) and a ranking strategy pro�le R� such that
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1. Rational choices: Given the beliefs (q̂1; q̂2; q̂3); no t�type household can
increase utility by submitting a di¤erent ranking of schools other than
R�(t).

2. Consistent beliefs: Given the assignment provided by M and R�, in-
duced qualities coincide with believed qualities: q̂j = qj, 8j.

A stable equilibrium given a mechanism M is an equilibrium such that
for each converging sequence of beliefs (qn1 ; q

n
2 ; q

n
3 )n2N ! (q̂1; q̂2; q̂3) there is a

sequence of ranking strategy pro�les Rn such that

1. For each type t, Rn(t) is best responding to R� given (qn1 ; q
n
2 ; q

n
3 ).

2. For almost every t 2 D; Rn(t)! R�(t) as n!1.

The notion of stability captures the idea that arbitrarily small trembles in
individual beliefs do not dramatically alter each agent�s best response with
respect to her equilibrium strategy. In most of the analysis we focus on
pure ranking strategies. Schmeidler (1973) guarantees the existence of an
equilibrium in pure strategies in this game.
Sorting. Our de�nitions of sorting are based on comparisons of the ex-post
distribution of types between pairs of schools and neighborhoods. We say
that there is full sorting between schools i and j if sup(supp(�j)) �
inf(supp(�i)). That is, the maximum type assigned to school j lies weakly
below the minimum type assigned to i. There is partial sorting between
schools i and j if �iFOSD�j, implying qi > qj.17 There is sorting if there is
either full sorting or partial sorting. There is no sorting between schools i
and j if �i = �j.

The Boston Mechanism (a.k.a. Immediate Acceptance). Before
we proceed with the analysis, we need to explain how the Boston Mechanism
(BM) assigns students to schools. First of all, parents are requested to report
a complete ranking of the available schools to the school authority. A multi-
round algorithm is used that assign children to schools round by round. In
the �rst round, each student is considered for the school her parents ranked

17Other forms of sorting could also be explored. For instance, sorting coming from
second-order stochastic dominance, or from similarity to the unconditional distribution �
(diversity). In this paper, however, our results concern the kinds of sorting de�ned in the
main text and so we do not provide other de�nitions of sorting.
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�rst. If the number of students considered for a school exceed the capacity of
that school (i.e. the school is overdemanded,) some students will need to
be rejected, following the school priorities (if any) and a tie-breaking lottery
when necessary. Each student rejected in some round goes to the next round
where she is considered for the highest-ranked school that has not rejected
her yet. In BM, every accepted student keeps her slot at the school for which
she was considered and both the student and the slot are removed from the
assignment algorithm (de�nite acceptance).
While the way BM proceeds is easier to understand for parents, it also

has its drawbacks. An assignment mechanism is strategy-proof if providing
truthful information about one�s own preferences when asked constitutes a
weakly dominant strategy (i.e. it is always a best response to any pro�le of the
other agents�strategies). In school choice problems, this property provides a
valuable simpli�cation of the strategic choice parents face, since they cannot
do better than reporting their true ordinal preferences. This is not the case
in BM. Given that slots are de�nitely given round by round, the opportunity
cost of truthfully reporting preferences is the reduction of available slots
in not-so-preferred schools in further rounds. Thus, each parent needs to
balance her preferences with her chances. Consequently, she may rank a
moderately good school with high acceptance chances in �rst position, and
so on.
In an environment with peer e¤ects, parents�preferences are also a¤ected

by the peer e¤ect, an endogenous outcome. Thus, strategy-proofness is not
a guarantee of strategic simplicity, since each parent still needs to take other
parents� strategies into account in order to construct her own preferences.
The value of strategy-proofness is then diminished. On the other hand,
BM, precisely because it is not strategy-proof, manages valuable information
about parents�preference intensities. In fact, parents with the same ordinal
preferences may report di¤erent rankings if their preference intensities are
di¤erent. This feature yields some e¢ ciency properties for BM (Miralles,
2008; Abdulkadiroglu et al. 2011).

Results. The next proposition proves summarizes the results of our basic
model.

Proposition 1 Under the Boston Mechanism:
(a) There is no stable equilibrium with no sorting between schools 1 and

2.
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(b) If either the bad school is a ghetto school or h shows limited comple-
mentarity, there is a stable equilibrium with sorting between schools 1 and
2.
(c) Moreover, for � su¢ ciently high, all stable equilibria show full sorting

between good schools.

The proof is found in Appendix 1. For a generalization to an arbitrary
number of good schools, see Appendix 2. We provide some intuition in these
lines. As soon as beliefs are such that peer qualities between good schools
di¤er, say q̂1 > q̂2; best responses to any strategy pro�le take the form of a
cuto¤ strategy. Types higher than some threshold t̂ rank school 1 �rst,
types below rank school 2 in �rst position.18 Supermodularity of h produces
this single-crossing property of best responses. These best responses indeed
reinforce the original beliefs, eventually generating an equilibrium threshold
~t under which q1 > q2. This equilibrium is stable because of its cuto¤ nature.
Best responses change only around the equilibrium cuto¤ type ~t when we
tremble beliefs. Existence is illustrated in Figure 1. For a cuto¤ t̂ =t, the
cuto¤ type prefers to rank school 2 in �rst position (school 2 has identical
ex-post peer quality as school 1 and it is underdemanded.) For a cuto¤
t̂ = t1=2; the cuto¤ type prefers to rank school 1 on top (school 2 has as many
applicants in the �rst round as school 1, and school 1 has higher peer quality.)
A simple use of the intermediate value theorem gives us the existence of an
indi¤erent cuto¤ ~t:
On the other extreme we consider possible equilibria where eventually

�1 = �2, and consequently q1 = q2; a natural prediction since schools 1 and
2 are equally good a priori. Strategically, the game for families is simple. If
they prefer school 3, they rank this school �rst. Otherwise they rank both
schools 1 and 2 above school 3. About how to rank school 1 with respect to
school 2, there are in�nitely many pro�les yielding �1 = �2 ex post. For each
household, the chances of being admitted at either school 1 or school 2 are
identical in equilibrium, no matter how school 1 was ranked with respect to
school 2. Now, consider a sequence in beliefs such that qn1 > q

n
2 (or q

n
1 < q

n
2 )

converging to the equilibrium beliefs. Out of a sudden, best responding along
the sequence implies ranking schools 1 above school 2 for all types (or doing

18We assume that everyone ranks school 3 in last position, which is consistent with
best-responding ex post. We note that this result holds even in cases in which school 3 is
not the least-preferred by all types. Hence proposition 1 is not an artifact of an arti�cially
created alignment of ordinal preferences.
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t1/3 t˜ t1/2

Figure 1: Change in cuto¤ type�s expected payo¤when ranking school 1 �rst
instead of school 2, if the strategy pro�le follows a cuto¤ rule (higher types
rank school 1 �rst, lower types rank school 2 �rst.)
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the opposite if qn1 < q
n
2 ). One can always choose one of these two sequences

of beliefs such that the sequence of derived best responses do not converge
to the equilibrium strategy pro�le.
Interestingly, in a segregation equilibrium in BM, the bad school has

better ex-post peer quality than the second best public school (�3FOSD�2),
since school 3 collects students rejected from both schools 1 and 2. This
partially compensates the e¤ect of �. Moreover, the ex-post peer quality of
school 3 under BM exceeds q(�). Both results easily fade away if private
schools are available.

3 School choice with an outside option

This section introduces a private school in our baseline model in order to
investigate the way outside options a¤ect parental choices, the performance
of the assignment mechanisms and the resulting allocation of children across
public schools, when peer e¤ects matter. This is especially relevant for school
assignment mechanisms, since outside options are typically available in school
markets. To the best of our knowledge, this is the �rst paper to study the
workings of speci�c school choice mechanisms in the presence of both an
outside option and peer e¤ects.
For simplicity, we assume there is a single private school, which we call

p. This label is also a number that denotes its price or tuition. Parents now
have a choice between the public school the child is assigned to and a private
school after the school assignment algorithm is completed. This school has
endogenous peer quality qp = q(�p), small capacity �p,

19 and exogenous
quality �p.
We assume that the private school sets the maximum price p that allows

it to cover its capacity �p, a reasonable assumption for a tightly capacity-
constrained school that is maximizing tuition revenues. Since students as-
signed to the least-preferred public school have relatively higher willingness
to pay for the private school, an outcome of our model will be that only
students assigned to school 3 might leave it and enroll at the private school.
This gives us a simpli�cation about what to do in the assignment mechanism
with the unoccupied slots. Nobody wants them ex post.

19Private elementary schools not subject to the public school allocation system con-
tain a very small percentage of the total student body in cities such as Barcelona, Spain
(Calsamiglia and Güell, 2014.)
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We include two changes with respect to the basic model. Firstly,
the timing includes this possibility of opting for the private school ex post.
Secondly, the utility function for a t�type household whose child enters a
school with tuition fee p (recall that public schools are tuition-free), peer
quality q and exogenous quality � is extended to

V (q;�; p; t) = u(t� p) + h(q; t) + �

where u(�) is the utility from consumption. Our extended utility function
comprises these two extreme assumptions:

Assumption 3 Type Represents Ability. u(t�p) = t�p and h is strictly
increasing and strictly supermodular (i.e. the base model with p entering
linearly.)

Assumption 4 Type Represents Income. u is strictly increasing and
strictly concave. h is additively separable: h(q; t) = h1(q) + h2(t) with h1
strictly increasing (hence h is not supermodular)

For an extension to bidimensional types t and y and V (q;�; p; t; y) =
u(y � p) + h(q; t) + �; see Appendix 4.
An equilibrium in this extended model follows the previous de�nition,

jut adding that 1) equilibrium beliefs extend to the private school, q̂p; 2) the
ranking decision pro�le R�(t); t 2 D; is accompanied by a pro�le of decisions
on joining the private school or not contingent on the assigned public school,
P �(t) 2 fpublic; privateg3; t 2 D; and 3) that there is a price p (tuition fee)
so that there is no excess demand for the private school. We impose a con-
sistency condition on equilibrium beliefs: these are con�rmed not only
ex post but they are also ordinally interim con�rmed when the assignment
is done and before families decide whether to join the private school. That
is, if qi � qj just after the public school assignment takes place, it cannot be
that qi < qj after families decide whether to enrol at the private school. This
avoids unnatural cases of self-con�rmed beliefs that nothing have to do with
the outcome of the public school assignment. Thus the presence of a private
school just shrinks or enlarges a peer quality di¤erence between schools, yet it
does not create previously nonexistent di¤erences. An equilibrium is stable
if for each converging sequence of beliefs (qn1 ; q

n
2 ; q

n
3 ; q

n
p )n2N ! (q̂1; q̂2; q̂3; q̂p)

there is a sequence of ranking strategy pro�les Rn; P n such that 1) for each
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type t, Rn(t); P n(t) is best responding to R�; P � given (qn1 ; q
n
2 ; q

n
3 ; q

n
p ) and p,

20

and 2) for almost every t 2 D; Rn(t); P n(t)! R�(t); P �(t) as n!1.
The availability of a private school a¤ects the outcome of the BM in two

ways. On the one hand, the complementarity between school quality and
type is no longer necessary for the emergence of segregation when agents
have an outside option: an equilibrium displaying segregation exists if the
marginal utility of income is decreasing. On the other hand, if school quality
and the child�s type are complements in the production of human capital, the
availability of a private alternative leads to an equilibrium with a more elitist
best public school. This gives rise to a new source of unfairness: top types
have higher chances of admission at the best public school when a private
school is present.
We stay with the type-represents-ability model in the main text, notic-

ing that Appendix 3 contains a similar result for the type-represents-income
model. The former model is the most similar to the base model, so that the
additional e¤ects of introducing a private school become more apparent.

Proposition 2 Assume either that the bad school is a ghetto school or that h
shows limited complementarity. In the type-represents-ability model, let ~tmax
denote the maximum equilibrium cut-o¤ in the BM game without private
schools. With a private school with su¢ ciently low capacity �p there exists
a stable equilibrium characterized by a cuto¤ ranking pro�le with threshold
~tp > ~tmax.

Corollary 1 In a (maximum cuto¤ ) equilibrium in BM with a private school
and ability types, top-type students have a higher probability of accessing the
best school than when a private school does not exist. Furthermore, the ex-
post quality of the ex-post best public school increases with respect to the case
without private school.

Key here is that the cut-o¤ type becomes worse-o¤ with respect to the
base model in case she ends up allocated at the bad school. Why does she
become worse-o¤ in such event? Because high types refuse to enrol at the bad
school. Instead they pay for private schooling. This lowers the quality of the
bad school. Therefore ranking the most popular best school (say school 1)
in �rst position becomes riskier than in the base model. Rejection endorses
a higher cost (see Figure 2.) 21

20This de�nition admits excess demands for the private school along the sequence.
21We make sure that p is high enough so that all households prefer school 2 (and hence
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t1/3 t˜ t1/2

t˜p

Figure 2: The di¤erence in expected payo¤s of �gure 1 swifts down when we
introduce a private school (orange dashed line.)

Remark 1 We could have considered a "direct" model in which only high
types (with t above some threshold t3 close to �t) had an outside option that is
better than the bad school yet worse than any good public school. An example
of this could be the case of a selective private school. Conclusions would be
identical.

4 Preference for nearby schools and endoge-
nous location

This section introduces one of the most natural extensions to our base model.
Geographical proximity is many times a relevant factor in families�prefer-
ences over schools. Our extended model is also considering that the families�
location decisions are endogenous and hence drawn to some extent from com-
petitive residential prices.
Our extended model in this section departs for the base model in sev-

eral ways. First, each school j 2 f1; 2; 3g belongs to a neighborhood j whose

school 1) to the private school. We also set that p is low enough so that high types prefer
the private school to school 3. This is possible for su¢ ciently low capacities �p.
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residential capacity equals 1=3 each. A strategy is a pair formed by a lo-
cation decision over neighborhoods and a ranking decision over schools.22

Preferences di¤er from the base model in two elements: 1) if the child gets
enrolled at a school located in a di¤erent neighborhood from where the fam-
ily lives, the household�s utility is reduced by a small positive amount c,23

and 2) a family that chooses to live in a neighborhood j obtains a utility
loss equivalent to residential prices in the area, �j:
An equilibrium is a pair of pro�les L�(t); R�(t); t 2 D of respectively lo-

cation and ranking decisions, a vector of beliefs over peer qualities (q̂1; q̂2; q̂3)
and a vector of residential prices (�1; �2; �3) such that 1) L�(t); R�(t) is best-
responding to L�; R� given the beliefs and the prices, for a.e. t 2 D; 2)
beliefs are con�rmed ex-post, 3) residential market clears at all three neigh-
borhoods. We will apply the following stability requirement as in the base
model, that is, for each converging sequence of beliefs (qn1 ; q

n
2 ; q

n
3 ; q

n
p )n2N !

(q̂1; q̂2; q̂3; q̂p) there is a sequence of ranking strategy pro�les Rn; Ln such that
1) for each type t, Rn(t); Ln(t) is best responding to R�; L� given (qn1 ; q

n
2 ; q

n
3 )

and (�1; �2; �3), 24 and 2) for almost every t 2 D; Rn(t); Ln(t)! R�(t); L�(t)
as n!1.
Proposition 3 Assume that either the bad school is a ghetto school, or that
h shows limited complementarity.
(a) If the base model contains a stable cuto¤ equilibrium with cuto¤ ~t <

t1=3, then for c low enough the extended model has a stable equilibrium with
cuto¤ ~tc 2 (~t; t1=3] .
(b) If on the contrary the base model contains only stable cuto¤ equilibria

with thresholds ~t � t1=3, then for any c < � and for every such equilibrium
threshold ~t there is a stable equilibrium with cuto¤ ~tc 2 [t1=3; ~t) (when ~t = t1=3
we instead have ~tc = t1=3:)

Corollary 2 Consequently, school 2 has lower peer quality than in the base
model, and school 1 has higher quality than in the base model if ~t < t1=3.

22A natural timing in this model would require households to take location decisions �rst
and then play the school choice game. We make this double decision pro�le simultaneous
for the sake of simplicity. We do not lose generality because each equilibrium in our
simpli�ed model represents an equilibrium path in the extended game.
23When c is very large, we have the same (not surprising) outcome as with the presence of

neighborhood priorities, that is, full sorting across schools, again as in Bénabou (1996) and
Epple and Romano (2003.) In this paper we rather assume that geographical preferences
play a secondary role as compared to the concern for o¤spring�s human capital.
24This de�nition admits disequilibria in the residential market along the sequence.
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t1/3

t˜

t1/2t˜c

Figure 3: Changes in �gure 1 when we introduce a preference for nearby
schools (dashed orange line.)

The corollary is true because one can easily check that school 2 decreases
peer quality as the cuto¤ type approaches t1=3 (this is the lowest cuto¤ such
that all types assigned to school 2 are below the cuto¤.) The presence of
preference for nearby schools creates a discontinuity in the cut-o¤ type�s
evaluation of ranking strategies (namely, ranking the popular good school 1 in
�rst position versus ranking school 2 �rst.) To understand this, we recall that
location choice is not exogenous. Location decision depends on prices and on
the intended ranking strategy. Interestingly, introducing endogenous location
decision simpli�es the problem. When household location is exogenously
given, we would have to calculate a cut-o¤ for each neighborhood. Here,
since the ranking decision is optimally linked to the location decision, only
one cuto¤ is relevant.
When the cut-o¤ is below t1=3; all students who rank school 1 �rst must be

located along all neighborhoods. Then they must be indi¤erent among loca-
tions, making neighborhood 2 the cheapest one regarding residential prices.
This gives an advantage to top-ranking school 2 (and living in neighborhood
2), as shown in Figure 3. When the cut-o¤ is above t1=3; no neighborhood
j = 1; 2 can be the cheapest one. Otherwise all students ranking school j
would choose to live there, leading to excess demand. Thus neighborhood
3 must be the cheapest one. This gives an advantage to ranking school 1
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�rst, since in such a case ending up in the bad school is more likely. This is
also seen in Figure 3. A cuto¤ equal to t1=3 is an intermediate case in which
any convex combination of the two aforementioned e¤ects may arise. This
creates this tendency towards the worst equilibrium for school 2.

5 Deferred Acceptance

In light of these results, a natural step forward in the analysis would consist
of exploring alternatives to the Boston Mechanism. In the debate on school
choice, Deferred Acceptance has been suggested as a valid alternative. In this
section, we argue that Deferred Acceptance is more resilient to inter-school
segregation than the Boston Mechanism.
As a mechanism, Deferred Acceptance works almost identically as the

Boston Mechanism. There is only one di¤erence, which is eventually quite
relevant. In the Deferred Acceptance assignment algorithm, when a student
is accepted at some school, this acceptance is tentative as opposed to de�nite.
In other words, a student accepted at some school at some round only gains
the right to continue applying for the same school in subsequent rounds. It
is possible that this student gets rejected at a further round, since in each
round the school selects students from a di¤erent cohort.
While this property of the mechanism is di¢ cult to understand for par-

ents, it turns out that it endorses nice properties. Mainly, Deferred Accep-
tance is strategy-proof. Parents have no gain in misrepresenting preferences,
no matter what other parents do. We will see that strategy-proofness have
nonnegligible implications regarding segregation.
We summarize these results in the following proposition.

Proposition 4 Under Deferred Acceptance:
(a) There is no sorting between good schools in the base model, nor there

is sorting between a good school and the bad school.
(b) For � su¢ ciently large, there is no sorting between goods schools in

the extended model with private schools.
(c) There is an equilibrium with sorting between good schools in the ex-

tended model with preference for nearby schools and su¢ ciently low c, char-
acterized by a cuto¤ ~tD such that types above prefer school 1 to school 2 and
types below prefer school 2 over school 1. As c approaches zero, ~tD tends to
t. Moreover, for any equilibrium cuto¤ ~tc in the Boston Mechanism, we have
~tD < ~tc.
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The resilience of Deferred Acceptance with respect to segregation can be
explained as follows. Suppose that parents expect that two a priori identical
schools are going to have two di¤erent peer qualities. Now, strategy-proofness
is key: everyone would rank these two schools according to these expecta-
tions. But this leads to contradiction. There is no distinction between the
distribution of those students applying for the higher-quality school and those
who are rejected and hence apply of the lower-quality school.
As for part (c) of the proposition above, the presence of some preference

for nearby schools gives rise to segregation. The reason is simple. Low
types may care less about peer quality than about geographical proximity.
However, part (c) also states that even in that case, segregation vanishes as
c tends to zero. Moreover, this segregation is "lower" than that generated
under BM (where peer quality of school 1 is higher.)

6 Concluding remarks

This paper has introduced a theory of sorting into public schools with school
choice. It is, to the best of our knowledge, the �rst study on school choice
mechanisms that endogenizes preferences and priorities. We showed that
the choice of the assignment mechanism, along with the details of the in-
stitutional context in which it is applied, are crucial for the resulting dis-
tribution of children across public schools and for the degree of equality of
opportunities o¤ered by the education system. The welfare implications of
segregating or mixing students are well known (Arnott and Rowse, 1987;
Bénabou, 1996). We thus provided a theoretical underpinning for the equity
concerns expressed by the OECD (2012) and others, even when there are
no informational asymmetries. Our analysis also o¤ers guidance about how
to guarantee equality of opportunities in a context with public sector school
choice.

7 Appendix

7.1 Proofs

Proof. Proposition 1.

(1) No stable equilibria with no sorting between schools 1 and 2. Suppose
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on the contrary that an equilibrium with no sorting between these schools
exists (�1 = �2.) In such a case, q̂1 = q̂2 and both schools are de facto
identical for all students. Best responses involve either ranking school 3 on
top or at the bottom, depending on whether school 3 is preferred to the
other two or not (since students are choosing among two types of schools,
there is no risk in revealing the true position of school 3.) If there are types
that prefer school 3 to the other schools, it must be that q̂3 > q̂1 = q̂2 in
order to compensate for the exogenous quality advantage �: Therefore, by
supermodularity of h; there is a cuto¤ t0 2 D such that types above prefer
school 3 to the others, and the opposite happens when the type lies below
the cuto¤. (In case q̂3 � q̂1 is low enough or negative, we obtain t0 = �t.)
It is not possible that t0 =t. In such a case we obtain �3 = �; and since

by no sorting we have �1 = �2 we must have �1 = �2 = � = �3 and hence
q1 = q2 = q3 contradicting the fact that everyone prefers school 3 to the other
schools. Thus t0 >t. We focus on types below t0. Those types rank school 3
at the bottom, and they choose whether to rank school 1 or school 2 in �rst
position. Let pij be the equilibrium probability of entering school i = 1; 2 if
school j = 1; 2 is ranked in �rst position.
Since q̂1 = q̂2; an equilibrium condition is p11 + p21 = p12 + p22: (Suppose

p1j + p2j > p1;3�j + p2;3�j. Consequently all student types below t0 would
optimally rank school j in �rst position. But then school 3 � j is underde-
manded in the �rst round of the assignment procedure, implying p3�j;3�j =
1 � p1j + p2j; a contradiction.) We argue that a necessary condition for
stability is p11 = p12 and p22 = p21: Suppose on the contrary that pij > pi;3�j:
By the equilibrium condition this implies that p3�i;j < p3�i;3�j: Construct a
sequence of beliefs satisfying qni > q

n
3�i; n 2 N; converging to the equilibrium

beliefs. For all types below t0; the best response given the equilibrium prob-
abilities implies ranking school i in �rst position, along the whole sequence.
Construct another sequence of beliefs satisfying qni < q

n
3�i; n 2 N; converging

to the equilibrium beliefs. The best response for all types t < t0 given the
equilibrium probabilities involves ranking school 3� i in �rst position, along
the whole sequence. Obviously these two sequences of beliefs induce two se-
quences of best response pro�les that do not converge to the same pro�le, a
violation of stability.
However, the Boston Mechanism precludes the accomplishment of the

condition p11 = p12 and p22 = p21: Suppose t0 > t2=3: Then a positive mass of
students with types below t0 must end up in school 3, implying p11 + p21 =
p12+p22 < 1: This implies for instance p11 < 1; thus school 1 is overdemanded

21



in the �rst round, and p12 = 0 < p11: Now suppose t0 � t2=3: In such a case,
there must be a school i = 1; 2 that is not overdemanded in the �rst round
of the assignment procedure, that is, pii = 1: Since p3�i;3�i > 0 we must have
pi;3�i < 1 = pii: This completes the proof.
(2) Existence of stable equilibrium with sorting between schools 1 and 2.

Assume that agents play either one of the following strategies: ranking 1
above 2 and 2 above 3 ("1 � 2 � 3" from now on,) and ranking 2 above 1
and 1 above 3 ("2 � 1 � 3" hereafter.) Furthermore, assume that equilibrium
beliefs are such that q̂1 � q̂3 > q̂2: (We later check that these assumptions
are accomplished in equilibrium.)
Let pij denote the probability of enrolling into school i if the student

ranks school j = 1; 2 in �rst position. We claim that pi1 > pi2 for i = 1; 3
and that p22 > p21 in equilibrium. That pjj > pj(3�j); j = 1; 2 is just a
consequence of the mechanism: one obtains higher chances at school j if she
ranks it above rather than below. p31 > p32 is an equilibrium condition.
Suppose otherwise that p31 � p32; implying p11 � p12 + p22 + p21: Now, for
a.a. t 2 D

p11(h(q̂1; t) + �) + p21(h(q̂2; t) + �) + p31h(q̂3; t)

�p12(h(q̂1; t) + �)� p22(h(q̂2; t) + �)� p32h(q̂3; t)
= p11(h(q̂1; t)� h(q̂3; t) + �) + p21(h(q̂2; t)� h(q̂3; t) + �)

�p12(h(q̂1; t)� h(q̂3; t) + �)� p22(h(q̂2; t)� h(q̂3; t) + �)
� (p12 + p22 + p21)(h(q̂1; t)� h(q̂3; t) + �) + p21(h(q̂2; t)� h(q̂3; t) + �)

�p12(h(q̂1; t)� h(q̂3; t) + �)� p22(h(q̂2; t)� h(q̂3; t) + �)
= (p22 � p21)(h(q̂1; t)� h(q̂2; t)) > 0
where the �rst equality comes from p3j = 1�p1j�p2j; the �rst inequality

comes from p11 � p12+p22+p21 and h(q̂1; t) � h(q̂3; t); and the last inequality
comes from p22 > p21 and h(q̂1; t) > h(q̂2; t): But then, almost all students
best respond with strategy "1 � 2 � 3": This would contradict the assump-
tion q̂1 > q̂2 since the distribution of student types would be identical across
schools ex post (an hence q1 = q2.) This proves the claim.
A �rst consequence is that, under any strategy pro�le such that the beliefs

q̂1 � q̂3 > q̂2 are con�rmed ex post, the di¤erence
p11(h(q̂1; t) + �) + p21(h(q̂2; t) + �) + p31h(q̂3; t)

�p12(h(q̂1; t) + �)� p22(h(q̂2; t) + �)� p32h(q̂3; t)
= (p11 � p12)(h(q̂1; t)� h(q̂2; t)) + (p31 � p32)(h(q̂3; t)� h(q̂2; t)��)
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is increasing in t; due to the supermodularity of h. Therefore, any equi-
librium ranking pro�le R must be characterized by a cut-o¤ t̂ such that types
above t̂ use strategy "1 � 2 � 3" and types below t̂ use strategy "2 � 1 � 3".
We focus attention on cut-o¤ ranking pro�les.
Using pij(t̂) for the probability of ending enrolled in school i when ranking

school j = 1; 2 in �rst position given a cut-o¤ ranking pro�le with threshold
t̂; and qi(t̂) for the ex post peer quality of school i under a cut-o¤ ranking
pro�le with threshold t̂; we construct the function

G(t̂) = (p11(t̂)� p12(t̂))(h(q1(t̂); t̂)� h(q2(t̂); t̂))
+(p31(t̂)� p32(t̂))(h(q3(t̂); t̂)� h(q2(t̂); t̂)��)

which measures the di¤erence in expected payo¤s for the cut-o¤ type
between playing strategy "1 � 2 � 3" and playing strategy "1 � 2 � 3".
Both assignment probabilities and peer qualities evolve continuously with

t̂: Therefore, G is a continuous function. Notice that G(t) < 0 since qi(t) =
q(�) for all i = 1; 2; 3 and p31(t) = 1=3 > p32(t) = 0: Note as well that
G(t1=2) > 0 since p31(t1=2) = 1=3 = p32(t1=2), p11(t1=2) = 2=3 > p12(t1=2) = 0
and q1(t1=2) = q(�t�t1=2) > q2(t1=2) = q(�t�t1=2): The intermediate value
theorem allows us to state that there exists ~t 2 (t; t1=2) such that G(~t) = 0.
That is, there is an equilibrium cut-o¤ ranking pro�le with threshold ~t.
We check that the assumptions we took are correct in equilibrium. We

�rst check that q1 � q3 > q2: In e¤ect, if ~t � t1=3 we have q1 = q(�t�~t) >

q3 = q
�
2=3��(~t)
1=3

�t�~t +
�(~t)�1=3
1=3

�t�~t

�
> q2 = q(�t�~t): And if ~t � t1=3 we obtain

q1 = q(�t�~t) = q3 > q2 = q
�
1=3��(~t)
1=3

�t�~t +
�(~t)
1=3
�t�~t

�
.

Then we check that only strategies "1 � 2 � 3" and "2 � 1 � 3" are
played in equilibrium.
Consider ~t � t1=3: Since both schools 1 and 2 are overdemanded in the

�rst assignment round, the only part of the submitted ranking is the school
ranked in �rst position. So the only relevant alternative to "1 � 2 � 3" and
"2 � 1 � 3" is ranking school 3 �rst ("3 � :::".) Since q̂1 � q̂3 and � > 0; all
families prefer school 1 to school 3. No student would rank school 3 above
school 1 in equilibrium. Therefore "1 � 2 � 3" is better than any of the
alternative strategies for all types. Since those who play "2 � 1 � 3" prefer
it to "1 � 2 � 3"; all alternative strategies are discarded.
We consider further the case t̂ < t1=3: Now submitting an alternative

ranking message "1 � 3 � 2" is better than "3 � :::" for all types, since all
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families prefer school 1 to school 3 and acceptance at school 3 is guaranteed
at all rounds of the assignment process. We compare As for schools 2 and
3, we �rst consider the case in which school 3 is a ghetto school. If t̂ � t1=3;
q2(t̂) = q

�
1=3��(~t)
1=3

�t�t̂ +
�(~t)
1=3
�t�t̂

�
is decreasing in t̂ and q3(t̂) = q(�t�t̂) is

increasing in t̂: If t̂ � t1=3; q2(t̂) = q
�
�t�t̂

�
is increasing in t̂ and q3(t̂) =

q(2=3��(
~t)

1=3
�t�~t+

�(~t)�1=3
1=3

�t�~t) is decreasing in t̂: Then t̂ = t1=3 minimizes q2(t̂)

and maximizes q3(t̂): Thus 8t 2 D; h(q3(~t); t) � h(q2(~t); t) � h(q3(~t); �t) �
h(q2(~t); �t) � h(q3(t1=3); �t)�h(q2(t1=3); �t) < � (the �rst and second inequalities
by supermodularity of h; the last inequality by the ghetto school assumption.)
Everyone prefers school 2 to school 3 in equilibrium. No student would rank
school 3 above school 2 in equilibrium. Overall, only the assumed strategies
are played in equilibrium.
In a second scenario, we consider the limited complementarity assump-

tion. Notice that G(~t) = 0 implies h(q3; ~t) � h(q2; ~t) < � thus the equilib-
rium cuto¤ type (and all types below) prefers school 2 to school 3. Conse-
quently, no household using the ranking "2 � 1 � 3" has incentive to rank
school 3 other than last. As for those households declaring "1 � 2 � 3".
If ~t � t1=3; then school 2 gives all its slots in the �rst round, so ranking
school 3 over school 2 (instead of 2 over 3) has no e¤ect. If ~t � t1=3 we have
p11(~t) = p31(~t) =

1=3

1��(~t) and p12(~t) = p22(~t) = 0. Together with q1 = q3

this makes G(~t) = p11(~t)(2h(q3; ~t) � 2h(q2; ~t) ��) = 0: Then, for all t 2 D;
h(q3; t)�h(q2; t)�� � h(q3; �t)�h(q2; �t)�� = h(q3; �t)�h(q2; �t)�2(h(q3; ~t)�
h(q2; ~t)) < 0: The �rst inequality comes from supermodularity of h knowing
that q3 > q2: The last inequality comes from limited complementarity. We
conclude that all types prefer school 2 to school 3, thus they have no incen-
tive to rank school 3 above school 2. With this we have checked that only
strategies "1 � 2 � 3" and "2 � 1 � 3" are played in equilibrium.
This equilibrium is stable. A best response pro�le to R given qualities

qn1 ; q
n
2 ; q

n
3 arbitrarily close to equilibrium beliefs is characterized by a threshold

t̂n arbitrarily close to ~t:
Moreover, this equilibrium entails sorting between schools 1 and 2, since

in equilibrium �1 �rst-order stochastically dominates �2.
(c) Only full sorting if � big enough. For cuto¤s t̂ � t1=3 we know (from

previous paragraphs) that G(t̂) = p11(t̂)(2h(q3(t̂); t̂) � 2h(q2(t̂); t̂) � �): We
also know that in this interval q3(t̂) is increasing and q2(t̂) is decreasing. By
supermodularity of h; there is an equilibrium cuto¤ ~t � t1=3 if and only if
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2h(q3(t1=3); t1=3)�2h(q2(t1=3); t1=3) � �: If instead� is higher than the former
left-hand side of the inequality, no such equilibrium exists. Therefore only
equilibria with ~t > t1=3 exist in such a case, where �1 = �t�~t and �2 = �t�~t
(full sorting.)
Proof. Proposition 2.
As in the proof of proposition 1 (b), we assume that agents play either

one of the following ranking decisions: ranking 1 above 2 and 2 above 3 ("1 �
2 � 3") and ranking 2 above 1 and 1 above 3 ("2 � 1 � 3") Furthermore,
assume that equilibrium beliefs are such that q̂p > q̂1 � q̂3 > q̂2: We also
assume that the price p is low enough to allow the private school to attract
some students who were assigned to school 3. Yet it is high enough to deter
students assigned to either school 1 or 2 from enrolling in the private school.
(We later check that these assumptions are accomplished in equilibrium.)
Under these assumptions, we know from the proof of proposition 1 that

best ranking response pro�les are characterized by a threshold t̂ such that
types above the threshold play the ranking decision "1 � 2 � 3" whereas
types below play "2 � 1 � 3":
Due to supermodularity of h; we can set a cuto¤ t3 < �t (the tuition fee p

will later be calculated so as to make this type indi¤erent between school 3
and the private school) such that all types above t3 prefer the private school
over school 3 while all types below prefer school 3 to the private school. We
select t3 close to �t; thus for any cut-o¤ type t̂ < 1=2 we have t3 > t̂: The
cut-o¤ type never uses the private school option in the event she is assigned
to school 3. The function

~G(t̂; t3) = (p11(t̂)� p12(t̂))(h(q1(t̂); t̂)� h(q2(t̂); t̂))
+(p31(t̂)� p32(t̂))(h(~q3(t̂; t3); t̂)� h(q2(t̂); t̂)��)

has analogous meaning to G(t̂) in the proof of proposition 1 (indeed, G(t̂) =
~G(t̂; �t).) However, the new explanatory variable t3 lowers the quality of school
3. The distribution of student types at school 3 is a truncation below t3 of the
distribution of student types at school 3 if no private school existed. That is,
~q3(t̂; t3) < q3(t̂) = ~q3(t̂; �t): Consequently, ~G(t̂; t3) < G(t̂) for all t̂ 2 (t; t1=2):
Now, take the maximum equilibrium cuto¤ in the base model, ~tmax 2

(t; t1=2): Since G(~tmax) = 0 we have ~G(~tmax; t3) < 0: On the other hand
~G(t1=2; t3) = G(t1=2) > 0 (since p31(t1=2) = p32(t1=2) = 1=3:) Given that ~G is a
continuous function, there must exist ~tp 2 (~tmax; t1=2) such that ~G(~tp; t3) = 0:
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This is our candidate to equilibrium cuto¤.
We know check that the assumptions are correct in equilibrium. Given

that q3(~tp) > q2(~tp) (as we checked in the proof of proposition 1), and provided
that ~q3 is continuous in t3; we can set t3 close enough to �t so that ~q3(~tp; t3) >
q2(~t

p): This is not even necessary if ~tmax � t1=3; since in that case ~q3(~tp; t3) >
q2(~t

p) for every selected t3. q1(~tp) � ~q3(~t
p; t3) follows from q1(~t

p) � q3(~tp) =
~q3(~t

p; �t) where the latter inequality was shown in the proof of proposition 1.
That only ranking decisions "1 � 2 � 3" and "2 � 1 � 3" are used in

equilibrium is an immediate consequence of the analogous result we check
in proposition 1. In the model with private school, school 3 has lower peer
quality than in the base model with the same cuto¤ (~q3(t̂; t3) < q3(t̂) for
every cuto¤ t̂.)
That the cuto¤ ranking strategy pro�le constitutes a stable equilibrium

stems from its cuto¤ nature, as we showed in the proof of proposition 1.
We show that there are prices p that accomplish with the initial assump-

tions. Fix t3; which determines ~tp, then

p = h(q(�t�t3); t3) + �p � h(~q3(~tp; t3); t3)

where q(�t�t3) is the quality of the private school in equilibrium.
We show that p is high enough to deter students who are assigned to either

school 1 or 2 from enrolling at the private school. This is immediate both
under the ghetto school assumption and under the limited complementarity
assumption with ~tp � t1=3 because school 2 is strictly preferred to school 3
for all students in these setups. Therefore

h(q(�t�t3); �t) + �p � h(q2(~tp); �t)��
< h(q(�t�t3); �t) + �p � h(~q3(~tp; t3); �t)

and for t3 su¢ ciently close to �t; we have h(q(�t�t3); �t)+�p�h(q2(~tp); �t)�� <
p: As for the remaining case (limited complementarity with ~tp � t1=3;) we �rst
notice that no student �nally assigned to school 2 has a type above ~tp: Then

p = h(q(�t�t3); t3) + �p � h(~q3(~tp; t3); t3)
> h(q(�t�t3); ~t

p) + �p � h(~q3(~tp; t3); ~tp)
> h(q(�t�t3); ~t

p) + �p � h(q2(~tp); �t)��

where the �rst inequality comes from supermodularity of h and the second
inequality is due to ~G(~tp; t3) = 0; which implies h(~q3(~tp; t3); ~tp)�h(q2(~tp); ~tp)�
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� < 0: Consequently no student assigned to school 2 chooses to enrol at the
private school (by supermodularity of h; the inequality holds for all t � ~tp:)
Only types above ~tp are assigned to school 1. We check that the highest

type �t prefers school 1 to the private school (that would su¢ ce because 1)
the peer quality of the higher school is higher than that of school 1, and 2)
h is supermodular.) Indeed, since q1(~tp) � ~q3(~t

p; t3); we have

h(q(�t�t3); �t) + �p � h(q1(~tp); �t)��
< h(q(�t�t3); �t) + �p � h(~q3(~tp; t3); �t)

and for t3 su¢ ciently close to �t; we have h(q(�t�t3); �t)+�p�h(q1(~tp); �t)�� <
p:
We have seen that there is an interval of values t3 2 (t�3; �t) for which

all the initial assumptions hold. We complete the proof by de�ning ��p =
1=3[1 � �3(t�3)]; where �3 is the distribution of student types at school 3
under the equilibrium where t3 = t�3. For any capacity �p < �

�
p the result in

proposition 2 holds true.
Proof. Proposition 3.
As in the proof of proposition 1 (b), assume that agents play either one of

the following ranking decisions: ranking 1 above 2 and 2 above 3 ("1 � 2 � 3"
from now on,) and ranking 2 above 1 and 1 above 3 ("2 � 1 � 3" hereafter.)
Furthermore, assume that equilibrium beliefs are such that q̂1 � q̂3 > q̂2: (We
later check that these assumptions are accomplished in equilibrium.)
Let pij denote the probability of enrolling into school i if the student ranks

school j = 1; 2 in �rst position. We know from that preceding proof that
pi1 > pi2 for i = 1; 3 and that p22 > p21 in equilibrium. Since the utility loss
due to residential misallocation of families does not depend on their ability
types, the di¤erence in expected payo¤s for the cut-o¤ type between playing
a ranking decision "1 � 2 � 3" and playing "1 � 2 � 3" is increasing in the
type t; again as in the aforementioned proof. We can then restrict attention
to cut-o¤ ranking pro�les.
The analysis hereafter assumes that, conditional on a ranking decision,

the location decision is optimal, and prices accommodate so as to preclude
excess residential demands.
Consider a case in which the mass of families ranking school 1 �rst exceeds

2/3 and needs to be located in all three neighborhoods. Residential prices
should then make these individuals indi¤erent among the three neighbor-
hoods, thus neighborhood 2 must be the cheapest one, since p21 =

1=3��(t̂)
1��(t̂) <
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p11 = p31 =
1=3

1��(t̂) . Consequently, all those families who rank school 2 �rst

optimally choose to live in neighborhood 2. The cut-o¤ type t̂ without loss
of generality lives in neighborhood 2 as well. Then the expected payo¤ of
the cut-o¤ type in case of ranking school 1 �rst minus the expected payo¤
of the cut-o¤ type in case of ranking school 2 �rst is reduced by an amount
(1� p21)c = 2=3

1��(t̂)c, linked to the probability of not being assigned to school

2. Residential prices would be �1 = �3 = (p31 � p21)c = �(t̂)

1��(t̂)c when �2 is
normalized to zero.
Consider the case in which both schools 1 and 2 are overdemanded in the

�rst round. In such an event, neither neighborbood 1 nor neighborhood 2
could host the lowest residential price. If neighborhood 1 were the cheapest,
all the mass of types ranking school 1 �rst, exceeding 1/3, would choose to
live in neighborhood 1, leading to excess demand. Same argument follows for
neighborhood 2. Given that neighborhood 3 is the cheapest, no one ranking
school 1 (2) in �rst position would ever optimally reside in neighborhood 2
(1) (a neighborhood whose school will never admit this student when both
schools 1 and 2 are overdemanded in the �rst round.) So it is without loss of
generality that the cut-o¤ type t̂ (who in equilibrium is indi¤erent between
strategies) lives in neighborhood 3. Then the expected di¤erences in payo¤s
for the cut-o¤ type in case of ranking school 1 instead of school 2 in �rst
position is increased by an amount (p31 � p32) c = 1=3 1�2�(t̂)

�(t̂)(1��(t̂))c, linked to
the probabilities of being assigned to the school ranked �rst. Notice that in
both cases the residential prices do not determine the nature of the equilib-
rium cut-o¤. Residential prices would be �1 = (p11 � p31)c = �(t̂)�1=3

1��(t̂) c and

�2 = (p22 � p32)c = 2=3��(t̂)
�(t̂)

c; after normalizing �3 to zero.

Finally, consider the case in which t̂ equals t1=3: If the mass of families
playing "1 � 2 � 3" spread locations among all neighborhoods, we have
seen that in that case neighborhood would hold the lowest residential prices.
But then all those who use "2 � 1 � 3"; with mass 1/3, would optimally
choose to live in neighborhood 2, leading to excess residential demand in
such neighborhood. Suppose now that families playing "1 � 2 � 3" locate
on neighborhoods 1 and 2, so that families playing "2 � 1 � 3" have to
occupy neighborhood 3. For that we need �2 � �3 � c; to compensate for
the misallocation of the latter players. Moreover, since p11 = 1=2 > p21 = 0
we need �1 � �2 = c=2; to make the former families indi¤erent between
neighborhoods 1 and 2. But then �1 > �3 and since p11 = p31 = 1=2
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no student playing "1 � 2 � 3" would optimally live in neighborhood 1
(being neighborhood 3 a better option.) Using the same reasoning we can
also discard that families playing "1 � 2 � 3" locate on neighborhoods 3
and 2. The only remaining option is that families playing "1 � 2 � 3"
locate on neighborhoods 1 and 3, and hence �1 = �3; while families who use
"2 � 1 � 3" locate in neighborhood 2. For the former group ("1 � 2 � 3")
to avoid living in neighborhood 2 we require �1 � �2 � c=2: For the latter
group ("2 � 1 � 3") to optimally choose to live in neighborhood 2 we require
�1 � �2 � �c:
Pick any �1��2 2 [�c; c=2]: If the cuto¤type chooses to play "1 � 2 � 3"

(and hence to live in either neighborhood 1 or 3), her extra expected payo¤
as compared to what she obtains when playing "2 � 1 � 3" (and living in
neighborhood 2) is increased by �(�1 � �2) � c=2 (the latter element being
c times the probability of misallocation given ranking decision "1 � 2 � 3");
which belongs to the interval [�c; c=2]. Any e¤ect in this interval can be
supported by market-clearing residential prices.
We construct a (possibly set-valued) function �G(t̂; c) that measures the

di¤erence in expected payo¤s for the cut-o¤ type between playing strategy
"1 � 2 � 3" (and a corresponding optimal location choice given market
clearing prices) and playing strategy "1 � 2 � 3" (and a corresponding
optimal location choice given market clearing prices) as

�G(t̂; c) =

8><>:
G(t̂) + 1=3 1�2�(t̂)

�(t̂)(1��(t̂))c; t̂ 2 (t1=3; t1=2)
[G(t̂)� c;G(t̂) + c=2]; t̂ = t1=3
G(t̂)� 2=3

1��(t̂)c; t̂ 2 (t; t1=3)

where G(t̂) was de�ned in the proof or proposition 2 (b). Notice that �G(t̂; c)
is upper-hemicontinuous. An equilibrium cuto¤ ~tc accomplishes with 0 2
�G(~tc; c):
Consider an equilibrium cuto¤ ~t in the Boston Mechanism without pref-

erences for nearby schools.
Assume that ~t < t1=3: Then �G(~t; c) < 0: Notice as well that the sign

of G(t̂) for t̂ < t1=3 is the sign of 2(h(q3(t̂); t̂) � h(q2(t̂); t̂)) � �; which is
increasing in t̂ < t1=3 (we know this from the proof of proposition 1.) Hence
G(t1=3) > 0 and we know that G(t1=3) 2 �G(t1=3; c): By upper-hemicontinuity
of h there must be some ~tc 2 (~t; t1=3] such that 0 2 �G(~tc; c): Now consider
~t = t1=3: Then 0 = G(t1=3) 2 �G(t1=3; c) thus we set ~tc = t1=3:
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Consider the case in which every equilibrium threshold ~t satis�es ~t > t1=3.
SinceG(t) < 0 and 2(h(q3(t̂); t̂)�h(q2(t̂); t̂))�� is increasing in t̂ < t; wemust
have G(t1=3) < 0: Now, since �G(~tc; c) > G(~t) = 0 and G(t1=3) 2 �G(t1=3; c);
by upper-hemicontinuity of h there must be some ~tc 2 [t1=3; ~t) such that
0 2 �G(~tc; c):
Stability of such equilibria is immediate as seen in previous proofs with

cuto¤ ranking pro�les.
We now show that the initial assumptions are correct in equilibrium.

Clearly q1 � q3 > q2 ex post. We skip the proof, for it mimics the analogous
proof in proposition 1 (b).
As for alternative strategies: there are two main alternative ranking de-

cisions, "1 � 3 � 2" and "3 � :::": The former is irrelevant when ~tc � t1=3 (it
leads to the same assignment as "1 � 2 � 3":) So in case ~tc � t1=3; we only
consider "3 � :::"; leading to sure assignment to school 3, which is optimally
accompanied by living in neighborhood 3 (the cheapest neighborhood when
~tc > t1=3, and the preferred choice in case ~tc = t1=3 even under the worst price
�3 = c=2:) Since q1 � q3; it is clear that "1 � 2 � 3" is better than "3 � :::"
for all t 2 D provided c < �: Those families who instead play "2 � 1 � 3"
prefer it to "1 � 2 � 3"; which is again preferred to "3 � :::":
We analyze the case ~tc < t1=3: Both "1 � 3 � 2" and "3 � :::" are

optimally accompanied by living in neighborhood 3. To see that, we �rst
discard neighborhood 1 as an optimal residential choice, since �1 = �3 and
being assigned to school 3 is more likely than being assigned to school 1.
Knowing that the probability of entering school 3 is at least 1�p11 = p21+p31
and that �3 � �2 = (p31 � p21)c; living in neighborhood 2 is also discarded
(being assigned to school 2 is impossible under these alternative ranking
decisions.) We then observe that, conditional again on c < �; the ranking
decision "1 � 3 � 2" is better than "3 � :::" for all types. We then compare
"1 � 3 � 2" against "1 � 2 � 3": Is such a case we see that the latter is
better option than the former for a t�type family if and only if h(q3(~tc); t) <
h(q2(~t

c); t) + � � c: (The �c comes from the fact that under the decision
"1 � 2 � 3"; the individual is indi¤erent among residential locations, hence
she chooses neighborhood 3 for easiness in the comparison: being assigned
to school 2 carries then a misallocation utility loss c:)
Under the ghetto school assumption we have� > h(q3(~tc); �t)�h(q2(~tc); �t) �

h(q3(~t
c); t)�h(q2(~tc); t);8t 2 D (by supermodularity of h:) For c low enough

we have h(q3(~tc); t) < h(q2(~tc); t) + �� c as desired.
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Under the limited complementarity assumption we have h(q3(~tc); �t) �
h(q2(~t

c); �t) < 2(h(q3(~t
c); ~tc) � h(q2(~tc); ~tc)); and for c low enough we still

have h(q3(~tc); �t)�h(q2(~tc); �t)+ c < 2(h(q3(~tc); ~tc)�h(q2(~tc); ~tc)� c): Now, the
equilibrium condition for ~tc < t1=3 is 2(h(q3(~tc); ~tc) � h(q2(~tc); ~tc) � c) = �:
With this an supermodularity of � we obtain h(q3(~tc); t) < h(q2(~tc); t)+��c
8t 2 D as desired.
Proof. Proposition 4.
(a) If sorting between schools 1 and 2 happens, we have q1 > q2 ex post.

But under the correct beliefs, every student prefers school 1 to school 2. Since
Deferred Acceptance is strategy-proof, every student optimally ranks school
1 above school 2. But then, the distribution of students �nally assigned to
school 1 is indistinguishable from that of school 2, contradicting q1 > q2:
Same reasoning denies sorting between school 1 (or 2) and school 3.
(b) For � su¢ ciently large, school 3 is the least-preferred one for all

students regardless the peer qualities in all schools. The question is whether
to rank school 1 in �rst position or instead school 2. Again the same argument
as in (a) leads to q1 = q2 just after the assignment has taken place and before
families take a decision on enrolling at the private school. The consistency
condition on beliefs imposed in the main text precludes the rise of peer quality
di¤erences between these two schools ex post.
(c) Select c small. There is a cuto¤ value ~tD >t close to t de�ned as

h(q(�t�~tD); ~t
D)� c = h(q

�
2�(~tD)�t�~tD + (1� 2�(~tD))�t�~tD

�
; ~tD): Suppose

beliefs are q̂1 = q(�t�~tD) > q̂3 = q(�) > q̂2 = q
�
2�(~tD)�t�~tD + (1� 2�(~tD))�t�~tD

�
.

c is su¢ ciently small so that h(q̂2; t) + � > h(q̂3; t) for all t 2 D: Assume
that families with type t > ~tD report "1 � 2 � 3", whereas families with type
below ~tD report "2 � 1 � 3". The mass of families reporting "1 � 2 � 3"
exceeds 2=3; so they have to spread along all neighborhoods. We set resi-
dential prices �1 = 2=3 �(~tD)

1��(~tD)c > �3 = 1=3 �(~tD)

1��(~tD)c > �2 = 0 so that all
families who report "1 � 2 � 3" are indi¤erent among all possible residential
choices (notice that p11 =

1=3

1��(~tD) ; p21 = 2=3 � p11; p31 = 1=3:) Under these
circumstances, all families who report "2 � 1 � 3" optimally choose to leave
in neighborhood 2 (p12 = 0; p22 = 2=3; p32 = 1=3 �note that Deferred Ac-
ceptance leads to all students having equal chances to end up in the worst
school, regardless the chosen ranking decision.) It is without loss of general-
ity that we assume a family lives in neighborhood 2. In such a case, type ~tD

is indi¤erent between schools 1 and 2, types above prefer school 1 and types
below prefer school 2. By strategy-proofness, the cuto¤ pro�le with thresh-
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old ~tD (types above report "1 � 2 � 3" and types below report "2 � 1 � 3")
constitutes an equilibrium ranking pro�le. It is easy to see that beliefs are
con�rmed ex post and that there is sorting between schools 1 and 2. Also, it
can be readily checked that ~tD converges to t as c converges to 0; leading to
limit equivalent distributions of student types (�) across schools. As for the
comparison with an equilibrium cuto¤ ~tc under BM. If ~tc � t1=3 we obviously
have ~tD < ~tc for c low enough. Thus we assume ~tc < t1=3: The equilibrium
condition is then

h(q(�t�~tc); ~t
c)� h(q

�
2�(~tc)�t�~tc + (1� 2�(~tc))�t�~tc

�
; ~tc)

= c+�=2 > c =

= h(q(�t�~tD); ~t
D)� h(q

�
2�(~tD)�t�~tD + (1� 2�(~tD))�t�~tD

�
; ~tD)

By supermodularity of h, the fact that q(�t�~t) increases in ~t and the fact
that q

�
2�(~t)�t�~t + (1� 2�(~t))�t�~t

�
decreases in ~t; we conclude that ~tD < ~tc:

7.2 The base model with more than 3 schools

Suppose that we have J > 3 equally sized schools and that school J is bad
(being assigned there entails a utility loss equal to � > 0). Is there an
equilibrium with (full) sorting?

Proposition 5 In BM as in the base model yet with J > 3 equally sized
schools and being school J the only bad school, if � is su¢ ciently large, there
only exist stable equilibria with full sorting between every pair of good schools
i; j such that i < j.

Proof. We assume that h is di¤erentiable (ht denotes its partial derivative
with respect to type). The �rst step is to show that with � su¢ ciently
large, all schools apart from the bad one give all their slots in the �rst round
of the assignment algorithm in equilibrium. Suppose not. If a strict sub-
set S � f1; :::; J � 1g of good schools do not give all its slots in the �rst
round, then any student who ranks a school from S in �rst position avoids
the punishment � for sure. Conditional on ranking any school in the com-
plement of S �rst, the probability of being assigned to the worst school
(hence su¤ering the utility loss �) is on average at least 1

J�#S . Setting
� > (J �#S)[h(q(�tjt�t(J�1)=J ); �t) � h(q(�tjt�t1=J ); �t)], some types who were
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not ranking a school from S in �rst position would be strictly better-o¤ ex
ante by doing so. Hence we did not have a best-response pro�le, a contra-
diction.
In that context, strategies can be simpli�ed to "what good school to rank

�rst": a total of J � 1 relevant strategies. The second step is to show how,
when the second round assigns slots only to the worst school, an equilibrium
with beliefs q̂1 > q̂2 > ::: > q̂J�1 is characterized by cuto¤s in the ranking
pro�le R. Let pi and pj denote the probabilities of being accepted at schools
i and j respectively, conditional on ranking respectively i or j �rst. Let
also qi > qj: Conditional on ranking i �rst, the expected payo¤ for a t-
type household is pih(qi; t) + (1 � pi)[h(qJ ; t) � �]. An analogous expected
payo¤ form arises when ranking j �rst. A t-type household prefers to rank
i �rst over ranking j �rst if h(qi;t)�h(qJ ;t)+�

h(qj ;t)�h(qJ ;t)+� >
pj
pi
. The left-hand side ratio is

increasing in t if � is high enough: its �rst derivative is positive when

ht(qi; t)� ht(qJ ; t) > [ht(qj; t)� ht(qJ ; t)]
h(qi; t)� h(qJ ; t) + �
h(qj; t)� h(qJ ; t) + �

The fraction on the right-hand side is arbitrarily close to 1 as � becomes
su¢ ciently large, and ht(qi; t) > ht(qj; t) by supermodularity of h. Then for
� su¢ ciently large the inequality above holds regardless the probabilities pi
and pj. Since

h(qi;t)�h(qJ ;t)+�
h(qj ;t)�h(qJ ;t)+� is increasing, there exists a threshold t̂ij such

that types above it prefer to rank i �rst over ranking j �rst while types
below prefer the opposite. Moreover, for any triple of good schools i; j; k
such that qi > qj > qk, we have t̂ij > t̂jk (otherwise no student would
rank school j �rst, contradicting the fact that every good school gives all
of its slots in the �rst round). Therefore we have proven that a series of
thresholds �t � t̂01 > t̂12 > t̂23 > ::: > t̂J�2;J�1 > t̂J�1;J � t (where types
in (t̂j;j+1; t̂j�1;j) rank school j �rst) characterize a best-response pro�le that
produces q1 > q2 > ::: > qJ�1 ex post.
Existence: Note that pj =

1=3

�(t̂j�1;j)��(t̂j;j+1)
when best responses are char-

acterized by cuto¤s as depicted above. As an equilibrium feature we must
have pj < pj+1 for every good school j (lower peer qualities must be compen-
sated with higher admission chances.) The suggested equilibrium would sat-
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isfy, for every j = 1; ::; J�2; noting and using the notation T � (t̂01; t̂12; t̂23; :::; t̂J�2;J�1; t̂J�1;J) :

0 = Gj;j+1(T )
� [�(t̂j;j+1)� �(t̂j+1;j+2)]h(qj(t̂j;j+1; t̂j�1;j); t̂j;j+1)

�[�(t̂j�1;j)� �(t̂j;j+1)]h(qj+1(t̂j;j+1; t̂j+1;j+2); t̂j;j+1)
+[�(t̂j�1;j)� 2�(t̂j;j+1) + �(t̂j+1;j+2)][h(qJ(T ); t̂j;j+1)��]

where qj(t̂j;j+1; t̂j�1;j) � q(�tjt̂j;j+1�t�t̂j�1;j) > qj+1(t̂j;j+1; t̂j+1;j+2) � q(�tjt̂j+1;j+2�t�t̂j;j+1),
and qJ(T ) � q(�J jT ), where �J jT is a convex combination of all preceding
�tjt̂j;j+1�t�t̂j�1;j ; j = 1; :::; J � 1:
Such an equilibrium exists because (1) lim

�(t̂j;j+1)!�(t̂j+1;j+2)+1=J
Gj;j+1(T ) < 0

for� high enough and (2) lim
�(t̂j;j+1)!

�(t̂j�1;j)+�(t̂j+1;j+2)
2

Gj;j+1(T ) > 0. Since each

function Gj;j+1(T ) is continuous we can make use of the intermediate value
theorem to show existence. Its cuto¤ nature guarantees stability.
Finally, we show that an equilibrium with no sorting between good schools

i and j (implying qi = qj) is not stable. Such an equilibrium belief cannot
be con�rmed ex post through a threshold-like strategy pro�le (where only
types above some threshold t̂ij can rank one of the schools �rst and only types
below can rank the other school �rst.) Yet for any sequence (qni ; q

n
j )! (qi; qj)

with qni 6= qnj we have that the best-response pro�le Rn is characterized by
a threshold t̂nij such that only types above the threshold can rank one of the
schools �rst and only types below can rank the other school �rst. Then the
limit of the sequence Rn cannot converge to the initial equilibrium strategies
supporting qi = qj.

7.3 The type-represents-income model

When types are linked to family incomes and h is not supermodular, it is clear
that, in the absence of private schools, no segregation can arise. However,
when private schools exist, segregation arise due to the di¤ering willingness
to pay for the outside option across types. We prove the following result.

Proposition 6 Suppose that types represent incomes. Fix any cuto¤ t3 <
t1=2 separating those who do not make use of the private school from those who
do in case they are assigned to school 3. Then, for � su¢ ciently high, there is
a capacity of the private school �p such that there is a stable equilibrium and a
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ful�lling capacity price p (such that t3 is indi¤erent between school 3 and the
private school) in which there is full sorting between school 1 and school 2,
full sorting between school 1 and school 3, and partial sorting between school
2 and school 3.

Segregation emerges in this scenario if all households who rank school
1 �rst have the back up of the private school, that is, if they have enough
income to avoid ending up in the ghetto school if rejected from school 1. Put
di¤erently, segregation arises when those who cannot a¤ord the private school
misrepresent their preferences to play a safer strategy. The single-crossing
condition then holds: because higher income agents have lower marginal
utility of income, their utility cost of paying tuition fees p is smaller. Hence
their relative valuation of the private school (and so of strategy 1) is larger
even if their kids do not bene�t more from school quality than others.25

Proof. Fix a threshold t3 2 (t; t1=2) such that, by assumption, types below
the threshold optimally stay in school 3 in case they are assigned there, and
types above choose instead to pay the tuition fee p (that will be calculated
later) for the private school. Conditional on t3 for every t̂ 2 (t3; t1=2) we study
the cuto¤ ranking strategy pro�le in which types above the cuto¤ t̂ adopt
the ranking decision "1 � 2 � 3" whereas families with lower type declare
"2 � 1 � 3" instead constitutes a (stable) equilibrium strategy pro�le.
We assume (we later �x parameter � to make this assumption correct)

that none of the students assigned to either school 1 or 2 enrolls at the
private school. Then the two cuto¤s t3 and t̂ drive all ex-post peer qualities:
q1(t̂) = q(�t�t̂); q2(t̂) = q(�t�t̂); q3(t̂) = q(�t�t3); and

qp(t̂) = q

0@ 2=3� �(t̂)
2=3� �(t̂) + [�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

�t�t̂ +
[�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

2=3� �(t̂) + [�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

�t3�t�t̂

1A
: It can be readily checked that q1(t̂) > qp(t̂) > q2(t̂) > q3(t̂): Obviously
beliefs will correspond to ex post qualities in equilibrium. They also drive
public school assignment probabilities pij conditional on the school 1 that is
ranked in �rst position (either school 1 or 2): p11(t̂) =

1=3

1��(t̂)
Cuto¤strategy pro�le. Given the cuto¤ t̂, the tuition fee is determined by

the equation h1(qp(t̂))+�p�h1(q3(t̂)) = u(t3)�u(t3�p(t̂)): For types t > t3;
25Otherwise, the relative valuation of strategies 1 and 2 does not change with type and

the single-crossing condition only holds weakly.
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being assigned to school 3 is followed by enrollment in the private school.
Then the payo¤ from the ranking decision "1 � 2 � 3" is p11(t̂)(h1(q1(t̂)) +
�+u(t))+(1�p11(t̂))(h1(qp(t̂))+�p+u(t�p(t̂))): The payo¤from "2 � 1 � 3"
is p22(t̂)(h1(q2(t̂)) + � + u(t)) + (1 � p22(t̂))(h1(qp(t̂)) + �p + u(t � p(t̂))):
The di¤erence between payo¤s is increasing in t (recall that for cuto¤s in
(t1=3; t1=2) we have p22(t̂) > p11(t̂) and that u is concave,) and for the cuto¤
type this di¤erence is

Ĝ(t̂) = p11(t̂)(h1(q1(t̂)) + �� h1(qp(t̂))��p)

�p22(t̂)(h1(q2(t̂)) + �� h1(qp(t̂))��p)

�(p22(t̂)� p11(t̂))(u(t̂)� u(t̂� p(t̂)))

In the lower limit of the cuto¤ interval, we show that Ĝ(t3) < 0 for �
large enough. Provided that this type is indi¤erent between school 3 and the
private school, we have Ĝ(t3) = (h1(q1(t3))�h1(q2(t3))��)=2 (after noticing
that p22(t3) = 1 and p11(t3) = 1=2, and that q2(t3) = q3(t3)) Then there is
�(t3) such that for all � > �(t3) we obtain the desired result. We can also
easily see that Ĝ(t1=2) > 0; based on p22(t1=2)�p11(t1=2) = 2=3: By continuity
of Ĝ and the intermediate value theorem, for each � > �(t3) there is at least
one cuto¤ ~t(�; t3) such that Ĝ(~t(�; t3)) = 0:
It is clear that provided � � �p all students prefer school 1 to the

private school for any tuition fee (school 1 is free and enjoys higher peer
quality.) We check that all students prefer school 2 to the private school,
that is h1(qp(~t(�; t3)))�h1(q2(~t(�; t3)))+�p�� < u(~t(�; t3))�u(~t(�; t3)�
p(~t(�; t3))); for � large enough. This comes from the fact that all students
prefer school 1 to the private school under � � �p and from Ĝ(~t(�; t3)) = 0:
Thus for our �xed t3; for any � > maxf�(t3);�pg; there is a cuto¤ ~t(�; t3)
and a private school tuition fee p = p(~t(�; t3)) so that our proposed cuto¤
strategy pro�le (types above the cuto¤ declare "1 � 2 � 3"; types below
decide "2 � 1 � 3" instead) constitutes an equilibrium strategy pro�le under
beliefs q1(~t(�; t3)) > qp(~t(�; t3)) > q2(~t(�; t3)) > q3(~t(�; t3)): Capacity �p
is set to accommodate all students who are assigned to school 3 with types
above t3:
Stability is proven given the cuto¤ nature of the ranking decision pro�le.

Sorting relations as depicted in the proposition are apparent from previous
paragraphs (�1FOSD�pFOSD�2FOSD�3).
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7.4 Two-dimensional characteristics space

A two-dimensional type space is useful, since it not only considers ability
(our "type" t) but also wealth (denoted by y). This subsection extends
some results in considering a model with two income levels, H and L, where
H > L. Conditional on the income level y, the ability distribution is � (tjy).
We assume that there is positive correlation between income and ability in
such a way that � (�jH) FOSD � (�jL). A mass � 2 (0; 1=2) of households
has income H and the rest have income L. In order to talk about sorting
of abilities across schools, we analyze each subpopulation (high- and low-
income households separately). The de�nitions in the paper can be used for
each subpopulation. �j (tjy) would denote the distribution of ability types
among those attending school j conditional on having income y. Accordingly,
the ex-post school quality is qj = q(� ��j (�jH)+ (1��) ��j (�jL)). Utility is
now de�ned as V (q;�; p; t; y) = u(y� p) + h(q; t) +�; where u is increasing
and concave and h is increasing and supermodular. We further assume that
u(t) � u(t � p) tends to 0 as t grows large. We assume in this subsection
that h(q; t) is invariant in q (the lowest type does not bene�t from peer
qualities.) Finally, we assume that � > �p: We analyze cuto¤ equilibria
characterized by thresholds ~tH and ~tL for rich and poor families respectively
(ability types above the threshold declare "1 � 2 > 3"; types below use the
ranking "2 � 1 > 3".)
Private school and no priorities
We want to explore the interesting case where the private school is overly

expensive for poor families but a¤ordable for richer families. In an extreme
illustrative case we could assume tH3 = t: This could be done by properly
increasing H so that u(H � p) +�p � u(H) (recall that a t�type household
does not care about school quality di¤erences, and that u(H) � u(H � p)
is decreasing in H:) But then, all rich households face less risk than poorer
households since not being admitted in a good public school has as a conse-
quence being enrolled in the private school, as compared to the bad school.
Consequently, rich households would tend to bet for school 1 rather than the
safer option of school 2. In equilibrium we would have ~tH < ~tL < tL3 .
Key here is that in such equilibrium the cuto¤ type among rich families

makes use of the private school in case the student gets assigned to school 3,
an option that is not used by the cuto¤ type among poor families. The baseline
model predicted an "ability elitization" of school 1 (top ability types get more
chances at school 1), as compared to a scenario with no private school. When
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we introduce income di¤erences and non quasilinear utilities, there is also an
"income elitization" e¤ect.

Proposition 7 Fix L and let � � h(q(�t); �t) � h(q(�tjt�t1=3); �t)]. If H is
high enough, then there is a capacity �p associated to such H under which
there exists a stable equilibrium characterized by cuto¤s ~tpH < ~tpL such that
households with income y 2 fL;Hg rank school 1 �rst if their ability types
are above ~tpy, and they rank school 2 in �rst position otherwise.

Proof. We restrict attention to cuto¤ strategy pro�les as depicted in the
proposition, and we assume peer qualities satisfy minfqp; q1g � q3 > q2 ex
post (a condition that will hold in equilibrium.) Fix tL3 >

1=2��
1�� so that

we make sure that the equilibrium cut-o¤ type ~tpL for income L does not
choose the private school against school 3 (~tpL >

1=2��
1�� would imply that

more families are top-ranking school 2 than top-ranking school 1, impossible
in equilibrium.) Setting H high enough, we make sure that u(H� p)+�p �
u(H) and then tH3 = t: In both income types, it can be checked that single
crossing conditions apply: if an ability type chooses to rank school 1 �rst, so
does a higher ability type; if an ability type chooses to rank school 2 �rst,
so does a lower ability type. This allows us to search for income-dependent
cut-o¤ types ~tpH and ~t

p
L meeting G

p
H(~t

p
H ; ~t

p
L) = G

p
L(~t

p
H ; ~t

p
L) = 0 where

Gpy(t̂H ; t̂L) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h(q1(t̂H ; t̂L); t̂y)� 2h(q2(t̂H ; t̂L); t̂y)��
+Iy=Lh(q

p
3(t̂H ; t̂L); t̂y)

+Iy=L[h(qp(t̂H ; t̂L); t̂y) + u(H � p)� u(H) + �p]
if ��(t̂H jH) + (1� �)�(t̂LjL) < 1=3
��(t̂H jH)+(1��)�(t̂LjL)

1�2[��(t̂H jH)+(1��)�(t̂LjL)]
h(q1(t̂H ; t̂L); t̂y)�

1�[��(t̂H jH)+(1��)�(t̂LjL)]
1�2[��(t̂H jH)+(1��)�(t̂LjL)]

h(q2(t̂H ; t̂L); t̂y)��
+Iy=Lh(q3(t̂H ; t̂L); t̂y)

+Iy=L[h(qp(t̂H ; t̂L); t̂y) + u(H � p)� u(H) + �p]
if ��(t̂H jH) + (1� �)�(t̂LjL) � 1=3

where Iy=L is the usual indicator function (1 if true, 0 if false), and
qj(t̂H ; t̂H)�s is j0s school ex-post peer quality the cuto¤s are t̂H and t̂H .
qp(t̂H ; t̂L) is the quality of the private school with these cuto¤s. These qual-
ities also depend on the �xed value tH3 .
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In case there exists a cut-o¤ equilibrium, it cannot be the case that ~tpH �
~tpL since we would have G

p
H(~t

p
H ; ~t

p
L) > GpL(~t

p
H ; ~t

p
L): (Since h(qp(~t

p
H ; ~t

p
L); ~t

p
H) +

u(H�p)�u(H)+�p � h(qp(~tpH ; ~t
p
L); ~t

p
H) > h(q3(~t

p
H ; ~t

p
L); ~t

p
H) � h(q3(~t

p
H ; ~t

p
L); ~t

p
L):)

We then show that an equilibrium with ~tpH < ~t
p
L exists. We �rst reduce our

�eld of candidate cuto¤s to those satisfying ��
�
t̂H jH

�
+ (1� �)�

�
t̂LjL

�
<

1=2 (this condition is a natural equilibrium condition saying that the mass
of applicants ranking school 2 �rst must be lower than the mass of students
ranking school 1 is �rst position). Conditional on that we obtain GpH(t; �) < 0
for any ~tpL and G

p
L(�; t) < 0 for any t̂H (immediate from the fact that a t�type

student does not care about peer quality.) Also, notice that in the limit of
the aforementioned condition, i.e. ��(t̂H jH) + (1 � �)�(t̂LjL) = 1=2; if
t̂H > t then GpH(t̂H ; t̂L) = GpL(t̂H ; t̂L) = 1. Select one such pair (t̂H ; t̂L)
with ��(t̂H jH)+(1��)�(t̂LjL) = 1=2. Continuity of G�s almost everywhere
and the intermediate value theorem imply that in the open segment with
extremes (t; t) and (t̂H ; t̂L) there are two points (tH ; f(tH)) and (g(tL); tL)
such that GpL(tH ; f(tH)) = G

p
H(g(tL); tL) = 0. This de�nes two functions f

and g which can be picked to be continuous almost everywhere due to the
continuity of G�s almost everywhere. We show that f and g intersect at
some point (~tpH ; ~t

p
L), a cut-o¤ equilibrium. There is only one discontinuity of

GpH around (t; t
m
L ) where (1� �)�(tmL jL) = 1=2, thus lim

tL!tmL
g(tL) = t. Notice

that f(t) < tmL since G
p
L(t; t

m
L ) = 1. So when t̂H ! t (hence we approach

a �at line from the origin (t; t)); g lies at the right from f . If we go to the
45 degree line, it is easy to observe that g lies at the left from f on that
line, since GpH(t̂; t̂) > G

p
L(t̂; t̂) 8t < t(1=2). Continuity of f and g everywhere

except for (t; tmL ) ensures the existence of an intersection between f and g at
some point (~tpH ; ~t

p
L). G

p
H(~t

p
H ; ~t

p
L) = G

p
L(~t

p
H ; ~t

p
L) = 0 by de�nitions of f and g,

therefore we have a cut-o¤ equilibrium below the 45 degree line (~tpH < ~t
p
L).

7.5 An alternative ghetto e¤ect

We consider a di¤erent modeling of the human capital loss produced by
being assigned to a bad school. In the main model, the human capital loss is
constant over all types. Here, we consider a reduction in quality: if the mean
type across the students assigned to school 3 is q3, then the school quality is
�q3, where � 2 (0; 1) is a "degradation" factor that applies only to school 3.
So the bad school e¤ect a¤ects school peer quality.
We assume that t > 0 and that h(�; t) is de�ned on (0; �t] for every t,
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with lim
q!0
h(q; t) = �1 and h(q(t); t) � 0: Going to a su¢ ciently degraded

bad school produces an enormous human capital loss. Under these assump-
tions, one can see that the single-crossing conditions ensuring that the Boston
Mechanism without priorities generates an equilibrium with sorting hold
here, if the degradation factor is low enough.

Proposition 8 If � is su¢ ciently small, there is a stable equilibrium with
full sorting between schools 1 and 2.

Proof. The proof arises immediately because h(�q3; t) becomes negative
and big in absolute terms. We assume beliefs q̂1 > q̂2 that will be con�rmed
in equilibrium. For � low enough every student has school 3 as its least-
preferred option in spite of the beliefs about q3. Thus we restrict attention
to strategies "1 � 2 � 3" and "2 � 1 � 3". No equilibrium in which
school 2 is underdemanded in the �rst round (i.e. the mass of households
submitting "2 � 1 � 3" is not higher than 1/3) can arise. For strategy
"1 � 2 � 3" gives negative expected payo¤ to everyone for � low enough
whereas strategy "2 � 1 � 3" ensures positive payo¤ to everyone (school 3
is avoided with certainty), regardless the type. The former strategy cannot
be a best response. Hence we focus on strategy pro�les where the mass of
families playing "2 � 1 � 3" lies strictly between 1=3 and 1=2.
Strategy "1 � 2 � 3" is better than "2 � 1 � 3" for a t� type family if

h(q̂1;t)�h(�q̂3;t)
h(q̂2;t)�h(�q̂3;t) >

p22
p11
(pjj is the probability of being accepted at school j if j is

ranked in �rst position.) The left-hand side of the inequality is increasing in
t if ht(q̂1; t) � ht(�q̂3; t) > [ht(q̂2; t) � ht(�q̂3; t)]h(q̂1;t)�h(�q̂3;t)h(q̂2;t)�h(�q̂3;t) : This inequality

holds true provided � is low enough, which makes h(q̂1;t)�h(�q̂3;t)
h(q̂2;t)�h(�q̂3;t) arbitrarily

close to 1. Since the LHS is increasing, the best response pro�le is character-
ized by a cuto¤ t̂ (types above the cuto¤ play "1 � 2 � 3" and types below
play "2 � 1 � 3":) Then we consider the function, for t̂ 2 [t1=3; t1=2]

�G(t̂) =
1=3

1� �(t̂)
(h(q1(t̂); t̂)� h(�q3(t̂); t̂))�

1=3

�(t̂)
(h(q2(t̂); t̂)� h(�q3(t̂); t̂))

where qj(t̂) is as de�ned in the proof of proposition 1. �G(t̂) measures the
payo¤di¤erence for the cuto¤ type between playing "1 � 2 � 3" and playing
"2 � 1 � 3": �G is continuous. Moreover �G(t1=3) < 0 since �h(�q3(t̂); t̂) is
very big, and �G(t1=2) < 0 since q1(t̂) > q2(t̂): Therefore there is ~t� 2 (t1=3; t1=2)
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accomplishing with �G(~t�) < 0. This characterizes our equilibrium strategy
pro�le. The equilibrium is stable due to its cuto¤ nature. Moreover, this
equilibrium shows full sorting between schools 1 and 2 since only types below
~t� go to school 2 whereas only types above attend school 1.
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