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Abstract

We analyse the properties of generalised method of moments-instrumental variables (GMM-

IV) estimators of AR(1) dynamic panel data sample selection models. We show the consistency

of the first-differenced GMM-IV estimator uncorrected for sample selection of Arellano and Bond

(1991) (a property also shared by the Anderson and Hsiao,1982, proposal). Alternatively, the

system GMM-IV estimator (Arellano and Bover, 1995, and Blundell and Bond, 1998) shows a

moderate bias. We perform a Monte Carlo study to evaluate the finite sample properties of the

proposed estimators. Our results confirm the absence of bias of the Arellano and Bond estimator

under a variety of circumstances, as well as the small bias of the system estimator, mostly due

to the correlation between the individual heterogeneity components in both the outcome and

selection equations. However, we must not discard the system estimator because, in small

samples, its performance is similar to or even better than that of the Arellano-Bond. These

results hold in dynamic models with exogenous, predetermined or endogenous covariates. They

are especially relevant for practitioners using unbalanced panels when either there is selection

of unknown form or when selection is difficult to model.

JEL Codes: J52, C23, C24

Keywords: Panel data, sample selection, dynamic model, generalized method of moments

1 Introduction

The problems of self-selection, non-response and attrition are common in datasets containing eco-

nomic variables. Although dealing with them in cross-sections results in manageable models, cor-

related heterogeneity together with endogenous attrition or selection complicates the models with
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unbalanced panel data (Baltagi, 2005). Many studies have dealt with unobserved heterogeneity

and selectivity simultaneously, as we will review in the next section. The increasing availability

of large longitudinal datasets and the development of new methods make these approaches likely

to be used more frequently in the future. In this context, we believe that it is important to high-

light advantages and problems in the performance of different estimators and to draw researchers’

attention to potential pitfalls in using them in empirical studies.

In this paper we focus on the estimation of the AR(1) dynamic panel data sample selection

model, when the selection process is either static or dynamic. Note, however, that all the results

nicely extend to the model with covariates. We assume a typical model for the outcome of inter-

est and consider different assumptions for the selection equation. The error components of both

equations can be correlated with a very general correlation structure. Departing from the simplest

situation, we present an exercise including all important features in the model one by one to test

its individual and joint effects on the bias of generalised method of moments (GMM) estimators.

Thus, our exercise can be viewed as a guide for applied researchers on the cost (in terms of bias) of

estimating the model on an unbalanced selected panel or on a balanced panel constructed by not

considering sample selection.

We show that the uncorrected (for selection) generalized method of moments instrumental

variables (GMM-IV) Arellano and Bond (AB, 1991), as well as the less efficient Anderson and Hsiao

(AH, 1982), estimators are consistent regardless of whether selection is exogenous or endogenous.

Furthermore, we show that the additional orthogonality restrictions implied by the system GMM

estimator (Arellano and Bover, 1995; Blundell and Bond, 1998) are not valid under endogenous

selection. However, the inconsistency of the estimator is very small and hardly induces bias in the

estimator, even and especially in small samples, when the time-invariant heterogeneity components

in the outcome and selection equations are not correlated. All these results extend to the model

with exogenous, predetermined or endogenous covariates.

These estimators are then evaluated using Monte Carlo methods relaxing or imposing a variety

of assumptions. All of our results suggest the non-necessity of correcting the first difference AB

estimates in the selected sample. For those that still pursue full elimination of the small bias of the

system estimator, we evaluate simple corrections for selectivity in the equations in levels, which are

based on estimates of the correlation between the heterogeneity components of corrections resulting

in typical binomial probit models adjusted for each cross-section. The corrected outcome equation

is then adjusted by a system GMM estimator that can be implemented using standard software,

although, of course, it requires computing the correct standard errors.1

Thus, our exercise provides a general picture implying little necessity to correct for selectivity

when we allow for moderate or even high degrees of selection and the selection equation is either

static or dynamic. Our results also apply to outcome equations with exogenous, predetermined

or endogenous covariates. We submit the model in the Monte Carlo exercise to several sensitivity

1For instance, following Terza (2016).
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checks by relaxing various maintained assumptions and show that they are very robust except in

the case in which the ratio of variances of the heterogenous component to the idiosyncratic error

is high. Overall, we believe that these results could be especially relevant for practitioners in cases

involving sample selection of unknown form, when the selection process is difficult to model or

when exclusion restrictions are not available.

The rest of the paper is organised as follows. Section 2 provides a review of the literature

and presents the general model and the estimation methods. The performance of the proposed

estimators is tested in Section 3 in which we present a Monte Carlo study of the finite sample

average bias of GMM-IV estimators as well as a sensitivity analysis of some assumptions. In

Section 4, we present and evaluate simple alternatives for correction. In Section 5, we compare the

different estimators in an empirical exercise, which uses the same data of Semykina and Wooldridge

(2013, SW) or Lai and Tsai (2016). Finally, Section 6 concludes.

2 Modelling strategy

2.1 Previous literature

The problem of endogenous selection is common in the empirical economic literature using panel

data and it has also received attention in theoretical econometrics models. Starting with Ver-

beek and Nijman (1992), who proposed tests of selection bias either with or without allowance

for correlation between the unobserved effects and explanatory variables, a number of proposals

considering unobserved heterogeneity and selectivity simultaneously have appeared. Some of them,

such as Wooldridge (1995) and Rochina-Barrachina (1999), proposed new methods for estimating

the sample selection model with correction under strict exogeneity. Kyriazidou (1997) corrected for

selection bias using a semiparametric approach based on a conditional exchangeability assumption

and Lai and Tsay (2016) proposed maximum simulated likelihood methods. On the other hand,

Vella and Verbeek (1998), Charlier et al. (2001) and Semykina and Wooldridge (2010) allowed for

endogenous explanatory variables. Finally, Semykina and Wooldridge (2018) proposed estimation

procedures for discrete choice panel data models.2

Dynamics appeared for the first time in the work of Kyriazidou (2001), who extended her

previous proposal. More recently, Semykina and Wooldridge (2013) proposed new two-stage random

effects strategies for estimating panel data models in the presence of endogeneity, dynamics and

selection.3 Note, however, that the validity of Semykina and Wooldridge’s method is based on the

validity of the assumption of correlation of the heterogeneity components and the initial condition.

Because none of the previous papers suggested a preferred, simplified, or dominant method, our

aim here is to provide solutions easily applicable from the point of view of applied practitioners.

2In another strand of research, theoretical papers have explored bias-corrected estimators for the static case
(Fernández-Val and Vella, 2007).

3In the dynamic case, semiparametric alternatives were studied by Gayle and Viauroux (2007) and Sasaki (2015),
while maximum likelihood methods were explored by Raymond et al. (2010).
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The various methods have been applied to a number of empirical studies. Charlier et al.

(2001) studied housing expenditure by households. Jones and Labeaga (2004) selected a sample

of non-smokers using the variable addition test of Wooldridge (1995) and then estimated Tobit-

type models on the sample of smokers and potential smokers using GMM and minimum distance

(MD) methods. González-Chapela (2007) used GMM to estimate the effect of recreational goods

on male labour supply. Winder (2004) used instrumental variables to account for endogeneity of

some regressors in earnings equations for females. Jiménez-Mart́ın (2006) estimated dynamic wage

equations and tested the possibility of differences between strikers and non-strikers. Dustmann

and Rochina-Barrachina (2007) estimated females’ wage equations extending Rochina-Barrachina

(1999). More recently, Semykina and Wooldridge (2010, 2013) applied their methods to estimate

earnings equations for females. Finally, Semykina and Wooldridge (2018) applied discrete choice

sample selection panel data models to the analysis of pension coverage among white females in the

US.

Because it is likely these approaches will be used more frequently in the future, we believe that

it is important to highlight properties, advantages and problems of the various methods, as well as

their pitfalls and performance in applied studies. This is precisely what we aim to do in this paper.

First, we show the consistency of the AB GMM-IV estimator (and implicitly of the AH estimator)

and establish a bound for the system GMM-IV in the worse-case scenario of endogenous selection.

Then, we carry out a Monte Carlo exercise to examine the performance of each method under

alternative assumptions. Finally, we compare the different estimates in an empirical exercise.

2.2 The model

Consider the following AR(1) panel data model with unobserved heterogeneity:

y∗it = ρyit−1 + αi + εit (1)

for i = 1, ..., N and t = 1, ..., T. αi is an individual heterogeneous component independent of

the idiosyncratic error εit, and ρ is a parameter to estimate. In the case of selection, the variable

of interest is partially observed, and it is normal to specify an observability or selection rule of the

form:

d∗it = zitγ + ηi + uit (2)

where ηi is a term capturing unobserved individual heterogeneity, zit (which also includes a

constant) is a vector of strictly exogenous regressors once we allow them to be correlated with ηi,

and uit is an error term. The observed indicator dit is:

dit = 1[d∗it > 0] = 1[zitγ + ηi + uit > 0] (3)

in a way such that dit = 1 if y∗it is observed and zero otherwise. The selection equation (2) could
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also contain a lagged observed indicator (dit−1), which we ignore for the moment to keep notation

as simple as possible.

The error components in equation (2) are related to the error components in the selection

equation as follows:

αi = α0
i + θ0ηi (4)

εit = ε0it + ϑ0uit (5)

where α0
i and ε0it are assumed to be normally distributed and θ0 and ϑ0 are the parameters

introducing correlation. In the case that they are both zero, there is exogenous sample selection

(and, thus, likely unbalancedness in the estimation sample). Alternatively, when any of them is

different from zero, there is endogenous sample selection.

It is well known that in the absence of endogenous selection and for the typical situation of N

large and T small, model (1) in first differences is usually estimated by IV, as firstly introduced by

Anderson and Hsiao (1982). Arellano and Bond (1991), among others, proposed a more efficient

GMM-IV estimator, while Arellano and Bover (1995) extended the previous GMM-IV approach to

include equations in levels and proposed the estimation of the whole model using system GMM.

As noted by Blundell and Bond (1998) in the case of an AR(1) with highly persistent time series

correlation, first-differencing could lead to a weak instruments problem (see Roodman, 2009). Then,

the use of equations in levels could become important to improve efficiency.

2.3 Estimation of the outcome equation under endogenous selection

In the presence of endogenous sample selection, researchers are tempted to think that the way to

proceed is analogous to the method used for the standard static case (as described by Wooldridge,

1995, and others). First, to correct the problem of endogenous selection induced by the correlation

of the errors in both equations, and then, to estimate the model.

The dynamics of the model and its transformation to first differences imply that the sample

is conditional to observing the outcome for at least three consecutive periods and the amount of

data lost depends on the degree of selection. If we use the system GMM estimator, the estimating

sample differs by equation. For the equations in levels, we have:

y∗it = ρyit−1 + αi + εit if dit, dit−1 = 1 (6)

for samples of two consecutive periods. For the first-differenced equations, we have:

∆y∗it = ρ∆yit−1 + ∆εit if dit, dit−1, dit−2 = 1 (7)

and we keep for estimation only individuals observed over three consecutive periods.
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Note that in those cases in which there is no endogenous selection, because GMM-IV methods

are based on instruments that are uncorrelated with both the errors in levels εit and in first-

differences ∆εit, it should be feasible to recover consistent estimates of the model parameters (see

Arellano and Bond, 1991). For the first-differenced equations all the values of y lagged at least

twice are valid instruments because E(∆εityit−k) = 0, k = 2, 3, .... Note that in order to have a valid

instrument for the first- differenced equations, we do not need to impose any further restriction on

the data (ie. we do not need to reserve extra periods of data to construct the instrument). For the

levels equations, ∆yit−1 is also valid, because E((αi + εit)∆yit−1) = 0. However, in this case, we

have to add an additional restriction to the dataset, thereby equalizing the sample condition with

the one previously required.

Under endogenous sample selection, the validity of the above instruments is questionable be-

cause, for the first-differenced errors and the first lagged instrument available, the following orthog-

onality conditions have to hold:

E(∆εityit−2/zit, dit = dit−1 = dit−2 = 1) = 0 (8)

which is stronger than the sample condition imposed in the standard case. Note that when this

restriction holds, it also holds for t− 3 and backward lags. For the equations in levels, we need the

following:

E((αi + εit)∆yit−1/zit, dit = dit−1 = dit−2 = 1) = 0 (9)

which is also stronger than in the general case.

Our initial guess, based on previous work by Arellano et al. (1999), is that because the final

estimating sample is selected on positives for at least three consecutive previous periods, the need

to correct is greatly reduced.4 However, in the next section, we show that condition (8) holds,

so both the standard IV estimator of AH and the GMM-IV first-differenced estimator of AB are

consistent even under endogenous selection. Alternatively, we show that condition (9) does not

hold, so the GMM-IV system estimator has a source of inconsistency. However, we will show that,

under very general circumstances, this inconsistency and the consequent bias are small. In this

context, we show that in those cases in which the AB estimator does not work well (small N , large

autoregressive coefficient), the system estimator is highly recommended. Note that these result

also imply that we only need to correct the equations in levels (and not the first-differenced ones)

in those cases in which we are interested in obtaining a truly consistent version of the system

estimator in the presence of sample selection.

4Arellano et al. (1999) proposed the estimation of sample selection models conditioning on exogenous positive
past outcomes and showed that the degree of selection is significantly reduced in economic models with persistence.
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2.4 Consistency of the GMM estimators under endogenous sample selection

2.4.1 The pure autoregressive model

Let us start with a minor modification of the AR(1) model presented in equations (1) and (2) to

be more precise with the assumptions:

y∗it = αi + ρ0y
∗
it−1 + εit (10)

dit = 1(ηi + γ0zit + uit > 0) (11)

αi = α0
i + θ0ηi (12)

εit = ε0it + ϑ0uit (13)

The exogenous random variables zit, α
0
i , ε

0
it, ηi, and uit are assumed to be i.i.d. and independent

of each other with finite second moments. We assume that |ρ| < 1 and y∗it is the stationary causal

solution to the AR(1) model, y∗it = αi
1−ρ0 +

∑∞
j=0 ρ

j
0εit−j . We also assume that E(ε0it) = E(uit) = 0.

The observed data is the set of y∗it for which dit = 1.

Let ∆εit(ρ) = ∆y∗it−ρ∆y∗it−1. The natural moment conditions to consider would be E(y∗is∆εit(ρ)) =

0 for s + 2 ≤ t iff ρ = ρ0. However, because y∗it is not always observed, the moment cannot be

estimated. The next best option is to try to show E(sisty
∗
is∆εit(ρ)) = 0 iff ρ = ρ0, where sist is

defined as

sist = ditdit−1dit−2dis (14)

Thus, sist = 1 if and only if all y∗is and ∆εit(ρ) are observed. Now, write

E(sisty
∗
is∆εit(ρ)) = E(sisty

∗
is(∆y

∗
it − ρ∆y∗it−1)) (15)

= E(sisty
∗
is(ρ0∆y

∗
it−1 + ∆εit − ρ∆y∗it−1)) (16)

= (ρ0 − ρ)E(sisty
∗
is∆y

∗
it−1) + E(sisty

∗
is∆εit) (17)

Identification requires that E(sisty
∗
is∆y

∗
it−1) 6= 0 and E(sisty

∗
is∆εit) = 0. The former condition

can be assumed, while the latter requires some work to show. A classical sufficient condition

that ensures exogeneity is E(∆εit|sist, y∗is) = 0. However, because ∆εit, sist, y
∗
is are related in

a complicated way, it is not feasible to verify this condition in our context. A simpler sufficient

condition derived in the Appendix is the following

E(ditdit−1dit−2∆εit|dis, y∗is) = 0 (18)
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To see that this condition holds, substitute into ∆εit and write

E(ditdit−1dit−2∆εit|dis, y∗is) = E(ditdit−1dit−2(∆ε
0
it + ϑ0∆uit)|dis, y∗is) (19)

= E(ditdit−1dit−2ϑ0(uit − uit−1)|dis, y∗is) (20)

because ∆ε0it is independent of dit, dit−1, dit−2, dis, and y∗is and therefore it is independent of

dit, dit−1, and dit−2, conditionally on dis and y∗is. Now, conditioning additionally on ηi and dit−2,

E(ditdit−1dit−2∆εit|dis, y∗is) = ϑ0E(dit−2E(ditdit−1(uit − uit−1)|ηi, dit−2, dis, y∗is)|dis, y∗is) (21)

notice that ditdit−1(uit − uit−1) is independent of dit−2, dis, and y∗is conditionally on ηi. There-

fore, E(ditdit−1(uit − uit−1)|ηi, dit−2, dis, y∗is) = E(ditdit−1(uit − uit−1)|ηi). It suffices then to show

that E(ditdit−1(uit − uit−1)|ηi) = 0. Using conditional independence again, we obtain

E (ditdit−1(uit − uit−1)|ηi) = E (ditdit−1uit|ηi)− E (ditdit−1uit−1|ηi) (22)

= E (dituit|ηi)E (dit−1|ηi)− E (dit|ηi)E (dit−1uit−1|ηi) = 0 (23)

because E (dituit|ηi) = E (dit−1uit−1|ηi) and E (dit|ηi) = E (dit−1|ηi) by the identical distribut-

edness assumption. We have proven that

E(sisty
∗
is∆εit(ρ)) = (ρ0 − ρ)E

(
sisty

∗
is∆y

∗
it−1
)

(24)

Thus, we will have identification if and only if E
(
sisty

∗
is∆y

∗
it−1
)
6= 0, that is, the same identifi-

cation restriction as in the AB setting, except that here attention is restricted to observed data.

2.4.2 Bound on system estimator bias

Consider the infeasible level moment conditions E((y∗it−ρ0y∗it−1)∆y∗it−1) = 0. The feasible analogue

for the moment on the left hand side is E(ditdit−1dit−2(y
∗
it − ρ0y∗it−1)∆y∗it−1). However, we have

verified in Monte Carlo experiments that it is not generally equal to zero in our model. Using the

system moments anyway introduces a bias proportional to E(ditdit−1dit−2(αi+εit)∆y
∗
it−1). Because

we know that E((αi + εit)∆y
∗
it−1) = 0, we can write

E(ditdit−1dit−2(αi + εit)∆y
∗
it−1) = E((1− ditdit−1dit−2)(αi + εit)∆y

∗
it−1) (25)

Now, using the Cauchy-Schwarz inequality, we can write
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|E(ditdit−1dit−2(αi + εit)∆y
∗
it−1)| ≤ (1− P (dit = dit−1 = dit−2 = 1))

√
var((αi + εit)∆y∗it−1) (26)

Therefore, as selection disappears and every three consecutive values of y∗it become observable,

the bias goes to zero. Unfortunately, this is not a tight bound (i.e., it does not describe a worst-

case scenario for the bias), so it is difficult to interpret the second factor in the bound. The

Cauchy-Schwarz inequality E|XY | ≤
√
EX2

√
EY 2 holds with equality if and only if X and Y

are proportional. Because 1 − ditdit−1dit−2 is discrete, it cannot possibly be proportional to the

continuously distributed (αi + εit)∆y
∗
it−1.

2.5 Consistency in the dynamic model with covariates

2.5.1 An exogenous covariate

We extend the previous AR(1) model to a model with a single exogenous covariate (although the

result can be straightforwardly generalised to many covariates),

y∗it = αi + ρ0y
∗
it−1 + β′0x

∗
it + εit (27)

dit = 1(ηi + γ0zit + uit > 0) (28)

αi = α0
i + θ0ηi (29)

εit = ε0it + ϑ0uit (30)

The exogenous random variables x∗it, zit, α
0
i , ε

0
it, ηi, and uit are assumed to be i.i.d. and indepen-

dent of each other with finite second moments.5 We assume that |ρ| < 1 and y∗it is the stationary

causal solution to the AR(1) model, y∗it = αi
1−ρ0 +

∑∞
j=0 ρ

j
0(β
′
0x
∗
it + εit−j). We also assume that

E(ε0it) = E(uit) = 0. The observed data is the set of y∗it and x∗it for which dit = 1.

Now, define ∆εit(ρ, β) = ∆y∗it − ρ∆y∗it−1 − β′∆x∗it and write

E(sisty
∗
is∆εit(ρ, β)) = (ρ0 − ρ)E(sisty

∗
is∆y

∗
it−1) + (β0 − β)′E(sisty

∗
is∆x

∗
it) + E(sisty

∗
is∆εit) (31)

E(sivtx
∗
iv∆εit(ρ, β)) = (ρ0 − ρ)E(sivtx

∗
iv∆y

∗
it−1) + (β0 − β)′E(sivtx

∗
iv∆x

∗
it) + E(sivtx

∗
is∆εit) (32)

It is clear that identification requires that for some t and some v, the matrix

[
E(sisty

∗
is∆y

∗
it−1) E(sisty

∗
is∆x

∗
it)

E(sivtx
∗
iv∆y

∗
it−1) E(sivtx

∗
iv∆x

∗
it)

]
5We use x∗it to note that, even in the case of assuming exogeneity, the covariate could also be partially unobserved.
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is non-singular.

We have already shown that E(sisty
∗
is∆εit) = 0. It remains to show that E(sivtx

∗
iv∆εit) = 0.

Now,

E(sivtx
∗
iv∆εit) = E(ditdit−1dit−2divx

∗
iv(∆ε

0
it + ϑ0∆uit)) (33)

= E(ditdit−1dit−2divx
∗
ivϑ0∆uit) (34)

= E(dit−2divx
∗
ivϑ0E(ditdit−1∆uit|ηi, dit−2, div, x∗iv)) (35)

= E(dit−2disx
∗
ivϑ0E(ditdit−1∆uit|ηi)) (36)

= 0. (37)

The first equality follows from the independence of ε0 from all other variables. The second

equality is obtained by conditioning on predetermined variables. The third equality follows from the

conditional independence of ditdit−1∆uit from (dit−2, dis, xis) conditional on ηi. The final equality

has already been established above.

2.5.2 A predetermined covariate

Now, suppose that x∗ is predetermined so that x∗it is independent of ε0it+1, ε
0
it+2, . . ., uit+1, uit+2, . . .,

and zit+1, zit+2, . . . but not necessarily independent of contemporaneous or past values of these

variables. Then, exogeneity may still be satisfied if v ≤ t − 2 in the above calculations. If we can

further assume that xiv is independent of εiv, uiv, and ziv, then exogeneity will be satisfied with

v = t− 1 as well.

2.5.3 An endogenous covariate

Finally, suppose x∗ is endogenous and we have at our disposal a vector of instruments ξ. Then, we

may use the following moment conditions

E(sisty
∗
is∆εit(ρ, β)) = (ρ0 − ρ)E(sisty

∗
is∆y

∗
it−1) + (β0 − β)′E(sisty

∗
is∆x

∗
it) + E(sisty

∗
is∆εit) (38)

E(sitξi∆εit(ρ, β)) = (ρ0 − ρ)E(sitξi∆y
∗
it−1) + (β0 − β)′E(sitξi∆x

∗
it) + E(sitξi∆εit), (39)

where sit = ditdit−1dit−2. Thus, we need

[
E(sisty

∗
is∆y

∗
it−1) E(sisty

∗
is∆x

∗
it)

E(sivtx
∗
iv∆y

∗
it−1) E(sivtx

∗
iv∆x

∗
it)

]

to be non-singular, and we need E(sisty
∗
is∆εit) = 0 and E(sitξi∆εit) = 0.
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3 Monte Carlo experiment of the pure AR(1) model

For the Monte Carlo experiment, we consider the following data-generating processes. First, we

assume two different options for the selection equation:

d∗it = a− zit − ηi − uit (40)

d∗it = a− 0.5dit−1 + zit − ηi − uit (41)

dit = 1[d∗it > 0] (42)

where a is set so p(d∗it > 0) = 0.85 and zit ∼ N(0, σz) with σz = 1. Second, the outcome of

interest is generated as follows:

y∗it = (2 + αi + εit)/(1− ρ) if t = 1 (43)

y∗it = 2 + ρy∗it−1 + αi + εit if t = 2, ..., T (44)

yit = y∗it if dit = 1 (45)

We let ρ vary between 0.25, 0.50 and 0.75. We generate all variables for T = 17 to T = 20

and discard the first 13 observations to minimise any problem with initial conditions.6 Finally, we

assume the following structure for the errors:

ηi ∼ N(0, ση) with ση = 1 (46)

uit ∼ N(0, σu) with σu = 1 (47)

αi = α0
i + 0.5ηi, α

0
i ∼ N(0, σα0) with σα0 = 1 (48)

εit = ε0it + 0.5uit, ε
0
it ∼ N(0, σε0) with σε0 = 1 (49)

These assumptions imply that corr(εit, uit) = corr(αi, ηi) = 0.5/
√

1 + 0.52 = 0.447.

3.1 Description of the experiments

For each experiment, we set the initial sample size to N = 500 or N = 5000, and for each i, we

draw up to 20 time series observations, from which the initial 13 are discarded. Once selection is

applied, the unbalanced panels are formed. At least three consecutive observations of the same

regime are needed to form an observation of the selected panel. This implies that a large fraction

of the observations do not contribute to the identification of the parameters, even with a small

6However, the results remain unchanged if we do generate these extra 13 observations and, thus, start the observed
sample with an initial condition for each individual in the sample.
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degree of sample selection. For example, a 15 per cent of initial selection implies that around 1/3

of the observations are lost. For each combination of the parameters we perform 500 replications.

In each case, we evaluate the performance of two well-known GMM-IV estimators: AB and

system. The structure of the model makes selection of the instruments a crucial step of this

simulation study. We select the instruments as follows: we use lags from t− 2 backwards for first-

differenced equations, although we also evaluate the performance of the estimates with a restricted

set of instruments. We use the lagged first difference of the outcome as an additional instrument

for the equation in levels. Although we are aware of the instrument proliferation issue analysed

by Roodman (2009), it does not constitute a problem here given the reduced number of periods (a

maximum of 7) remaining for estimation.7

3.2 Simulation results for the pure autoregressive model

3.2.1 The basic results

Table 1 presents results for the AR(1) model for three values of the autoregressive parameter:

0.25, 0.50 and 0.75.8 We simulate two alternative selection models (static, A, and dynamic, B),

as presented in equations (40) and (41). For each combination of selection model and autoregres-

sive parameter, we report results for both the AB and the system estimators constructed under

competing assumptions about the selection process: (a) non-endogenous selection; (b) endogenous

selection without correction. The initial degree of sample selection is 15 per cent, while the fraction

of the sample lost is much larger (around 1/3 of the observations).

Let us start reviewing the results without endogenous selection, reported in columns (1) and

(2). When the initial sample (before selecting the observations) is small (N = 500) the bias of the

AB grows with the autoregressive parameter (for both selection models, A and B) and becomes

sizable when ρ = 0.75.9 As we increase the sample size (N = 5000), the average bias of the AB

estimator is reduced substantially and only remains noticeable for ρ = 0.75. Alternatively, the

system estimator, which is also consistent in this case, shows a very small bias for N = 500 (never

exceeding one per cent), even smaller when N = 5000. Figure 1 confirms these results with a

sample size varying from N = 200 to N = 5000 in absence of any sort of selection (estimators

labelled AB all and system all).

When endogenous sample selection is considered (see columns (3) and (4) for AB and system

estimators results) but we do not include any correction for endogenous sample selection in the

model, we do not detect any significant change in the bias results for the AB estimator for both

selection models, even when the initial sample is small . In fact, when the initial sample is small,

7We used Roodman’s proposal to collapse the number of instruments and we get very similar results in the
empirical application.

8Results for other values of the autoregressive parameter are available upon request. For example, for values below
0.25 (for example, 0.10), the results remain unchanged. For values closer to one (for example, 0.90), the bias is larger
but not worse than the one found in, for example, the balanced sample.

9See Blundell and Bond (1998) and Hayawaka (2007) for analyses of the small sample bias of the AB and system
GMM estimators in linear models.
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the difference between the cases with and without selection is practically undetectable (see Table

A1). Alternatively, the results confirm the consistency of the AB and the small bias of the system

estimator for N = 5000. In contrast, the system estimator always shows a very small bias (between

1 per cent for ρ = 0.25 and 2.25 per cent for ρ = 0.75). Note that the bias becomes more evident as

the sample size grows (see Figure 1). As a sort of compensation, the standard errors always tend

to be substantially smaller.

Some additional conclusions can be drawn when varying sample size (Figure 1). When N = 200,

the AB estimator shows sizable bias, which decreases as N increases. The system estimator has

a very small bias, however. For a given ρ, it remains stable (between 1 and 2.5 per cent) as

N increases. We can find a threshold for N for each combination of parameters. Below this

threshold, the average bias of the system estimator is smaller, and it is larger above it. Therefore,

we may conclude that for moderate and small samples (say, below the range 1000-1500), the system

estimator is highly recommended because of the likely smaller small sample bias as well as smaller

variance.

Finally, as shown in Figure 2, when the individual heterogeneity components, αi and ηi, are not

correlated, the bias of the system estimator practically disappears (in comparison with the previous

case) due to the fact that the main source of bias is the correlation between the heterogeneous

components of both the outcome and selection equations (see Table A.1 for an illustration).10 This

means that in those cases in which endogenous selection is not due to individual heterogeneity, all

three estimators considered are, in essence, valid options for recovering the key parameters of the

outcome equation.

10Table A.1 in the Appendix presents an analysis of the conditional expectation of the key moment conditions of the
model for different values of N , ρ and correlations between the error components and the autoregressive parameter.
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Table 1: Average bias in the AR(1) model (T = 7, 500 replications)

No endogenous Endogenous
selection selection

Select. (1) (2) (3) (4)
Model ρ AB SYS AB SYS

N = 500

A .25 bias -.01002 .00302 -.01054 -.00151
s.e. .06004 .04378 .05447 .04209

A .50 bias -.03265 .00224 -.02964 -.00700
s.e. .08833 .04990 .07807 .05027

A .75 bias -.19339 .00757 -.10176 -.00923
s.e. .19402 .05879 .13350 .06437

N = 5000

A .25 bias -.00209 .00017 -.00059 -.00381
s.e. .01661 .01272 .04358 .02387

A .50 bias -.00461 .00019 -.00264 -.00868
s.e. .02479 .01491 .02285 .01493

A .75 bias -.02395 .00112 -.01118 -.01709
s.e. .05792 .01791 .03863 .01894

N = 500

B .25 bias -.01076 .00216 -.01075 -.00024
s.e. .05904 .04293 .05471 .04219

B .50 bias -.03324 .00135 -.03022 -.00556
s.e. .08802 .04925 .07843 .05039

B .75 bias -.18966 .00709 -.10478 -.00823
s.e. .19100 .05824 .13880 .06358

N = 5000

B .25 bias -.00208 -7.75e-07 -.00103 -.00134
s.e. .01680 .01267 .01700 .01279

B .50 bias -.00459 .00019 -.00263 -.00649
s.e. .02540 .01481 .02380 .01482

B .75 bias -.02375 .00105 -.01129 -.01472
s.e. .05964 .01780 .04192 .01871
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Figure 1: Average bias of the AB and system estimators in the full sample ((NxT
observations) and the endogenously selected sample
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Notes.

AB all: AB GMM-IV estimates using the full (NxT ) sample (no selection process).

system all: System GMM-IV estimates using the full (NxT ) sample (no selection process).

AB select: Uncorrected for selection AB GMM-IV estimates on the selected sample under endogenous sample selec-

tion.

system select: Uncorrected system GMM-IV estimates on the selected sample under endogenous sample selection.
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Figure 2: Average bias of system estimator in the full sample (NxT observations) and
the endogenously selected sample when αi and ηi are not correlated
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Notes.

system all: System GMM estimates with the full sample (no-selection).

system select: Uncorrected system GMM estimates with the selected sample under endogenous selection due to

correlation of the time-varying errors.

3.2.2 Sensitivity analysis

In this section, we comment on various departures from the basic assumptions. We consider the

following representative cases: (a) varying the longitudinal dimension of the panel; (b) increasing

the percentage of selection (from 0.15 to 0.25); (c) increasing the ratio of the variances to σ2
α
ρ2ε

= 2;

(d) reducing the correlation between the errors (the correlation parameter is reduced from 0.5 to

0.25); (e) and, finally, non-stationary time varying errors and correlation of the time-varying error

components. In particular, we allow the variance of the time-varying errors in (1) and (2) to vary

over time11 and we also allow the correlation coefficient between the time-varying errors in (1) and

(2) to vary over time.12 We present the simulation results for N = 500 in Table 2 and for N = 5000

11We multiply either εit or uit by a time-varying Bernoulli process taking either 1 or 2.
12We multiply ϑ by either 0.5, 1 or 2.
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in Table 3, for three values of the autoregressive parameters: 0.25, 0.50 and 0.75.

Our first experiment reduces the maximum longitudinal dimension of the observed panel from

T = 7 to T = 4. Apart from the expected increase in the estimated variance and regardless of

the sample size considered, the effect on the average bias of the AR(1) coefficient implied by this

change is very small for both estimators, all values of the autoregressive parameter considered and

both sample sizes.

Increasing the degree of sample selection from 0.15 to 0.25 increases average bias of the autore-

gressive coefficient very mildly. In addition, it increases its variance due to the significant reduction

in the number of observations (the average number of observations is reduced around 30 per cent).

The increase of the ratio of the variance of the individual heterogeneous component to the

variance of the time-variant component of the outcome equation does not have an important effect

on the average bias of the estimated parameters, either in the AB or the system GMM estimator.

We can observe in Tables 2 and 3 that the effect is smaller when the sample size is larger.

We also consider a reduction in the correlation parameter of the errors. In particular, we assume

the following structure for the errors: εit = ε0it + 0.25uit and αi = α0
i + 0.25ηi, which implies a

correlation coefficient of 0.2425(= 0.25/
√

1 + 0.252) in either case. As can be easily detected by

comparing the results reported in Tables 1, 2 and 3, this change reduces the average bias of the

estimators for both sample sizes and all autoregressive parameters. Finally, when we introduce

in the model non-stationary time-varying error components and we allow the correlation between

the errors in the outcome and the selection equation to vary over time, the average bias of the

estimated parameters is significantly reduced, specially important when the initial sample size is

small.

In sum, these sensitivity exercises confirms the main lessons we can draw from the analysis: (a)

the AB (or the AH) estimator is moderately biased when N is small or moderate, and unbiased

when N is large. The system GMM estimator is always moderately biased. All these results imply

that the system estimator is especially recommended when the sample size is small or even moderate

(below one or one and a half thousand individuals) and less ”important” when the sample size is

larger.
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Table 2: Average bias in the AR(1) model. Sensibility analysis for small N

Model ρ = 0.25 ρ = 0.5 ρ = 0.75
AB SYS AB SYS AB SYS

Experiment I: Very short T (T = 4)
A bias -.00351 -.00096 -.01775 -.01349 -.08907 -.03272

s.e. .13394 .07796 .20964 .09687 .39245 .13551
B bias -.00094 .00299 -.01147 -.00949 -.07759 -.02922

s.e. .13261 .07737 .21371 .09551 .44549 .13314
Experiment II: More sample selection (25%)

A bias -.01878 -.00135 -.04518 -.00622 -.13019 -.00601
s.e. .06665 .05032 .09556 .06172 .15362 .07985

B bias -.01941 .00122 -.04817 -.00377 -.14386 -.00476
s.e. .06811 .05026 .09801 .06047 .16296 .07769

Experiment III: Increasing the ratio of variances: ση/σε = 2
A bias -.01095 .00071 -.03149 -.00263 -.11253 .00535

s.e. .05608 .04446 .08088 .05430 .14306 .07006
B bias -.01121 .00162 -.03211 -.00151 -.11640 .00565

s.e. .05596 .04433 .0812 .05433 .14816 .06920
Experiment IV: Reducing the correlation of the errors: ρ = 0.25

A bias -.01018 .00109 -.03182 -.00069 -.14046 .00340
s.e. .05720 .04293 .08392 .04999 .15923 .06081

B bias -.01077 .00077 -.03197 -.00050 -.14149 .00416
s.e. .05673 .04243 .08376 .04961 .15990 .06031

Experiment V: Non-stationary time-varying error components
A bias -.01263 -.00333 -.02599 -.00784 -.07935 -.00925

s.e. .05537 .03968 .07605 .04742 .12415 .05987
B bias -.01246 -.00179 -.02854 -.00593 -.07977 -.00781

s.e. .05354 .03962 .07549 .04438 .12231 .05692

Notes.

1. T = 7, except in experiment I.

2. N = 500.

3. Number of replications: 500.
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Table 3: Average bias in the AR(1) model. Sensibility analysis for large N

Model ρ = 0.25 ρ = 0.5 ρ = 0.75
AB SYS AB SYS AB SYS

Experiment I: Very short T (T = 4)
A bias -.00059 -.00381 -.00118 -.01070 -.00258 -.02123

s.e. .04358 .02387 .06645 .02801 .11215 .03444
B bias -.00006 -.00191 -.00106 -.00858 -.00413 -.01891

s.e. .04311 .02393 .06637 .02797 .11311 .03412
Experiment II: More sample selection (25%)

A bias -.00226 -.00402 -.00462 -.01033 -.01433 -.01962
s.e. .02124 .01549 .02968 .01774 .04639 .02241

B bias -.00218 -.00151 -.00463 -.00724 -.01566 -.01658
s.e. .02158 .01572 .03027 .01803 .04780 .02257

Experiment III: Increasing the ratio of variances: ση/σε = 2
A bias -.00123 -.00248 -.00295 -.00721 -.01326 -.01454

s.e. .01720 .01351 .02400 .01608 .04137 .02094
B bias -.00108 -.00099 -.00288 -.00539 -.01323 -.01253

s.e. .01736 .01348 .02493 .01606 .04494 .02076
Experiment IV: Reducing the correlation of the errors: ρ = 0.25

A bias -.00165 -.00078 -.00373 -.00217 -.01594 -.00370
s.e. .01653 .01275 .02423 .01506 .04627 .01838

B bias -.00164 -.00030 -.00368 -.00159 -.01615 -.00299
s.e. .01679 .01264 .02489 .01499 .04916 .01812

Experiment V: Non-stationary time-varying error components
A bias -.00219 -.00246 -.00142 -.00586 -.01400 -.01263

s.e. .01923 .01288 .03185 .01615 .05631 .02099
B bias -.00197 -.00089 -.00306 -.00484 -.01688 -.01152

s.e. .01975 .012491 .02874 .01535 .05961 .02037

Notes.

1. T = 7, except in experiment I.

2. N = 5000.

3. Number of replications: 500.

4 An evaluation of simple alternatives for bias correction of the

system estimator

Bias correction induced by endogenous sample selection implies adding univariate corrections if

the sample is only conditional on one observation (random effects strategy in the static model) as

shown by Wooldrige (1995), and bivariate corrections conditional on two periods (first differences

fixed effects strategy in the static model) as shown by Rochina-Barrachina (1999). However, we

have shown that IV and GMM-IV estimators of the model in first differences do not require any
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correction to be consistent. Furthermore, in the case of the system GMM-IV estimator, we have

shown that only the equations in levels need to be corrected. In addition, we have shown that the

bias of the additional moment conditions implied by the use of equations in levels is caused by

the correlation between the unobserved time-invariant heterogeneity components in the outcome

and selection equations (see Table A1 for an illustration). In what follows, we describe simple

procedures to account for each of these problems. We focus on a static selection equation but we

will also introduce some comments about the dynamic case.

4.1 An univariate correction for the system estimator

As previously mentioned, the correction for selection is only needed in the equations in levels. When

we also introduce corrections in the equations in first differences, it should not affect identification

of the rest of the parameters. In this section, following Wooldridge (1995) combined with a fixed

effect strategy, we consider univariate corrections. Irrespective of whether we correct both the level

and the first-differenced equations or the the level ones anole, the procedure, following Wooldridge

(1995), can be described as follows:

� Step 1. Estimate year-by-year probit models (under normality) for either the static or dy-

namic selection models following the Mundlak/Chamberlain/Wooldridge approach and com-

pute univariate correction terms (Heckman’s lambda).

� Step 2. Estimate the corrected equations by GMM-IV, adding, to either the equation in levels

or all the equations, the selection term as an additional regressor.

In the case of correcting both levels and the first-differenced equations, standard software

can be used (see, for instance, Roodman, 2006). Alternatively, when only the equations in

levels are corrected, the system estimator can be obtained using, for instance, the Stata gmm

routine. (Robust) Corrected standard errors need to be computed anyway. This can be done

by means of the delta method or bootstrapping.13

Finally, a standard t-test of significance of the correction term (or a Wald test, in case of letting

the effect of the correction to vary over time) stands for an approximate test of endogenous selection

(Wooldridge, 1995).

4.1.1 Construction of the correction

For a typical static selection model, as described in equation (2), and assuming normality of ηi+uit,

we estimate a probit for each period and then compute the well-known selection term λ̂it(zitγ̂).

When we allow correlation between zit and ηi, we can rely on Mundlak (1978) and assume, for

instance, ηi = z̃iϕ, where z̃i is the vector of individual means of zit, and we, again, can estimate a

13See the Appendix for a proposal to correct the variance of the (corrected) GMM estimators following Terza
(2016).
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probit for each period and compute λ̃it(zitγ̃ + z̃iϕ̃), which is then introduced in a second step as

before.

In the case of a dynamic selection equation, the lagged observed regressor is correlated with

the random effect by construction. Is this is the case we need to rely either on Mundlak’s proposal

or on a less restrictive one such as that of Chamberlain (1984). In the latter case, we can assume

ηi = π1zi1 + π2zi2 + ...+ πT ziT and recover the corresponding selection terms.14

4.2 A simple procedure for bias reduction of the system estimator in the pres-

ence of endogenous selection

As stated before and shown in Figure 2, a large fraction of the inconsistency of the system estimator

stems from the correlation between the unobserved heterogeneous components in equations (1) and

(2). Because many practitioners are potentially interested in estimating these models using the

system estimator (especially when the sample size is small), we describe a simple procedure to

obtain it, and we also suggest a test. The procedure can be described as follows:

� Step 1: Provided the selection equation has an exclusion restriction, obtain a consistent

estimate of the fixed effects (say, η̂i) in the selection equation using a linear probability

model.

� Step 2: Add the estimate of ηi to the equation in levels to control the correlation between

the time-invariant errors.

yit = ρyit−1 + α∗i + θη̂i + εit for ti s.t. dit, dit−1, dit−2 = 1

now α∗i is purged of any correlation with the time invariant component in the selection

equation.

� Step 3: Obtain the system estimator combining the uncorrected equations in first differences

and the corrected equations in levels (with the corrections mentioned above).

A simple t-test of the null θ = 0 stands for a test of endogenous selection. As in the previous

case, corrected standard errors can be computed using the delta method or bootstrapping. If

we cannot reject the null hypothesis, the individual heterogeneity components are uncorrelated,

so the only potential source of endogenous selection is the correlation of the time-variant errors.

Therefore, the only remaining problem for the consistency of the system GMM estimator is the

14Strictly speaking, to recover the structural parameters of the selection equation, we should estimate a probit for
each year based on a reduced form, where d∗it is modeled as a function of all exogenous variables (the z′s) and we
predict the index d̂∗it. Then, in a second stage, we estimate the structural parameters by within-groups, MD or GMM
and compute the correction terms based on these two-stage estimates (see Bover and Arellano, 1997, or Labeaga,
1999). However, to keep the exercise as simple as possible, we compute the selection terms using reduced-form
estimates for each period.
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potential correlation between the time varying errors of both equations. However, we show in Table

A.1 that this correlation is not inducing, in general, much bias.

4.3 Evaluation of the proposals

Figure 3 compares the average bias results of the uncorrected system estimator and two corrected

ones: the year-by-year correction and the individual heterogeneity correction described above in

step 2. As in previous figures, we let the initial sample size vary from 200 to 5000, T = 7 and

let ρ take the values 0.25, 0.50 and 0.75. Furthermore, the probability of selection is 0.15 and the

correlation between the error components 0.447.

The uncorrected system GMM estimator is moderately biased in all cases. The bias stabilizes

as N grows to 1 per cent for ρ = 0.25 and to 2.5 per cent for ρ = 0.75. The average bias of the

year-by-year corrected system estimator barely improves the one observed in the uncorrected case.

We obtain the same result when considering either bivariate (including current and lagged lambda)

or trivariate corrections (including current, lagged and twice-lagged lambda).

In stark contrast with the poor performance of the correction above, the system estimator

obtained including the heterogeneous component adjusted in a linear probability model improves

substantially from the uncorrected estimator. When ρ = 0.25, the average bias practically disap-

pears regardless of the sample size. For higher values of ρ, it gets reduced substantially.

4.4 Evaluation of the tests

In Table 4, we evaluate the size and power of the aforementioned tests. We keep the same assump-

tions of the previous subsection. We compute the empirical rejection frequency when the null is

either true or false, choosing α = 0.05 as the significance level. The test of the null θ = 0 works

well in terms of power, especially for large N , but not so well in terms of size, especially when the

initial sample size is N = 5000, where the size exceeds the nominal size. Surprisingly, the test of

the hypothesis γ = 0 works reasonably well in terms of both size and power, either with N = 500

or N = 5000.
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Table 4: Empirical rejection frequency for the correction test, 500 reps.

Correlated individual heterogeneity Endogeneous selection
H0: θ = 0 H0: γ = 0

False True True False
N ρ power size power size

500 .25 .97 .076 .812 .05
500 .50 .962 .084 .81 .05
500 .75 .88 .076 .83 .05
5000 .25 1 .24 1 .06
5000 .50 1 .246 1 .06
5000 .75 1 .258 1 .054

Figure 3: Average bias of the system estimator. Simple alternatives for correction
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Probability of correction: 0.15.

Correlation between error components: 0.447.

System uncorrrected: uncorrected system GMM-IV.

Sys corr yby: system GMM-IV corrected using a year-by-year correction.

System corr alpha: system GMM-IV corrected accounting for the correlation between the time-invariant heterogeneity
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5 Empirical Application

This section presents an application of the proposed methods. We employ the same data used in

SW, which were also used by Lai and Tsai (2016).15 The data consists of a panel taken from the

Panel Study of Income Dynamics (PSID) covering the period 1980-1992, and we use the same selec-

tion rules (see Section 6 in Semykina and Wooldridge, 2013). The results for the pure autoregressive

model are presented in Table 5. Then, we extend the model in Table 6 to include age, age squared

and level of education (number of years). The first column in Table 5 presents first-differenced IV

estimates. Alternatively, column (1) in Table 6 reports the SW estimator. Columns (2) and (3)

in both tables report AB and system results obtained in the selected sample, but when we do not

correct the earnings equation. Column (4) adds a correction for the correlation between the unob-

served heterogeneous components. Finally, in columns (5) and (6) of both tables, we present the

system GMM results, adding time-varying correction terms estimated from year-by-year univariate

probits. In column (5), we only correct the equation in levels, and in column (6), we correct both

the levels and the first-differenced equations.16

Table 5: AR(1) log hourly earnings equation

(1) (2) (3) (4) (5) (6)

2SLS-IV No No Het. components yby yby
correction correction correction of correction of correction of

lev eq. only lev eq. only all equations

AB system system system system

Lag log 0.1522** 0.1029** 0.1798*** 0.1791*** 0.2354*** 0.2157***
hourly earnings (0.0489) (0.0377) (0.0434) (0.0436) (0.0444) (0.04397)

η̂i 0.0438
(0.0305)

Observations 5033 5033 5033 5033 5033 5033

Joint significance 105.13 (11) 53.59 (11)
selection terms (0.000) (0.000)

Notes.

1. N = 550.

2. Annual dummies are included in all specifications.

3. * significant at 1%; ** significant at 5%; *** significant at 10%.

15We compare our results with those presented by SW, but, unfortunately, we cannot compare with Lai and Tsay
(2016) because they estimated a static sample selection model.

16All the AB and system GMM estimates, except those reported in column (5), were obtained using the stata
xtabond2 package (see Rodman, 2006). The estimates reported in column (5) have been obtained using a modified
version of xtabond2 that only includes the correction in the level equations. Note, however, that these estimates can
be also obtained using the Stata gmm routine.
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4. The Standard Errors have been corrected following Windmeijer (2005). In columns (4) to (6), we also report

corrected standard errors following Terza (2016). See the Appendix for details.

5. The test of significance of the selection terms is a Wald test. Degrees of freedom and level of significance are

in parentheses.

In Table 6, we consider the demographic variables to be strictly exogenous and we instrument

the lagged log of the dependent variable using all available instruments for both the equations

in levels and first-differences. The number of overidentifying restriction is 65 in first-differenced

model and 76 in the system one. We conduct a sensitivity analysis for changes in the number of

instruments and obtain very robust results (see Roodman, 2009).17

Table 6: Estimates for the dynamic log hourly earnings equation with covariates

(1) (2) (3) (4) (5) (6)

Semikina No No Het. components yby yby
Wooldridge correction correction correction correction correction

lev eq. only lev eq. only all equations

GMM AB system system system system

Lag log 0.574*** 0.1047** 0.1850*** 0.1794*** 0.2082*** 0.2039***
hourly earnings (0.040) (0.0374) (0.0436) (0.0442) (0.0448) (0.0447)

Education 0.0290*** — 0.0949*** 0.0939*** 0.0894*** .0931***
(0.004) (0.0084) (0.0083) (0.0086) (0.0085)

Age 0.009*** 0.0070*** 0.0375*** 0.03812** 0.02359** .0228***
(0.004) (0.0127) (0.0113) (0.0147) (0.0125) (0.0126)

Age squared -0.0001*** -0.0001 -0.0004*** -0.0005*** -0.0002** -.0003***
(0.000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

η̂i 0.3020***
(0.0833)

Observations 5033 5033 5033 5033 5033 5033

Joint significance 41.3 (10) – – – 32.91 (11) 14.80 (11)
selection terms (0.000) (0.0005) (0.1920)

Notes.

1. N = 550.

2. GMM results obtained using the proposal by Semikyna and Wooldridge (2013).

3. Annual dummies are included in all specifications.

4. *** significant at 1%; ** significant at 5%; * significant at 10%.

5. The standard errors have been corrected following Windmeijer (2005). In columns (4) to (6), we also report

corrected standard errors following Terza (2016). See the Appendix for details.

17Just for comparison, when we use up to the fourth lag instead of all lags of the log hourly earnings, we obtain
the following coefficients: 0.178, 0.093, 0.020 and -0.0002 for the lagged dependent variable, education, age and age
squared, respectively. They compare with those in column 3 of Table 6.
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6. The test of significance of the selection terms is a Wald test. Degrees of freedom and level of significance are

in parentheses.

The results for the pure autoregressive model are in line with our simulation results. The

coefficient of the lagged dependent variable is estimated at 0.103 using the AB estimator and

0.18 using the system GMM estimator without correction. The difference between them may

be attributable to the small sample size in the individual dimension.18 Adding a correction for

the correlation of the unobserved heterogeneity components (see column 4), barely changes the

coefficient. Alternatively, adding a year-by-year correction in either the equation in levels or in all

equations mildly increases the autoregressive parameter. Note, however, that the selection terms

are found to be jointly significant.

The autoregressive coefficient (as well as standard errors) remains practically identical in the

extended model in Table 6 compared to the pure autoregressive case, and it is substantially lower

than the one obtained by SW. The inclusion of the correction terms produces similar results to

those in the pure autoregressive model. However, our estimates of the coefficient of the lag of log

hourly earnings are in line with the results obtained in a similar context by Arellano et al. (1999)

using a sample of females from the PSID for the 1970-76 period, and correcting for selectivity (see

Table A.3 in that paper). Another dynamic earnings model using the PSID for the 1968-81 period,

in this case for males (Holtz-Eakin et al., 1988), yields a similar result for the coefficient of lagged

log earnings.

It is also important to note that our age and education estimates are very different from the

results in SW, but they are in line with those found in the previous literature using similar data.

The coefficients of age, age squared and education have the expected signs, with a quadratic profile

of age showing increasing earnings at a decreasing rate. The return to education we get is more

in line with the average return to education for females for the US usually found in the literature

(see Card, 1999, Harmon et al., 2003 or Polachek, 2008). Regarding endogenous selection, we

detect endogenous selection due to correlation between the time-invariant heterogeneity components

(column (4) in Table 6) as well as in column (5), the case in which we have corrected by means of

a year-by-year probit the level equations only.

All in all, our opinion is that the similarities among the coefficients with and without correcting

for selectivity confirm the results of our Monte Carlo experiment. A lesson for practitioners is that

there is little necessity to correct for endogenous selection in situations similar to the one studied

in this paper. SW’s proposal is only suitable for balanced panels and after making very particular

assumptions regarding initial conditions. Although it is feasible to adapt SW’s proposal to the

more general unbalanced panel case, there are analytical as well as computational costs, which lead

us to suggest the simple methods we have just presented in this paper.19

18An example with large N (4739) small T (6) can be found in Stewart (2007). He presents the results of the
estimation of a dynamic panel data model with unbalanced data using GMM methods (Table V). He comments, p.
526, that the AB and system results are substantially identical.

19To adapt the SW estimator to an unbalanced panel, we must estimate the model using the SW procedure for each
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6 Concluding remarks

In this paper we have analyzed, from the point of view of practitioners, the properties and the

performance of GMM-IV estimators of an AR(1) panel data model subject to potentially endoge-

nous sample selection. We show that the Arellano and Bond (1991) and the Anderson and Hsiao

(1982) estimators are consistent regardless of the nature (static or dynamic) and the severity of

the sample selection process. Alternatively, the Arellano and Bover (1995) and Blundell and Bond

(1998) system GMM estimator is moderately biased regardless of the sample size. This implies

that to correct the bias induced by endogenous selection, we only need to correct the equations

in levels and not the equations in first differences. Note, however, that most of the (small) bias

is due to the correlation between the individual heterogeneous components in the outcome and

selection equations. All of these results nicely extend to models with exogenous, predetermined or

endogenous regressors.

Under these circumstances we evaluate, through a Monte Carlo study of their finite sample

properties, the performance of the AB and system GMM estimators in two alternative cases, ex-

ogenous (or no selection at all) versus endogenous selection. The results of our experiments confirm

the theoretical predictions under a variety of circumstances. We also present an evaluation of some

simple alternatives for correction, and showed that univariate corrections based in Wooldridge

(1995) are not specially useful for correcting the bias of the system estimator. Alternatively, simple

univariate corrections of the potential correlation between the time-invariant heterogeneity compo-

nents are much more useful. Finally, we do an empirical application confirming available results in

the literature of female earnings equations.

In sum, we believe that our theoretical findings, Monte Carlo results, and the empirical ap-

plication could be of particular relevance for practitioners in cases involving unbalanced data due

to sample selection of unknown form (but without feedback from the lagged dependent) or when

selection is difficult to model due to missing data problems or lack of appropriate exclusion restric-

tions.

subpanel (i.e., the subsamples with 4, 5, 6, 7, and so on, observations) and then recover the structural parameters by
minimum distance.
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Appendix

A Appendix to the consistency of the estimators

Consider the linear model

y = Y ′θ + u,

where Y is endogenous and y is a response scalar variable. We assume that we have an exogenous

set of instruments z. Define

u(θ) = y − Y ′θ.

The sample selection process is given by s = szsysY , i.e. a data point (y, Y, z) is available if and

only if all three variables are available. The classical condition for exogeneity is that

E(u(θ0)|s, z) = 0.
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See p. 795 of Wooldridge (2010). However, this condition can be difficult to verify in some contexts,

particularly in a dynamic panel setting such as the case presented in this paper. The alternative

condition

E(sysY u(θ0)|sz, z) = 0

can be much easier to verify and still leads to consistency. Recall that under the usual conditions,

the consistency of the GMM estimator of θ requires that E(szu(θ)) = 0 if and only if θ = θ0. This

is easily proven,

E(szu(θ0)) = E(szzsysY u(θ0)) = E(szzE(sysY u(θ0)|sz, z)) = 0

On the other hand, for θ 6= θ0,

E(szu(θ)) = E(szu(θ ± θ0)) = E(szu(θ0))− E(szY ′)(θ − θ0) = E(szY ′)(θ0 − θ).

Therefore, it suffices to have rank(E(szY ′)) = dim(θ), which is to say the instruments have a full

effect on the endogenous variables in the observed sample.

B The variance of corrected estimators

Assume that the relationship among variables, instruments and parameters (for l = 1, . . . , L

moments) is given by the following expression:

ml (yi, xi, zi, θ) =
1

N

N∑
i=1

mil (yi, xi, zi, θ) =
1

N

N∑
i=1

mil (θ)

Then, we can define the objective function, for instance, as:

q =
L∑
l=1

m2
l

with

ml =
1

N

N∑
i=1

mil (θ) = 0

We choose θ which minimises:

q = m (θ)
′
Am (θ)
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with A being any semi-definite positive matrix, which is not a function of θ. We can choose the

asymptotic variance of m (.), say W , so that the estimator solving the problem:

q = m (θ)
′
W−1m (θ)

is the GMM estimator. The best option for the variance-covariance matrix of the GMM esti-

mator, as suggested by Hansen (1982), is:

VGMM =
[
G
′
W−1G

]−1
where G is a matrix of derivatives whose j row is:

Gjl =
∂ml (θ)

∂θ′

Because the criterion is linear in θ, the solution for θ̂ can be expressed linearly, and its variance-

covariance matrix is
[
X
′
Z1ŴZ

′
1X
]
, where Z1 is the matrix of instruments, and all matrices should

be defined conditional on the selected sample. The optimal choice for Ŵ is
[
Z
′
ûû
′
Z
]
. Because we

estimated in a first step λ̂it(zitγ̂), using univariate probits for each T , we must correct Ŵ to take

that into account. We can do this correction using the scores of the likelihood function for this

parameter evaluated at the optimal maximum likelihood estimates. If Z is the matrix of exogenous

regressors used to adjust the probit model, we can use for the correction, for instance, Z
′
CZ, with

C =
1

N

N∑
i=1

∂lit∂lis
∂λt∂λ

′
s

where lit is the likelihood function for individual i in period t. A simpler alternative to calculate

the estimated asymptotically correct covariance matrix of the first-differenced GMM-IV and system

GMM-IV estimators after correcting for sample selection, which we used here according to Terza

(2016). It involves the scores of the likelihood function at each period, but there is no need to

calculate C.
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Table A1. Average moment conditions of simulated errors and most recent instru-

ments

N = 500 E(∆εityit−2/Ait) E((αi + εit)∆yit−1/Ait) E(εit∆yit−1/Ait) E(αi∆yit−1/Ait)

corr(εit, uit) = 0.242 = corr(αi, ηi)

ρ = 0.25 -.0021 .0020 .0015 .0004

ρ = 0.50 -.0036 .0008 .0017 -.0009

ρ = 0.75 -.0071 .0001 .0019 -.0018

corr(εit, uit) = 0.242; corr(αi, ηi) = 0

ρ = 0.25 -.0021 .0020 .0015 .0005

ρ = 0.50 -.0037 .0018 .0017 .0002

ρ = 0.75 -.0071 .0020 .0019 .0001

corr(εit, uit) = 0.447 = corr(αi, ηi)

ρ = 0.25 -.0011 .0012 .0019 -.0007

ρ = 0.50 -.0025 -.0014 .0030 -.0044*

ρ = 0.75 -.0057 -.0037 .0042** -.0079***

corr(εit, uit) = 0.447; corr(αi, ηi) = 0

ρ = 0.25 -.0011 .0025 .0019 .0006

ρ = 0.50 -.0026 .0031 .0030 .0001

ρ = 0.75 -.0057 .0042 .0042** -.0000

N = 5000 E(∆εityit−2/Ait) E((αi + εit)∆yit−1/Ait) E(εit∆yit−1/Ait) E(αi∆yit−1/Ait)

corr(εit, uit) = 0.242 = corr(αi, ηi)

ρ = 0.25 .0016 -.0001 -.0001 -.0015***

ρ = 0.50 .0019 -.0019** .0003 -.0022***

ρ = 0.75 .0035 -.0022** .0008 -.0030***

corr(εit, uit) = 0.242; corr(αi, ηi) = 0

ρ = 0.25 .0015 -.0009 -.0001 -.0008

ρ = 0.50 .0019 -.0006 -.0003 -.0009

ρ = 0.75 .0034 -.0002 .0008 -.0009*

corr(εit, uit) = 0.447 = corr(αi, ηi)

ρ = 0.25 .0017 -.0019* .0014* -.0033***

ρ = 0.50 .0022 -.0035*** .0027*** -.0062***

ρ = 0.75 .0044 -.0051*** .0041*** -.0091***

corr(εit, uit) = 0.447; corr(αi, ηi) = 0

ρ = 0.25 .0016 .0005 .0014* -.0008

ρ = 0.50 .0020 .0017* .0027*** -.0010

ρ = 0.75 .0041 .0030*** .0041*** -.0011*

Notes.

1. 1000 simulations.

2. Static selection model (A).

3. Ait = zit, dit = dit−1 = dit−2 = 1.

4. *** significant at 1%; ** significant at 5%; * significant at 10%.
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