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ABSTRACT
Ranking algorithms play a crucial role in online platforms ranging

from search engines to recommender systems. In this paper, we

identify a surprising consequence of popularity-based rankings: the

fewer the items reporting a given signal, the higher the share of the

overall traffic they collectively attract. This few-get-richer effect

emerges in settings where there are few distinct classes of items

(e.g., left-leaning news sources versus right-leaning news sources),

and items are ranked based on their popularity. We demonstrate

analytically that the few-get-richer effect emergeswhen people tend

to click on top-ranked items and have heterogeneous preferences

for the classes of items. Using simulations, we analyze how the

strength of the effect changes with assumptions about the setting

and human behavior. We also test our predictions experimentally in

an online experiment with human participants. Our findings have

important implications to understand the spread of misinformation.
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1 INTRODUCTION
Ranking systems are at the core of many online services, includ-

ing search engines, recommender systems, or news feeds in social

media. Recent research suggests that the underlying ranking al-

gorithms may impact society, playing an active role in the spread

of misinformation [29], political polarization [11], or trustworthi-

ness [14]. They might also reinforce existing judgment biases [2].

Rankings systematically affect the information people access

about products, services, events, or ideas, because users are more

likely to click on top-ranked items [19, 24, 30]. When items are
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ranked based on popularity, this leads to a self-reinforcing dynam-

ics according to which popular items become increasingly more

popular [28].

In this paper, we identify a surprising effect of popularity-based

rankings. Consider a setting with two distinct classes of news

sources that differ in their political orientations, e.g., left-leaning or

right-leaning. We show that, under a fairly broad set of conditions,

the total share of web traffic (proportion of clicks) attracted by a

given class of news sources decreases with the number of news

sources in that class. We call this phenomenon the ‘few-get-richer’

effect. For example, if there are 20 news sources, the total number

of clicks on left-leaning sources will be larger when there are just 3

of these sources than when there are 17 of them.

Intuition suggests that popular items should be more relevant

and trustworthy than unpopular ones. Yet, extensive research indi-

cates that popularity is often not very informative about quality,

especially in settings characterized by ‘rich-get-richer’ dynamics

(sometimes called the ‘Matthew effect’) [13, 22, 25, 28], or informa-

tion cascades [3, 5]. In these settings, the randomness inherent to

the dynamics of the system implies that items that become the most

popular are not always those with the best quality. The ‘few-get-

richer’ effect adds to research on the ‘rich-get-richer’ dynamics by

showing that popularity-based rankings do not only create ‘noise’

in the ranking, but can also lead to a systematic ranking bias: when

there are two distinct classes of items, items from the smaller class

become better ranked than similar items from the larger class.

The few-get-richer effect emerges in settings characterized by

two design features. The first feature consists in the ranking of

items in terms of popularity (i.e., items with more clicks are higher

ranked). The second feature is a partition of the available items in

two (or more) distinct classes.

We make two reasonable behavioral assumptions. The first as-

sumption is users’ tendency to click on top-ranked items. The

second assumption is that users have heterogeneous preferences

for the item classes. Some users have a preference for items of a

particular class, while others have a preference for items of other

classes. Still other users are indifferent to the item class.

Returning to our news search example, suppose there are few

left-leaning and many right-leaning news sources. We assume there

are three types of users: left-leaning, right-leaning, and indifferent.

The heterogeneous preference assumption means that left-leaning

users are more likely to click on left-leaning news sources, right-

leaning users are more likely to click on right-leaning news sources,

and indifferent users click exclusively based on rank. Even if the

left-leaning news sources are unpopular, left-leaning individuals

will seek them out. Because there are few such news sources, the

clicks of these left-leaning individuals will be concentrated on a few

news sources, and these sources will tend to ‘shoot up to the top’.

https://doi.org/10.1145/3308558.3313693
https://doi.org/10.1145/3308558.3313693
https://osf.io/nwjyf/
https://doi.org/10.1145/3308558.3313693
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Once a news source has gotten close to the top, it will attract not

only the clicks from the left-leaning individuals, but also the clicks

of indifferent users, simply because of the rich-get-richer dynamics.

This is the few-get-richer effect.

2 RELATEDWORK
Our results contribute to the understanding of the limitations of

recommender systems [8, 10, 18, 21, 23, 24], with direct applications

to the design of fair, transparent and efficient ranking systems [4, 6,

32], as well as methods to reduce the spread of misinformation [20,

29] or uncivil behavior [9, 26].

An extensive literature on modeling (click) user behavior is

weakly related to our work [7, 15, 27, 33]. Closer to our work,

several papers have proposed models of the dynamics of interac-

tions between individual searches and ranking algorithms, e.g.,

for understanding the feedback loop between ranking system and

user queries [12], explaining the observed mitigation of search

engines’ popularity bias [16], or the competition of memes using

limited attention [31]. The paper closest to ours is [17], which also

obtains a few-get-richer effect in a model where individuals get mul-

tiple signals and where (news) items are ranked via a probabilistic

popularity-based ranking. Besides being simpler, our model works

with a discrete and deterministic ranking of the websites rather

than a continuous and probabilistic one. Among other things, this

allows for a tighter connection with the experiment of Section 5.

3 THE MODEL
We present a stylized model of a search environment where indi-

viduals use a search engine to look for information on a binary

issue. At the center of the model is the ranking algorithm, which

ranks and directs individuals to the different websites, based on the

popularity of individuals’ choices.

3.1 Model of the Search Environment
There are M items, each of which belongs to exactly one of two

classes. For example, the items can be news articles and the class

of an article can be whether the source is known to be left-leaning

or right-leaning. A different, visual, example can comprise images

about animals, some of which are cats while the others are dogs.

In general, each of the M items is characterized by a binary sig-

nal {0, 1} that defines its class; letMk denote the set and number

of items of class k , k ∈ {0, 1}.
There is a single popularity-based ranking algorithm which,

starting with a given initial ranking (r1), ranks all the items inM
according to the number of clicks received. Let rn ∈ {1, . . . ,M}M
denote the ranking seen by individual n, where rn,m ∈ {1, . . . ,M}
denotes the rank of itemm observed by individual n.

There are N individuals, each of which is characterized by a

parameter γn , which can be of one of three types. The three types

are denoted by Type 0, Type 1 and Type 2, and their proportions in

the population are p0, p1 and p2 = 1 − p0 − p1, respectively. Type 0
(resp. Type 1) individuals have a preference for clicking on items

of class 0 (resp. class 1). Type 2 individuals are indifferent between

clicking on items of class 0 or of class 1 absent ranking. We represent

the set of possible types by Γ = {Γ0, Γ1, Γ2}, where Γi denotes the
probability that an individual of Type i (i.e., with γn = Γi ) clicks

on an item of class 0 absent ranking. Our assumptions about the

preferences of the individuals in the three types imply Γ0 >
1

2
,

Γ1 <
1

2
and Γ2 =

1

2
.

We summarize these preferences in terms of propensities φn,m
with which individual n with γn ∈ Γ clicks on itemm, defined by:

φn,m =


γn
M0

ifm ∈ M0

1−γn
M1

ifm ∈ M1.
(1)

For simplicity, in this section, we consider the extreme and sym-

metric case, where Γ0 = 1, Γ1 = 0 and p0 = p1 = p > 0.

3.2 Model of Stochastic Choices
Individuals enter one after the other and observe the ranked list

of items, and based on the ranking and on their preference for the

signals given by φn,m , they click on one of theM items according

to a probabilistic choice function obtained as follows. We use the

function β(M−rn,m)
to weigh the propensitiesφn,m , whereby β > 1

calibrates an individual’s search cost or attention bias, so that an

item ranked exactly one position higher has β times as much proba-

bility of being clicked. The probability individualn clicks on website
m is given by:

ρn,m =
β(M−rn,m)φn,m∑

m′∈M β(M−rn,m′)φn,m′
. (2)

Thus, individual n observes rn,m and clicks on a website according

to ρn,m . His click gets recorded by the ranking algorithm, which

updates its ranking to rn+1. This affects the ranking of the websites
observed by the next individual, who clicks on a website according

to ρn+1,m and so on. We denote the total clicking probability on

items of class k (Mk ) by ρn,Mk =
∑
m∈Mk

ρn,m .

Overall, this defines a search environment E with parameters

(M,M1); (N , β , Γ,p); r1. We assume β > 1 and 0 < p < 1

2
so that

individuals are subject to an attention bias and are heterogeneous

in the sense that there are nonzero shares of Types 0, 1 and 2.

3.3 The Few-Get-Richer Effect
The following result shows how few items of a given class can

attract more traffic than many more items of the same class taken

together. In particular, it implies that if there is just one item of a

given class, then it will attract more traffic by itself thanM − 1 such

items taken together in a corresponding environment where there

areM − 1 such items.

Proposition 1. Fix two popularity-based search environments E
and E ′ that differ only in the number of items of class 1 (M1 andM ′

1

respectively). Suppose M1 <
M
1+β <

βM
1+β < M ′

1
, then there exists N

such that, for any N ≥ N , the total clicking probability (ρN ,M1
) by

individual N on an item in M1 in environment E is strictly greater
than the total clicking probability (ρN ,M ′

1

) by individual N on an
item inM ′

1
in environment E ′, provided p > 0 is sufficiently small.

The proof is in three steps. First, we characterize a limit ranking

(r∞) of the process ρn defined by Eq. (2) and show it constitutes a

(stable) limit. Second, we show it is the unique such limit ranking.

Finally, we compute total traffic on all items inM1 at the limit and
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Figure 1: Total traffic on allM1 items of class 1 as a function
of M1 for the limit distribution of the process ρn of Eq. (2)
for different values of β , with M = 20, Γ = {0.8, 0.2, 0.5} and
p = p0 = p1 = 0.4.

show it is over half of total traffic when M1 <
M
1+β , and hence

greater than total traffic on all items inM ′
1
forM ′

1
>

βM
1+β .

Step 1. ConsiderM items and a ranking r∞ ∈ {1, . . . ,M} defined
by r∞,k = k , for k = 1, . . . ,M . Then, by popularity ranking, r∞ is a

(stable) limit ranking of the process ρn if and only if at r∞:

ρn,1(r∞) > ρn,2(r∞) > . . . > ρn,M (r∞) (3)

holds for the expected individual n. Suppose r∞ is such that theM
items are ranked in two blocks of items of the same class where, if

M1 <
M
1+β , the first rankedM1 items are all inM1 and the remaining

ones (bottom ranked) are all inM0; and symmetrically ifM1 >
βM
1+β ,

the bottom rankedM1 items are all inM1 and the remaining ones

(top ranked) are all inM0. To see that these constitute limit rankings,

suppose M1 <
M
1+β , and consider the ranking r∞, where the first

M1 items are ranked on top. In this case, the corresponding clicking

probabilities for k ∈ M1 (i.e., k ∈ {1, . . . ,M1}) are given by:

ρn,k (r∞) = β (M−k )(1 − γn )/M1∑M1

k=1 β
(M−k )(1 − γn )/M1 +

∑M
k=M1+1

β (M−k )γn/M0

,

and for k ∈ M0 (i.e., k ∈ {M1 + 1, . . . ,M}) satisfy:

ρn,k (r∞) = β (M−k )γn/M0∑M1

k=1 β
(M−k )(1 − γn )/M1 +

∑M
k=M1+1

β (M−k )γn/M0

.

Clearly, ρn,k (r∞) > ρn,k+1(r∞) holds within the classes M1 and

M0, that is, for k = 1, . . . ,M1 − 1 and for k = M1 + 1, . . . ,M − 1

Hence it suffices to show that ρn,k=M1
(r∞) > ρn,k=M1+1(r∞). This

is easily checked for the expected individual n (whose value of γn is

drawn from Γ = {1, 0, 1
2
} according to the probabilities, respectively,

p0 = p,p1 = p <
1

2
and p2 = 1 − 2p > 0).

Step 2: To see that the above ranking constitutes a unique limit,

we show that no other ranking satisfies Eq. (3) and that, for any

other ranking, whenever an item is in the less numerous class (say

M1 when M1 <
M
1+β ), it will always get strictly more clicks in

expectation than the item of the other more numerous class ranked

just above. AssumeM1 <
M
1+β , then it can be checked that the two

strongest constraints to be satisfied are the ones comparing the

clicking probability on the lowest-ranked item of classM1 when (i)
it is ranked in theMth position while all remainingM1 − 1 items

are ranked in the firstM1 − 1 positions, and when (ii) it is ranked
in position M1 + 2 while all remaining M1 − 1 items are ranked

in the first M1 − 1 positions. Both are easily seen to be satisfied

whenever p = 0 and M1 <
M
1+β . By continuity they continue to

hold for sufficiently small p > 0. The caseM1 >
βM
1+β , which implies

M0 <
M
1+β and which has the M0 items ranked on top holds by

symmetry.

Step 3. It suffices to show that whenever M1 <
M
1+β , then the

first ranked items inM1 always get strictly more that half the share

of the total clicks. Since the share of traffic on the individual items

is given by the probabilities ρn,k (r∞) defined above, it suffices to

show that for any M1 <
M
1+β , ρn,M1

(r∞) = ∑M1

k=1 ρn,k (r∞) > 1

2
.

Given our assumptions on p and Γ, this is easily checked for the

expected individual n (using the fact that, for any 1 ≤ K < K ′ ≤
M ,

∑K
k=1 β

M−K /K > ∑K ′

k=1 β
M−K ′/K ′

). It also implies that when

M ′
1
>

βM
1+β all items inM ′

1
will (be bottom-ranked) and will obtain

less than half the total traffic. □

When the share of items inM1 is close to one half (
M
1+β < M1 <

M
2
), then there may be multiple limit rankings and the above proof

no longer applies. We believe that the few-get-richer result may

still go through in these cases, but it is necessary to evaluate the

likelihood of the different limit rankings and guarantee that limit

rankings are more likely to give classes with fewer items a higher

probability of being higher ranked. This proof goes beyond the

scope of this paper.

Similarly, for interior types (Γ0 < 1, Γ1 > 0). As Figure 1 shows

for different values of β (see also the simulations in the next section),

the effect continues to hold: whenM1 has few items (minority case

M1 <
M
1+β ) it obtains a larger proportion of clicks than when M1

has many items (majority caseM1 >
βM
1+β ).

4 SIMULATIONS OF THE MODEL
We now analyze through simulations the presence of the few-get-

richer effect in different settings. Our focus is on analyzing the click-

through rate (CTR), defined as the the ratio of the probability of

clicking on an item inM1 to the total number of clicks N (which we

fix at N = 100 users), as a function ofM1 for different settings. We

mainly consider stochastic choices with Γ = {0.9, 0.1, 0.5}, which
means that non-indifferent users do not exclusively click on one of

the two classes. We assume that the ranking rn is proportional to

the number of clicks that the item received at time n. As before, we
consider a ranking ofM = 20 items with theM1 items initially at the

bottom. In this case, instead of the limit ranking, we characterize the

dynamic transient during which the minority class may reach the

top of the ranking. This makes our analysis dependent on the initial

conditions. For an itemm initially at position r1,m , we assume a

uniform initialization, with all items having one click.
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Figure 2: Proportion of clicks on all M1 items of class 1 as a function of M1 for runs of N = 100, and assuming M = 20,
β = 1.1, Γ = {0.9, 0.1, 0.5},p0 = p1 = 0.4 and uniform initialization, as baseline, and varying β (left plot), p2 = 1 − p0 − p1 (middle
plot), and the log-ratio log

p0
p1 (right plot). Error bars indicate confidence intervals for 100 different random realizations.

4.1 Dependence on β
Wefirst consider the dependence on the ranking effect, parametrized

by β . Larger values of β correspond to a stronger relative ranking

effect compared to the propensities. Here, we consider a symmetric

case with p0 = p1 = p = 0.4.

Figure 2 (left) shows the CTR for different values of β . The re-
sulting CTR is almost symmetric. We observe a monotonic decrease

as a function of M1 in all cases, showing, in particular, that the

minority class always receives more clicks than the majority one.

We can differentiate between three cases, corresponding to small,

intermediate and large values of β , respectively. In general, larger

values of β lead to a relatively larger CTR for the minority class, due

to relatively larger probability of clicking on top ranked items. For

small values of β , the CTR is the smallest, but even here the effect

as a function ofM1 is particularly pronounced for small (and large)

M1. For intermediate values of β , the flat region for intermediate

values ofM1 disappears and the CTR decreases monotonically with

constant slope, indicating a decrease independent of M1. Finally,

for larger values of β , the CTR is largest, and the effect as a function

of M1 is smallest for small (and large) M1. In this extreme case,

forM1 = 1, the single item at the bottom quickly reaches the top

and attracts almost all the traffic, leaving almost no traffic to the

remainingM − 1 items of the other class.

From these simulations, we can conclude that the few-get-richer

effect is robust to varying β .

4.2 Dependence on p2
We now analyze the CTR as a function of the proportion of indif-

ferent users p2 = 1 − p0 − p1. For this, we choose β = 1.1 and vary

the proportion of indifferent users while keeping p0 = p1. To better
analyze this dependence, we consider extreme preferences, so that

only indifferent users can really click on both items, that is, we

assume Γ = {1, 0, 0.5}.
Figure 2(middle) shows the results. We observe that, in this case,

the few-get-richer effect is more pronounced asp2 increases. Having
a larger proportion of indifferent users results in relatively more

clicks per item, and hence a larger amplification of ranking effect,

which is a key ingredient for the few-get-richer effect to emerge.

With less extreme preferences, e.g., Γ = {0.9, 0.1, 0.5}, the effect in
p2 is still present, but less pronounced (data not shown).

We conclude that the indifferent users play a key role in am-

plifying the effect of the ranking, and that in general, having a

larger proportion of them contributes importantly towards the

few-get-richer effect.

4.3 Dependence on the ratio p0
p1

So far we have considered cases where the distribution of user types

was symmetric, p0 = p1 = p. In practice this need not be the case

since, e.g., the minority class might also be preferred by a minority

of users. We analyze the effect as a function of lr = log
p0
p1 .

Figure 2(right) shows the results for different values of lr . As
expected, the few-get-richer effect is more pronounced when there

is a larger relative proportion of users that prefer the minority item.

To see this, compare the blue line, where p1 = 0.6 > p0 = 0.2 (there

are three times more users who prefer the ‘minority’ item), and

the purple line, where p1 = 0.1 < p0 = 0.7. We see that the effect

is still present for this choice of parameters, even when there are

seven times more users who prefer the majority item. Here, the

proportion of indifferent users is set to p2 = 0.2. Consistent with

the results of the previous subsection, if we increase p2 and keep

the same ratios, the effect becomes more pronounced. We conclude

that the effect is also robust to different ratios of proportions lr .

4.4 Ranking evolution
Finally, we illustrate the typical behavior of the ranking evolution

for different values ofM1, assuming our usual baseline parameter

values for β , Γ, and p and uniform initialization. Figure 3 shows the

results, which confirm the idea that minority items tend to move

towards the top.

5 ONLINE EXPERIMENTWITH HUMAN
PARTICIPANTS

To test the predictions of the model, we executed an online ex-

periment in which participants clicked on one out of 20 possible



The few-get-richer: a surprising consequence of popularity-based rankings WWW ’19, May 13–17, 2019, San Francisco, CA, USA

10 20 30 40 50 60 70 80 90 100
Time

20
18
16
14
12
10
8 
6 
4 
2 
1 

P
os

iti
on

 in
 r

an
ki

ng
M

1
=2

10 20 30 40 50 60 70 80 90 100
Time

20
18
16
14
12
10
8 
6 
4 
2 
1 

P
os

iti
on

 in
 r

an
ki

ng

M
1

=9

10 20 30 40 50 60 70 80 90 100
Time

20
18
16
14
12
10
8 
6 
4 
2 
1 

P
os

iti
on

 in
 r

an
ki

ng

M
1

=18

Figure 3: Examples of ranking evolution for different values ofM1. The items inM1 always start at the bottom of the ranking.
With M1 = 2 (left plot), the two items quickly move to the top. With M1 = 9 (middle plot), the items in M1 are spread through
the different ranking positions. Finally, withM1 = 18 (orM0 = 2) (right plot), the itemsM1 eventually stay at the bottom.

options (pictures).
1
The options belonged to two classes, M0 and

M1, just as in the model. As in the simulations reported above, we

measure the effect of the popularity-based ranking of options as the

total number of clicks attracted by items of type M1. To this end,

we created 8 independent conditions. In conditions D1 to D4, the

ordering of the options changed dynamically as a function of the

number of clicks received by each option, with the most popular

option (in terms of cumulative number of clicks) at the top of the

screen and the least popular option at the bottom of the screen. The

conditions differed in terms of the number of options in M0 and

M1, as summarized in Table 1. The number of options in M1 was

17, 12, 8, or 3 in conditions D1, D2, D3 and D4, respectively.

These four ‘dynamic’ conditions were matched to four ‘static’

conditions with the same sets of optionsM0 andM1. In the static

conditions, the ranking of options did not change over time and

was set to the initial ranking in the matching dynamic condition.

We denote these static conditions by S1, S2, S3, and S4.

Comparisons of matched pairs of conditions allows us to estab-

lish the causal effect of the ranking algorithm on the total traffic

attracted by each option. Comparisons of the 4 dynamic conditions

allows us to test the prediction that the total traffic attracted by

options inM1 decreases with the number of options inM1.

To keep the experimental setup as simple as possible, the options

in our experiment were not news sources, but pictures of dogs and

cats. In order to activate their preferences for cat or dog pictures,

participants were first asked whether they were a ‘cat person’, a

‘dog person’, or ‘neither a cat person nor a dog person.’ Answers

to this identity question allowed us to compute the proportion of

participants in each of the 3 types discussed in the model section.

Then participants were shown a set of 20 pictures in a vertical list.

In this setup,M0 is the set of cat pictures (initially at the top of the

screen) and M1 is the set of dog pictures (initially at the bottom).

The initial popularity of all pictures was set to 1, consistent with

the uniform initialization of the previous section.

5.1 Methodological Details
We recruited 786 participants on Amazon Mechanical Turk. It was

administered via a Qualtrics survey embedded in the Amazon Me-

chanical Turk webpage as an iframe. After signing up for the task,

1
Data from the experiment are available at https://osf.io/nwjyf/.

participants read the informed-consent form. Then they were ran-

domly assigned to one of 8 conditions. They first answered a ques-

tion about their type: “Are youmore of a cat person or a dog person?”

with three possible choices “I am a cat person” / “I am neither a cat

person nor a dog person” / “I am a dog person.” On the next screen

they were shown 20 buttons with “Please click on a photo from the

following list of photos of cats and dogs and rate it according to your

liking.” The buttons were displayed in a vertical list. Participants

could initially see 3 to 4 buttons and had to scroll down to access

the other buttons. After clicking a button, participants were shown

the corresponding picture and gave it a rating of 1 to 5 stars. The

rating task was presented as a reason to ask participants to select

an item according to their preferences. The collected ratings are

not discussed because our interest is only in the clicking behavior

of the participant. Participants were paid $0.15 for their time.

5.2 Results
5.2.1 Participant Types. 30% indicated they were ‘Cat persons’

(p0 = 0.30), 55% ‘Dog persons’ (p1 = 0.55), 15% neither (p2 = 0.15).

5.2.2 Total Traffic Attracted by M1 (Dog pictures). Dog pictures

were initially ranked at the bottom the screen. First we discuss the

effect of popularity-based ranking of options on the total traffic

attracted by Dog pictures. In the 4 dynamic conditions, Dog pic-

tures attracted substantially more traffic than in the corresponding

static condition (compare the two rows ‘Experiment’ in the top and

bottom panels of Table 1). In other words, ordering the options in

terms of popularity had a systematic effect on the share of traffic

attracted by options that started at the bottom of the choice screen.

Unsurprisingly, in all static conditions, the total traffic attracted

by Dog pictures was lower than 50%. The set of Dog pictures at-

tracted more traffic when there were relatively more Dog pictures.

For example, while 17 Dog pictures attracted 44% of the traffic, 3

Dog pictures attracted 27%.

The pattern is completely different in the dynamic conditions.

First, in all dynamic conditions, the total traffic attracted by Dog

pictures was higher than 50%. The most important finding is that

the total traffic attracted by Dog pictures was larger with just 3 Dog

pictures (and 17 Cat pictures) than with 17 Dog pictures (and 3 Cat

pictures)! Similarly, the total traffic attracted by Dog pictures was

larger with 8 Dog pictures (and 12 Cat pictures) than with 12 Dog

https://osf.io/nwjyf/
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Table 1: Experiment results. The ‘Sim1’ rows report the av-
erage traffic attracted by Dog pictures (M1) over 1000 simula-
tions of the choice model with a setting matching the exact
number of participants of each identity type in each condi-
tion. The ‘Sim2’ rows report the average traffic attracted by
Dog pictures (M1) over 1000 simulations of the choice model
with 100 users in each conditionwhere the numbers of users
who are a ‘dog person’, ‘neither a dog person nor a cat per-
son’ and a ‘cat person’ are 55, 15 and 30, respectively (same
frequencies for all conditions).

# Cats (M0) 3 8 12 17

# Dogs (M1) 17 12 8 3

Dynamic Button Ordering

Condition D1 D2 D3 D4

# participants 96 102 99 101

# participants Cat person 34 30 24 29

in each Neither 9 21 11 16

type Dog person 53 51 64 56

Dog Experiment .53 .69 .76 .71

traffic Sim1 .46 .56 .73 .76

share Sim2 .47 .60 .67 .75

Static Button Ordering

Condition S1 S2 S3 S4

# participants 96 101 95 96

# participants Cat person 34 30 25 33

in each Neither 13 19 9 15

type Dog person 49 52 61 48

Dog Experiment .44 .37 .40 .27

traffic Sim1 .41 .37 .39 .28

share Sim2 .44 .39 .35 .30

pictures (and 8 Cat pictures). These results are consistent with the

predictions of our model. The total traffic attracted by Dog pictures

did not decrease monotonically with the size of the set of Dog

pictures (it is larger with 8 Dog pictures than with 3 Dog pictures).

This pattern is seemingly inconsistent with the predictions of the

simulations (Fig. 2). Yet, this lack of monotonicity can be explained

by the fact that the conditions were not perfectly balanced with

respect to the distribution of identity types of the participants.

In condition D3 (8 Dog pictures) there were substantially more

Dog lovers (64/99) than in condition D4 (3 Dog pictures, 56/101).

This is a chance event resulting from the fact that we elicited the

identity type of the participants after the random assignment into

conditions, thus we could not balance types within conditions.

5.2.3 Estimated Parameters of the Choice Model. We estimated the

parameters of the stochastic choice model, Eq. (2), using maximum

likelihood on the whole dataset. Our parameter estimates are β =
1.22, ΓC = .74 for Cat persons (Γ0 in the model), and ΓD = .08 for
Dog persons (Γ1 in the model). Cat and Dog persons had strong

tendencies to choose pictures from the class consistent with their

identity type.

We used these estimated parameters to simulate choices and

the dynamics of picture ranks in the 8 experimental conditions.

Simulations reported in rows ‘Sim1’ in Table 1 indicate a close

match between the simulated data and the actual traffic proportions

attracted by Dog pictures (both in static and dynamics conditions).

We also used the estimated parameters to simulate what would

happen if there were 100 participants in each condition and if

the distributions of identity types were the same in all conditions

(‘Sim2’ rows). We find a decreasing monotonous relation between

the number of Dog pictures and the share of traffic attracted by Dog

pictures. This pattern is consistent with the qualitative prediction

of our model.

5.2.4 Summary. Overall, the results indicate that the experimental

setting falls within the boundary condition of application of our

theory. They provide a proof-of-concept that popularity-based or-

dering of options can lead to the counter-intuitive phenomenon

that when there are fewer options of one class, the total share of

traffic attracted by this class of options becomes larger.

6 DISCUSSION & CONCLUSION
The few-get-richer effect can have both positive and negative effects

on the quality of the information people obtain from search results.

On the positive side, when there are few relevant items, the few-get-

richer effect may help them become top-ranked, making them more

accessible. At the same time, the few-get-richer effect can contribute

to the spread of misinformation. It may help few irrelevant or

‘fake news’ items become top-ranked, especially if there is a strong

preference for such items and only few websites report them.

Our analyses highlight a potential unintended effect of regula-

tions that ‘ban’ particular ‘alternative’ news sources known for

spreading ‘fake news’. When a sizeable proportion of users have a

preference for identifiable ‘alternative’ news sources, the removal

of some of these news sources might lead to an increase in the total

traffic attracted by the remaining ‘alternative’ news sources. This

could result in more overall exposure to ‘fake news’!

To neutralize the few-get-richer effect, our theory suggests that it

may be advisable to keep track of the number of items in each class

when incorporating clicks in the search engine algorithm. Ideally,

the ranking algorithm should use the popularity of the different

items in a way that is neutral to the number of items in each class.

The few-get-richer effect also has implications for the design

of recommender systems. The learning efficiency of these systems

is impeded by the presentation bias problem: items shown to the

user can get clicks whereas items not shown get no clicks. The

recommender system thus cannot learn about the relevance of the

latter items. A popular solution to this challenge is the explore-
and-exploit approach, in which some items from a minority class

are randomly inserted in the search results [1]. This purportedly

increases the amount of exploration (clicks on the minority class),

and thus increases the learning opportunities of the system at

the cost of slightly hurting the user experience [18, 23]. The few-

get-richer effect suggests precisely the opposite. Adding more of

those items might reduce, rather than increase, the total amount of

exploration.
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