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Abstract

We consider mechanism design environments in which agents commonly know that types are
identically distributed across agents, but without assuming that the actual distribution is common
knowledge, nor that it is known to the designer (common knowledge of identicality). Under these
assumptions, we explore problems of partial and full implementation, as well as robustness. First, we
characterize the transfers which are incentive compatible under the assumption of common knowledge
of identicality, and provide necessary and sufficient conditions for partial implementation. Second, we
characterize the conditions under which full implementation is possible via direct mechanisms, as well
as the transfer schemes which achieve full implementation whenever it is possible. Finally, we study
the robustness properties of the implementing transfers with respect to misspecifications of agents’
preferences and with respect to lower orders beliefs in rationality.

Keywords: Moment Conditions, Robust Full Implementation, Rationalizability, Interdependent
Values, Identical but Unknown Distributions, Uniqueness, Strategic Externalities, Canonical Transfers,
Loading Transfers, Equal-externality Transfers.

JEL: D62, D82, D83

1 Introduction

Many economic models assume that agents believe that the types of others are drawn from the
same distribution. This is a natural way to represent situations in which agents regard each other
as ex-ante symmetric from an informational viewpoint, or more broadly that they come from a
common population. Standard modeling techniques, however, not only impose that the distribution
of types is identical across agents, but also that it is common knowledge among them – and, in
mechanism design, also known to the designer. But if identicality is a natural way to capture
a basic qualitative property of these environments, common knowledge of the distribution is a
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different kind of assumption: not only is it strong and unlikely to be satisfied; it is also well-known
to heavily affect the results.1

A large and growing literature has taken up Wilson’s (1987) call for a “[...] repeated weakening
of common knowledge assumptions [...]”, and developed a robust approach to mechanism design.2

In this paper we pursue the objectives of the Wilson doctrine in settings with informationally sym-
metric agents. To do this, we maintain common knowledge that types are identically distributed,
but without assuming that the actual distribution is common knowledge, nor that it is known to
the designer. Under these assumptions, we explore questions of partial and full implementation:
First, we characterize the transfers which are incentive compatible under the assumption of iden-
ticality, and provide necessary and sufficient conditions for partial implementation. Second, we
characterize the conditions under which full implementation via direct mechanisms is possible un-
der common knowledge of identicality, as well as the transfers which achieve it whenever possible.
Finally, we study the robustness of the implementing transfers with respect to the possibility that
agents are ‘slightly faulty’ (e.g., Eliaz (2002) – or equivalently, that their preferences are slightly
misspecified), and with respect to lower orders of rationality (which is closely connected to recent
work on level-k implementation by de Clippel et al. (2018)).

While direct mechanisms and transfers are without loss for partial implementation, insisting
on these mechanisms does restrict the environments in which full implementation is possible. But
there are many advantages which come from this restriction. First, classical results on full imple-
mentation typically involve unrealistically complicated mechanisms, which have been criticized for
providing limited economic insight (see, e.g., Jackson (1992)). Our insistence on using the same
class of mechanisms as is typical in the partial implementation literature allows for an easier com-
parison with that literature, which favors the interpretability of the results and hence addresses
Jackson’s concern for economic ‘relevance’. This approach also enables us to uncover what features
of an incentive compatible transfer scheme – namely, as we show, the structure of its strategic
externalities – may or may not be problematic from the full implementation viewpoint. With this
understanding, our approach develops constructive insights on how failures of full implementa-
tion can be overcome maintaining the same fundamental structure as the mechanisms for partial
implementation, which have a clear economic interpretation.

A central role throughout our analysis is played by the canonical direct mechanism, which char-
acterizes the mechanisms for belief-free implementation (to fix ideas, in efficient implementation,
the transfers in the canonical direct mechanism are the VCG transfers). Our first result shows that
a transfer scheme t is incentive compatible under common knowledge of identicality if and only if
it can be written as the sum of the canonical transfers and an extra component which satisfies a
certain condition for all beliefs consistent with identicality. As it turns out, such condition implies
that, for all beliefs consistent with the model, both the first- and the second-order derivatives of
agents’ optimization problem given t coincide with those given the canonical transfers. It follows
that, when only common knowledge of identicality is maintained, partial implementation is possi-

1On the impact of common knowledge assumptions in game theory, see, for instance Rubinstein (1989); Carlsson
and Van Damme (1993); Kajii and Morris (1997); Morris and Shin (1998, 2003); Weinstein and Yildiz (2007,b,
2011, 2016); Penta (2012, 2013); Penta and Zuazo-Garin (2017).

2This literature was spurred by the seminal works in belief-free settings by Bergemann and Morris (2005, 2009a,b,
2011) for static mechanisms, and further developed by Müller (2016, 2018) and Penta (2015) for dynamic ones.
Settings with partial restrictions on agents’ beliefs are considered by Lopomo et al. (2011); Artermov et al. (2013);
Guo and Yannelis (2017); Ollár and Penta (2017). See also Yamashita (2015), Borgers and Smith (2014), Wolitzky
(2016) and Carroll (2015) for alternative approaches.
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ble if and only if it can be achieved by the canonical transfers. The canonical transfers therefore
are all which needs to be considered to achieve partial implementation under common knowledge
of identicality. This, however, is not to say that partial implementation in these settings is as
demanding as ex-post incentive compatibility: the latter notion is indeed more demanding; yet,
considering the same mechanism suffices for both.

Regarding full implementation, Ollár and Penta (2017) showed that the reason why the canon-
ical transfers fail to achieve full implementation in environments with strong preference interde-
pendence (a result due to Bergemann and Morris (2009a)) is that they induce too strong strategic
externalities. Ollár and Penta (2017)’s idea was to use information about agents’ beliefs, if avail-
able, to design incentive compatible transfers which induce small strategic externalities (and hence
uniqueness and full implementation) even when preference interdependencies are strong. They thus
provided sufficient conditions on agents’ beliefs so that the designer could engineer such weakening
of strategic externalities.3 It turns out, however, that if only common knowledge of identicality
is maintained, without assuming knowledge of the actual distribution of types, then Ollár and
Penta (2017)’s design strategy cannot be pursued: under common knowledge of identicality, any
incentive compatible mechanism must display the same total level of strategic externalities as the
canonical direct mechanism. Hence, under common belief of identicality, the designer may only
pursue a redistribution – not a reduction – of the strategic externalities, which in turn are pegged
to the level of preference interdependence in the environment. This obviously limits the possibility
of achieving full implementation, and requires developing a new design strategy.

Our analysis of full implementation develops such a novel design strategy. The key is to under-
stand how the strategic externalities in the canonical direct mechanism can be optimally re-assigned
among the agents, as well as providing constructive insights on how this can be achieved by adding
a belief-based component to the canonical transfers. For environments with single-crossing pref-
erences and public concavity, our main result is a full characterization of the conditions for full
implementation under common knowledge of identicality, as well as of the transfer scheme which
achieves it whenever possible. The transfers in our characterization have a special hierarchical
structure: besides preserving, for any player, the total level of strategic externalities he is subject
to from his opponents – which, by the results above, is necessary to preserve incentive compati-
bility when only common belief in identicality is assumed – these transfers load all the strategic
externalities on the opponent who displays the lowest amount of preference interdependence. The
structure of the loading transfers enables us to uncover a fairly surprising result: the possibility of
full implementation is characterized by the strength of the preference interdependence of the two
agents with the least amount of preference interdependence, regardless of the number of the other
agents, and of their preferences.

Such a characterization has powerful implications from a broader market design perspective:
for instance, if full implementation cannot be achieved for a set of agents (which, by our results,
would be due to too strong preference interdependence), adding two more agents whose preferences
do not depend much on others’ information would suffice to make full implementation possible. At
the extreme, whenever the environment includes two agents with private values, common belief in
identicality ensures that full implementation is possible via a simple direct mechanism.

3For instance, Ollár and Penta (2017) showed that strategic externalities can always be eliminated in common
prior models with independent or affiliated types under certain preference restrictions, and hence full implementation
be achieved in (interim) dominant strategies.
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Besides the loading transfers, which as explained have a strongly asymmetric structure, we
also consider the equal-externality transfers, which evenly redistribute the strategic externalities
across the opponents. Such an alternative design strategy is not without loss of generality for
full implementation under common knowledge of identicality (there are environments in which full
implementation is possible, but not with the equal-externality transfers). Nonetheless, we show
that these transfers are still widely applicable, and that their symmetric structure grants them an
important robustness property. In particular, while the loading transfers have several desirable
robustness properties (for instance, they minimize the sensitivity of implementation with respect
to lower-orders of rationality – cf. de Clippel et al. (2018)), we show that the equal-externality
transfers minimize the impact on the implemented allocation with respect to the possibility of
‘slightly faulty’ agents or of misspecification of their preferences (cf., Eliaz (2002)).

The rest of the paper is organized as follows: Section 2 introduces the model and presents some
illustrating examples; Sections 3 and 4 provide the characterizations of partial and full implemen-
tation, respectively. Section 5 focuses on alternative design strategies for full implementation via
transfers. The sensitivity analysis is provided in Section 6.

2 Model

We consider environments with transferable utility with a finite set of agents I = {1, ..., n}, in which
the space of allocations X is a compact and convex subset of a Euclidean space. Agents privately
observe their payoff types θi ∈ Θi := [θ, θ] ⊆ R, are drawn from a closed interval on the real line,
common to all agents (the latter assumption is inherent to our main question, which is to study
the assumption of identical distributions). We adopt the standard notation θ−i ∈ Θ−i = ×j 6=iΘj

and θ ∈ Θ = ×i∈IΘi for profiles. Agent i’s valuation function is vi : X × Θ → R, assumed twice
continuously differentiable, and we let ti ∈ R denote the private transfer to agent i: for each
outcome (x, θ, (ti)i∈I), i’s utility is equal to vi (x, θ) + ti. The tuple

〈
I, (Θi, vi)i∈I

〉
is common

knowledge among the agents. If vi is constant in θ−i for every i, then the environment has private
values. If not, it has interdependent values.

An allocation rule is a mapping d : Θ → X which assigns to each payoff state the allocation
that the designer wishes to implement. We focus on allocation rules that are twice continuously
differentiable and responsive, in the sense that for all i and θi 6= θ′i, there exists θ−i ∈ Θ−i such
that d (θi, θ−i) 6= d (θ′i, θ−i) (see, e.g., Bergemann and Morris (2009a)).

The model accommodates general externalities in consumption, including both pure cases of
private and public divisible goods. The main substantive restrictions are the one-dimensionality
of types, and the smoothness of the allocation function, which for instance rules out standard
auction applications. We will use the notation ∂f/∂x for all derivatives, with the understanding
that when X is multidimensional, ∂vi

∂x (x, θ) and ∂d
∂θi

(θ) denote the vectors of partial derivatives
and ∂vi

∂x (x, θ) · ∂d∂θi (θ) denotes their inner product.
We assume that agents commonly know that types are identically distributed across agents, but

they do not necessarily know (or agree on) the actual distribution, which importantly is unknown
to the designer. Hence, for each type θi, the designer regards many beliefs Bidθi ⊆ ∆ (Θ−i) as
possible for type θi, namely all those which are consistent with common knowledge that types are
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identically distributed.4 Formally, the designer’s assumption about beliefs is represented by belief
restrictions Bid = ((Bidθi )θi∈Θi)i∈I such that:5

Bidθi = {bθi ∈ ∆ (Θ−i) : marg
Θj

bθi = marg
Θk

bθi for all j, k 6= i} for all i and θi. (1)

These belief restrictions entail weaker assumptions on agents’ beliefs than many standard
models in more applied theory and in empirical microeconomics.6 The belief restrictions in (1) are
weaker, for example, than assuming: (i) a joint distribution with identical marginals over agents’
types; (ii) a joint distribution with exchangeable random variables; (iv) known independent and
identical distributions across agents (as in standard common prior i.i.d. environments); (v) inde-
pendent and identical but unknown distributions; (vi) unobserved heterogeneity but symmetrically
distributed values; (vi) environments with pure common values in which the state of the world is
unknown to the designer, but commonly known by the agents; etc. Hence, our belief restrictions
entail a very weak level of common knowledge in the environment.

We consider direct mechanisms, in which agents report their type and the allocation is chosen
according to d. A direct mechanism is thus uniquely determined by a transfer scheme t = (ti)i∈I ,
ti : M → R, which specifies the transfer to each agent i, for all profiles of reports m ∈ Θ. (To dis-
tinguish the report from the state, we maintain the notation mi even though the message spaces
are Mi = Θi.) Any transfer scheme induces a game with ex-post payoff functions U ti (m; θ) =
vi (d(m), θ) + ti (m). When the transfers are clear from the context, we don’t emphasize the de-
pendence of the payoff functions on t. For the analysis of partial implementation, in which each
agent expects his opponents to report truthfully, the following notation will be useful: For any θi,
bθi ∈ ∆ (Θ−i) and mi, we let Ebθi (Ui (mi, θ−i; θi, θ−i))) :=

∫
Θ−i Ui (mi, θ−i; θi, θ−i) dbθi . For full

implementation instead we will also consider other (non-truthful) reporting strategies for the oppo-
nents, and also use the following notation: For every θi ∈ Θi, µ ∈ ∆ (M−i ×Θ−i) and mi ∈Mi, we
let EUµθi (mi) =

∫
M−i×Θ−i Ui (mi,m−i; θi, θ−i) dµ denote agent i’s expected payoff from message

mi, if i’s type is θi and his conjectures are µ, and define BRθi (µ) := arg maxmi∈Mi EU
µ
θi

(mi).

2.1 Leading Examples and Preview of Results

In this section we provide some examples to illustrate the key ideas of the paper and their con-
nection with the previous literature. The examples are all based on the following environment:
There are three agents, {1, 2, 3}, with preferences over the quantity x ∈ R+ of public good such
that vi (x, θ) = (θi + γijθj + γikθk)x for all i, where we let j := i+ 1(mod3) and k := i+ 2(mod3).
Types θi ∈ [0, 1] are private information to each agent i, and for each i and j 6= i, γij ∈ R is
a parameter of preference interdependence. The social planner wishes to implement the efficient
allocation rule. With production cost c (x) = x2/2, the efficient decision rule is d (θ) =

∑3
i=1 κiθi,

4For a measurable set E, ∆ (E) denotes the set of probability measures on its Borel σ-algebra.
5The notion of a belief restriction is introduced by Ollár and Penta (2017) to model general restrictions on

agents’ beliefs: a belief restriction is a commonly known collection B = ((Bθi )θi∈Θi )i∈I such that Bθi ⊆ ∆ (Θ−i)
is non-empty and convex for all i and θi, and Bi : θi → Bθi ⊆ ∆ (Θ−i) is continuous for every i. As discussed
in Ollár and Penta (2017), special cases of interest include (i) standard Bayesian environments, in which Bθi is a
singleton for all θi and i; (ii) common prior environments, in which ∃p ∈ ∆ (Θ) such that Bθi = {p (·|θi)} for all i
and θi; (iii) belief-free environments, in which Bθi = ∆ (Θ−i) for all i and θi.

6Models with identical distributions of agents’ types are often applied to study, for example, information ag-
gregation in voting (e.g., Levy and Razin (2015)), information aggregation in exchanges (e.g., Ollár (2017)) and
identification in auctions with symmetric bidders (e.g., Athey and Haile (2007); Hendricks et al. (2003)).
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where κi ≡ 1 + γji + γki for all i, which for convenience we assume positive. Given this envi-
ronment, we consider three sets of assumptions on agents’ beliefs: (i) a belief-free setting, (ii) a
standard common prior environment, and (iii) a setting in which only common belief in identicality
is maintained – the main focus of this paper.

Belief-Free Implementation. If the designer has no information about agents’ beliefs, or if he
wishes to achieve implementation without relying on any belief restriction, then only the generalized
VCG mechanism (cf. Bergemann and Morris (2009a)) can be used.

Example 1 (Belief-Free Implementation). In our example, the VCG transfers are the following:

t∗i (m) = −κi
(
0.5m2

i +mi (γijmj + γikmk)
)
.

Given this, as long as κi > 0 for all i, for any profile (θ−i,m−i) of opponents’ types and reports,
the ex-post best-reply function for type θi of player i is

BR∗θi (θ−i,m−i) = proj[0,1]

θi +
∑
j 6=i

γij (θj −mj)

 .7 (2)

Observe that, regardless of what γ is, for any realization of θ, truthful revelation (mi (θi) = θi)
is a best response to the opponent’s truthful strategy (mj (θj) = θj). This is the well-known
ex-post incentive compatibility of the VCG mechanism. Partial implementation of the efficient
allocation is thus guaranteed independent of agents’ beliefs. Furthermore, if

∑
j 6=i |γij | < 1 for

all i ∈ I, then equation (2) is a contraction, and its iteration delivers truthful revelation as
the only rationalizable strategy. In this case, the VCG mechanism also guarantees full belief-free
implementation. Full implementation, however, is only possible if the preference interdepependence
is ‘small’. For instance, suppose that preference parameters are such that

(γ12, γ13, γ21, γ2,3, γ31, γ32) = (0.9,−0.5, 1.2,−0.6,−0.8, 1.6) =: γ̂

Then, all report profiles are rationalizable, and hence full belief-free implementation fails. �

Hence, partial belief-free implementation is always possible in this setting, but full belief-
free implementation fails if the preference interdependence is too strong (Bergemann and Morris
(2009a)). The reason is that if preference interdepedence is strong, then players’ best responses in
the VCG mechanism are strongly affected by others’ strategies. This in turn generates multiplicity
of equilibria, and hence failure of full implementation. We thus shift the focus from preference
interdependence to the strategic externalities of a mechanism, which can be captured by studying
how agents’ best responses are affected by changes in the opponents’ report. This information
can be conveniently summarized in a strategic externality matrix, whose ij-th entry contains the
derivative of player i’s best response with respect to j’s report, for j 6= i, normalized by the
concavity of i’s payoff function with respect to his own report. In the case of the canonical

7For any y ∈ R, we let proj[0,1] (y) := arg minθi∈[0,1] |θi − y| denote the projection of y on the interval [0, 1].
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mechanism, this amounts to:

SE∗ =

 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

 .
Identical and Known Distribution: Reduction of Strategic Externalities. Strategic ex-
ternalities and preference interdependence coincide in the VCG mechanism. But if the designer
has some information about the agents’ beliefs, then this necessary coincidence is more relaxed:
the strategic externalities can be weakened, so as to ensure uniqueness, even if preference interde-
pendence is strong. This is the main insight from Ollár and Penta (2017).

Example 2 (Known i.i.d. Common Prior). Suppose that types are commonly known to be i.i.d.
draws from a uniform distribution over [0, 1], and this is known to the designer. Consider the
following transfers, which are a special case of Proposition 3 in Ollár and Penta (2017):

tOPi (m) := t∗i +miκi

∑
l 6=i

γil (ml − 0.5)

 = −κi

1
2m

2
i +mi

∑
l 6=i

γil0.5

 . (3)

These transfers induce the following best response function:

BROPθi (µ) = proj[0,1]

θi +
∑
l 6=i

γil [E (θl|θi)− 0.5]

 . (4)

Under the maintained assumptions, E (θl|θi) = 0.5 for all θi and l 6= i. Hence the term in square
brackets cancels out for all types. Truthful revelation therefore is strictly dominant, and full
implementation is achieved for any γ. Players’ best-responses are not affected by other reports,
and hence strategic externalities were completely eliminated in this case. �

The result in this example does rely on the restriction on agents’ beliefs, and in particular on
the knowledge that “E (θl|θi) = 0.5 for all θi and l 6= i”. If this moment condition were not satisfied,
these transfers would achieve neither full nor partial implementation. This moment condition was
used in (3) to weaken the strategic externalities of the baseline transfers from Example 1, but
in principle others could be used too.8 Intuitively, the more information the designer has about
agents’ beliefs, the more freedom he has to choose a convenient moment condition. As shown
by Ollár and Penta (2017), common prior models are maximal in the freedom they allow to the
designer and, for a large class of environments, as in the example, strategic externalities can be
completely eliminated when types are independent or affiliated.

Identical but Unknown Distribution: Redistribution of Strategic Externalities. Now
suppose that agents commonly know that their types θi ∈ [0, 1] follow the same distribution over
Θi. The distribution itself, however, is not necessarily known to the agents and, most importantly,
it is unknown to the designer. Transfers from the previous example do not ensure implementation
anymore, since agents’ beliefs neet not satisfy the moment condition “E (θl|θi) = 0.5 for all θi and

8The idea of modifying ex-post incentive compatible transfers using information about beliefs appears in previous
literature as in d’Aspremont, Cremer and Gerard-Varet (1979), Arrow (1979), Cremer and McLean (1988), and more
recently in Mathevet (2010); Mathevet and Taneva (2013); Healy and Mathevet (2012); Deb and Pai (2017).
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l 6= i”, and hence incentive compatibility may fail. In fact, as we will show, Ollar and Penta’s
(2017) idea of reducing strategic externalities is incompatible with incentive compatibility under
these belief restrictions. The designer is therefore much more limited than in a standard common
prior setting, such as that of the previous example. Nonetheless, a novel design strategy, based on
a redistribution of the strategic externalities, may still be used to achieve full implementation.

Example 3 (Bid-Implementation). Suppose that γ = γ̂ as at the end of Example 1, and hence
belief-free implementation is not possible. Now consider the following transfers:

tei (m) = t∗i (m) +miκi
γij − γik

2 (mj −mk) for all i;

In this case, the best replies become

BReθi = proj[0,1]

θi + 1
2 (γij + γik)

∑
l 6=i

E((θl −ml) |θi) + 1
2 (γij − γik)E (θj − θk) |θi


= proj[0,1]

θi + 1
2 (γij + γik)

∑
l 6=i

E((θl −ml) |θi)


The simplification in the last line follows from the fact that, under the Bid restrictions, it is

common knowledge that E (θj − θk|θi) = 0 for all θi and i. Because of this simplification, this
mechanism is incentive compatible for all beliefs consistent with Bid: if ml = θl for all θl and
l 6= i, then the best response is mi = θi for all i. Moreover, it can be shown that these best-replies
induce a contraction, which ensures that truthful revelation is the only rationalizable profile for
all agents. Transfers (tei )i∈I therefore achieve both partial and full Bid-implementation.

Next consider the following, more complex, transfers: tl1 (m)
tl2 (m)
tl3 (m)

 =

 t∗1 (m) +m1κ1γ13 (m3 −m2)
t∗2 (m) +m2κ2γ23 (m3 −m1)
t∗3 (m) +m3κ3γ32 (m2 −m1)

 .
It can be shown that these transfers too are incentive compatible under the Bid-restrictions,

that is, they are based on moment conditions which are commonly known among the agents. More-
over, these transfers too, induce contractive best replies, and hence achieve full implementation.

To understand the logic behind these transfers, it is useful to look at the induced SE-matrices
when γ = γ∗, and compare them to the SE-matrix of the VCG transfers:

SE∗ =

 0 0.9 −0.5
1.2 0 −0.6
−0.8 1.6 0

 , SEe =

 0 0.2 0.2
0.3 0 0.3
0.4 0.4 0

 , SEl =

 0 0.4 0
0.6 0 0
0.8 0 0

 .
First notice that both (tei )i∈I and

(
tli
)
i∈I induce SE-matrices such that the sum of the strate-

gic externality within each row is the same as in the baseline VCG mechanism. This is not a
coincidence: as one of our results will show, under the Bid-restrictions, any incentive compatible
transfer scheme would have to preserve, for every agent, the total externalities across all of his
opponents which are present in the underlying canonical mechanism, which in turn are pinned
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down by the total level of preference interdependence. (So, for instance, transfers such as
(
tOPi

)
i∈I

from example 2, whose SE-matrix consists of all zeros, will not be incentive compatible under the
Bid-restrictions.) In this sense, strategic externalities can only be redistributed, not reduced.

Second, the SE-matrix of the (tei )i∈I transfers are such that the externalities that any agent i
is subject to is constant across all of his opponents. In this sense, the (tei )i∈I transfers induce an
equal redistribution of the total strategic externalities for every player. With the

(
tli
)
i∈I transfers

instead, for every i, the total strategic externalities are all loaded on the opponent l 6= i who is
subject to the lowest total strategic externalities (that is l = 2 for i = 1, and l = 1 for i = 2, 3).

But while both matrices induce a contraction and have the same row-sums – which implies
that, in both mechanisms, the same strategies survive the first round of elimination of never best-
responses – the square of the SEl-matrix exhibits lower row-sums than that of the SEe-matrix:

(SEe)2 =

 0.14 0.08 0.06
0.12 0.18 0.06
0.12 0.08 0.2

 ,
(
SEl

)2 =

 0.24 0 0
0 0.24 0
0 0.32 0

 .
Recursively, this also extends to all powers k ≥ 2, which implies that, from the second round of
elimination on, the set of rationalizable reports shrinks more under

(
tli
)
i∈I than under (tei )i∈I .�

Our main results for full implementation show that, in a general class of environments, a
suitable generalization of the loading transfers in the example characterizes the mechanisms which
achieve full Bid-implementation: under these belief restrictions, full implementation is possible if
and only if it is achieved by the loading transfers. This in turn enables us to characterize the
environments in which full implementation is possible. We also show that the loading transfers
induce the fastest contraction among all implementing mechanisms, and that they are the ‘most
robust’ with respect to lower order beliefs in rationality. The equal-externality transfers, instead,
are ‘most robust’ if one considers the possibility of mispecifications of agents’ preferences.

3 Partial Implementation and Moment Conditions

In this Section we formalize our notion of partial implementation, and we characterize both the
conditions under which it is possible and the transfers which achieve it. For later reference, it will
be useful to introduce the canonical transfers, t∗ = (t∗i (·))i∈I , such that for each i ∈ I and m ∈ Θ,

t∗i (m) = −vi (d (m) ,m) +
∫ mi

θi

∂vi
∂θi

(d (si,m−i) , si,m−i) dsi, (5)

and we refer to the pair (d, t∗) as the canonical direct mechanism. Note that, under the maintained
assumptions, the canonical direct mechanism induces payoff functions which are twice continuously
differentiable. As shown by Ollár and Penta (2017), the canonical transfers characterize the ex-
post incentive compatible transfers in general environments with interdependent valuations, up to
a constant which does not depend on i’s own report:9

9The term ‘canonical mechanism’ is traditionally used to refer to Maskin’s mechanism for full implementation.
That mechanism is not ‘direct’ and it induces an integer game to eliminate undesirable equilibria. We call (d, t∗)
the canonical direct mechanism, since special cases of this mechanisms are pervasive in the partial implementation
literature. For example, in auctions (Myerson (1981), Dasgupta and Maskin (2000),Segal (2003), Li (2017)), in pivot
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Definition 1. A direct mechanism is ex-post incentive compatible (ep-IC) if, Ui(θ; θ) ≥ Ui(θ′i, θ−i; θ)
for all θ and for all θ′i.

Lemma 1 (Lemma 1 in Ollár and Penta (2017)). If (d, t) is differentiable and ex-post incentive
compatible, then for all i, there exists a differentiable function τi : M−i → R such that, for all m

ti (m) = t∗i (m) + τi (m−i) . (6)

Moreover, if (d, t) is differentiable, satisfies (6), and if the resulting payoff functions are such that
∂2Ui (mi, θ−i; θ) /∂2mi < 0 for all mi, then (d, t) is ex-post incentive compatible.

It is well-known that ex-post incentive compatibility characterizes the possibility of achieving
partial implementation when the designer relies on no information on agents’ beliefs (Bergemann
and Morris (2005)). Lemma 1 therefore implies that the canonical transfers characterize the
mechanisms which may achieve partial implementation in the belief-free sense.

In the present context, the designer knows that agents ‘commonly believe in identicality’,
and hence our analysis of partial implementation relies on the following less demanding notion of
incentive compatibility:10

Definition 2. A direct mechanism is Bid-incentive compatible (Bid-IC) if for all i ∈ I, for all
θi, θ

′
i ∈ Θi, and for all bθi ∈ Bidθi , E

bθi (Ui (θi, θ−i; θi, θ−i)) ≥ Ebθi (Ui (θ′i, θ−i; θi, θ−i)). If the
inequality holds strictly for all i, θi, bθi ∈ Bidθi and θ

′
i 6= θi, then we say that it is strictly Bid-IC. If

(d, t) is Bid-IC, then we say that the transfers t Bid-partially implement the allocation function d.

3.1 Partial Implementation: Characterization

In this Section we characterize properties of the transfers which partially implement a given al-
location function d : Θ → X, and study necessary and sufficient conditions for Bid-partial imple-
mentation. The following Lemma plays an important role in our analysis:

Lemma 2 (Bid-IC Transfers: Necessary and Sufficient Conditions).
[Necessity:] If (d, t) is twice differentiable and Bid-IC, then for all i, and for all m ∈M ≡ Θ,

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
belief-free transfers

(ep-IC characterization)

+
∫ mi

θ
i

Ki (si,m−i) dsi︸ ︷︷ ︸
belief-based component

(7)

where τi : M−i → R and Ki : M → R are differentiable functions and Ki is such that:

Ebθi (Ki (θi, θ−i)) = 0 for all θi and for all bθi ∈ Bidθi .
11 (8)

[Sufficiency:] If (d, t) is twice differentiable, t satisfies (7) and (8), and the resulting payoffs are
such that Ebθi

(
∂2Ui (mi, θ−i; θ) /∂2mi

)
< 0 for all mi and bθi ∈ Bidθi , then (d, t) is Bid-IC.

mechanisms (Milgrom (2004), Jehiel and Lamy (2017)), in public goods problems (Laffont and Maskin (1980),Green
and Laffont (1977)), etc. Lemma 1 in Ollár and Penta (2017) generalized the earlier results in the papers above.
The term canonical direct mechanism was first used with this acceptation in Ollár and Penta (2017).

10Similar to Bergemann and Morris (2005), one could define Bid-Partial Implementation as (partial) Bayesian
implementation on all type spaces consistent with the Bid-restrictions. By arguments similar to Bergemann and
Morris (2005), it can be shown such a notion is equivalent to the incentive compatibility condition in Def. 2.

11For any f : Θ→ R, θi ∈ Θi and bθi ∈ Bidθi , we let Ebθi (f (θi, θ−i)) :=
∫

Θ−i
fi (θi, θ−i) dbθi .

10



Equation (7) implies that, as far as Bid-IC is concerned, it is without loss of generality to
design transfers starting out with the canonical transfers, and then adding a belief-based term
Ki : M → R. This result therefore extends the characterization of ex-post incentive compatible
transfers in Lemma 1 to the belief restrictions Bid. The sense in which the extra component is
‘belief-dependent’ is clarified by the condition in equation (8), which has to be satisfied for all
beliefs consistent with Bid. We will expand on the conceptual significance of this condition in
Section 3.2. In the meantime, note that any twice continuously differentiable mechanism is Bid-IC
only if the truthful profile satisfies the first- and second-order conditions of agents’ optimization
problem, for all interior types and for all beliefs consistent with Bid. That is, the associated payoff
function must be such that, for all θi ∈ (θ, θ̄) and bθi ∈ Bidθi , (i) E

bθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = 0
and (ii) Ebθi

(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0. But if t partially implements d, then by Lemma

2 it can be written as in (7), and hence – letting U∗ denote the payoff function of the canonical
direct mechanism – for any θi ∈ (θ, θ̄) and bθi ∈ Bidθi , we have:

Ebθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (θi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (θi, θ−i)) , and

Ebθi
(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
= Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
+ Ebθi (∂Ki (θi, θ−i) /∂mi) .

Condition (8) in Lemma 2 implies that the second term on the right-hand side of the first
equation is zero, and hence the first-order conditions of any Bid-IC mechanism coincide with those
of the canonical direct mechanism. Furthermore, it can be shown that any Ki function which
satisfies condition (8) also ensures that the second term of right-hand side of the second equation
is zero, for all beliefs bθi ∈ Bid. Hence, the first- and second-order conditions are met in (d, t) if
and only if it they are met in the canonical direct mechanism. This proves the following results:

Theorem 1 (Partial Implementation: Characterization). Under the maintained assumptions,

1. d is partially Bid-implementable if and only if it is partially Bid-implemented by t∗.

2. (a) If the allocation rule d is partially Bid-implementable, then:
Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0 for all i, θi, and for all bθi ∈ Bidθi .

(b) If Ebθi
(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
< 0 for all i, θi and for all bθi ∈ Bidθi , then d is

partially Bid-implementable.

This is our main result on partial implementation. It shows that, under the Bid-restrictions,
there is no reason to consider transfers other than the canonical ones. (As we will see, this will not
be the case for full implementation: full implementation may fail under the canonical transfers,
but be achieved by other transfers). Besides its intrinsic interest, this result also simplifies the
task of identifying which conditions on the environment are necessary or sufficient for partial
implementation: it suffices to study properties of the payoff functions induced by the canonical
mechanism, U∗i (m; θ), which only depend on the allocation function and on the agents’ preferences.
Since, by construction, the canonical transfers satisfy the first-order conditions, sufficiency hinges
on the second-order conditions of agents’ optimization problem at the truthful profile.

Note that, if the expectation operators were removed from these conditions, so that the second-
order conditions are satisfied in the ex-post sense, then these conditions would correspond to ep-IC.
It is clear, however, that there is a gap between the two: it may be that the canonical mechanism

11



(d, t∗) satisfies the second-order conditions in expectation, for all beliefs consistent with the Bid

(as in part 2 of Theorem 1), but not in the ex-post sense. This clarifies that the result in Theorem
1 does not imply that Bid-IC is possible if and only if ep-IC is possible, but only that in both cases
it suffices to consider the same mechanism.

3.2 Incentive Compatible Transfers via Moment Conditions

Further intuition on the belief-based components in Lemma 2 can be gathered by looking at the
special case in which the Ki function can be written as Ki (m) = Li (m−i) − fi (mi), for some
Li : Θ−i → R and fi : Θi → R. In this case, the expected value condition (8) can be written as∫

Θ−i
Li (θ−i) dbθi = fi (θi) for all θi and for all bθi ∈ Bidθi . (9)

If a collection (Li, fi)i∈I of functions Li : Θ−i → R and fi : Θi → R satisfies (9) for every i,
then it means that under the belief restrictions Bid, agents commonly believe that, for every i, his
expectation of moment Li (θ−i) of others’ types varies with θi according to fi. Hence, this condition
expresses commonly known assumptions on agents’ conditional expectations on a moment of others’
types. Based on this observation, Ollár and Penta (2017) introduced the following notion:

Definition 3. A moment condition is represented by a collection (Li, fi)i∈I such that Li : Θ−i → R
and fi : Θi → R. It is consistent with Bid if it satisfies (9) for all i; it is a linear moment condition
if Li is linear for every i.

Setting Ki (θ) = Li (θ−i)− fi (θi) in the statement of Lemma 2, eq.(7) specializes to

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
characterization
of ep-IC transfers

+Li (m−i)mi −
∫ mi

fi (si) dsi︸ ︷︷ ︸
moment condition-based term

. (10)

This is precisely the class of transfers for which Ollár and Penta (2017) provide sufficient conditions
for full implementation.12 By Lemma 2, there may exist incentive compatible transfers which
cannot be written as in equation (10), since not all functions Ki : Θ → R in that Lemma are
equivalent to moment conditions in the sense of Definition 3. Nonetheless, understanding the set
of moment conditions which are commonly known under given belief restrictions is a useful way
of looking at the possibilities that the designer has to device incentive compatible transfers under
these easy-to-interpret belief-based components. Being concerned with full implementation under
general belief restrictions, and particularly on sufficient conditions, Ollár and Penta (2017) did not
characterize the set of available moment conditions. That task can be difficult in general, but such
a characterization is possible for the belief restrictions considered in this paper, and it provides
particularly clean insights into the set of transfers which are available to the designer:

Lemma 3 (Moment Conditions under Bid: Characterization). The moment condition (Li, fi)i∈I
is consistent with Bid if and only if

12In particular, Ollár and Penta (2017) show that if the belief-restrictions admit moment conditions with certain
properties, then this design strategy ensures full implementation. They also illustrate the usefulness of those
sufficient conditions in common prior environments and in settings in which only the conditional averages are
common knowledge. (Note that, under the Bid restrictions we consider in this paper, the conditional averages of
types are neither common knowledge nor known to the designer.)
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1. fi (θi) = c for some c ∈ R, for all θi;

2. Li is constant at identical types and agrees with c: Li (θ) = c for all θ s.t. θi = θj for all i, j;

3. Li is additively separable across players: there exist real functions Lij such that Li (θ−i) =∑
j 6=i Lij (θj) for all θ−i ∈ Θ−i.

An interesting question is how our analysis would change if, beyond common knowledge of
identicality, one also assumed common knowledge of independence across different players. This
can be formalized by replacing the Bid-restrictions with the stronger belief restrictions Biid, which
also require beliefs bθi ∈ ∆(Θ−i) in condition (1) to be the independent product of an identical
distribution over [θ, θ]. It can be shown that results analogous to Lemma 2 obtain for Biid-
restrictions, as well as a characterization analogous to Lemma 3, with the only difference that part
3 of Lemma 3 is not required. Intuitively, the stronger information that the designer has about
agents beliefs in Biid, compared to Bid, allows a richer set of moment conditions which can be
used to design incentive compatible transfers. Interestingly, however, such extra freedom does not
really expand the possibility of implementation: it can be shown that, under the Biid-restrictions,
the characterizations of both partial and full implementation is the same as in Theorems 1 and 2.

4 Full Implementation

Our notion of full implementation is based on the solution concept of Bid-rationalizability, a special
case of Battigalli and Siniscalchi (2003)’s ∆-rationalizability.13 Bid-rationalizability is defined by
an iterated deletion procedure in which, for each type θi, a report survives the k-th round of
deletion if and only if it can be justified by conjectures (joint distributions over opponents’ types
and strategies) which are consistent with the belief restrictions Bid, and with the previous rounds of
the deletion procedure. For every i and θi, the set of conjectures that are consistent with common
belief in identicality is defined as Cidθi :=

{
µi ∈ ∆ (M−i ×Θ−i) : margΘ−iµi ∈ Bidθi

}
.

Definition 4 (Bid-rationalizability). Fix a direct mechanism. For every i ∈ I, let Rid,0i = Θi×Mi

and for each k = 1, 2, ..., let Rid,k−1
−i = ×j 6=iRid,k−1

j ,

Rid,ki =
{

(θi,mi) : mi ∈ BRθi (µi) for some µi ∈ Cidθi ∩∆
(
Rid,k−1
−i

)}
, and Ridi =

⋂
k≥0

Rid,ki .

The set of Bid-rationalizable messages for type θi is defined as Ridi (θi) :=
{
mi : (θi,mi) ∈ Ridi

}
.

Definition 5 (Full Implementation). The transfer scheme t = (ti)i∈I fully implements d under
common knowledge of identicality if Ridi (θi) = {θi} for all θi and all i.14

First we note that Bid-Rationalizability is in general a weak solution concept, and hence our
notion of implementation is a demanding one. On the other hand, sufficient conditions for full

13Battigalli and Siniscalchi (2003)’s concept allows for general restrictions on players’ first-order beliefs on others’
types and strategies. Within mechanism design, Ollár and Penta (2017) focused on the case in which belief restric-
tions are only on others’ types; Lipnowski and Sadler (2017) instead adopted restrictions on beliefs about others’
behavior for their concept of peer-confirming equilibrium, although not in an implementation setting.

14A weaker notion of implementability would allow non-truthful reports, provided that they all induce the same
allocation as the true type profile. It can be shown that the two notions coincide for responsive allocation rules.
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Bid-implementation guarantee full implementation with respect to any (non-empty) refinement
of Bid-Rationalizability, and hence the weakness of the solution concept strengthens our results.
Furthermore, it can be shown that Bid-rationalizability characterizes the set of all Bayes-Nash
equilibrium strategies, taking the union over all type spaces that are consistent with Bid. Definition
5 therefore can be seen as a shortcut to analyze standard questions of Bayesian implementation
for all beliefs consistent with the Bid restrictions.15

Second, our notion of implementation requires that truthful revelation is the only rationaliz-
able report in the direct mechanism, given the belief restrictions Bid. As it is well-known, insisting
on direct mechanisms does make the task of achieving full implementation harder. We should thus
expect our characterization results to be in general more demanding than those which would be
obtained without restricting the space of mechanisms in this way. But there are many advantages
from restricting the space of mechanisms. From a conceptual viewpoint, classical results on full
implementation typically involve unrealistically complicated mechanisms, which have been criti-
cized for instance in an influential paper by Jackson (1992). Our insistence on implementation via
transfer schemes which only elicit payoff-relevant information imposes a more demanding criterion
to favor the interpretability of the results, and can thus be seen as pushing Jackson’s concern
for ‘relevance’ a bit further.16 Our approach also allows an easier comparison with the partial
implementation literature, since it makes transparent what features of an incentive compatible
transfer scheme may be problematic for full implementation, and shows how failure to achieve full
implementation can be overcome without changing the fundamental structure of the mechanism.

For later reference, we introduce a class of environments which satisfy a standard single-crossing
condition, and in which the concavity of agents’ valuation functions is public information:

Definition 6 (SC-PC). An environment satisfies single crossing and public concavity (SC-PC) if:

1. For all i and (x, θ), ∂2vi
∂x∂θi

(x, θ) > 0 and ∂d/∂θi > 0

2. For all i and j, ∂2vi/∂
2x and ∂2vi/∂x∂θj are constant in θ, and ∂2d

∂θi∂θj
(θ) = 0 for all θ.

These conditions generalize properties of standard quadratic-linear environments with single
crossing preferences, which are common both in the theoretical and in the empirical literature
for the convenient property that they imply linear best replies. Special cases of our conditions
are common in models of social interactions, markets with network externalities, supply function
competition, divisible good auctions, markets with adverse selection, provision of public goods.17

Compared to these applications, Definition 6 also accommodates more general dependence on x,
as long as the concavity and the cross derivatives are public information.

15By the same arguments, Bergemann and Morris (2009a) and Ollár and Penta (2017) study full implementa-
tion, respectively in belief-free settings and under general belief-restrictions, using corresponding versions of ∆-
rationalizability. (For earlier versions of these results on ∆-rationalizability, see Battigalli and Siniscalchi (2003).)

16In contrast to our static constructions, the more complex or multistage mechanisms suggested by the full
implementation literature (e.g., Maskin (1999); Moore and Repullo (1988)) are fragile to perturbations of information
(cf. Aghion et al. (2012)). Bergemann and Morris (2009a) also restrict the analysis to direct mechanisms, but in
the special case of quasilinear environments considered in this paper, their results only provide conditions to check
whether a given mechanism (d, t) is (belief-free) implementable, but they do not provide insights on how transfers
should be designed to achieve implementation, if at all possible.

17Quadratic-linear models are frequent in the literature of networks (e.g., Ballester et al. (2006), Bramoulle and
Kranton (2007), Bramoulle et al. (2014), Galeotti, Golub and Goyal (2019)), social interactions models (Blume
et al., (2015)), markets with network externalities (e.g., Fainmesser et al., (2015)), divisible good auctions (e.g.,
Wilson (1979)) and public goods (e.g., Duggan and Roberts (2002)).
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The important consequence of these assumptions is that, in the canonical direct mechanisms,
all second order derivatives ∂2U∗i

∂mi∂mj
= − ∂2vi

∂x∂θj
· ∂d∂θi are constant in (θ,m) and s.t. ∂2U∗i /∂

2mi 6= 0.

We can thus define the (normalized) canonical externalities as real numbers ξij := ∂2U∗i /∂mi∂mj
∂2U∗

i
/∂2mi

.
For each i, let ξi :=

∑
j 6=i ξij , and relabel agents if necessary so that |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|.

4.1 Redistribution of Strategic Externalities

In order to achieve full Bid-implementation, the truthful profile must be a mutual (strict) best
response for all types θi and for all beliefs bθi ∈ ∆ (Θ−i). Strict Bid-IC therefore is a necessary
condition for full Bid-implementation. It follows that t fully Bid-implements d only if it satisfies the
expected value condition (8) of Lemma 2. Beyond this partial implementation requirement, how-
ever, we will show that full implementation imposes more stringent restrictions on the mechanism,
and specifically on the strategic externalities that it induces.

To this end, for any transfer scheme t, and for every (m, θ) ∈ M × Θ, we define the strategic
externality matrix, SEt (m, θ) ∈ R̄n×n, in which the entry in row i and column j is equal to
SEt (m, θ)ij = ∂2Uti (m,θ)/∂mi∂mj

∂2Ut
i
(m,θ)/∂2mi

∈ R̄ if i 6= j and SEtij = 0 if i = j. (Recall that U ti (m, θ) denotes
i’s payoff function induced by transfers t.) For example, in SC-PC settings, the canonical transfers
t∗ induce the following matrix of strategic externalities: for all (m, θ),

SE∗ (m, θ) =


0 ξ12 . . . ξ1n

ξ21 0 . . . ξ2n
...

...
. . .

...
ξn1 ξn2 . . . 0

 .

The next result shows that strategic externalities are key for the design of transfers for full
implementation. In particular, it shows that whether a Bid-IC transfer scheme t also achieves
full implementation, depends on the properties of a matrix which is closely related to SEt (m, θ).
Such a matrix is obtained by focusing on the absolute values of the largest externalities across the
domain, normalized by the smallest concavity in the domain. Formally, let |SEt(m, θ)| be such
that |SEt|ii = 0 for each i and |SEt|ij := max(m,θ)∈Θ×Θ |∂2Uti (m,θ)/∂mi∂mj |

min(m,θ)∈Θ×Θ |∂2Ut
i
(m,θ)/∂2mi| for each i and j 6= i.

Lemma 4 (Eigenvalues and Full Bid-Implementation). A Bid-IC direct mechanism (d, t) achieves
full Bid-implementation if all the eigenvalues of |SEt| are smaller than one in absolute value. This
condition is also necessary in SC-PC environments, when t is based on a linear moment condition.

This lemma states that the key condition for a Bid-IC transfer scheme to achieve full imple-
mentation is that the spectral radius of the associated matrix of strategic externalities is less than
one. Intuitively, the reason is that eigenvalues in general describe the properties of the iterated of
a matrix. In the case of strategic externality matrices, this amounts to describing the iteration of
best replies which are implicit in the rationalizability operator. The condition that the spectral
radius is smaller than one is sufficient to induce contractive best replies, and hence a unique ratio-
nalizable probile.18 Incentive Compatibility – which is assumed in the Lemma – in turn ensures
that such a unique profile is actually the truthful revelation profile.

18The spectral radius of a square matrix is the largest absolute value of its eigenvalues. Other known conditions
in the literature, such as diagonal dominance, are easier to check but only sufficient for contractiveness.
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Since, as discussed, Bid-IC is a necessary condition for full Bid-implementation, at a minimum
any transfer scheme which achieves full implementation needs to satisfy all the conditions we
discussed in Section 3. Note, however, that those conditions only restricted the first and second-
order conditions of the agents’ optimization problem at the truthful profile (which is all that
matters for partial implementation). In contrast, the result in Lemma 4 refers to properties of the
|SEt|-matrix, which in turn depend on the properties of the strategic externalities at all profiles
(m, θ). Hence, before being able to apply the design strategy suggested by Lemma 4, it is important
to first understand which restrictions, if any, are imposed by Bid-IC on the strategic externalities
at the non-truthful profiles. This is the objective of the next Lemma:

Lemma 5. If (d, t) is Bid-IC, then, for all θ and (mi, m̄−i) s.t. m̄j = m̄k for all j, k 6= i:

1. ∂2Ui (mi, m̄−i; θ) /∂2mi = ∂2U∗i (mi, m̄−i; θ) /∂2mi and

2.
∑
j 6=i ∂

2Ui (mi, m̄−i; θ) /∂mi∂mj =
∑
j 6=i ∂

2U∗i (mi, m̄−i; θ) /∂mi∂mj.

These conditions are also sufficient in SC-PC, when t is based on a linear moment condition.

In words, these conditions say that for any agent i and for any state θ, at any profile in which i’s
opponents report (not necessarily truthfully) the same type, then both the concavity in own-action
(condition 1), and the sum of the strategic externalities of all the opponents (condition 2), induced
by any Bid-IC transfer scheme, must be the same as those of the canonical direct mechanism.19

Hence, the overall design strategy that emerges from combining these two lemmas is that the
designer should seek to minimize the absolute value of the eigenvalues of the |SEt|-matrix, subject
to the constraints imposed by Bid-IC (and, particularly, by Lemma 5). Such constraints imply
that the designer may only redistribute, not reduce, the total strategic externalities induced by
the canonical direct mechanism. When the conditions in Lemmas 4 and 5 are both necessary and
sufficient (as is the case in SC-PC environments and transfers based on linear moment conditions),
such a design strategy is characterized by a particularly tight mathematical structure:

Proposition 1 (Redistribution of Strategic Externalities). Consider an SC-PC environment, and
let t be a transfer scheme based on a linear moment condition. Then, (d, t) achieves full Bid-
implementation if and only if it satisfies the following conditions:

1. All the eigenvalues of the |SEt|-matrix are smaller than one in absolute value.

2. ∂2U ti /∂
2mi = ∂2U∗i /∂

2mi and
∑
j 6=i ∂

2U ti /∂mi∂mj =
∑
j 6=i ∂

2U∗i /∂mi∂mj.

Note that, since in SC-PC environments the matrix SE∗ of strategic externalities of the canoni-
cal direct mechanism is constant in (m, θ), the conditions in points 1 and 2 above essentially require
that, in order to preserve Bid-IC, a transfer scheme should induce a matrix of strategic externalities
which preserves, row by row, the same row-sums as in the SE∗-matrix.

19The proof of Lemma 5 follows from Lemma 2, and on a more involved characterization of the Ki functions
which satisfy the expected value condition (8), which must be such that Ki (m) =

∑∞
k=0 m

k
i

∑
j 6=iH

k
ij (mj), where

{Hk
ij}j 6=i,k∈N are polynomials Hk

ij : Mj → R such that
∑

j 6=iH
k
ij (mj) = 0 whenever ml = mj for all j, l 6= i.
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4.2 Full Implementation via Transfers: Characterization

In this section we restrict attention to SC-PC environments, which as discussed are especially
important from the viewpoint of the applied theoretical literature. Similar to what we did for
partial implementation, we seek to identify a transfer scheme t̂ which can be used to identify
whether or not full Bid-Implementation is possible. Intuitively, because of the characterization in
Proposition 1, such a transfer scheme should minimize the spectral radius of the associated |SE|-
matrix, within the set of all Bid-IC transfer schemes, i.e. subject to preserving the same row-sums
as in the SE∗-matrix: for such a transfer scheme, if the spectral radius is larger than one, then full
Bid-implementation would be impossible, because any Bid-IC transfer scheme would have at least
as high a spectral radius; on the other hand, if the spectral radius of the |SE t̂|-matrix is smaller
than one, then full implementation is possible, and it is achieved by t̂.

We define next the loading transfers, which will be shown to provide the answer to this question.
As illustrated in Example 3, the logic of the construction is to redistribute the strategic externalities
so that, in the resulting mechanism, they are all concentrated on the two agents with the smallest
canonical externalities (given the relabeling above, these are agents 1 and 2). Formally, the loading
transfers

(
tli
)
i∈I are defined as follows: for each i ∈ I and m ∈Mi ×M−i,

tli (m) = t∗i (m)︸ ︷︷ ︸
canonical transfers

+ Lli (m−i)mi︸ ︷︷ ︸
redistribution of

canonical externalities

, (11)

where Lli : M−i → R is such that

Lli (m−i) =


[
−
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

m2 +
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

mk

]
∂d
∂θ1

if i = 1[
−
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

m1 +
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

mk

]
∂d
∂θj

if i 6= 1
(12)

First note that the transfers in (11) take the form of (10), with f li (mi) = 0. That is, these
transfers are based on a moment condition in the sense of Definition 3.

(
Lli, f

l
i

)
i∈I thus defined

satisfies the conditions of Lemma 3, with c = 0, and hence it is consistent with Bid, which in
turn implies that the loading transfers are Bid-IC (this follows from Lemma 2, with Ki (θ) =
Lli (θ) − f li (θi), and from the SC-PC assumption, which ensures that the concavity condition in
the sufficiency part of Lemma 2 is satisfied).

Second, letting U li (m; θ) denote the payoff function which results from these transfers, it can
be checked that ∂2

i1U
l
i =

∑
j 6=i ∂

2
ijU
∗
i for all i 6= 1; ∂2

12U
l
1 =

∑
j 6=1 ∂

2
1jU

∗
1 and otherwise ∂2

ijU
l
i = 0.

That is, the total canonical externalities are all loaded onto the two agents with the smallest
canonical externalities: for all i 6= 1, the sum of canonical externalitites for i are all loaded onto
agent 1; whereas the sum of canonical externalities for agent 1 are loaded onto 2.

SEl =


0 ξ1 . . . 0
ξ2 0 . . . 0
...

...
. . .

...
ξn 0 . . . 0

 .
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Theorem 2 (Full Implementation: Characterization). In SC-PC environments:

1. d is fully Bid-implementable if and only if it is fully Bid-implemented by tl.

2. d is fully Bid-implementable if and only if the canonical externalities are such that |ξ1ξ2| < 1.

Part 1 of the theorem follows from the fact (shown in the proof) that among the class of Bid-IC
transfers, the loading transfers are those with the smallest associated spectral radius. Hence, as
it turns out, the best way of minimizing the spectral radius of the strategic externality matrix,
subject to the constraint (imposed by Bid-IC) of preserving the same rowsums as in the SE∗-
matrix, is to concentrate all the strategic externalities of any player i on the opponent with the
smallest |ξj |: that is on agent 2 for i = 1, and on agent 1 for all i 6= 1. This is the reason why the
loading transfers characterize the possibility of full implementation under the Bid-restrictions.

Part 2 follows from the fact that the condition |ξ1ξ2| < 1 is equivalent to stating that the
eigenvalues of |SEl| are less than one in absolute value, which by Lemma 4 is both necessary and
sufficient for these transfers to achieve full implementation (that is because tl are both Bid-IC,
and based on a linear moment condition). The condition |ξ1ξ2| < 1 implies that the possibility of
achieving full Bid-implementation is completely determined by the canonical externalities of the
two agents with the smallest canonical externalities (or, equivalently, by the two agents with the
smallest level of preference interdependence).20 Thus, full implementation is possible if and only
if the combined effect of these two agents’ canonical externalities are not too large, and that is
regardless of the strength of the preference interdependence of others, or of their number.

As we mentioned in the introduction, this result also has interesting implications from a broader
market design perspective: for instance, if full implementation cannot be achieved for a set of
agents, then all is needed to achieve full implementation is to add to the the set two agents with
small preference interdependence. At the extreme, whenever an implementation problem involves
at least two agents with private values, or whenever two such agents can be added to the group,
then full implementation is possible via a simple direct mechanism.

4.3 Beyond SC-PC Environments

The implementation results of Theorem 2 can also be extended to a larger class of environments,
beyond SC-PC. The next proposition shows that, under the Bid-restrictions, whenever a preference
environment is ‘close enough’ to an SC-PC environment which satisfies the condition in point 2 of
Theorem 2, then full implementation is also possible in the non SC-PC environment, applying the
same design principle as in the loading transfers discussed above.

Definition 7 (Approximately SC-PC Environment). We say that an environment E = (d, v) is
α-close to an SC-PC environment EPC =

(
dPC , vPC

)
, for all i,

• the canonical direct mechanism in E is strictly concave: ∂2
iiU
∗
i (m; θ) < 0 for all m and θ,

• the externalities in the canonical direct mechanism in E are α-close to the externalities of(
dPC , t∗,PC

)
:
∣∣∣∂2
ijU
∗
i (m; θ)− ∂2

ijU
∗(PC)
i (m; θ)

∣∣∣ < α for all m and θ, for all i and j 6= i.
20That is because |ξ1ξ2| < 1 is equivalent to |

∑
j 6=1

∂2v1
∂x∂θj

·
∑

j 6=2
∂2v2
∂x∂θj

| < ∂2v1
∂x∂θi

· ∂
2v2

∂x∂θ2
.
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The condition in the second point in this definition is satisfied if, for instance: (i) the valuation
functions are ε-close: for all i and j, |∂

2vi
∂2x (x, θ)− ∂2vPCi

∂2x (x, θ) | < ε and | ∂
2vi

∂x∂θj
(x, θ)− ∂2vPCi

∂x∂θj
(x, θ) | <

ε; and (ii) the allocation rules are ε-close: | ∂2d
∂θi∂θj

(θ)− ∂2dPC

∂θi∂θj
(θ) | < ε for all i, j and θ.

Theorem 3 (Full Bid-Implementation in Approximately SC-PC Environments). Consider an SC-
PC environment EPC =

(
dPC , vPC

)
which admits full Bid-implementation. Then, there exists

α0 > 0 such that for all 0 ≤ α < α0, any environment E = (d, v) which is α-close to EPC also
admits Full Bid-implementation.

Moreover, there exists α0 > 0 such that for all 0 ≤ α < α0, in an α-close environment (d, v),
the following transfers ensure Full Bid-implementation: for each i,

ti (m) = t∗i (m) + Ll,PCi (m−i)mi, (13)

where t∗i denotes the canonical transfers in E, and Ll,PCi is obtained applying (12) to EPC .

This result follows from the fact that the spectral radius of a matrix is a continuous operator,
and hence if the general conditions of Lemma 4 hold in an environment, then they also hold in a
‘nearby’ environment. It follows that the loaded transfers of an SC-PC environment also ensures
full implementation in all nearby environments (SC-PC or not).

5 Further Design Strategies for Full Implementation

In this Section we consider alternative transfer schemes to the loading transfers, which have es-
pecially relevant structure and properties. The next Lemma provides general sufficient conditions
which will be useful for the following discussion:

Lemma 6. The Bid-IC transfer scheme t achieves full Bid-implementation if either: (i) it ensures
limited strategic externalities from other agents – that is, if

∑
j 6=i |SEt|ij < 1 for all i; or (ii) it

ensures limited strategic impact on other agents – that is, if
∑
j 6=i |SEt|ji < 1 for all i.

The condition in the first point of this Lemma resembles the design principle in Ollár and
Penta (2017), in that it requires ‘not too strong’ strategic externalities.21 Formally, it is a row-wise
condition on the |SEt|-matrix. The second condition instead is a column-wise restriciton on |SEt|,
which can be interpreted as requiring that any agent’s strategic impacts on others is not too strong.
Both claims in the lemma follow from showing that either condition suffices to ensure that the
externality matrix satisfies the eigenvalue condition of Lemma 4.

5.1 Beyond Loading: Even Redistribution of Externalities

We introduce next a transfer scheme which, as illustrated by the te transfers in Example 3, pursues
a uniform redistribution of the strategic externalities. As it will be shown, such alternative design
principle is still widely applicable and has desirable robustness properties.

We define the equal-externality transfers te = (tei )i∈I as follows: for each i and m,

tei (m) := t∗i (m)︸ ︷︷ ︸
canonical transfers

+ Lei (m−i)mi︸ ︷︷ ︸
redistribution of

canonical externalities

, (14)

21Unlike here, the analysis in Ollár and Penta (2017) was limited to transfers based on linear moment conditions.
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where Lei : M−i → R is such that

Lei (m−i) =
∑
j 6=i

− ∂2vi
∂x∂θj

+ 1
n− 1

∑
k 6=i

∂2vi
∂x∂θk

mj

 ∂d

∂θi
.

Similar to the loading transfers, also these transfers are Bid-IC in SC-PC environments, and
are based on a linear moment condition in the sense of Definition 3.22 Moreover, letting Uei (m; θ)
denote the payoff function which results from these transfers, we have that ∂2

ijU
e
i = 1

n−1
∑
j 6=i ∂

2
ijU
∗
i

for all i and j 6= i, and ∂2
iiU

e
i = ∂2

iiU
∗
i for all i. Hence, these transfers redistribute the total

externalities of the canonical direct mechanism evenly across all of i’s opponents. This can be
easily seen from the strategic externality matrix they induce:

SEe =



0 ξ1
n−1 . . . . . . ξ1

n−1
ξ2
n−1 0 ξ1

n−1 . . . ξ2
n−1

...
. . . . . . . . .

...
ξ2
n−1 . . . ξ1

n−1 0 ξ2
n−1

ξ2
n−1 . . . . . . ξ2

n−1 0


.

While Theorem 2 ensures that, in SC-PC environments, the loading transfers achieve full Bid-
implementation whenever such implementation is possible, the next result provides easy-to-check
conditions under which full implementation can be achieved via the equal-externality transfers te:

Proposition 2. Under SC-PC, the transfers in (14) achieve full Bid-implementation if

either (i)

∣∣∣∣∣∣
∑
j 6=i

∂2vi
∂x∂θj

∣∣∣∣∣∣ < ∂2vi
∂x∂θi

for all i; or (ii)
∑
j 6=i

∣∣∣∣ ∂2vj
∂x∂θi

/
∂2vj
∂x∂θj

∣∣∣∣ < 1 for all i. (15)

The proof of this proposition follows directly from the more general result in Lemma 6. To
appreciate the conditions in (15), it is useful to compare them to the following known sufficient
for full implementation via the canonical transfers: Under SC-PC, the canonical transfers achieve
(belief-free) full implementation if

∑
j 6=i

∣∣∣∣ ∂2vi
∂x∂θj

∣∣∣∣ < ∂2vi
∂x∂θi

for all i. (16)

Condition (16) requires that the sum of preference interdependencies, across all of opponents’
of agent i, to be small relative to the dependence of i’s marginal utility on his own type. When
this condition is satisfied, the resulting strategic externalities in the canonical direct mechanism
are small, and belief-free full implementation follows from the results in Ollár and Penta (2017)
and Bergemann and Morris (2009a). Relative to this belief-free benchmark, the Bid-restrictions
enable the designer to redistribute the strategic externalities, and hence to weaken Condition (16)
to part (i) of Proposition 2, in which the absolute value is moved outside of the summation. This
means that, by relying on the Bid-restrictions, preference interdependencies with opposite signs

22One way to verify that the te transfers are Bid-IC is to notice that the associated moment condition satisfies
the conditions of Lemma 3, with c = 0.

20



can be leveraged, to obtain full implementation: Under Bid, it is the total amount of net preference
interdependence that matters, not the total amount of absolute interdependence.

The second condition in (15) instead focuses on the total impact that agent i’s type has on
other agents’ preferences. Rather than pointing at the way player i’s preferences depend on others’
information, it measures the total impact of i’s information on others’ preferences. The reason
why this alternative condition is also sufficient is related to the idea of Limited Strategic Impact
which we discussed above and is a consequence of part (ii) of Lemma 6 above.

Example 4. In the setting of the leading examples, consider preferences vi : X × Θ → R which
satisfy the following condition:

(
∂2vi
∂x∂θj

)
i=1,2,3
j=1,2,3

=

 1 7
6 − 5

6
− 1

6 1 3
6

− 4
6 − 4

6 1


It is immediate to check that condition (16) does not hold, and one can also show that belief-free
full implementation is not possible in this setting. In fact, for agent 3 condition (i) is also violated.
Condition (ii), however, holds and implementation via the equal-externality transfers is possible.
(Of course, implementation via the loading transfers is possible too.)

The next result formalizes the sense in which – while still not as applicable as the loading
transfers (which, by Theorem 2, achieve full implementation whenever possible) – the logic of the
equal-externality transfers is still widely applicable:

Proposition 3. Under SC-PC, one of the conditions in Lemma 6 are satisfied by some Bid-IC
transfer scheme t , then the equal-externality transfers (tei )i∈I achieve full Bid-implementation.

Corollary 1. If Condition (16) holds, then both t∗ and te ensure full Bid-implementation.

Hence, whenever there is an implementing transfer scheme which satisfies the easy-to-check
conditions of Lemma 6, then the equal-externality transfers te also achieve full Bid-implementation.
There are, however, environments in which the canonical transfers t∗ achieve full Bid-implementation,
but the equal-externality transfers te do not:

Example 5. Consider 4 agents and an SC-PC environment for which the canonical direct mech-
anism and the corresponding balancing transfers induce the following externality matrix:

SE∗ = SEl =


0 0.1 0 0

0.2 0 0 0
6 0 0 0
6 0 0 0

 and SEe =


0 1

30
1
30

1
30

2
30 0 2

30
2
30

2 2 0 2
2 2 2 0

 ,

In this example, the |SE∗|-matrix has specctral ratio less than 1, however the |SEe|-matrix
has an eigenvalue larger than 2. Here the canonical transfers coincide with the loading transfers,
and so achieve full implementation, but the equal-externality transfers do not.23 �

23For cases in which, contrary to this example, the canonical transfers fail full implementation but the transfers
with uniformly redistributed externalities work well, see Examples 3 and 4.
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5.2 Environments with Symmetric Aggregators

Next, we examine full Bid-implementability in a special case of our environments, which satisfy
a (still weak) assumption of symmetry in agents’ preferences. We show that, under this mild
assumption of symmetry, transfers with uniformly redistributed externalities are indeed without
loss of generality, in the sense that they achieve full implementation whenever it is possible.

Definition 8 (Symmetric Aggregators in Valuations). An environment has symmetric aggregators
in valuations if for all i, there exist w : X×R→ R and hi : Θ→ R strictly increasing in θi such that
vi (x, θ) = w (x, hi (θ)), ∂hi (θ) /∂θi = ∂hj (θ) /∂θj and

∑
k 6=i (∂hi (θ) /∂θk) =

∑
k 6=j (∂hj (θ) /∂θk)

for all i, j and θ.

Proposition 4 (Full Bid-Implementation with Symmetric Aggregators). Consider an SC-PC en-
vironment with symmetric aggregators in valuations.

1. Full Bid-Implementation is possible if and only if it is achieved by transfers (tei )i∈I .

2. Full Bid-Implementation is possible if and only if
∣∣∣∑k 6=i

∂2vi
∂x∂θk

∣∣∣ < ∂2vi
∂x∂θi

for all i.

Next, Figure 1 summarizes the relations between different transfer design strategies. This figure
summarizes the implications of the counterexamples above; and the results on full implementabil-
ity under identical distributions (via the loading transfers in Theorem 2, via designing diagonal
dominance in Lemma 6, via the equal-externality transfers in Proposition 2, and in environments
with symmetric aggregators in Proposition 4).

6 Sensitivity Results

6.1 Slightly Faulty Players and Preference Misspecification

In many settings, it may be desirable to ensure that the implementing mechanism does not rely
too heavily on the fact that agents’ behavior would coincide exactly with that entailed by the
maintained assumptions on their preferences and rationality. In this section we explore the impli-
cations of this kind of desiderata on the design of transfers for full implementation, by requiring
the implementing mechanism to minimize the impact of an ε-mistake in an agents’ report. Such
‘mistakes’ can be interpreted as either stemming from agents’ slightly faulty behavior (similar to
Eliaz (2002)), or due to a misspecification of agent’s preferences in the model.24

Formally, let F ⊆ I be an arbitrary set of possibly slightly faulty agents, in the sense that they
may report messages up to ε > 0 away from their optimal response. For any ε > 0, θi ∈ Θi and
µi ∈ ∆(Θ−i ×M−i), let

BRεθi (µi) = {mi ∈ Θi : |mi −m′i| ≤ ε for some m′i ∈ BRθi (µi)} .
24Robustness with respect of the possibility of slightly faulty agents is somewhat in the spirit of the analysis in Eliaz

(2002). There are, however, several differences: first, Eliaz (2002) considers a complete information environment,
whereas our environments features incomplete information and interdependent values; second, in Eliaz (2002)’s
model the possibility of agent’s mistakes affects the very notion of incentive compatibility, which is strengthened to
a condition intermediate between Nash and dominant-strategy incentive compatibility; third, Eliaz (2002) does not
restrict the space mechanisms, and in that paper implementation is achieved through a modulo game.
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Figure 1: Relations of Environments which Admit Full Bid-Implementing Transfer Schemes

This diagram illustrates full implementability via different transfer schemes. The relations between different design
strategies are illustrated on sets of environments (pairs of allocation rule and value functions (d, v)), which satisfy
single crossing and public concavity (Assumption SC-PC), and which admit full Bid-implementation for some
transfer scheme.

Definition 9 (Fε-rationalizability). Fix a direct mechanism (d, t), ε ≥ 0 and F ⊆ I. For any
θi ∈ Θi and µi ∈ ∆(Θ−i ×M−i), let

BRFεθi (µi) =
{

BRεθi (µi) if i ∈ F
BRθi (µi) if i /∈ F

For every i ∈ I, let RFε,0i = Θi ×Mi and for each k = 1, 2, ..., let RFε,k−1
−i = ×j 6=iRFε,k−1

i ,

RFε,ki =
{

(θi,mi) : mi ∈ BRFεθi (µi) for some µi ∈ Cidθi ∩∆
(
RFε,k−1
−i

)}
, and RFεi =

⋂
k≥0

RFε,ki .

The set of Fε-rationalizable messages for type θi is defined as RFεi (θi) :=
{
mi : (θi,mi) ∈ RFεi

}
.

RFεi represents our model of strategic interaction when players consider the possibility that
agents in F may be ε-faulty. Implicit in this notion is the idea that all agents share a common
bound ε on the mistakes which could be made by the faulty agents. That is because, at each
iteration of the Fε-rationalizability procedure, players commonly believe that agents in I \F best-
respond to their conjectures, whereas agents in F may play any report which is within ε from their
optimal report. The next definition formalizes our notion of robustness to ‘slightly faulty’ agents:
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Definition 10 (Sensitivity to ε-Faulty Agents). Fix a direct mechanism (d, t). For any k = 1, ..., n,
let N (k) := {F ⊆ I : |F | = k}, and ηt (ε, k) := supF∈N(k) supi∈I supθi∈Θi supmi∈RFεi (θi) |mi − θi|
be t’s sensitivity to k agents who are ε-faulty, and let ηt (ε) = (ηt (ε, 1) , ..., ηt (ε, n))

In words, the idea is that the designer does not know how many or which agents might be
potentially faulty, and the criterion with which he/she assesses the robustness of the mechanism is
the worst-case scenario across all possible configurations of sets of faulty agents. The measure of
the fragility of the mechanism is therefore provided by the largest misreport consistent with RFεi ,
across all agents and all configurations of the set of faulty agents. The next result shows that,
in SC-PC environments with symmetric aggregators, the equal-externality transfers introduced in
the previous section are more robust than the loading transfers this sense:

Proposition 5. [Sensitivity to ε-Faulty Players]Under SC-PC and Symmetric Aggregators, for all
ε > 0, ηte (ε) ≤ ηtl (ε), moreover for all n < k, ηte (ε, k) < ηt

l (ε, k).

The intuition behind this result is simple: as explained, the loading transfers induce a very
hierarchical strategic structure, in which the contractiveness of the mechanism is completely de-
termined by the two agents with smallest preference interdependence. But loading all strategic
externalities on these agents also makes the mechanism especially vulnerable to the possibility
that precisely those agents turn out to be faulty. In that case, the loading transfers would perform
very poorly. To avoid this risk, and not knowing which of the agents may potentially be faulty,
the safest solution for the designer is to redistribute the strategic externalities uniformly across all
players, so that no player becomes especially critical for the mechanism.

The proof of Proposition 5 relies on the following technical lemma, which characterizes the set
of possible misreports at each iteration of the Fε-rationalizability procedure:

Lemma 7. Under SC-PC and linear moment conditions, for given ε and F , the largest set of
reports in RFεi is the largest element of the vector

[
I − |SEt|

]−1
εF , where εF = (εi)i∈I is the

vector such that εi = ε if i ∈ F and εi = 0 if i /∈ F .

6.2 Lower Orders of Rationality and Robust Level-k Implementation

In this Section we consider a different notion of robustness, namely with respect to lower or-
der beliefs in rationality. To this end, it is useful to introduce notation for the set of reports
which survive the k-th round of Bid-rationalizability (def. 4) for a given type θi: Rid,ki (θi) :={
mi : (θi,mi) ∈ Rid,ki

}
. To stress the dependence of this set on the specific transfer scheme t,

when needed, we will write Rid,ki (θi|t). The properties of the loading transfers discussed in Sec-
tion 4 – namely, that they maximize the speed of the contraction induced by iterating the best
responses, among the class of all Bid-IC transfers, – also ensure the following result:

Theorem 4. Let t be any Bid-IC transfer scheme. Then: Rid,ki

(
θi|tl

)
⊆ Rid,ki (θi|t) for all k.

This result is interesting because it points at a different notion of robustness, with respect
to lower order beliefs in rationality: the loading transfers are the most efficient at minimizing
the possible misreports which could arise due to failures of common belief in rationality. This is
an important property, because common belief in rationality (which is implicit in the notion of
rationalizability) is often very demanding, and need not be satisfied in a given environment. If
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the designer is concerned with agents’ sharing lower orders of mutual belief in rationality, then
he would not only consider the sets Ridi (θi), but also

(
Rid,ki (θi)

)
k∈N

. Hence, among two fully
implementing transfers (i.e., both such that Rid (θi) = {θi}), he should prefer the one which also
induces the smaller Rid,ki (θi) at every k. The loading tranfers are optimal in this respect.

This notion of robustness is connected to the literature on level-k implementation, which has
explicitly considered designing mechanisms for players who don’t share common knowledge of
rationality. In particular, in an important recent paper, de Clippel et al. (2018) have studied a
notion of level-k implementation which, for the class of environments and the direct mechanisms
we consider, can be described as follows: Let p ∈ ∆ (Θ) denote a common prior, and Θ = ×i∈IΘi.
For any direct mechanism (d, t), let Σi denote the set of strategies σi : Θi → Mi (Mi = Θi in the
direct mechanism). Each player is characterized by an anchor, αi : Θi → ∆ (Mi), which specifies
the message chosen in the mechanism by the non-strategic level-0 type. As usual, let α and α−i
denote the profiles of anchors (with independent randomization across players).

de Clippel et al. (2018) introduce the following solution concept for level-k implementation:

S1
i (α) =

{
σi ∈ Σi : ∀θi, σi (θi) ∈ arg max

mi

∫
Θ−i

U ti (mi, α−i (θ−i) , θi, θ−i) dp (θ−i|θi)
}

∀k ≥ 2, Ski (α) =
{
σi ∈ Σi :

∃σ−i ∈ Sk−1
−i (α) s.t. ∀θi,

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, α−i (θ−i) , θi, θ−i) dp (θ−i|θi)

}

Definition 11 (Level-k Implementation (de Clippel et al. (2018))). A direct mechanism (d, t)
achieves level-k implementation if Sk (µ|α) = {σ∗} for every k.

Compared to the previous literature on level-k implementation, de Clippel et al. (2018)’s
notion is more robust in that it doesn’t rely on the designer’s knowledge of the agents’ levels of
sophistication: implementation is required to be achieved for all k. Their results are also more
general than previous analysis in that they provide results for various anchors α. Their analysis,
however, maintains the classical assumption of a commonly known prior p ∈ ∆ (Θ).25 But this
notion of implementation can be easily adapted to our belief restrictions, Bid = (

(
Bidθi
)
θi∈Θi

)i∈I ,
by replacing the solution concept in the above definition to the following weaker version:

Ŝ1
i (α) =

{
σi ∈ Σi :

∀θi,∃bi ∈ Bidθi
σi (θi) ∈ arg maxmi

∫
Θ−i U

t
i (mi, α−i (θ−i) , θi, θ−i) dbi (θ−i)

}

∀k ≥ 2, Ŝki (α) =
{
σi ∈ Σi :

∃σ−i ∈ Ŝk−1
−i (α) s.t. ∀θi,∃bi ∈ Bidθi

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, α−i (θ−i) , θi, θ−i) dbi (θ−i)

}

As de Clippel et al. (2018) remark, the behavioral anchors are completely arbitrary, they may
be mechanism specific and may differ across agents. In their setting, however, it is still the case that
anchors αj : Tj →Mj are common knowledge among the agents, and also known to the designer.
A natural strengthening of the implementation requirement would be to allow for different players
to have different views about others’ anchors, or be uncertain over them, or on others’ views
about anchors, and so on. And, most importantly, without requiring that the designer knows each

25Kneeland (2018) studied level-k implementation both in common prior and belief-free settings. Unlike de Clippel
et al. (2018), however, she restricts anchors to be type-independent and equal to the uniform distribution, and she
allows different SCFs (selected from a multi-valued social chocie rule) to be implemented for different level-k’s.
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player’s anchor, nor his beliefs about others’, at any order. If we let possible anchors in each player
i’s mind to be any α−i : T−i → ∆ (M−i) – i.e., also allowing for possible correlations – then we
obtain the following solution concept for robust level-k implementation:

RL1
i =

⋃
α−i∈∆(M−i)T−i

Ŝ1
i (α) and

∀k ≥ 2, RLki =
{
σi ∈ Σi :

∃σ−i ∈ RLk−1
−i s.t. ∀θi,∃bi ∈ Bidθi

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, α−i (θ−i) , θi, θ−i) dbi (θ−i)

}

Definition 12 (Robust Level-k Bid-Implementation). A direct mechanism (d, t) achieves robust
level-k Bid-implementation if RLk = {σ∗} for every k.

It is easy to verify that, for every k, σi ∈ RLki if and only if σi (θi) ∈ Rid,ki (θi) for every
θi. Hence, if one wishes to obtain full implementation for every k – i.e., level-k implementation à
la de Clippel et al. (2018), but in the much more robust specification for what concerns agents’
anchors – then one needs to obtain implementation in B-dominant strategies, because it requires
Rid,1i (θi) = {θi} for every θi. If that can be obtained, as for instance Ollár and Penta (2017) show
in SC-PC environments with independent or affiliated common priors, then the result follows for all
levels, and hence interim B-Dominant Strategy Incentive Compatibility (iDSIC) characterizes this
notion of robust level-k implementation. But iDSIC is very demanding, and in particular under the
Bid-restrictions it cannot be satisfied outside of the very special case of private values. It is then
natural to ask what is the best that one could obtain, if such stricter notion of implementation
cannot be obtained for every k. One possibility is to ensure that, for each k, the Rid,ki -sets are
as small as possible around the truthful revelation profile. The result in Theorem 4 addresses
precisely this question, and implies that the loading transfers introduced above are optimal with
respect to this notion of robust level-k Bid-implementation.

Appendix
Proof of Lemma 2. Assume that t ensures Bid-incentive compatibility which, by t’s differentia-
bility, means that for all i and θi∫

Θ−i

∂ (vi (d (mi, θ−i) , θ) + ti (mi, θ−i))
∂mi

dbθi

∣∣∣∣
mi=θi

= 0 for all bθi ∈ Bidθi ,

or rearranged,∫
Θ−i

∂ti (mi, θ−i)
∂mi

dbθi

∣∣∣∣
mi=θi

= −
∫

Θ−i

∂vi (d (mi, θ−i) , θ)
∂mi

dbθi

∣∣∣∣
mi=θi

for all bθi ∈ Bidθi .

The canonical transfer t∗i also satisfies this equation, thus for the difference between ti and t∗i ,

Ebθi
(

∂

∂mi
(ti (mi, θ−i)− t∗i (mi, θ−i))

) ∣∣∣∣
mi=θi

= 0 for all (θi, bθi) : bθi ∈ Bidθi .

Let the difference between ti and t∗i be Di (m) := ti (m) − t∗i (m). By the smoothness assump-
tions of this Lemma, Di is differentiable. Consider the part of Di that is independent from m
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and let this part be d0; let its part that is independent from mi be τi (m−i) := Di (m) − d0 −∫mi
θi

∂Di
∂mi

(si,m−i) dsi, and further let Gi (m) := Di (m)− τi (m−i) for all m.
Then, the previous displayed equation can be rewritten such that for all fixed θi

Ebθi
(
∂Gi
∂mi

(θi, θ−i)
)

= 0 for all bθi ∈ Bidθi .

By the definition of Di (m) and by setting Ki (mi,m−i) := ∂Gi
∂mi

(mi,m−i), the transfer ti
takes the form ti (m) = t∗i (m) + τi (m−i) +

∫mi
θ
i
Ki (si,m−i) dsi for all m. Moreover, if (d, t) is

twice differentiable, then by the definition of canonical transfers t∗ is twice differentiable too, and
therefore Ki is differentiable. Since Ki is differentiable in all its arguments, τi is differentiable too,
which completes the proof of the necessity part of this Lemma.

If (d, t) is twice differentiable and t satisfies the characterization in (7) and the expected value
condition in (8), then

Ebθi

(
∂Ui
∂mi

(θ; θ)
)

= Ebθi

(
∂vi
∂mi

(θ; θ) + ∂ti
∂mi

(θ; θ)
)

= Ebθi

(
∂vi
∂mi

(θ; θ) + ∂t∗i
∂mi

(θ; θ)
)

+ 0 + Ebθi (Ki (θ; θ))

= Ebθi

(
∂vi
∂mi

(θ; θ)− ∂vi
∂mi

(θ; θ)
)

+ 0 + 0 = 0,

and thus the message mi = θi is an extreme point. For all beliefs in Bidθi , the corresponding
expected utility, by assumption, is strictly concave, therefore this extreme point is a global optimum
for all beliefs in Bidθi , and thus (d, t) is Bid-IC which completes the proof of the sufficiency part of
this Lemma. �
Proof of Theorem 1.

Step 1: (Properties of Kis for Partial Implementation) If Ki : M → R satisfies condition (8)
in Lemma 2, then it’s derivative satisfies that Ebθi (∂Ki (θi, θ−i) /∂mi) = 0 for all θi and for all
bθi ∈ Bidθi .

To show this step, recall the expected value condition in Equation 8, in Lemma 2, that is,
Ebθi (Ki (θi, θ−i)) = 0 for all θi and for all bθi ∈ Bidθi . Fix p ∈ Bidθi . It is a consequence of
identicality that if p ∈ Bidθi , then p ∈ B

id
θ′
i
for all θ′i ∈ [θ, θ], that is Ep (Ki (θi, θ−i)) ≡ 0, which then

implies that for all θi, Ep (∂Ki (θi, θ−i) /∂mi) = 0, and this holds for any p ∈ Bidθi , which completes
the proof of this Step. �

Step 2: If (d, t) partially implements d, then by Lemma 2, t can be written as in (7), and
hence – letting U∗ denote the payoff function of the canonical direct mechanism – for any θi and
bθi ∈ Bid we have:

Ebθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (θi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (θi, θ−i)) , and

Ebθi
(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
= Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
+ Ebθi (∂Ki (θi, θ−i) /∂mi) .

Now, condition (8) and Step 1, respectively, imply that the second terms on the right-hand side
of both equations are zero. Hence, the first- and second-order conditions of the agent’s optimization
problem, for all beliefs in Bid are equivalent in (d, t) and (d, t∗), which prooves this Theorem. �
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Proof of Lemma 3. Setting Ki := Li − fi in Step 1 of the Proof of Theorem 2 below, which
gives the characterization of Bid-consistent Ki functions, implies this Lemma. �
Proof of Lemma 4. Part 1. Fix θi in

(
θ, θ
)
and examine the k-th round of eliminations: fix

mi ∈ Rki (θi). Since (d, t) is Bid − IC, θi is best-reply to truthtelling conjectures. In particular,
consider a truthtelling conjecture which is concentrated on Rk−1

−i , let this conjecture be µT . For
mi too, there exists a conjecture which supports mi as a best reply and is concentrated on Rk−1

−i .
Let this conjecture be µL.

Note that any k-th-round best-reply mi is either inner point or a boundary point. Let bl ≤ bu
be the boundary points of the set of k − 1-rationalizable messages of θi. Let EµUi (mi; θi) denote
the expected utility of type θi, given this type’s conjecture µ, when reporting mi.

First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi)

= ∂iE
µLUi (mi; θi)− ∂iEµLUi (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLUi (θi; θi)− ∂iEµTUi (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

.

Examining these two differences, notice that applying a mean value theorem to each of these
two differences gives that there exist si and m−i, s−i ∈ Rk−1

−i (θ−i) such that

−∂2
iiE

µLUi (si; θi) (mi − θi) =
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Second, if mi is boundary such that mi = bl, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≥
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Third, if mi is boundary such that mi = bu, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≤
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Given the sign of ∂2
iiUi and the respective signs of (mi − θi) in the latter two cases, we can

summarize that for, either boundary or inner, mi ∈ Rki (θi) there exist not-yet eliminated messages
si, s−i,m−i such that

|∂2
iiE

µLUi (si; θi) || (mi − θi) | ≤ |
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) |.

From this, for each agent j and round k, letting lkj := maxθj ,mj∈Rkj (θj) |θj −mj |, we have

|mi − θi| ≤
∑
j 6=i |∂2

ijUi (θi, s−i; θ) |lk−1
j

|∂2
iiE

µLUi (si; θi) |
≤
[
|SEt|lk−1]

i
.

Since this inequality holds for all k, we can apply it iteratively, which gives that in the kth
round for all mi ∈ Rki (θi),

|mi − θi| ≤
[
|SEt|lk−1]

i
≤
[
|SEt||SEt|lk−2]

i
≤ . . . ≤

[
|SEt|k1

]
i
.
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By the eigenvalue condition, the spectral radius ρ (|SEt|) < 1, and thus |SEt|k → 0 in k, and
thus for all i, lki → 0 in k, and thus full Bid-implementation follows. �

Before we proceed to Part 2, we show in the next step that under a Bid-implementing transfer
scheme the step-by-step iterative eliminations result in sets of k-rationalizable strategies, whose
sizes reflect the canonical externalitites. (This step is again used in the Proof of Theorem 2 below.)

Step 1: (Iterations and Canonical Externalities.) Consider a twice differentiable, Bid-IC direct
mechanism (d, t). In relation to the canonical direct mechanism, for all θi there exist message
profiles s+ and s+′ such that the message

proj
Rid,k−1
i

(θi)

(
θi +

∑
j 6=i ∂

2
ijE

bθiU∗i (s+; θi) lk−1,+
o,i

|∂2
iiE

bθiU∗i (s+′ ; θi) |

)

is in Rid,ki (θi), and there exist message profiles s− and s−′ such that the message

proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijE

bθiU∗i (s−; θi) lk−1,−
o,i

|∂2
iiE

bθiU∗i (s−′ ; θi) |

)

is in Rid,ki (θi) too.

To show this Step, fix θi in
(
θ, θ
)
and fix some type θo ∈

(
θ, θ
)
and some message mo ∈

(
θ, θ
)

for i’s opponents. Since t defines a Bid−IC mechanism, θi is best-reply to truthtelling conjectures.
In particular, it is best-reply to the conjecture which, for every j 6= i, assigns probability 1 to the
event that θj = θo and assigns probability 1 to the event that all opponents are reporting their
types. Let this - concentrated truth-reporting - conjecture be µT . There exists also a message of i
which is best-reply to the conjecture that assigns probability 1 to the event that θj = θo and assigns
probability 1 to all opponents reporting mo regardless of their types. Denote this undominated
strategy by mi and let this - concentrated mo-reporting - conjecture be µL. Note that both µT

and µL are consistent with Bid. Consider the message mi which is best reply to µL.
First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE

µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi)

= ∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

,

where the first equality holds because of the canonical - additive - representation of (d, t) in Lemma
2 and the characterization of the belief-based terms in Step 1 of the Proof of Theorem 1. The
conjectures µT and µL are constructed such that they satisfy identicality on the margins of the
messages too.

In this Proof, we simplify the notation of those profiles in which opponents’ elements are
identical in that instead of (so, . . . , so, θi, so, . . . , so) we write

(
θi, s

o
−i
)
.

Examining the two differences above, notice that by the mean value theorem, there exists si
such that

∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi) = ∂2

iiE
µLU∗i (si; θi) (mi − θi) ,
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and there exists so such that

∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi) =

∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

Note that any k-th-round best-reply mi is either inner point (as above) or a boundary point.
Let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi.

Second, if mi is boundary such that mi = bl, then, because mi is best reply,

0 ≥ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,

which, following the steps as above, gives that there exists si and so such that

0 ≥ ∂2
iiE

µLU∗i (si; θi) (mi − θi) +
∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

This gives that mi = bl only if there exists profiles such that

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≤ bl = mi.

Third, if mi is boundary such that mi = bu, then, because mi is best reply,

0 ≤ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,

which gives that, for some profile,

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≥ bu = mi.

We summarize these three cases and note that, for every θi, one can set θo and mo such that
mo − θo = lk−1+

i,o , which gives that there exists so and si such that

mi = proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
lk−1,+
i,o

|∂2
iiU
∗
i

(
si,mo

−i; θi, θo−i
)
|

)
∈ Rid,ki (θi) ,

Now, for every θi, it is also possible to set θo and mo such that mo − θo = −lk−1,−
i,o . Considering

the corresponding k-th round best reply mi being interior or boundary, and following the previous
steps we have that there exists s′o and s′i such that

mi = proj
Rid,k−1
i

(θi)

θi +

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o′

−i; θi, θo−i
)
lk−1,−
i,o

|∂2
iiU
∗
i

(
s′i,m

o
−i; θi, θo−i

)
|

 ∈ Rid,ki (θi) ,

which, completes the proof of this Step. �

Part 2. In SC-PC environments, for transfer schemes with linear moment conditions, the re-
sulting payoff functions are such that the second order derivatives are constants. Let Gi be t’s mo-
ment condition-based part and since it is linear for all i it can be written as Gi (m) = Li (m−i)mi =
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∑
j 6=i λjmjmi.26 Then, the second order partial derivatives are such that ∂2

ijU
t
i (m; θ) = ∂2

ijU
∗
i +λj

and they are therefore constant in θ and m, for all i and j.
Let lk ∈ Rn be the vector of the largest distance between kth round rationalizable strategies

of the agents. Then, one can show that in every kth round of iterations, the set of rationalizable
sets are not only bounded, but - by applying Step 1 and by the assumption SC-PC - are precisely
given based on |SEt| such that:

Rki (θi) =
[
θi ±

[
|SEt|klk−1]

i

]
∩Rk−1

i (θi) ,

where in this special case, SEtij = ∂2
ijU

t
i /∂

2
iiU

t
i if j 6= i. This means that the size of kth round

rationalizable sets, Rki (θi)→ 0 if and only if the spectral radius ρ (|SEt|) < 1. �
Proof of Lemma 5.

Step 1: (Belief-Based Components under Bid: Characterization) A differentiable function Ki :
M → R satisfies the expected value condition in (8) if and only if it can be written as

Ki (m) =
∞∑
k=0

mk
i

∑
j 6=i

Hk
ij (mj)

where
{
Hk
ij

}
j 6=i,k∈N are polynomials Hk

ij : Mj → R such that

for all m−i for which ml = mj for all j, l 6= i :
∑
j 6=i

Hk
ij (mj) = 0.

To show this step, assume, that Ki satisfies the expected value condition in (8) under Bid.
Since Ki is a continuous function, it can be approximated by Bernstein polynomials such that
Ki (m) = limn→∞

∑n
v=0Ki (m/n) bv,n (m). Since Ki is bounded, this polynomial expression can

be reorganized into a power series of mi and thus there exist polynomials Hk : M−i → R such that
Ki (m) =

∑∞
k=0Hk (m−i)mk

i .
In the next two sub-steps, we show that, since Ki satisfies the expected value condition in (8)

under Bid, these Hks are additively separable and at identical profiles, they are 0.
Step 1a: (Each Hk is additively separable.) From the polynomial format and since Ki satisfies

the expected value condition, we have that for all k, Ebθi (Hk (θ−i)) = 0 for all beliefs bθi ∈ Bidθi for
all θi. Fix a type θi. Assume, by way of contradiction, that Hk is not separable in its variables.
More specifically and without loss of generality, assume thatHk is not separable in its first argument
and, to avoid confusions in indexing, refer to this agent as j. This step relies on comparing
two constructed joint distributions which both represent identical distributions but one of them
represents perfectly correlated random variables, while the other one represents independence; that
is, the jth random variable is independent from the other n−2 variables while these n−2 variables
are again perfectly correlated.27

By the assumed non-separability, there exist θ1 ∈ [θ, θ] and θ2 ∈ [θ, θ] such that θ1 6= θ2 and

Hk

(
θ1, θ2, . . . , θ2)−Hk

(
θ2, θ2, . . . , θ2) 6= Hk

(
θ1, θ1, . . . , θ1)−Hk

(
θ2, θ1, . . . , θ1) . (17)

26To ease notation, we may write ∂2
ijU

t
i (m; θ) for ∂2Uti (m; θ) / (∂mi∂mj).

27This proof can be seen as a proof by coupling, a proof technique typically applied for topics that involve Markov
chains and other finite or nonfinite discrete probabilities, but here applied for distributions over continuous support.
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Consider the following two joint distributions over Θ−i. Let pcorr be such that it prescribes
perfect correlation for all agents in I \ {i}, and let pindep be such that it prescribes perfect
correlations for all agents in I \ {i} except for j, where j’s type is independent of the others’
types. Let these two joint distributions further be such that on all their margins, they are equal
and concentrated on the two specific values θ1 and θ2 such that for all k 6= i, margΘk p

corr =
margΘk p

indep, and on θ1: margΘk p
corr

(
{θk = θ1}

)
= margΘk p

indep
(
{θk = θ1}

)
= 0.5, and on θ2:

margΘk p
corr

(
{θk = θ2}

)
= margΘk p

indep
(
{θk = θ2}

)
= 0.5. Observe that both pcorr and pindep

are available under the belief restrictions Bid, formally, pcorr ∈ Bidθi and pindep ∈ Bidθi . For ease of
notations, let p be a probability measure over [θ, θ] such that p

(
{θk = θ1}

)
= p

(
{θk = θ2}

)
= 0.5

and let fp be p’s distribution function.
Consider the perfectly correlated joint distribution pcorr, and observe that

Ep
corr

(Hk (θ−i)) =
∫

Θ−i
Hk (θ−i) dpcorr =

∫ θ

θ

Hk (θ, θ, . . . , θ) fpdθ =

= 0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

Consider the joint distribution, with independence from θj , pindep, and observe that

Ep
indep

(Hk (θ−i)) =
∫ Θ−i

Hk (θj , θ−j,−i) dpindep =
∫ θ

θ

∫ θ

θ

Hk (θj , θ, θ, . . . , θ) fp · fpdθjdθ =

=0.25Hk

(
θ1, θ1, . . . , θ1)+ 0.25Hk

(
θ1, θ2, . . . , θ2)+ 0.25Hk

(
θ2, θ1, . . . , θ1)+

+ 0.25Hk

(
θ2, θ2, . . . , θ2) 6=

6=0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

The last negation follows from Equation (17), which recall was the consequence of non-separability,
and this negation implies that Epindep (Hk (θ−i)) 6= Epcorr (Hk (θ−i)), which would imply the con-
tradiction that Ki does not satisfy the expected value condition. And therefore, Hk must be
separable.

Step 1b: (Each Hk gives 0 at identical profiles.) Fix a type θi. Consider beliefs of i which
are identical point-distributions; distributions which are concentrated on the same type of all
other agents. Formally, consider a belief bθi such that, for some θ ∈ [θ, θ], the probability
bθi ({θj = θ for all j 6= i}) is 1 for all j 6= i. Then, bθi is included in Bidθi , moreover such point-
beliefs exist for all θ. Fix this (independent) point belief bθi . The expected value condition implies
that for the polynomial format 0 ≡

∑∞
k=1 E

bθi (Hk (θ−i)) θki and thus for any k Ebθi (Hk (θ−i)) = 0.
At identical profiles as represented by bθi , this latter means that Hk(θ, θ . . . , θ) = 0 for all θ ∈ [θ, θ],
which proves that the Hk are 0 at identical profiles.

To prove the other direction of this Step 1, assume that Ki satisfies the two conditions above,
that is Hks are additively separable and Hks give 0 at identical profiles. For a type θi and belief
bθi ∈ Bidθi , by the separability of Hks and by the boundedness of Ki, the conditional expectation

32



is such that

Ebθi (Ki (θ)) =
∫

Θ−i

∞∑
k=1

Hk (θ−i) θkdbθi =
∫

Θ−i

∞∑
k=1

∑
j 6=i

Hkj (θj) θkdbθi

=
∞∑
k=1

∑
j 6=i

[∫
Θj
Hkj (θj) dmarg

Θj
bθi

]
θk (18)

Let p denote the identical distribution over [θ, θ] such that p := margΘj bθi for all j 6= i. With
this notation, Equation (18) is

Ebθi (Ki (θ)) =
∞∑
k=1

∑
j 6=i

[∫ θ

θ

Hkj (θ) dp
]
θk =

∫ θ

θ

∞∑
k=1

∑
j 6=i

Hkj (θ) θkdp =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp,

and the two conditions,

Ebθi (Ki (θ)) =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp =
∫ θ

θ

0dp = 0.

and thus Ki satisfies the expected value condition under Bid. �

Step 2: (Properties of Kis for Full Implementation) If Ki satisfies the expected value condition
in 7, then based on the characterization in Step 1, we have that

(1) ∂Ki (mi,m−i) /∂mi =
∑∞
k=0 km

k−1
i

∑
j 6=iH

k
ij (mj) =

∑∞
k=0 km

k−1
i 0 = 0 for all mi and

m−i such that ml = mj for all j, l 6= i; and
(2)

∑
j 6=i (∂Ki (mi,m−i) /∂mj) =

∑
j 6=i

(∑∞
k=0m

k
i

∑
s6=iH

k
is (ms)

)
= 0 for all mi and m−i

such that ml = ms for all s, l 6= i. �

Finally, if (d, t) is Bid-IC, then by Lemma 2, there exist Ki : M → R which satisfies the
expected value condition in 7; and is such that U ti (m; θ) = U∗i (m; θ) +

∫mi Ki (s,m−i) ds. This
equivalence and the two properties above in Step 2 complete the proof of this Lemma. �
Proof of Proposition 1. If (d, t) achieves full Bid-implementation, then Lemmas 4 and 5, applied
to SC-PC and linear moment conditions, imply points (1.) and (2.) of this Proposition. In the
other direction, if (1.) and (2.) hold, then (2.) implies that ti’s belief-based term defines a moment
condition which satisfies the three conditions of Lemma 3, and thus (d, t) is a Bid-IC mechanism.
Therefore, (1.) implies full Bid-implementation which completes the proof of this Proposition. �
Proof of Theorem 2. To prove part 1 of Theorem 2, it is useful to characterize the resulting set
of strategies from the step by step eliminations of Bid-rationalizability.

Step 1: In every round k, for all i and θi, the set of rationalizable messages Rid,ki

(
θi|tl

)
is a

closed interval around θi.

To show this, note that by construction θi ∈Rid,ki

(
θi|tl

)
and assume thatm1,m2 ∈Rid,ki

(
θi|tl

)
.

Then, there are conjectures for which these messages are best replies, that is, there exist µ1 and
µ2 which are consistent with the k− 1-st round and with identicality such that m1 is best reply to
µ1 and m2 is best reply to µ2. Now, any convex combination λ ∈ (0, 1), λµ1 + (1− λ)µ2 is also a
conjecture which is consistent with the k− 1-st round and with Bid. Let mλ denote the best reply
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to this conjecture, which exists by the boundedness (which is implied by the differentiability) of
v, d, tl. Then, mλ is continuous in λ, therefore the closed interval [m1,m2] ⊆ Rid,ki

(
θi|tl

)
and thus

this set is closed and compact. �

Recall that agents are ordered according to the absolute value of the ratio of the sum of
their canonical externalities and own concavity, from the lowest to the highest, such that ξij :=
∂2U∗i / (∂mi∂mj) = −

(
∂2vi/∂x∂θj

)
· (∂d/∂θi), ξi :=

∑
j 6=i ξij/ξii and |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|.

Recall that under SC-PC, these canonical externalities and the cross-derivatives in the resulting
payoff functions in the loading mechanism

(
d, tl

)
are constants.

Step 2: In the loading mechanism, in every two rounds, the rate of shrinkage of the best reply
sets in the iterative eliminations is |ξ1ξ2| for all agents.

To show this step, consider the loading direct mechanism
(
d, tl

)
and the iterative elimination

process of Bid-rationalizability.
In the first round of iterations, the size of the intervals which contain the strategies that survive

the elimination derive from the loaded externality matrix such that:

SEl =



0 ξ1 0 . . . 0
ξ2 0 0 . . . 0
ξ3 0 0 . . . 0
...

...
...

. . .
...

ξn 0 0 . . . 0


and

[
Rid,1i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1] ∩ [0, 1]
[θ2 ± ξ2] ∩ [0, 1]
[θ3 ± ξ3] ∩ [0, 1]

...
[θn ± ξn] ∩ [0, 1]


.

In the second round of iterations:

(
SEl

)2 =



ξ1ξ2 0 0 . . . 0
0 ξ1ξ2 0 . . . 0
0 ξ1ξ3 0 . . . 0
...

...
...

. . .
...

0 ξ1ξn 0 . . . 0


and

[
Rid,2i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1ξ2] ∩Rid,1i

(
θ1|tl

)
[θ2 ± ξ1ξ2] ∩Rid,1i

(
θ2|tl

)
[θ3 ± ξ1ξ3] ∩Rid,1i

(
θ3|tl

)
...

[θn ± ξ1ξn] ∩Rid,1i

(
θn|tl

)


.

In the third round of iterations:

(
SEl

)3 =



0 ξ2
1ξ2 0 . . . 0

ξ1ξ
2
2 0 0 . . . 0

ξ1ξ2ξ3 0 0 . . . 0
...

...
...

. . .
...

ξ1ξ2ξn 0 0 . . . 0


and

[
Rid,3i

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ2

1ξ2
]
∩Rid,2i

(
θ1|tl

)[
θ2 ± ξ1ξ2

2
]
∩Rid,2i

(
θ2|tl

)
[θ3 ± ξ1ξ2ξ3] ∩Rid,2i

(
θ3|tl

)
...

[θn ± ξ1ξ2ξn] ∩Rid,2i

(
θn|tl

)


.

In the forth round of iterations:
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(
SEl

)4 =



ξ2
1ξ

2
2 0 0 . . . 0

0 ξ2
1ξ

2
2 0 . . . 0

0 ξ2
1ξ2ξ3 0 . . . 0

...
...

...
. . .

...
0 ξ2

1ξ2ξn 0 . . . 0


and

[
Rid,4i

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ2

1ξ
2
2
]
∩Rid,3i

(
θ1|tl

)[
θ2 ± ξ2

1ξ
2
2
]
∩Rid,3i

(
θ2|tl

)[
θ3 ± ξ2

1ξ2ξ3
]
∩Rid,3i

(
θ3|tl

)
...[

θn ± ξ2
1ξ2ξn

]
∩Rid,3i

(
θn|tl

)


.

In the fifth round of iterations:

(
SEl

)5 =



0 ξ3
1ξ

2
2 0 . . . 0

ξ2
1ξ

3
2 0 0 . . . 0

ξ2
1ξ

2
2ξ3 0 0 . . . 0
...

...
...

. . .
...

ξ2
1ξ

2
2ξn 0 0 . . . 0


and

[
Rid,5i

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ3

1ξ
2
2
]
∩Rid,4i

(
θ1|tl

)[
θ2 ± ξ2

1ξ
3
2
]
∩Rid,4i

(
θ2|tl

)[
θ3 ± ξ2

1ξ
2
2ξ3
]
∩Rid,4i

(
θ3|tl

)
...[

θn ± ξ2
1ξ

2
2ξn
]
∩Rid,4i

(
θn|tl

)


.

And so on, in the k-th round of iteration, the size of the intervals which contain the strategies
that survive the elimination derive from the loaded externality matrix to the power k and, if k is
even, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

i

(
θ1|tl

)[
θ2 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

i

(
θ2|tl

)[
θ3 ± ξk/21 ξ

k/2−1
2 ξ3

]
∩Rid,k−1

i

(
θ3|tl

)
...[

θn ± ξk/21 ξ
k/2−1
2 ξn

]
∩Rid,k−1

i

(
θn|tl

)


,

and, if k is odd, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ(k+1)/2

1 ξ
(k−1)/2
2

]
∩Rid,k−1

i

(
θ1|tl

)[
θ2 ± ξ(k−1)/2

1 ξ
(k+1)/2
2

]
∩Rid,k−1

i

(
θ2|tl

)[
θ3 ± ξ(k−1)/2

1 ξ
(k−1)/2
2 ξ3

]
∩Rid,k−1

i

(
θ3|tl

)
...[

θn ± ξ(k−1)/2
1 ξ

(k−1)/2
2 ξn

]
∩Rid,k−1

i

(
θn|tl

)


.

In words, this means that in every even round of iteration, for each type of agent 1, the
rationalizable set is either given by the previous rationalizable set or it is shrank to |ξ2| of this set
and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable set or
it is shrank to |ξ1| of this set. The alternate holds for every odd round of iteration: for each type
of agent 1, the rationalizable set is either the previous rationalizable set or it is shrank to |ξ1| of
this set and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable
set or it is shrank to |ξ2| of this set. Combining the conclusions for odd and even rounds, we get
that in every two rounds of iterations, for each type of each agent, the rationalizable set is either
unchanged or it is shrank to |ξ1ξ2| of this previous rationalizable set. �
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And thus this step implies that if the sum of canonical externalities is such that |ξ1ξ2| < 1, then
the size of the k-rationalizable sets converges to 0, and Ridi

(
θi|tl

)
= {θi} for all i for all θi. On the

other hand, if |ξ1ξ2| ≥ 1, then |ξ2| ≥ 1 and in every round k, Rid,ki

(
θ2|tl

)
= [θ2 ± 1]∩ [0, 1] = [0, 1],

in other words, all reports remain rationalizable for all types of agent 2 (and for all agents with
an index larger than 2, too) and thus full implementation via tl fails, which completes the proof
of Part 1 of this Theorem.

To show the second part of this Theorem, we need to show that the allocation function d is
Bid-implementable if and only if it is Bid-implementable via the loading transfers tl in Equation
11. The if part is straightforward. The only if part, as we show next, relies on the fact that in
any Bid-implementing direct mechanism, the externalities can not be reduced beyond the sum of
externalities in the canonical direct mechanism. The consequence of such irreducibility of exter-
nalities is reflected in each k-rationalizable set from the the step-by-step iterations, by Step 1 in
the Proof of Lemma 4. This Step, in a more general setting without assuming SC-PC, shows that
the canonical externalities are inherent in every iteration of Bid-rationalizability.

Step 3: We use Step 1 in the Proof of Lemma 4 to show that in every round k, for all i and
θi, the set of rationalizable messages of the loaded direct mechanism Rid,ki

(
θi|tl

)
are contained in

Rid,ki (θi|t), for any partially implementing direct mechanism (d, t).

To show this, fix a direct mechanism (d, t). Under SC-PC environments, Step 1 in the Proof
of Lemma 4 implies that every k-rationalizable interval of θi of any implementing (d, t) direct
mechanism contains the following set:

proj
Rid,k−1
i

(θi|t)

[
θi − ξi · lk−1,−

i,o , θi + ξi · lk−1,+
i,o

]
⊆ Rid,ki (θi|t) .

Recall that lk−1,+
i,o is the largest distance between positive misreport and the true type, which

can arise for all opponents of i based on the previous round of iteration and lk−1,−
i,o is similarly this

largest distance for negative misreport.
Next, we compare the k-rationalizable sets of (d, t) to the k-rationalizable sets of

(
d, tl

)
, where

the latter sets are already given in Step 2 of this proof. In particular, for the first round of iteration,

[θi − ξi, θi + ξi] ∩ [0, 1] ⊆ Rid,1i (θi|t) .

For the second round of iteration,

[θ1 − ξ1ξ2, θ1 + ξ1ξ2] ∩ [0, 1] ⊆ Rid,2i (θi|t) if i = 1 and

[θi − ξiξ1, θi + ξiξ1] ∩ [0, 1] ⊆ Rid,2i (θi|t) if i 6= 1.

For the third round of iteration,

[θ1 − ξ1 (ξ1ξ2) , θ1 + ξ1 (ξ1ξ2)] ∩ [0, 1] ⊆ Rid,3i (θi|t) if i = 1 and

[θi − ξi (ξ1ξ2) , θi + ξi (ξ1ξ2)] ∩ [0, 1] ⊆ Rid,3i (θi|t) if i 6= 1.

For the forth round of iteration,
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[
θ1 − ξ1

(
ξ1ξ

2
2
)
, θ1 + ξ1

(
ξ1ξ

2
2
)]
∩ [0, 1] ⊆ Rid,4i (θi|t) if i = 1 and[

θi − ξi
(
ξ2
1ξ2
)
, θi + ξi

(
ξ2
1ξ2
)]
∩ [0, 1] ⊆ Rid,4i (θi|t) if i 6= 1.

Observe that in these expressions on the left hand side, the iterated sets derived based on
Step 1 in the Proof of Lemma 4 for every k coincide with the iterated rationalizable sets of the
loaded direct mechanism

(
d, tl

)
, and thus by induction, for all k, Rid,ki

(
θi|tl

)
⊆ Rid,ki (θi|t) for

any partially implementing direct mechanism (d, t), which completes the proof of this step. �
Since, as we assumed, (d, t) achieves full Bid-implementation, by the containments, we must

have that as k →∞, |Rid,ki

(
θi|tl

)
| → 0, and thus

(
d, tl

)
achieves full Bid-implementation too. �

Proof of Lemma 6. By the Gershgorin circle theorem, both under condition (i) and (ii) the
absolute value of all eigenvalues of |SEt| are smaller than 1, which by the eigenvalue lemma in
Lemma 4 ensures full Bid-implementation. �
Proof of Proposition 2. The equal-externality transfer scheme te under the assumption of
SC-PC is Bid-IC. Moreover, te induces a strategic externality matrix which is such that for all
i, j 6= i, SEeij =

(∑
j 6=i

∂2vi
∂x∂θj

/ ∂2vi
∂x∂θi

)
1

n−1 . For this externality matrix, notice that condition (i) of
this Proposition implies condition (i) of Lemma 6; and condition (ii) of this Proposition implies
condition (ii) of Lemma 6, and thus by Lemma 6, full Bid-implementation follows. �
Proof of Proposition 3. Under SC-PC, te ensures Bid-incentive compatibility. Next, we show
that te ensures full Bid-implementation too.

First, assume that there exists a transfer scheme t which ensures full Bid-implementation and
limited strategic externalities as in (i) of Lemma 6.

By the characterization of belief-based terms for Bid-IC in the Proof of Lemma 5, there exists
(m, θ) for which

∑
j 6=i SE

t
ij (m; θ) =

∑
j 6=i SE

∗
ij .28 Next we show that te induces an externality

matrix which satisfies the conditions of the eigenvalue lemma in Lemma 4. By construction of te,∑
j 6=i |SEeij | =

∑
j 6=i |

∑
j 6=i SE

∗
ij/ (n− 1) | = |

∑
j 6=i SE

∗
ij |. And thus, there exists (m, θ) such that∑

j 6=i |SEeij | = |
∑
j 6=i SE

t
ij (m; θ) | ≤

∑
j 6=i |SEtij (m; θ) | < 1. The latter strict inequality holds by

(i) of Lemma 6 and thus by the Gershgorin circle theorem, ρ|SEe| < 1 and thus by the eigenvalue
lemma, Lemma 4 te too ensures full Bid-implementation.

Second, assume that there exists a transfer scheme t which ensures full Bid-implementation
and limited strategic impacts as in (ii) of Lemma 6.

By the characterization of belief-based terms for Bid-IC in the Proof of Lemma 5, there exists
(m, θ) for which |

∑
i∈I
∑
j 6=i SE

∗
ij | = |

∑
i∈I
∑
j 6=i SE

t
ij (m; θ) | ≤

∑
i∈I
∑
j 6=i |SEtij (m; θ) | and

thus, by t satisfying (ii) of Lemma 6, |
∑
i∈I
∑
j 6=i SE

∗
ij | < n and writing this with the total

externality notation,
∑
i∈I ξi < n. Now, consider the absolute externality matrix induced by the

equal-externality transfers te. In what follows, using the Perron-Frobenius theorem, we show that
this matrix has a spectral radius which is less than 1. |SEe| is a non-negative matrix, with zeros
in its diagonal and by its construction, for all i and j 6= i, |SEe|ij = |

∑
j 6=i SE

∗
ij |/ (n− 1), in other

notation, |SEe|ij = |ξi| / (n− 1). Let ρ denote the largest eigenvalue of this matrix. (Assume
that ξis, the absolute total canonical externalities, are ordered as before, based on their absolute
values, from the smallest to the largest.) By the Perron-Frobenius theorem, there is a positive
1-norm vector v ∈ Rn such that ρv = |SEe|v. The componentwise consequence of this is that,

28Closely related to the externality matrix, in this proof, we let S(t)
ij (m; θ) := ∂2

ijU
(t)
i (m; θ) /∂2

iiU
(t)
i (m; θ).
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for all i, ρ vi
|ξi| =

∑
j 6=i

vj

n−1 , which also implies that if |ξi| ≤ |ξj |, then vi ≥ vj . Adding up these

n equations and expressing ρ, gives that ρ =
∑

j∈I
vi∑

j∈I
vi

|ξi|
, which is a weighted harmonic mean of

ξis with weights vis. And thus from a weighted harmonic mean – arithmetic mean inequality,

ρ =
∑

j∈I
vi∑

j∈I
vi

|ξi|
≤
∑
i∈I

vi∑
j∈I

vj
|ξi|. Since larger |ξi|s have smaller weights, this latter expression is

bounded by the average of |ξi|s, and thus ρ ≤
∑
i∈I
|ξi|
n < 1. Recall from above that, the latter

strict inequality is a consequence of t satisfying (ii) of Lemma 6. Therefore, by the eigenvalue
lemma, Lemma 4, te ensures full Bid-implementation. �
Proof of Proposition 4. Observe that, under symmetric aggregators in valuations,

∑
k 6=i

∂2vi
∂x∂θk

is the same for all agents:

∑
k 6=i

∂2vi
∂x∂θk

=
∑
k 6=i

∂2
x,hw ·

∂hi
∂θk

= ∂2
x,hw ·

∑
k 6=i

∂hi
∂θk

= ∂2
x,hw

∑
k 6=j

∂hj
∂θk

for all j

=
∑
k 6=j

∂2vj
∂x∂θk

for all j.

Observe also that, under symmetric aggregators in valuations, ∂2vi
∂x∂θi

is the same for all agents:

∂2vi
∂x∂θi

= ∂2
x,hw ·

∂hi
∂θi

= ∂2
x,hw ·

∂hj
∂θj

for all j

= ∂2vj
∂x∂θj

for all j.

To prove part 2 of this proposition, recall the characterization of Theorem 2, which says that
an increasing allocation function is full Bid-implementable if and only if |ξ1ξ2| < 1. This latter
condition is equivalent to |

∑
k 6=1

∂2v1
∂x∂θk

·
∑
k 6=2

∂2v2
∂x∂θk

| < ∂2v1
∂x∂θ1

· ∂
2v2

∂x∂θk
. Under symmetric aggregators,

this latter inequality is equivalent to |
∑
k 6=i

∂2vi
∂x∂θk

| < ∂2vi
∂x∂θi

for all i, which completes the proof of
this part.

To prove part 1 of this proposition, note that from Theorem 2, if the equal-externality mecha-
nism (d, te) achieves full Bid-implementation, then the loaded direct mechanism

(
d, tl

)
achieves this

too. To prove the other direction, note that if the loaded direct mechanism
(
d, tl

)
achieves full Bid-

implementation, then by the previous part of this proof, we have
∣∣∣∑k 6=i

∂2vi
∂x∂θk

∣∣∣ < ∂2vi
∂x∂θi

for every i,
and (i) of Proposition 2 implies that the equal-externality transfers ensure full Bid-implementation
too, which completes the proof of this part. �
Proof of Proposition 3. Fix α and fix an SC-PC environment

(
dPC , vPC

)
. Consider an environ-

ment (dα, vα), which is α-close to
(
dPC , vPC

)
. In this environment, consider the direct mechanism

given by the transfer scheme in Equation 13.

tαi (m) = t∗,αi (m) + L
(l,PC)
i (m−i)mi.

These transfers feature an additive modification of this environment’s canonical transfers, and
the additive term is defined by what the loading modification would be in the α-close SC-PC
environment

(
dPC , vPC

)
.

First, notice that this direct mechanism is Bid-incentive compatible. This is so because t∗
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is incentive compatible and because under the belief restriction of identicality (identicality and
independence), in the first order condition, Ebθi

(
L

(l,PC)
i (θ−i)

)
= 0 for all θi and for all i, more-

over the second order condition is the same as the second order condition of the canonical direct
mechanism, which by assumption is negative, and thus ensures optimality.

Second, we show that there exists α0 > 0, such that for all smaller α > 0, the direct
mechanism tα guarantees externalities which satisfy the eigenvalue condition of the eigenvalue
lemma, Lemma 4. To this end, fix α such that 0 < α < mini |ξii|. To study the external-
ity matrix of the direct mechanism (d, tα), notice that, because of α-closeness, for all (i, j) ∈

{(1, 2) , (2, 1) , (3, 1) , . . . , (n, 1)}, |SEα|ij = maxm,θ |∂2
ijU

α
i (m;θ)|

minm,θ |∂2
ii
Uα
i

(m;θ)| ≤
|
∑

j 6=i
ξij |+α

|ξii|−α =: |E∨α |ij , and for all

other (i, j) such that i 6= j, |SEα|ij = maxm,θ |∂2
ijU

α
i (m;θ)|

minm,θ |∂2
ii
Uα
i

(m;θ)| ≤
α

|ξii|−α =: |E∨α |ij . Let |E∨α |ii := 0 for
all i ∈ I. Based on these definitions, if α → 0, then element-wise, |SEα| < |E∨α | → |SEl,PC |,
where the latter matrix is the loaded externality matrix in

(
dPC , vPC

)
. Since

(
dPC , vPC

)
admits

full Bid-implementation, by Theorem 2, ρ
(
|SEl,PC |

)
=
√
ξ1ξ2 < 1. And thus, by the continu-

ity of the spectral radius, there exists α0 > 0 such that for all α < α0, ρ (|E∨α |) < 1, and thus,
ρ (|SEα|) ≤ ρ (|E∨α |)29, therefore, ρ (|SEα|) < 1 too. And thus the eigenvalue condition of Lemma
4 holds and it implies that for all α < α0, for an α-close environment (dα, vα), the transfers tα, as
given in Equation 13 ensure Bid-Implementation. �
Proof of Lemma 7. Recall that it is the consequence of SC-PC and linear moment conditions that
in the utility functions of the direct mechanism (d, t), the second order derivatives are constants.
Formally, let Gi be t’s moment condition-based part and since it is linear in mi for all i it can be
written as Gi (m) = Li (m−i)mi; and ∂2

ijUi is constant in θ and m, for all i and j. Then, for any
µ ∈ CBidθi

, adding and subtracting Li (θ−i), applying Leibniz’s rule and the triangle inequality, we
have that∣∣∣∣∂EUµθi∂mi

(θi)
∣∣∣∣ =

∣∣∣∣∣
∫

Θ−i×M−i

(
∂vi
∂x

(d (θi,m−i) , θ)−
∂vi
∂x

(d (θi,m−i) , θi,m−i)
)
∂d

∂θi
(θi,m−i)

+ Li (m−i)− Li (θ−i) + Li (θ−i)− fi (θi) dµ|

≤
∫

Θ−i×M−i

∑
j 6=i

∣∣∣∣ ∂2Ui
∂mi∂mj

∣∣∣∣ |θj −mj | dµ+ ε ≤
∑
j 6=i

∣∣∣∣ ∂2Ui
∂mi∂mj

∣∣∣∣+ ε. (19)

These inequalities hold with equality when the RHS is projected to the [0, 1] interval for a conjecture
µ, which is concentrated on profiles such that θj−mj has the opposite sign as the partial derivative
and is of distance one. [check such µ conjecture is valid].

For anymi ∈ RB,1i (θi), there exists µ ∈ CBθi such thatmi ∈ BRθi (µ), fix this µ. Sincemi is best
reply, it minimizes the first-order partial derivative. Using (19), by the concavity of the expected

utility function, for this µ ∈ CBθi , we have that
∣∣∣∣∂EUµθi∂mi

(mi)−
∂EUµ

θi

∂mi
(θi)
∣∣∣∣ ≤∑j 6=i

∣∣∣ ∂2Ui
∂mi∂mj

∣∣∣+ ε. By

the mean value theorem, there exists si ∈Mi such that
∣∣∣∣∂2EUµ

θi

∂2mi
(si)
∣∣∣∣ |mi − θi| ≤

∑
j 6=i

∣∣∣ ∂2Ui
∂mi∂mj

∣∣∣+
29To see this inequality, recall Gelfand’s formula, which characterizes the spectral radius of a matrix A such that

ρ (A) = limk→∞ ||Ak||1/k. One can check using Gelfand’s formula that if a non-negative matrix A is element-wise
dominated by a non-negative matrix B, that is if Aij ≤ Bij for all i, j, then ρ (A) ≤ ρ (B), which implies the
inequality above.
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ε. Recall that the second order derivative is constant and the same as in the canonical direct
mechanism, therefore, for all θi and mi ∈ RB,1i (θi),

|mi − θi| ≤
∑
j 6=i
∣∣∂2
ijUi

∣∣+ ε

|∂2
iiUi|

.

Thus in this first round of iterative eliminations, with notation A1 := |SEt|+ [ε, 0]C for all θi the
rationalizable messages are

RB
id,ε,1

i (θi) = [θi ± [A11]i] ∩ [0, 1]

In the second round of iterative eliminations, for any mi ∈ RB,2i (θi), there exists µ ∈ CBθi ∩
RB,1i (θi) such that mi ∈ BRθi (µ). For the Taylor-expansion of ∂EUµθi/∂mi at θi around mi

there exists si ∈ Mi such that
∂EUµ

θi

∂mi
(θi) =

∂EUµ
θi

∂mi
(mi) +

∂2EUµ
θi

∂2mi
(si) (θi −mi) . Since mi is best

reply to µ and EUµθi (mi) is strictly concave, we have that
∣∣∣∣∂2EUµ

θi

∂2mi
(si)
∣∣∣∣ |θi −mi| ≤

∣∣∣∣∂EUµθi∂mi
(θi)
∣∣∣∣.

Further bounding this by adding and subtracting Li (θ−i), applying Leibniz’s rule and the triangle

inequality, we get that
∣∣∣∣∂EUµθi∂mi

(θi)
∣∣∣∣ ≤ ∫Θ−i×M−i∑j 6=i

∣∣∂2
ijUi

∣∣ |θj −mj | dµ+ ε. Therefore, for all θi

and mi ∈ RB,2i (θi)

|θi −mi| ≤
∑
j 6=i

|∂2
ijUi|
|∂2
iiUi|

∑
l 6=j

|∂2
jlUj |+ ε

|∂2
jjUj |

+ ε

|∂2
iiUi|

Thus in this second round of iterative eliminations, with notation A2 := |SEt|2+[ε, 0] |SEt|C+
[ε, 0]C for all θi the rationalizable messages are

RB
id,ε,2

i (θi) = [θi ± [A21]i] ∩ [0, 1]

By induction, at the kth round, with notationAk := |SEt|k+[ε, 0] |SEt|k−1C+. . .+[ε, 0] |SEt|C+
[ε, 0]C = |SEt|k+[ε, 0]

(
I − |SEt|k

)
(I − |SEt|)−1

C (the latter equality assuming that ρ (|SEt|) <
1. ) for all θi the rationalizable messages are

RB
id,ε,k

i (θi) = [θi ± [Ak1]i] ∩ [0, 1]

Taking limits as k →∞, we have that for all i and θi, the rationalizable messages for all θi are

RB
id,ε

i (θi) =
[
θi ±

[(
[ε, 0]

(
I − |SEt|

)−1
C
)

1
]
i

]
∩ [0, 1]

�

Proof of Proposition 5.
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For the loading transfers tl, the inverse of I − |SEl| is as follows:

(
I − |SEl|

)−1 =



1 −|ξ1| 0 . . . 0
−|ξ2| 1 0 . . . 0

−|ξ3| 0 1
...

...
...

... 0
. . . 0

−|ξm| 0 . . . 0 1



−1

= 1
1− |ξ1ξ2|



1 |ξ1| 0 . . . 0
|ξ2| 1 0 . . . 0

|ξ3| |ξ1ξ3| 1− |ξ1ξ2|
...

...
...

... 0
. . . 0

|ξm| |ξ1ξm|
... 0 1− |ξ1ξ2|


.

For the equal-externality transfers te, the inverse of I − |SEe|, under symmetric aggregators,
is

(I − |SEe|)−1 =



1 − |ξ|
(n−1) − |ξ|

(n−1) . . . − |ξ|
(n−1)

− |ξ|
(n−1) 1 − |ξ|

(n−1) . . . − |ξ|
(n−1)

− |ξ|
(n−1) − |ξ|

(n−1) 1
...

...
...

... − |ξ|
(n−1)

. . . − |ξ|
(n−1)

− |ξ|
(n−1) − |ξ|

(n−1) . . . − |ξ|
(n−1) 1



−1

= 1(
1 + |ξ|

n−1

)
(1− |ξ|)


1− (n−2)|ξ|

n−1
|ξ|
n−1 . . . |ξ|

n−1
|ξ|
n−1 1− (n−2)|ξ|

n−1 . . . |ξ|
n−1

...
...

. . . |ξ|
n−1

|ξ|
n−1 . . . |ξ|

n−1 1− (n−2)|ξ|
n−1

 .
Applying Lemma 7 to these inverses, one can notice that for the loading transfers, for all k > 1,

ηt
l

(ε, k) = 1 + |ξ|
1− ξ2 ε = 1

1− |ξ|ε,

and for the equal-exgternality transfers,

ηt
e

(ε, k) =
1− n−2

n−1 |ξ|+
k−1
n−1 |ξ|(

1 + |ξ|
n−1

)
(1− |ξ|)

ε =
1− n−k−1

n−1 |ξ|(
1 + |ξ|

n−1

)
(1− |ξ|)

ε.

Comparing
1

1− |ξ| to
1− n−k−1

n−1 |ξ|(
1 + |ξ|

n−1

)
(1− |ξ|)

is equivalent to comparing

1 + |ξ|
n− 1 to 1− n− k − 1

n− 1 |ξ|,
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from which we get that for all 1 < k < n and for all ε > 0, ηte (ε, k) < ηt
l (ε, k), in other words,

the equal-externality transfers are less sensitive to mistakes in play. �
Proof of Theorem 4. See the proof of Step 3 in the Proof of Theorem 2. �
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