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1 Introduction

The estimation of structural forward-looking macroeconomic equations is a central tenet of

the macroeconomic research agenda. Prominent examples include the estimation of aggre-

gate supply equations like the New-Keynesian Phillips curve (e.g. Gali and Gertler, 1999)

and the estimation of aggregate demand equations based on an Euler equation for output

—the intertemporal IS curve— (e.g. Fuhrer and Rudebusch, 2004) and a monetary pol-

icy rule —the LM curve— (e.g. Clarida, Gaĺı and Gertler, 2000). Additional important

examples include the estimation of consumption Euler equations (e.g. Deaton, 1992) and

consumption-based asset pricing equations (e.g. Campbell, 2003).

Obtaining reliable estimates for the structural coefficients of forward looking equations

has been shown challenging because of pervasive endogeneity issues. Take as an example the

case of the Phillips curve, which postulates that inflation is determined by three main factors:

expected future inflation, the output gap – the difference between the level of economic

activity and its natural flexible-price level –, and supply factors. All three factors lead to

endogeneity-related biases: (i) inflation expectations are unobserved, (ii) the natural level of

output (and thus the output gap) is unobserved and (iii) supply shocks lead to confounding.

Similar issues affect other macro equations like the Euler equations or monetary policy rules.

Going back at least to Frisch (1934) and Reiersol (1941), the literature has traditionally

addressed endogeneity concerns in macro by using predetermined variables as instruments,

i.e. lags of observable macro variables as instruments. This approach, which was popularized

by the seminal contributions of Hansen and Singleton (1982) and Hansen (1982), has had

mixed success however. Despite decades of research, estimates display both high sampling

uncertainty and high specification uncertainty, as minor specification changes can lead to

very different estimates (e.g., Yogo, 2004; Mavroeidis, 2010; Kleibergen and Mavroeidis, 2009;

Mavroeidis, Plagborg-Møller and Stock, 2014). An oft-cited reason is that pre-determined

variables are weak instruments.

In this work, we propose a new approach to estimate forward-looking macro equations.
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Our approach consists in projecting the structural equation of interest on the space spanned

by the present and past values of some well chosen structural shocks. Taking again the

Phillips curve as an example, we show that independently identified aggregate demand

shocks, for instance monetary policy shocks, can be used to identify the parameters of the

Phillips curve. Intuitively, projecting inflation and unemployment on past monetary shocks

can address the endogeneity issues by projecting out (i) the influence of supply shocks, (ii)

the measurement error in expected future inflation, and (iii) the measurement error in the

natural level of output.1

Our approach amounts to an instrumental variable (IV) regression, where, and this is

our key contribution, the set of instruments is a sequence of past structural shocks. For the

Phillips curve monetary policy shocks are appropriate instruments, but different structural

shocks will be called for depending on the structural equation of interest. For instance, an

aggregate demand relation like the intertemporal IS curve could be identified with aggregate

supply shocks, such as oil price shocks.

Using sequences of structural shocks as instruments has an intuitive interpretation as a

“regression in impulse response space”. By projecting the structural equation on a space

spanned by some past structural shocks, our approach can be seen as a regression where

the variables of the macro equation of interest are replaced by their impulse responses (IRs)

to the structural shock. Identification then comes from variation across the horizons of the

impulse responses.

Because structural shocks are not necessarily strong instruments,2 we rely on weak in-

strument robust methods for conducting inference, see Andrews, Stock and Sun (2019) for

a recent review of the literature. Intuitively, in our setting the weak-IV robust approach

amounts to inferring how the residual of the macro equation of interest, say the Phillips

1In a static AD/AS setting, the intuition is straightforward: aggregate shocks that shift the (AD) curve
will allow us to trace out the (AS) curve, i.e., identify the coefficient on the unemployment gap. In a
dynamic setting, we will see that aggregate demand shocks can separately identify the coefficients on the
unemployment gap and on inflation expectations as long as they have different dynamic effects on future
inflation and the output gap.

2Stated differently, the forecast-error variance contribution of the shocks to the macro variables of interest
can be small (Gorodnichenko and Lee, 2017; Plagborg-Møller and Wolf, 2018).
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curve, responds over time to an innovation in the structural shock, for instance a monetary

shock. For values of the Phillips curve parameters close to their true values, the IR of the

residual to a monetary shock should be not be different from zero. But for values away from

the truth, the IR of the residual should be a combination of the IRs of future inflation and

unemployment (the right-hand side variables of the Phillips curve) and be non-zero.3

We exploit this impulse response interpretation to improve the power of weak-IV robust

tests. If the responses of macro variables to structural shocks are smooth, as is typically be-

lieved, the IR of the equation residual should also be smooth and we can exploit this “smooth-

ness” to reduce the noise in the weak-IV robust statistics. Specifically, we parametrize the

residual IR as a quadratic polynomial function which reduces the number of instruments

but does not affect the exogeneity of the instruments. Thanks to this dimension reduction,

the model becomes just-identified, which allows us to rely on the AR (Anderson and Rubin,

1949) statistic for inference, which is known to be the uniformly most accurate unbiased test

in this setting, see Moreira (2009). Moreover, when the instruments are strong, the AR test

is asymptotically efficient in the usual sense, and so does not sacrifice power relative to the

conventional t-test based on the Two-Stage Least Squares (2SLS) estimator (see Andrews,

Stock and Sun, 2019).4

Equipped with our new approach, we revisit the literature on the New-Keynesian Phillips

curve, where we use Romer and Romer (2004) narrative monetary shocks or high-frequency

identified monetary surprises (e.g., Kuttner, 2001) as instruments to identify the structural

coefficients. We find that the coefficient on the forcing variable (the slope of the Phillips

curve), measured by either the output gap or the unemployment rate, is significantly different

from zero and much larger than estimated by OLS or 2SLS using predetermined variables as

instruments. In contrast, the role of forward-looking inflation expectations is smaller than

3For instance, when setting the parameters of the Phillips curve to zero, the IR of the residual will
correspond to the IR of inflation, the left-hand variable of the Phillips curve.

4In the appendix we show the results from a simulation study where we evaluate the finite sample
properties of the approach. We simulate data from a typical forward-looking macro equation and obtain
excellent performance even with weak structural shocks, i.e., even with shocks that account for a small share
of the variance of the macro variables.
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estimated with earlier methods. We then re-examine recent evidence of a flattening of the

Phillips curve (e.g., Ball and Mazumder (2011)) and in particular whether that flattening is

spurious and the by-product of endogeneity biases. Our evidence points to clear changes in

the main determinants of inflation: since 1990, forward-looking inflation expectations play

a larger role while slack plays a smaller role.

Our approach for estimating structural equations bridges two large literatures: the lit-

erature on the estimation of structural equations using limited-information methods (see

Mavroeidis, Plagborg-Møller and Stock, 2014) and the literature on the identification of

macroeconomic shocks and their IRs (e.g., Ramey, 2016; Stock and Watson, 2016).5.

The use of structural shocks as instruments considerably broadens the scope of identi-

fication schemes when compared to using predetermined variables, i.e., lags of macro vari-

ables, as instruments. While structural shocks are generally not observable, the literature

has produced a variety of proxies for structural shocks, which are sufficient for conducting

instrumental variable based inference (Stock and Watson, 2018). Such proxies have been

derived using a variety of methods requiring different modeling assumptions. In addition

to the monetary shocks already discussed, examples include oil price shocks (Hamilton,

2003; Kilian, 2008), TFP shocks (Fernald, 2012), government spending shocks (Ramey and

Zubairy, 2018) and potentially many others. All these series can potentially be exploited for

identifying different structural equations.6

While we propose a simple and efficient method to use shocks as instruments in single

equation regressions, other estimation methods are possible. Drawing on our insight that a

regression with shocks as instruments boils down to a regression in impulse response space, we

5Alternative to the limited information approach is the full-information approach which specifies a system
of structural equations, typically a dynamic stochastic general equilibrium (DSGE) model. By imposing a
theoretical model on all the variables in the system, full-information methods have the potential to improve
estimator precision, but they also introduce the risk of misspecification in other equations, inducing bias
or inconsistency of the parameters of interest. The method we propose preserves the limited-information
nature of the exercise, as it allows researchers to focus on a single macro equation of interest, without having
to take a stand on the theoretical model underlying all the endogenous variables.

6In our limited-information context, the most appealing shock proxies are identified with little to no
additional restriction on the data generating process. That being said, shocks derived from SVARs identified
with exclusion or sign restrictions are also possible, depending on the researcher’s tolerance for additional
modeling restrictions.

5



note that forward-looking macro equations could also be estimated from a two-step approach:

(i) estimate the structural IRs using SVAR-IV or LP-IV,7 and (ii) regress the estimated IRs

on each other—. The main advantages of our AR-based method relative to these alternatives

are twofold. First, using SVAR-IV or LP-IV involves a two-stage estimation procedure, which

is less efficient than our one-stage method.8 Second, our one-stage method is a limited-

information approach that intends to minimize the number of modeling assumptions beyond

those on the single equation of interest. In contrast, SVAR-IV relies on specifying a system

of reduced-form equations and on choosing the set of endogenous variables and the number

of lags, while LP-IV relies on the same additional assumptions to decide on the set of control

variables (e.g. Plagborg-Møller and Wolf, 2019).9

The remainder of this paper is organized as follows. In Section 2 we review the empirical

issues faced by limited-information methods and we discuss the traditional solution that is

based on lagged instruments. Section 3 outlines the use of independently identified structural

shocks for identification. The estimation methodology is developed in Section 4 and the

empirical findings for the Phillips curve are presented in Section 5. Section 6 concludes.

2 Structural equations and endogeneity issues

In this section we consider general forward looking structural equations and discuss the

different sources of endogeneity that are present in such equations. We then discuss the

predominant approach in the literature for conducting inference in this setting: using lagged

observables as instrumental variables. Our exposition is brief and is merely intended to lay

7LP-IV and SVAR-IV were developed in Jordà (2005), Stock and Watson (2018), Mertens and Ravn
(2013) and Olea, Stock and Watson (2018).

8An additional complication is that it is unclear how weak instrument robust inference should be imple-
mented for the second stage of such procedures.

9Note that these two-stage SVAR-IV and LP-IV methods are different from impulse response function
matching estimators, which rely on a fully specified DSGE model (e.g., Christiano, Eichenbaum and Evans,
2005). If the researcher is willing to postulate a fully-specified DSGE model, SVAR-IV or LP-IV could directly
(i.e., in one step) identify the parameters of the equation of interest through impulse response matching (e.g.,
Canova and Sala, 2009). However, this comes at the cost of an even higher risk of misspecification than with
a reduced-form VAR. Our contribution fits in the tradition of using robust limited-information methods to
estimate single equations.
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the ground for the next section where we introduce our new approach. More details can be

found in for example Mavroeidis (2005).

Consider the general forward looking equation

yt = γbyt−1 + γfEt(yt+1) + λxt + et , (1)

where yt is the variable of interest that depends on its own lag, its expected value Et(yt+1),

the forcing variable xt and the disturbance et. The expectation Et(·) is taken with respect

to the time t information set Ft. The forcing variable xt is typically not observable as it

is often formulated in deviation from some natural rate. For example, when xt is taken as

the unemployment gap it depends on the natural flexible price level which is unobserved.

The structural coefficients of interest are γb, γf and λ. The estimation of these parameters

is complicated due to a variety of endogeneity issues. To highlight the different sources of

endogeneity we rewrite equation (1) as follows

yt = γbyt−1 + γfyt+1 + λx̂t + et − γf (yt+1 − Et(yt+1))− λ(x̂t − xt)︸ ︷︷ ︸
ut

, (2)

where x̂t is an observable proxy for the forcing variable.10 In this way the first three variables

on the right hand side of equation (2) are observable and ut is the unobserved error term.

Three potential sources of endogeneity in equation (2) can be distinguished.

1. Confounding with the error term: Since the error term may simultaneously affect

yt and x̂t we have E(x̂tut) 6= 0.

2. Measurement error in the forcing variable: Since the forcing variable is unob-

served and thus subject to measurement error we have E(x̂tut) 6= 0.

3. Unobserved inflation expectations: Since Et(yt+1) is unobserved and thus subject

to measurement error we have E (yt+1ut) 6= 0.

10Other observable proxies for the expectation term, such as expectation measures from surveys, can
equally well be considered.
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This collection of endogeneity problems implies that we cannot use ordinary least squares

to consistently estimate the structural parameters in (2).

The traditional approach for handling the endogeneity problems is to treat yt−1 as pre-

determined and to use lags of the observed macro variables as instruments. To illustrate,

we let zlt = (yt−2, x̂t−1)
′, and we discuss the conditions under which the three sources of

endogeneity bias disappear when we use zlt as an instrument.

1. E(etz
l
t) = 0 since Et−1(et) = 0 provided that the error term et has no serial correlation.

2. E
(
(yt+1 − Et(yt+1))z

l
t

)
= 0 since Et(yt+1 − Et(yt+1)) = 0 under rational expectations

and by applying the law of iterated expectations.

3. E
(
(x̂t − xt)zlt

)
= 0 provided that the measurement error x̂t−xt has no serial correlation

This implies that E(utz
l
t) = 0 and zlt satisfies the exogeneity condition. Moreover, the same

can be shown for all zlt−j with j ≥ 0.

Unfortunately, this approach faces difficult challenges, as it is difficult to find lagged

economic variables that are both exogenous and strongly correlated with expected future

variables.

First, lagged macro instruments are typically weak instruments, which can lead to con-

siderable sampling uncertainty and to sensitivity of parameter estimates to minor changes

in specification choices, in the set of right-hand side variables or in the sample period (e.g.,

Mavroeidis, Plagborg-Møller and Stock, 2014). Moreover, conventional inference methods

for computing standard errors and confidence bounds break down when instruments are

weak and robust methods need to be adopted, see Kleibergen and Mavroeidis (2009).

Second, using lagged macro variables as instruments requires that none of the compo-

nents in the error term ut are autocorrelated.11 A potential way of avoiding this concern

11This can happen if the disturbance etis auto-correlated, or if the measurement error in yt or xt are
serially correlated. This problem is likely to be very relevant in practice. For instance, in the context of the
Phillips curve, Zhang and Clovis (2010) shows that the residual in the Gali and Gertler (1999) specification
of the Phillips curve is serially correlated. This can happen with autocorrelation in cost-push shocks (Gaĺı,
2015) or with autocorrelation in the measurement error of the natural rates of of inflation expectations (e.g.,
Coibion, Gorodnichenko and Ulate, 2017).
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is to increase the lag length of the instruments. For instance, to use zt−4 instead of zt as

instruments. Unfortunately, this solution leads to a trade-off between the exogeneity condi-

tion and the relevance condition as increasing the lag length dramatically worsens the weak

instrument problem (Mavroeidis, Plagborg-Møller and Stock, 2014, p163). The informative-

ness of the instruments can be improved by exploiting instabilities in the moment conditions,

see Magnusson and Mavroeidis (2014) and Antoine and Boldea (2018).

3 Aggregate structural shocks as instruments

In this section we show that sequences of (well chosen) structural shocks are valid instruments

to identify the coefficients in equations like (2). Let εit denote the structural shock of type

i for time period t.12 Depending on the application εit can be either a monetary, fiscal,

technology, credit, oil price, or some other structural shock. The idea in this work is to use

sequences of past structural shocks for identifying the coefficients in (2). To this extent let

εit:t−H = (εit, . . . , ε
i
t−H)′.

The following two conditions must be verified in order for the structural shocks εit:t−H to

be characterized as valid instruments:

E(εit:t−Hut) = 0 (Exogeneity)

E
(
εit:t−H(yt−1, yt+1, x̂t)

)
full column rank (Relevance)

The exogeneity and relevance conditions imply that the validity of the instruments depends

on the structural equation of interest. For instance, aggregate demand shocks will typically

be valid instruments to identify an aggregate supply equation, and aggregate supply shocks

will be valid to identify an aggregate demand equation. We provide specific examples for

important macro equations below, but first we discuss the intimate connection between the

12We refer to Ramey (2016), Blanchard and Watson (1986) and Bernanke (1986) for more discussion
regarding the definition of a structural shock.
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exogeneity and relevance conditions, and the identification of impulse response functions.

3.1 Identification using structural shocks: Intuition

In this section, we provide some intuition by showing how our approach recasts the problem

of identifying structural coefficients as a well-known problem in macroeconomics: the iden-

tification of impulse responses of macroeconomic variables to aggregate structural shocks.

We start by rewriting the exogeneity and relevance conditions in terms of impulse re-

sponses to the structural shocks εit:t−H . To do this in a simple way we assume that all

variables are stationary, that the structural shocks are mutually uncorrelated and that the

macro variables (yt−1, yt+1, x̂t) and the equation residual ut can be written as linear functions

of the structural shocks.13 Under these assumptions, the exogeneity and relevance conditions

can be restated as

βuh = 0 ∀ h = 0, . . . , H (Exogeneity)

[
βyh−1, β

y
h+1, β

x̂
h

]H
h=0

linearly independent (Relevance)

where βjh is the IR of jt, for j = u, y, x̂, to the structural shock εit−h. We provide a formal

derivation in the online appendix.

The exogeneity condition implies that the impulse response function of the residual ut to

the structural shock is equal to zero. Intuitively, when the macro parameters (λ, γf , γb) are

set at their true values, the IR of the residual ut should be zero (under correct specification).

The relevance condition states that the impulse responses of the observed forcing variable

x̂ and of past and future y are not linearly dependent, which includes as a special case that

the IRs should be non-zero.

The reformulation of the exogeneity and relevance conditions implies that all the informa-

13Note that these assumptions are only made to illustrate the approach, they are not required for the
properties of our estimators that are discussed below.
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tion needed to recover the coefficients of the structural equation are encoded in the impulse

response functions of the observables to the structural shocks. To see this, pre-multiply the

forward looking equation (2) by εit−h and take the expectation, we immediately obtain

βyh = γbβ
y
h−1 + γfβ

y
h+1 + λβx̂h , ∀ h = 0, . . . , H . (3)

Expression (3) implies that we can identify the coefficients of the forward looking macro

equation from a regression – across h – of the IR of the outcome variable on its own lags

and leads, and on the IR of the forcing variable, i.e., from a regression in “impulse response

space”.14 Intuitively, the exogeneity condition implies that (3) holds, while the relevance

condition implies that the dynamics of the IRs of (yt−1, yt+1, x̂t) are rich enough such that

there exist a unique parameter vector (λ, γf , γb) satisfying (3).

3.2 Identification using structural shocks: Examples

To illustrate our approach we discuss three important structural equations: the Phillips

curve, the Euler equation (for output or consumption) and the central bank’s monetary

policy rule. In each case, we argue that sequences of well-chosen structural shocks can form

valid instruments under relatively mild assumptions.

The Phillips curve

Consider the hybrid New-Keynesian Phillips curve (e.g. Gali and Gertler, 1999) given by

πt = γbπt−1 + γfEt(πt+1) + λxt + εst , (4)

14Specifically, by minimizing the sum of squared residuals
∑H
h=0

(
βyh − γbβ

y
h−1 − γfβ

y
h+1 − λβx̂h

)2
, we can

find the structural coefficients that best fit equation (2) for any h. This is an OLS regression in “impulse
response space”, i.e., a regression across the horizon h of the IRs. While the “regression in impulse response
space” interpretation is helpful to get the intuition behind our instrumental variable approach, we do not
advocate estimating the coefficients in this way in practice. While the approach is consistent, it is not
efficient. In fact, it can be easily verified that the OLS estimates obtained from (3) after replacing βyh and
βx̂h by their sample counterparts are equivalent to computing the GMM estimator for the structural equation
(1) with instruments {εit, . . . , εit−H} and with the GMM weighting matrix equal to the identity matrix. This
choice is not efficient and not robust to weak instruments. Our preferred methodology is described in the
estimation section.
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where πt is inflation, the output gap xt = gt − gnt depends on the natural level of output gnt ,

and εst denotes some (possibly autocorrelated) exogenous cost-push factors. The parameters

of interest γb, γf , and λ are typically functions of deep structural parameters of an underlying

model (see e.g., Gaĺı, 2015). Notice that the Phillips curve fits naturally in our general

framework (1).

Re-writing (4) to highlight the endogeneity issues, we have

πt = γbπt−1 + γfπt+1 + λx̂t + εst − γf (πt+1 − Et(πt+1))− λ(x̂t − xt)︸ ︷︷ ︸
ut

. (5)

The Phillips curve includes all three sources of endogeneity discussed in section 2: (i) con-

founding from cost-push factors, which can simultaneously affect inflation and the forcing

variable, (ii) measurement error in the forcing variable since the natural level of output is

unobserved, and (iii) unobserved inflation expectations.

We now argue that monetary shocks εmt:t−H —deviations of the central bank from its

typical behavior (e.g., Romer and Romer, 2004; Cochrane, 2004)— are valid instruments to

identify the Phillips curve, i.e., that they are both (i) exogenous and (ii) relevant.15

Exogeneity: The exogeneity condition E(εit:t−Hut) = 0 is satisfied if monetary shocks

are orthogonal to (i) cost-push factors, (ii) measurement error in the output gap, and (iii)

measurement error in inflation expectations.

Condition (i) holds since monetary shocks are, by their very nature, orthogonal to ex-

ogenous factors.16 Condition (ii) holds under the assumption that money is neutral under

flexible prices, a relatively mild and uncontroversial assumption.17 Condition (iii) holds

15We focus on monetary shocks for ease of exposition, but additional instrument candidates for structural
shocks include alternative aggregate demand shocks (e.g., government spending shocks) or productivity
shocks (e.g., Fernald, 2012).

16If the cost push factors are not strictly exogenous, for instance, if oil prices (a type of cost-push factor)
respond to US monetary policy, one would need to add oil prices in the Phillips curve and instrument that
additional variable. Again, the set of valid instruments depends on the specification of the Phillips curve
posited by the researcher. Here, we focus on the standard New-Keynesian Phillips curve encountered in
most empirical studies (e.g., Mavroeidis, Plagborg-Møller and Stock, 2014).

17The exogeneity condition E
(
εmt−j(x̂t − xt)

)
= 0 is verified, if E

(
εmt−j(ĝ

n
t − gnt )

)
= 0, which holds if

monetary policy is neutral under flexible prices.

12



under rational expectation or provided that survey measures of inflation expectations are

available and accurate up to some additive (and possibly autocorrelated) measurement error

term.18

Relevance: Monetary shocks are relevant instruments if they affect inflation and the

output gap. This implies that (in addition to the Phillips curve (4)), there must exist an

underlying IS curve, i.e., an equation linking the output gap to the level of interest rate (and

thus to monetary shocks). Our approach does not rely on specifying any parametric IS curve,

only that such a curve exists so that the policy rate affects the output gap. Since the existence

of an IS curve is a cornerstone of most macro models, we view this condition as mild and

uncontroversial. In addition, because the Phillips curve (4) involves at least two endogenous

variables (in our case three: lagged inflation, future inflation and the output gap), satisfying

the rank condition requires that the first-stage predicted values of the endogenous variables

are not linear dependent. From the intuition in Section 3.1 it follows that the relevance

condition holds if and only if the IRs of lagged inflation, future inflation and the output

gap are not linear functions of one another. With a hybrid Phillips curve (γb > 0), this is

ensured even if the output gap xt follows only a basic iid process (see appendix A for a formal

derivation), so we again view this condition as mild and uncontroversial. Naturally however,

as emphasized in the literature (Kleibergen and Mavroeidis, 2009), the rank condition is not

sufficient for reliable estimation and inference because of the problem of weak instruments.

We will come back to this point in the estimation section.

The Euler equation

Consider a linearized Euler equation of the form

xt = γbxt−1 + γfEt(xt+1)− λ(it − Et(πt+1)− rnt ) , (6)

18The exogeneity condition E
(
εmt−j(πt+1 − Etπt+1)

)
= 0 is satisfied under rational expectations, since the

law of iterated expectations implies E
(
εmt−j(πt+1 − Etπt+1)

)
= E

(
εmt−jEt(πt+1 − Etπt+1)

)
= 0. For depar-

tures of rational expectations, we can we still obtain consistent estimates, as long as the survey measurement
error term is orthogonal to monetary shocks, a relatively mild assumption.
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with rnt the real natural rate of interest and where xt can be the (log) output gap as in

the output Euler equation, or (log) aggregate consumption as in the consumption Euler

equation. This equation forms the basis of numerous empirical works on the dynamic IS

curve underlying the New-Keynesian model (e.g., Fuhrer and Rudebusch, 2004), or on the

elasticity of intertemporal substitution (e.g., Hall, 1988; Yogo, 2004; Ascari, Magnusson and

Mavroeidis, 2016).

Rewriting the Euler equation to highlight the endogeneity issues gives

x̂t = γbx̂t−1 + γf x̂t+1 − λ (it − πt+1) + ut , (7)

where the residual ut captures endogeneity bias from (i) confounding from movements in the

real rate of interest (e.g., from productivity shocks, Gaĺı, 2015), (ii) measurement error in

the output gap and (iii) unobserved inflation expectations and output gap expectations.19

Again, monetary shocks are good candidates for valid instruments to identify (7). The

reasons are similar to the case of the Phillips curve and we do not repeat them. The only

difference is that the confounding factors are no longer cost-push shocks, but instead shocks

to the natural real rate of interest.20 Again, the common assumption that monetary policy

is neutral under flexible prices implies that monetary shocks are orthogonal to movements

in the natural rate of interest, which means that monetary shocks satisfy the exogeneity

condition for the Euler equation as well.

Another set of possible candidates for exogenous instruments are cost-push shocks, no-

tably oil price shocks (e.g., Hamilton, 2003). Cost-push shocks are relevant instruments

as long as there exist some underlying Phillips curve and monetary rule with rich enough

19The residual ut satisfies

ut = λrnt − λ(πt+1 − Et(πt+1))− γf (x̂t+1 − Et(xt+1)) +
∑
j=0,1

(−γb)j(x̂t−j − xt−j).

Equation (6) admits the general form discussed in section 2, but with one additional source of enogeneity
compared to the Phillips curve: Because the left-hand side variable in (6) is the unobserved variable xt,
serially correlated measurement error in xt will imply E(x̂t−1ut) 6= 0.

20In the baseline New-Keynesian model, productivity shocks drive the natural real rate of interest (Gaĺı,
2015).
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dynamics (that need not be specified), such that the IRs to a cost-push shock of the three

endogenous variables in the Euler equation —inflation, the output gap and the nominal

interest rate— are not linear functions of one another.

The monetary policy rule

The final example that we discuss is a simplified version of the interest rate rule from Clarida,

Gaĺı and Gertler (2000) and Mavroeidis (2010) that is given by

it = γbit−1 + γfEt(πt+1) + λxt + εmt , (8)

where it denotes the nominal interest rate, xt the output gap and εmt the monetary policy

shock.

We rewrite (8) in terms of the observables to obtain

it = γbit−1 + γfπt+1 + λx̂t + ut . (9)

The sources of endogeneity bias in (9) are confounding from monetary shocks, unobserved

inflation expectations, and measurement error in the output gap.21 In this case, productivity

shocks and oil price shocks are valid instruments as long as there exist some underlying

Phillips curve and IS curve with rich enough dynamics (that need not be specified), such

that the IRs of inflation and the output gap to those shocks are not linear functions of one

another.

4 Estimation methodology

In this section we discuss inference for the parameters of the general forward looking model

(2) using structural shocks as instruments. For ease of exposition consider the following

21The residual is given by ut = εmt + γf (Et(πt+1)− πt+1) + λ(xt − x̂t)
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compact model representation

yt = w′tδ + ut , (10)

where wt = (yt−1, yt+1, x̂t)
′ and δ = (γb, γf , λ)′.

While structural shocks are typically not observed, the literature has produced a variety

of proxies for structural shocks, which are sufficient for conducting instrumental variable

based inference (e.g. Stock and Watson, 2018). To distinguish between the structural shocks

and their proxies we denote the latter by ξit and work under the assumption that ξit correlates

only with εit and not with other structural shocks. Hence, the identification arguments of

the previous section hold when we replace εit:t−H by ξit:t−H .

4.1 Naive moment estimators

Given the sequence of proxies ξit:t−H , a straightforward approach for estimating δ is to use

method of moment estimators. In general, following the textbook treatment of White (2000),

we can consider estimators of the form

δ̂IV =
(
S ′ξwΩ̂ξSξw

)−1
S ′ξwΩ̂ξsξy , (11)

where Sξw = 1
n

∑n
t=1 ξ

i
t:t−Hw

′
t, sξy = 1

n

∑n
t=1 ξ

i
t:t−Hyt and Ω̂ξ is some positive definite weight

matrix. A set of general assumptions under which
√
n(δ̂IV − δ0) converges to a normal

distribution is given in White (2000) (see for instance Theorem 5.23). Based on such normal

limiting approximation we may conduct hypothesis tests and construct confidence intervals.

This naive approach suffers from two problems however: weak instruments and many

instruments.

First, structural shocks need not explain a large share of the variance of macro variables

(e.g., Gorodnichenko and Lee, 2017; Plagborg-Møller and Wolf, 2018), which implies that in

such cases the shocks are weak instruments. Consequently, the conventional normal limiting

distribution of the moment estimator δ̂IV provides a poor description of the finite sample

behavior of the estimator (e.g. Staiger and Stock, 1997).
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Second, we typically want to consider the number of structural shocks between H = 8 and

H = 16 for quarterly data as this is the horizon for which macroeconomic IRs are typically

found to be significantly different from zero.22 When the number of instruments used is

large relative to sample size, we face a many instruments problem, and again the traditional

asymptotic approximation for the moment estimator δ̂IV provides a poor description of its

finite sample behavior (e.g. Bekker, 1994). Moreover, with many instruments, tests based

on conventional weak instrument robust statistics have poor power and size properties, see

Andrews and Stock (2007).23

4.2 The Almon-restricted AR statistic

Our preferred inference approach follows the weak instrument robust literature (e.g. An-

drews, Stock and Sun, 2019) by considering test statistics for which the limiting distribution

does not depend on the strength of the instruments. Additionally, we exploit the impulse re-

sponse intuition from Section 3.1 to reduce the number of effective instruments, thus avoiding

the many instruments problem.

To outline our approach, consider testing the hypothesis H0 : δ = δ0. From the exogeneity

condition E(ξit:t−Hut) = 0 it follows that we can base such tests on the distributed lag model

yt − w′tδ0 = θ′ξit:t−H + ηt , (12)

where θ is the (H + 1) × 1 impulse response function of the macro equation residual ut to

the proxies ξit:t−H and ηt is a disturbance term.24 Under H0 the exogeneity condition implies

that the impulse response θ is zero. So a test for H0 : δ = δ0 can be implemented by testing

22For example, when considering the Phillips curve where yt corresponds to inflation, the inflation response
to a monetary policy shock takes approximately 8-12 quarters to reach its peak (see online appendix).

23The many instruments problem is well known in the cross-section iv literature and alternative estimators
have been proposed, see for example Hausman et al. (2012). To the best of our knowledge such alternative
estimators have not been developed for time series instrumental variable regressions and in general they rely
on the assumption that increasing sequences of instruments are effectively strong instruments which might
not be the case in our setting.

24Note that we changed the IR notation from β to θ to highlight that this is the IRF to the proxies for
the structural shocks instead of the structural shocks themselves. Regardless, all IR intuition from Section
3.1 continues to apply.
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θ = 0. Intuitively, for values of the macro parameters close to their true values, the IR of the

residual ut = yt − w′tδ0 to the structural shock proxies should be not be different from zero.

Conversely, for values away from the truth the IR of the residual should be a combination of

the IRs of x̂t, future and past yt (the right-hand side variables of the macro equation) and

thus be non-zero.25

Testing H0 : δ = δ0 is thus easily implemented by testing θ = 0 using an AR (Anderson

and Rubin, 1949) type statistic. The important feature of such AR-type statistic is that its

limiting distribution does not depend on the strength of the instruments (e.g. Staiger and

Stock, 1997).26

The baseline AR-statistic is given by

AR(δ0) = nθ̂′Σ̂−1θ θ̂ , (13)

where θ̂ is the OLS estimate for θ based on equation (12) and Σ̂θ denotes any heteroskedas-

ticity and serial correlation robust estimator for the asymptotic variance of θ̂.

Unfortunately, hypothesis tests based on the standard AR-statistic have poor power and

size properties when the number of instruments is large relative to the sample size, see

Andrews, Stock and Sun (2019).27 To reduce the dimension of the problem, we go back to

Almon (1965) and re-parameterize the elements of the impulse response θ as a polynomial

function

θh = a+ bh+ ch2 , for h = 0, . . . , H , (14)

where a, b and c are the polynomial coefficients. Alternative basis functions for θh can also

25For instance, when setting the parameters of the macro equations to zero, the IR of the residual will
correspond to the IR of yt, the left-hand variable.

26In the homoskedastic case under random sampling the AR test statistic is equivalent to the F -statistic
of the regression of yt − w′tδ0 on ξit:t−H . More general forms that allow for, among others, dependent data
can be found in for example Stock and Wright (2000). Other popular test statistics for H0 : δ = δ0 include
the Lagrange multiplier (LM) statistic of Kleibergen (2002) and the conditional likelihood ratio statistic of
Moreira (2003).

27Note that this also holds for other conventional weak instrument robust statistic such as the LR and LM
statistic. Further, our simulation study below shows that the AR(δ0) statistic is over-sized when H = 16
and n = 200. This corresponds with the theoretical derivations in Andrews and Stock (2007) who require
that H3/n→ 0 as H,n→∞ for the consistency of the test based on the AR-statistic.
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be considered, but the polynomial one is attractive in our setting as the resulting estimation

problem remains linear. Intuitively, this approach will allow us to reduce the noise in the

AR-statistic by exploiting the fact that the IRs of macro variables are typically believed to

be smooth functions.28

With this parameterization in place we obtain

yt − w′tδ0 = θ′az
i
t + ηt , (15)

where the Almon-polynomial coefficients are captured by θa = (a, b, c)′ and

zit =

(
H∑
h=0

ξit−h,
H∑
h=0

hξit−h,
H∑
h=0

h2ξit−h

)′
.

Notice that zit is merely a deterministic linear function of the exogenous structural shocks

and hence zit inherits the exogeneity properties of ξit:t−H , i.e. we have E(zit(yt − w′tδ0)) = 0

under H0.

The imposed Almon restriction implies that the number of instruments reduces to three,

the number of endogenous variables. In such just-identified settings Chernozhukov, Hansen

and Jansson (2009) have shown that the Anderson and Rubin (1949) statistic for testing

H0 : δ = δ0 is admissible. Intuitively, this means that we can be robust to weak instruments

without sacrificing power. Moreover, Moreira (2009) shows that the AR test is uniformly

most accurate unbiased in this setting.

For these reasons, we propose the Almon (1965) restricted AR statistic that we define as

ARa(δ0) = nθ̂′aΣ̂
−1
θa
θ̂a , (16)

where θ̂a is the OLS estimate of equation (15) and Σ̂θa is any consistent estimate for the

asymptotic variance of θ̂a. In practice, we compute the variance matrix using the approach

28Note that our approach remains valid (our confidence sets have correct size) even if the true IRs are not
smoothed functions and a quadratic polynomial provides a poor approximation. The Almon-restriction will
however impose a cost in terms of lower power.
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outlined in Newey and West (1994). Under mild assumptions, which do not involve the

strength of the instruments, we have that under H0 the ARa statistic converges to a chi-

squared distribution with three degrees of freedom (e.g., Stock and Wright, 2000; Cher-

nozhukov and Hansen, 2008). Confidence sets for δ are computed by inverting the ARa

statistic for different values of δ0 ∈ D ⊂ R.

Finally, it is worth mentioning that the Almon restriction can also be used to reduce

the number of instruments when considering standard moment estimators. In particular, we

may consider the Almon restricted moment estimator

δ̂IVa =
(
S ′zwΩ̂zSzw

)−1
S ′zwΩ̂zszy , (17)

where Szw = 1
n

∑n
t=1 z

i
tw
′
t, szy = 1

n

∑n
t=1 z

i
tyt and Ω̂z is some positive definite weight matrix.

This moment estimator does not suffer from the many instrument problem, thanks to the

Almon-restriction, but is not robust to weak instruments. Therefore our preferred approach

is based on the ARa(δ0) statistic, which is robust to weak instruments and does not suffer

from the many instruments problem.

4.3 Summary of the simulation study

In this section we briefly discuss the findings from a simulation study that we conducted to

asses the finite sample performance of our proposed methodology. The full description of

the study is presented in Appendix B.

We simulated data from model (1) where the forcing variable followed an AR(2) process.

The structural shocks were chosen such that their variance contributions mimic the recent

empirical findings for monetary policy shocks (e.g., Gorodnichenko and Lee, 2017; Plagborg-

Møller and Wolf, 2018), and notably the fact that monetary shocks may account for a

relatively small share of the variance of macro variables. Based on this data generating

process we compared the standard Wald test (based on the 2SLS moment estimator with

H = 16 structural shocks), the Almon restricted Wald test (based on the 2SLS moment
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estimator with Almon restriction), the standard AR test (based on using H = 16 structural

shocks) and the Almon-restricted ARa test.

We compared the empirical rejection frequencies of these tests and found that only the

ARa test has correct size. All other tests severely over-reject. For the standard Wald test

this is caused by both many and weak instruments, for the Almon-restricted Wald test this

is caused only by weak instruments and for the standard AR test this is caused by the use of

many instruments relative to the sample size. Importantly, our proposed Almon-restricted

ARa test has correct size regardless of the strength of the instruments.

5 The US Phillips curve

In this section we discuss estimation results for the New Keynesian Phillips curve for the

United States. We consider a standard hybrid Phillips curve of the form

πt = γbπ
4
t−1 + γfEt(π

4
t+4) + λxt + εst , (18)

with πt (annualized) quarter-to-quarter inflation and π4
t−1 = 1

4
(πt−1+πt−2+πt−3+πt−4) aver-

age inflation over the past year. In section 3.2 we showed that one can identify the parameters

of (18) by using monetary policy shocks as instrumental variables. To operationalize the use

of monetary shocks for identification we rely on several proxies for monetary policy shocks.

Our baseline estimates are based on the Romer and Romer (2004) narrative measure of ex-

ogenous monetary policy changes, which has the advantage of covering the longest sample

period thanks to Tenreyro and Thwaites (2016)’s extension of the Romer and Romer series

(1969-2007). As an alternative, we will also rely on the recent high-frequency identification

(HFI) approach pioneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005)

and use surprises in fed funds futures prices around FOMC announcement as proxies for

monetary shocks.

Inflation is measured from changes in the PCE price level and we take the unemployment
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rate as our baseline real activity variable. An advantage of our approach is that, unlike earlier

methods, we can directly proxy the unemployment gap with the unemployment rate, since

projecting on monetary shocks projects out the natural rate of unemployment from the

Phillips curve equation.29 As an alternative, we will also report results based on using the

output gap as the forcing variable.

5.1 Full sample estimates

For our full sample estimates, we first treat lagged inflation as exogenous to focus on the

effects of expected future inflation and economic slack. We then relax this assumption and

also instrument lagged inflation with monetary shocks.

Treating lagged inflation as exogenous

Figure 1 presents our ARa-based confidence sets for the Phillips curve coefficients λ and

γf estimated using the Romer and Romer narrative shocks as instruments with H = 16

over 1969-2007. In addition, the blue dot reports the OLS estimate, the green dot reports

the 2SLS estimate with lagged macro variables as instruments, and the red dot reports the

Almon-restricted 2SLS estimate that is obtained from (17) with H = 16.30

The main results are as follows:

• The slope of the Phillips curve (λ) implied by our Almon-restricted 2SLS point estimate

and by our confidence sets is significantly different from zero and substantially larger

than suggested by the OLS estimate, in line with what one would expect from con-

founding from supply shocks (since supply shocks lead to a positive correlation between

inflation and the unemployment gap) and measurement error in the unemployment gap

(leading to an attenuation bias).

29The unobservability of the natural level of output has been a severe limitation in the Phillips curve
literature, and our ability to project out the natural level of output is a key advantage of our approach.
We do not rely on the labor share (Gali and Gertler, 1999), which suffers from a number of issues, most
notably non-stationarity, which can substantially affect point estimates (e.g., Mavroeidis, Plagborg-Møller
and Stock, 2014).

30For all these estimates we first project out the lag of inflation and a constant from equation (18). This
effectively treats π4

t−1 as pre-determined which is an assumption that we relax below.
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• The confidence sets point to a modest role for forward-looking inflation expectations

(γf ), in fact close to zero. Interestingly, note that the width of the confidence sets in

the γf direction is relatively small. This implies that the role of inflation expectations

is well identified, but that their influence is modest and much smaller than suggested

by OLS.

• Figure 4 presents results similar to Figure 1 but based on using as forcing variable

the output gap, defined as the log deviation of real GDP from its natural level, as

estimated from an HP filter with λhp = 1600. The results are similar: (i) the slope of

the Phillips curve (implied by our Almon-restricted 2SLS point estimate or implied by

our confidence sets) is substantially larger than estimated by OLS, more than twice

as large in the case of 2SLS, and (ii) our approach points to a small role for inflation

expectations, smaller than suggested by OLS.

To provide some intuition on how we construct our confidence sets from the impulse

responses of the residual, Figure 2 displays the heatmap of the ARa statistic, which can be

seen an F-test of overall significance for the IR of the Phillips curve residual to a monetary

shock. Darker (bluer) values indicate values of the ARa statistic close to zero —IRs of the

residual close to zero— and thus more “likely” parameter values.

Recall that for values away from the truth, the IR of the residual should be a combination

of the IRs of future inflation and unemployment and thus be non-zero. Thus, a simple sanity

check can be conducted by plotting the IR of the residual for nine different values of the

parameter pair (λ, γf ), see figure 3. The small red dots in the top-left quadrant of Figure 2

denote the different parameter values corresponding to the nine impulse responses. For the

Almon-restricted 2SLS estimate for λ̂ and γ̂f (center dot of figure 2), the IR of the residual

(center of figure 3) is close to zero, consistent with the idea that the point estimates are

close to the true values. As we move away from these values however, the IRs are driven by

the IR of inflation and/or unemployment. For instance, setting γf to 1 and λ to 0 (top-right

panel), the residual ut is equal to −(πt+1−πt), and the IR displays a positive hump because
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an increase in monetary policy lowers inflation (Romer and Romer, 2004), i.e., raises the

negative of first-differenced inflation. Keeping γf = 1 but lowering λ to λ̂ − 1 (top-left

panel), the IR is even stronger because the residual ut is now equal to ut − (πt+1 − πt),

and a contractionary monetary shock raises unemployment and lowers inflation. A similar

intuition holds throughout the λ–γf parameter grid.

Interestingly, Figure 3 highlights why the confidence sets for λ are much larger than the

confidence sets for γf . Moving sideways from the center (lowering λ but holding γf at γ̂f )

the IR is not particularly strong, but moving up or down, the IR becomes quickly very large.

The reason is that the IR of unemployment is less well estimated than the IR of inflation,

as shown in the online appendix. Thus, as we move away from the 2SLS point estimate, we

are able to quickly reject values of γf , but not values of λ.

Treating lagged inflation as endogenous

While the previous results treated πt−1 as exogenous, this is not valid if the Phillips curve

residual displays auto-correlation coming from e.g., auto-correlated cost-push shocks or from

auto-correlated measurement error in the inflation expectation proxy. An important advan-

tage of our approach compared to using pre-determined variables as instruments is that we

can easily accommodate auto-correlation in the Phillips curve residual.31

Figures 5 and 6 depict the 68 and 95 confidence volumes for λ, γf and γb using the

unemployment rate as the forcing variable. Similar results holds using the output gap (see

the online appendix). A few comments are in order:

• Even with three endogenous variables, the confidence volume remains convex and not

much larger than when we treated πt−1 as exogenous. In fact, the 68 percent volume

is even closed, as shown by Figure 6.

• The results for λ and γf are consistent with our previous results: the slope of the

31In contrast, with pre-determined variables, autocorrelation in the residual leads to a trade-off between
the exogeneity condition and the relevance condition as increasing the lag length dramatically worsens the
weak instrument problem.
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Phillips curve is significantly different from zero and substantially larger than OLS,

while the coefficient on inflation expectations is small and not significantly different

from zero. The 68 (95) percent coefficient set for lagged inflation (γb) ranges from about

.7 to 1.5 (.2 to 1.8) and includes .89 (our Almon-restricted 2SLS estimate) roughly in

its center.

• We cannot reject that the sum of the coefficients on lagged and future inflation is

statistically different from one, as was the case with OLS estimates.

5.2 The Phillips curve over time

Our results based on the full 1969-2007 sample mix very different policy regimes. In fact, a

number of Phillips curve-based studies have suggested substantial changes in the persistence

of inflation as well as in the magnitude of the inflation-unemployment trade-off; from the

close to unit-root behavior of inflation in the 1970s (e.g., King and Watson (1994)) to the

flattening of the Phillips curve in the post-1990 period (e.g., Ball and Mazumder (2011) and

Blanchard (2016)).

In this section, we parallel the Phillips curve literature and study the evolution of the

Phillips curve over time. Importantly, unlike earlier Phillips-curve based studies, our ap-

proach projects out confounding factors and measurement error, so that it will allow us

to evaluate whether the recent flattening of the Phillips curve is spurious and caused by

endogeneity issues. For instance, a change in the variance contribution of supply shocks

(which varies the magnitude of the endogeneity bias, see Gordon, 2011), a change in the

central bank’s systematic response to supply shocks,32 or mis-measured movements in the

natural rate of unemployment could all give the illusion of a change in the Phillips curve

parameters.33

32For instance, if the Fed is more aggressive after 1990 in its efforts to stabilize inflation and becomes more
successful in stabilizing inflation —as in the inflation targeting era—, the stronger endogenous response of
monetary policy can create the illusion of a decline in the slope of the Phillips curve (McLeay and Tenreyro,
2018).

33For instance, if the natural rate of unemployment was over-estimated during the late 1990s, the unem-
ployment gap would have been under-estimated (not small enough), leading to a downward-biased estimate
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To investigate a possible change in the Phillips curve coefficients since 1990, we draw

on HFI monetary surprises. Specifically, we follow Gertler and Karadi (2015) and consider

changes in Federal Funds futures rates (FF) around FOMC announcement dates as external

instruments.34 This monetary surprise is plausibly uncorrelated with other shocks because

the surprise is measured over a short announcement window.

Since HFI monetary surprises are only available in the more recent period (1990-2007),35

we report two sets of results to assess the evolution of the Phillips curve over time: first,

the Phillips curve estimated using the Romer-Romer narrative shocks over 1969-1989, and

second the Phillips curve estimated using the HFI monetary surprises over 1990-2007.36

The results are shown in Figures 7, which displays the ARa-based confidence sets for the

two sample periods. Figure 8 plots the same set of results for the Phillips curve based on

the output gap.

Regardless of whether we use unemployment or the output gap as the forcing variable,

the distinctively different shapes of the confidence sets highlight changes in the roles that

real activity and expectations play in determining inflation.

• For the pre-1990 period, the confidence sets are centered around zero for γf —pointing

to a negligible role for forward-looking inflation expectations—, but the confidence

sets include mostly positive values (in absolute terms) for the slope λ —pointing to a

large effect of slack on inflation—. The opposite holds for the post-1990 period: the

confidence sets are closer to zero for λ, but distinctively in positive territory for γf .

This finding is consistent with a change in the main determinants of inflation, with

forward-looking inflation expectations playing a larger role, and slack playing a smaller

role.37

of the slope of the Phillips curve.
34Similarly to Gertler and Karadi (2015), we use “FF4”, the three month ahead monthly Fed Funds futures

and we present results based on these instruments.
35We intentionally exclude the post-2007 period (the zero lower-bound period) during which forward

guidance played a more prominent role and the Fed started employing unconventional monetary tools that
could have different effects than conventional monetary tools, see Swanson (2017).

36As an alternative, we can also use the Romer and Romer shocks over 1990-2007. The results (shown in
the online appendix) are similar.

37The same conclusions hold if we use core inflation instead of headline inflation, or whether we use the
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• In terms of point estimates, the OLS estimates show a substantial decline in λ the slope

of the Phillips curve —from -0.24 to -.07 for the unemployment rate—, consistent with

previous studies. Interestingly, our Almon-restricted 2SLS point estimates confirm

that decline with a comparable proportional decline —from -1.01 to -0.27—. That

being said, even after 1990, the slope of the Phillips curve is substantially larger than

suggested by OLS estimates. Similar results hold for the output gap with λ declining

from 0.55 to 0.22 according to our 2SLS estimates (versus a decline of 0.11 to 0.06

according to OLS).

• Our Almon-restricted 2SLS estimates also suggest a large increase in γf after 1990;

from 0.03 to 0.84 for the Phillips curve with the unemployment rate and from 0.22 to

0.95 for the Phillips curve with the output gap.

6 Conclusion

In this paper, we used sequences of structural shocks as instrumental variables to address

endogeneity issues and obtain consistent estimates of forward looking structural equations

including the Phillips curve, the dynamic IS curve and the interest rate rule. We showed

that the Anderson-Rubin statistic can be used to conduct inference in a powerful way that

is robust to the weak instruments problem. In our empirical work we have shown that the

methodology is able to give new insights into the Phillips curve literature.

Looking beyond the current paper, the impulse response interpretation associated with

using sequences of structural shocks allows for further methodological developments. While

we propose one refinement based on parameterizing the residual impulse response as a poly-

nomial function, using structural shocks as instruments allows to exploit many other features

of impulse response functions. Examples include: (i) combining different types of structural

shocks (for instance, different types of aggregate demand shocks) so as to also exploit vari-

ation across impulse responses to improve inference, (ii) exploiting nonlinearities in the

Romer and Romer shocks post-1990 instead of HFI surprises (see online appendix).
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impulse responses to structural shocks and (iii) exploiting time-variation in the impulse

responses to shocks (e.g. Magnusson and Mavroeidis, 2014).

Moreover, while the present paper focuses on estimating linear equations, using shocks

as instruments instead of pre-determined variables can be also used to estimate non-linear

forward-looking equations, which is of high relevance for the asset pricing literature (Hansen

and Singleton, 1982).
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Appendix A: The rank condition for a forward looking

structural equation

Consider the general forward looking structural equation

yt = γbyt−1 + γfEtyt+1 + λxt + et (19)

and for tractability assume that the forcing variable follows an AR(1)

xt = ρxt−1 + εt + αet. (20)

with et and εt some iid shocks, and γb, γf , λ, ρ and α parameters of the model.

Proposition 1. The model characterized by (19) and (20) can be identified using the se-
quence of shocks zt = εt:t−3 as instruments if and only if γb 6= 0 and δ1 6= −ρ− ρ(ρ+ 1) with
δ1 the stable root of the second order-difference equation (19).

Proof. Solving for xt and yt, we get{
xt =

∑∞
j=0 ρ

j (εt−j + αet−j)

yt = δ1yt−1 + λ
δ2γf

∑∞
j=0

(
1
δ2

)j
Etxt+j

with α some no-zero parameter and where δ1 and δ2 are the stable and unstable roots of the
second order-difference equation given by (19).38

Some simple algebra for zt = εt:t−3 then gives

Γ = E(wtz
′
t) =

 1 ρ ρ2

δ1κ+ ρκ δ1(δ1κ+ ρκ) + ρ2κ δ1κ(ρ2 + ρδ1 + δ21) + ρ3κ
0 κ δ1κ+ ρκ


with κ = E(πtεt) = λ

δ2γf (1−ρ/δ2)
6= 0.39 det Γ = κδ21 (ρ+ δ1 + ρ(ρ+ 1)), so that the rank

condition is satisfied if δ1 6= 0, i.e., if γb 6= 0.

Although based on a simple DGP for the output gap, Proposition 1 shows that a necessary
condition for our approach to be valid is that past inflation helps determine future inflation,
i.e., that inflation cannot be strictly forward-looking (γb 6= 0). We can relax this assumption
at the expense of assuming more elaborate dynamics for the forcing variable. In particular,
γb can be equal to zero if the forcing variable follows an AR(2) process.

Appendix B: Simulation evidence

In this section we discuss the results from a simulation study that is designed to evalu-
ate the finite sample performance of the methodology. We concern ourselves with testing
the hypothesis H0 : δ = δ0 using different methods based on using structural shocks as
instruments.

38We have δ1 =
1−
√

1−4γbγf
2γf

and δ2 =
1+
√

1−4γbγf
2γf

.
39This follows from the recursion Eπtε

m
t−j = δ1Eπtε

m
t−j+1 + ρjκ, for j > 0.
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Simulation design

We consider the following data generating process

yt = γbyt−1 + γfEt(yt+1) + λxt + et

xt = ρ1xt−1 + ρ2xt−2 + εit + αet ,
(21)

where the forcing variable xt follows an AR(2) process. Model (21) has two structural shocks:
et and εit. We assume, without loss of generality, that ξit, our instrument for εit satisfies
εit = ξit. Further, we emphasize that although model (21) is highly stylized it includes all the
elements that are required to evaluate our methodology. The choice for the AR(2) processes
is motivated by empirical evidence for the output gap and the unemployment rate which are
typical choices for the forcing variable in the Phillips curve.

The following parameter configurations are considered. For the structural equation we
fix λ = 0.4, γb = 0.6 and γf = 0.3. These parameters are close to our empirical findings for
the Phillips curve. For the forcing variable we match ρ1 and ρ2 to the fitted values that are
obtained from considering the unemployment rate: ρ1 = 1.2 and ρ2 = −0.4. We fix α = −1
to mimic the intuition that cost-push shocks should increase inflation and reduce output.

To consider realistic values for the structural shock variances we match the configuration
of the shocks to the recent findings for monetary policy shocks from Gorodnichenko and Lee
(2017), Plagborg-Møller and Wolf (2018) and Caldara and Herbst (2018). Using different
methodologies, they find that monetary shocks are able to explain only a small portion of
the variance observed in output and inflation. For instance, Gorodnichenko and Lee (2017)
find that at least between 10% and 20% of the fluctuations in output are driven by monetary
policy shocks and about 10% of the fluctuations in inflation.40 Similarly, Plagborg-Møller
and Wolf (2018) find that, under weaker assumptions, the monetary policy shocks can explain
at most 30% of the variation in output and 8% of the variation in inflation, but cannot reject
zero influence of monetary policy shocks.

To match these numbers we proceed as follows. The shocks are generated from εit ∼
N(0, σ2

i ), with standard deviation σi = 0.1, 0.25, 0.5, 1, and et ∼ N(0, 1). This implies
that we can distinguish between different scenarios. When σi = 0.1 the structural shock-
instrument explains approximately 1% of the variance in the outcome variable yt and 2%
in the forcing variable xt. These percentages increase when we increase σi. In Table 1
we provide the details. The last scenario where σi = 1 is perhaps over optimistic as the
structural shock explains over 50% of the variation, but scenarios where σi = 0, 1, 0.25, 0.5
all correspond to empirical findings for monetary policy shocks, e.g. Gorodnichenko and Lee
(2017), Plagborg-Møller and Wolf (2018) and Caldara and Herbst (2018).

For each combination of parameter values and sample sizes n = 200, 500 we simulate 5.000
datasets and for each dataset we test the hypothesis H0 : δ = δ0 using the methodology
outlined in Section 4. In particular, we consider the standard Wald test based on the
two stage least squares estimator41, the standard Wald test based on the Almon-restricted
two-stage least squared estimator (17), the standard AR test given in equation (13) and

40When using local projection methods they find substantially larger influences of the monetary shocks.
41That is we consider δ̂IV as in equation (11), where the weighting matrix is taken as S−1ξξ where Sξξ =

1
n

∑n
t=1 ξt:t−Hξ

′

t:t−H . Different choices for the weighting matrix do not change the conclusions below.
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our preferred Almon (1965) restricted ARa test as defined in equation (16). All tests are
implemented using H = 16 shocks-as-instruments which corresponds to our empirical work
and the intuition that the influence of most macro-economic shocks should be negligible
after four years. Note that for the Almon restricted Wald test and the ARa test the effective
number of instruments remains 3 regardless of the value of H.

Results

We report the average rejection frequencies (α = 0.05 level) for the different test statistics
in Table 2. We find the following patterns. First, the standard Wald statistic based on the
normal limiting distribution of the two stage least squares estimator is severely over-sized
when the strength of the instruments is small. This holds for both the Almon-restricted Wald
test and the unrestricted version that uses H = 16 instruments. The empirical rejection
frequency is much larger when compared to the nominal size when the variance of the
structural shocks is relatively small, e.g. σi = 0.1, 0.25, 0.5. The Almon-restricted version
performs slightly better as it only suffers from the weak instruments problem and not from the
many instruments problem. The unrestricted Wald test is unreliable across all specifications.

Further, the conventional AR statistic (denoted by AR) based on H = 16 structural
shocks is severely oversized as well. This corresponds to the theoretical derivations of An-
drews and Stock (2007) who show that the AR test is only correct when H3/n→ 0, this is
clearly not the case in the current setting where H = 16 and n = 200, 500.

In contrast, Table 2 clearly shows that the AR test with Almon restriction, is always
correctly sized. That is, for any combination of n and σ2

i the empirical rejection frequency
is close to the nominal α = 0.05 level. This indicates that ARa test with Almon restriction
can be used for empirical work.
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Table 1: Simulation design: variance decomposition for structural shocks

σ2
i V(y) V(x)

0.10 1% 2%
0.25 6% 11%
0.50 20% 30%
1.00 50% 67%

Notes: The table reports the details for the different simulation designs considered. We show the average
percentage of variance explained by the structural shock in the variables yt and xt, respectively. The
remainder of the variance is explained by the – non-structural – shock εot .

Table 2: Simulation results: Rejection frequencies

n H σ2
i IV-ε IVa-ε AR ARa

200 16 0.10 0.470 0.295 0.209 0.047
200 16 0.25 0.338 0.296 0.205 0.048
200 16 0.50 0.093 0.201 0.198 0.047
200 16 1.00 0.010 0.059 0.199 0.046
500 16 0.10 0.426 0.334 0.098 0.051
500 16 0.25 0.282 0.287 0.102 0.047
500 16 0.50 0.053 0.192 0.097 0.049
500 16 1.00 0.024 0.060 0.094 0.048

Notes: The table reports the empirical rejection frequencies for H0 : δ = δ0 with level α = 0.05. For the IV-ε
estimator these correspond to the Wald statistic based on the limiting distribution of the 2SLS estimator
with H = 16 instruments. The IVa-ε corresponds to the Wald statistic based on the limiting distribution of
the Almon-restricted 2SLS estimator. The AR column corresponds to the test based on the Anderson-Rubin
statistic that was computed using H = 16 structural shocks as instruments. The ARa column corresponds
the test based on the Anderson-Rubin statistic with Almon restriction as defined in equation (16). For all
estimators the variance covariance matrices are computed using Newey and West (1994) with automatic
bandwidth selection.
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Figure 1: The Phillips curve — 1969-2007, RR identification
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Notes: 95 and 68 percent robust confidence sets for the Phillips curve coefficients obtained by inverting the
ARa test over the parameter space of λ (the slope of the Phillips curve) and γf (the loading on inflation
expectations). Estimation based on using the Romer-Romer (RR) monetary shocks as instruments for
1969-2007. The red dot (2SLS-ε) is the Almon-restricted 2SLS estimate using the RR monetary shocks as
instruments, the green dot (2SLS-GIV) is the 2SLS estimate using 4 lags of inflation and unemployment as
instruments, the blue dot is the OLS estimate.
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Figure 2: The Phillips curve — 1969-2007, RR identification
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Notes: Heatmap of the Almon AR statistic (ARa) across the parameter space of λ (the slope of the Phillips
curve) and γf (the loading on inflation expectations). Estimation based on using the Romer-Romer (RR)
monetary shocks as instruments for 1969-2007. The red dots denote the parameter values corresponding
to the nine impulse response plotted in figure 3, with the center dot corresponding to the Almon-restricted
2SLS estimate using the RR monetary shocks as instruments.
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Figure 3: Impulse Responses of the Phillips curve residual
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Notes: Impulse responses (IR, blue color) of the Phillips curve residual for different values of λ and γf .
The small red dots in the top-left quadrant of Figure 2 denote the parameter values corresponding to these
nine impulse response, with the center dot corresponding to our Almon-restricted 2SLS estimate. The
corresponding impulses responses smoothed with an Almon restriction (sIR) are reported in red.
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Figure 4: The output gap Phillips curve — 1969-2007, RR identification
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Notes: 95 and 68 percent robust confidence sets for the Phillips curve (output gap) coefficients obtained by
inverting the ARa tests over the parameter space of λ and γf . Estimation based on using the Romer-Romer
(RR) monetary shocks as instruments for 1969-2007. The red dot (2SLS-ε) is the Almon-restricted 2SLS
estimate using lags of the Romer and Romer monetary shocks as instruments, the green dot (2SLS-GIV) is
the 2SLS estimate using 4 lags of inflation and output gap as instruments, the blue dot is the OLS estimate.
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Figure 5: The Phillips curve — 1969-2007, RR id., πt−1 endogenous
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Notes: Robust confidence sets for the Phillips curve coefficients on unemployment (λ), expected future
inflation (γf ) and past inflation (γb). Estimation based on using the Romer-Romer (RR) monetary shocks
as instruments for 1969-2007. 68 percent (dark grey) and 95 percent (light grey) confidence sets obtained
by inverting the ARa tests over the parameter space of λ, γf and γb.
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Figure 6: The Phillips curve — 1969-2007, RR id., πt−1 endogenous

Notes: Robust confidence sets for the Phillips curve coefficients on unemployment (λ), expected future
inflation (γf ) and past inflation (γb). Estimation based on using the Romer-Romer (RR) monetary shocks
as instruments for 1969-2007. 68 percent (dark grey) and 95 percent (light grey) confidence sets obtained
by inverting the ARa tests over the parameter space of λ, γf and γb.
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Figure 7: The Phillips curve over time — RR/HFI
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(b) Post-1990, HFI

Notes:Left column: Confidence sets from the ARa statistic based on using the Romer-Romer (RR) monetary
shocks over 1969q1–1989q4. Right column: Confidence sets from the ARa statistic based on using the High-
Frequency Identified (HFI) monetary surprises (“FF4”, the three month ahead monthly Fed Funds futures)
over 1990q1-2007q4. The inner set is the 68% confidence set and the outer-set is the 95% confidence set.
The red dot is the 2SLS estimate using lags of the RR or HFI monetary shocks as instruments, and the blue
dot is the OLS estimate.

Figure 8: The output gap Phillips curve over time — RR/HFI
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(a) Pre-1990, RR

-1 0 1 2 3
-1

0

1

2

OLS

(b) Post-1990, HFI

Notes:Left column: Confidence sets from the ARa statistic based on using the Romer-Romer (RR) monetary
shocks over 1969q1–1989q4. Right column: Confidence sets from the ARa statistic based on using the High-
Frequency Identified (HFI) monetary surprises (“FF4”, the three month ahead monthly Fed Funds futures)
over 1990q1-2007q4. The inner set is the 68% confidence set and the outer-set is the 95% confidence set.
The red dot is the 2SLS estimate using lags of the RR or HFI monetary shocks as instruments, and the blue
dot is the OLS estimate.
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