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Abstract

The link between income inequality and progressive taxation has long been considered a

fundamental normative foundation for income tax progressivity. This paper furnishes

necessary and sufficient conditions on primitives, in terms of the elasticity of income

with respect to ability, under which various subclasses of progressive taxes are inequality

reducing. The distributional effects of progressive income taxation are decomposed into

two conditions on the wage elasticity of income, the tax rate effect and the subsidy effect,

each capturing different aspects of the transition between before-tax and after-tax income

distributions. The results confer a degree of useful flexibility to the theory, in that they

allow the analyst to expand the universe of consumer preferences by suitably restricting

the set of marginal-rate progressive taxes. As an illustration of the results’ practical

implications, we provide a precise characterization of the subclass of (progressive) taxes

that are inequality reducing for the constant elasticity of substitution (CES) and the

quasi-linear utility functions.
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1 Introduction

The link between income inequality and progressive taxation uncovered in the seminal works

of Jakobsson (1976) and Fellman (1976) has long been considered a fundamental normative

foundation for income tax progressivity.1 In a recent paper, Carbonell-Nicolau and Llavador

(2018) extended the classic result of Jakobsson (1976) and Fellman (1976)—according to

which average-rate progressive, and only average-rate progressive income taxes, reduce

income inequality—to the case of endogenous income. There it was shown that marginal-

rate progressivity—in the sense of increasing marginal tax rates on income—is a necessary

condition for tax structures to be inequality reducing, and necessary and sufficient conditions

on preferences were identified under which progressive and only progressive taxes are

inequality reducing. While this result circumvents the difficulties and the negative results

emphasized by other authors in their attempts to incorporate the disincentive effects of

taxation (see, e.g., Allingham (1979) and Ebert and Moyes (2003, 2007)), it confines attention

to the conditions under which the set of all marginal-rate progressive taxes are inequality

reducing. Evidently, requiring larger families of tax schedules to be inequality reducing

results in stronger conditions on consumer preferences. In fact, the conditions derived in

Carbonell-Nicolau and Llavador (2018) may be regarded, in some cases, as overly restrictive:

while they are fulfilled by some standard classes of preferences—such as the Cobb-Douglas

preferences and the so-called GHH preferences (see Greenwood et al., 1988)—this paper

illustrates that there are important sets of preferences—such as the constant elasticity of

substitution (CES) and the quasi-linear families of utility functions—that violate them. A

natural question, therefore, is whether there are subclasses of marginal-rate progressive tax

schedules that are inequality reducing for larger collections of preferences.

This paper identifies necessary and sufficient conditions on consumer preferences ensur-

ing that various subclasses of progressive taxes are inequality reducing. Considering strict

subclasses of progressive tax schedules allows us to work with larger families of preferences

consistent with an after-tax equalization of incomes. The results obtained here are a strict

generalization of those in Carbonell-Nicolau and Llavador (2018), and confer a degree of

useful flexibility to the theory, in that they allow the analyst to expand the universe of

consumer preferences by suitably restricting the set of marginal-rate progressive taxes.

Our analysis is formulated within the classical Mirrlees (1971) framework. We consider

continuous, piecewise linear, nondecreasing tax schedules that preserve the ranking of pre-

tax incomes. The allowable constraints on taxes take the form of subsidies (negative taxes)

1The literature on the redistributive effects of tax systems was initiated by Musgrave and Thin (1948). The
contributions of Jakobsson (1976) and Fellman (1976) led to a large body of literature on the foundations of tax
progressivity (see, e.g., Kakwani (1977); Hemming and Keen (1983); Eichhorn et al. (1984); Liu (1985); Formby
et al. (1986); Thon (1987); Latham (1988); Thistle (1988); Moyes (1988, 1994); Le Breton et al. (1996); Ebert and
Moyes (2000); Ju and Moreno-Ternero (2008)).

Other normative rationales for income tax progressivity are based on the principle of equal sacrifice (see
Samuelson (1947); Young (1990); Berliant and Gouveia (1993); Ok (1995); Mitra and Ok (1996, 1997); D’Antoni
(1999)) and on measures of income polarization (see Carbonell-Nicolau and Llavador (forthcoming)).
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and/or subsets of [0%,100%) for the marginal tax rates. Each lower bound on the subsidy

received by the agents in the economy, together with a subset of possible marginal tax rates

for each tax bracket, gives rise to a subclass of marginal-rate progressive tax schedules. A

major result of the paper (Theorem 4) characterizes, for each such subclass T , the family of

preferences that renders the members of T inequality reducing.

Another important contribution is the decomposition of the distributional effects of

progressive income taxation into two conditions on the wage elasticity of income, the tax
rate effect and the subsidy effect, each capturing different aspects of the transition between

before-tax and after-tax income distributions. The subsidy effect measures how the elasticity

of income with respect to ability changes when an agent receives a subsidy, while the tax

rate effect measures the variation in this elasticity when an agent’s income is subjected to

a proportional tax rate. Our main condition characterizing inequality reducing subclasses

of tax schedules is formulated in terms of the elasticity of income with respect to ability,

and requires that the two effects combined reduce this elasticity. However, either effect may

increase the elasticity, as long as it is offset by the other effect. Because a proportional tax

rate reduces an agent’s “effective ability,” a negative tax rate effect implies that (before-tax)

incomes are more sensitive to marginal tax rates as the ability of a worker increases; in

this case, a progressive tax schedule tends to reduce income inequality. A negative subsidy

effect implies that (after-tax) incomes become relatively less sensitive to ability with the

introduction of a subsidy, thereby reducing income dispersion. A marginal-rate progressive

tax schedule is inequality reducing if and only if the sum of the two effects is negative. For

example, a sufficiently large negative subsidy effect may compensate a positive tax rate

effect.

Because the wage elasticity of income can be expressed in terms of the elasticity of

substitution between consumption and leisure and the wage elasticity of leisure, our main

results can be reformulated directly in terms of the last two elasticities. This reformulation

sheds light on the role of the elasticity of substitution between consumption and leisure in

the characterization of inequality reducing tax systems.

As an illustration of the result’s practical implications, we provide a precise character-

ization of the subclass of (progressive) taxes that are inequality reducing for the constant

elasticity of substitution (CES) and the quasi-linear utility functions. These preferences are

pervasive in surveys and textbooks on labor supply and fiscal policy (see, e.g., Pencavel, 1986;

Killingsworth and Heckman, 1986; Auerbach and Kotlikoff, 1987; Keane, 2011; Blundell

et al., 2016). In addition, the CES utility function (often in its Cobb-Douglas form) is widely

used in the literature on life-cycle models (see, e.g., Heckman and MaCurdy, 1982; French,

2005; Blundell et al., 2016), while static models with fixed costs traditionally work with

quasi-linear preferences (Cogan, 1981).

The remainder of the paper is organized as follows. Section 2 introduces the formal

setting. It defines the set of piecewise linear tax schedules, it describes the agent’s problem

and introduces Lorenz dominance as the inequality criterion. The main results are presented
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in Section 3. Section 4 studies applications to the CES and the quasi-linear utility functions,

providing a precise characterization of the inequality-reducing subclasses of progressive

taxes for these preferences. Section 5 situates our assumptions on consumer preferences

in the context of a broader literature that emphasizes reference dependence, loss aversion,

relative consumption, inequality aversion, and tax compliance. It also compares, from a

methodological perspective, our analysis with the literature on optimal income taxation, and

discusses avenues for future research. All proofs are relegated to the Appendix.

2 Preliminaries

The setting is the same as that of Carbonell-Nicolau and Llavador (2018). There are n
individuals. The utility function is given by a continuous utility function u :R+× [0,1]→R
defined over consumption-labor pairs (c, l) ∈R+×[0,1] such that u(·, l) is strictly increasing in

c for each l ∈ [0,1), and u(c, ·) is strictly decreasing in l for each c > 0. The map u is assumed

strictly quasiconcave on R++× [0,1) and twice continuously differentiable on R++× (0,1). For

(c, l) ∈R++× (0,1), let

MRS(c, l) :=−ul(c, l)
uc(c, l)

denote the marginal rate of substitution of labor for consumption, where

uc(c, l) := ∂u(c, l)
∂c

and ul(c, l) := ∂u(c, l)
∂l

.

We assume that for each c > 0,

lim
l→1− MRS(c, l)=+∞ and lim

l→0+ MRS(c, l)<+∞. (1)

The set of all utility functions satisfying the above conditions is denoted by U .

We restrict attention to nondecreasing and order-preserving piecewise linear tax sched-

ules.

Definition 1. Let (α0, t, y) = (
α0, (t0, ..., tK ), (y0, ..., yK )

)
, where α0 ≥ 0, K ∈Z+, tk ∈ [0,1) for

each k ∈ {0, ...,K}, tk 6= tk+1 whenever k ∈ {0, ...,K −1} and K ≥ 1, and 0 = y0 < ·· · < yK . A

(K +1)-bracket piecewise linear tax schedule is a real-valued map T on R+ uniquely

determined by (α0, t, y) as follows:

T(y) :=



−α0 + t0 y if 0= y0 ≤ y≤ y1,

−α0 + t0 y1 + t1(y− y1) if y1 < y≤ y2,
...

...

−α0 + t0 y1 + t1(y2 − y1)+·· ·+ tK−1(yK − yK−1)+ tK (y− yK ) if yK < y.

Here T(y) is interpreted as the tax liability for gross income level y. We write (α0, t, y)

and the associated map T interchangeably. Note that for K = 0, (α0, t0, y0 = 0) is a linear tax
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with intercept α0 and marginal tax rate t0; for K = 1, (α0, (t0, t1), (y0, y1)) is a two-bracket tax

with intercept α0, marginal tax rates t0 and t1, and bracket threshold y1; and so on.

The set of piecewise linear tax schedules is denoted by T .

The following notion of tax progressivity, which requires that marginal tax rates be

nondecreasing with income, plays an essential role in our results.

Definition 2. A tax schedule T ∈T is marginal-rate progressive if it is a convex function.

The set of all marginal-rate progressive tax schedules in T is denoted by Tprog.

Linear tax schedules play an important role in the analysis, and it is convenient to

introduce their formal definition.

Definition 3. A tax schedule T ∈T is linear if T(y)=−b+ ty for all y ∈R+ and some b ≥ 0

and t ∈ [0,1).

Denote the set of all linear tax schedules in T as Tlin.

Individuals differ in their abilities. An ability distribution is a vector a= (a1, . . . ,an) ∈
Rn++ such that a1 ≤ ·· · ≤ an. The set of all ability distributions is denoted by A .

An agent of ability a > 0 who chooses l ∈ [0,1] units of labor and faces a tax schedule

T ∈ T consumes c = al −T(al) units of the good and obtains a utility of u(c, l). Thus, the

agent’s problem is

max
l∈[0,1]

u (al−T(al), l) . (2)

Because the members of U and T are continuous, for given u ∈U , a > 0, and T ∈T , the

optimization problem in (2) has a solution, although it need not be unique. A solution
function is a map lu : R++ ×T → [0,1] such that lu(a,T) is a solution to (2) for each

(a,T) ∈ R++×T . The pre-tax and post-tax income functions associated to a solution

function lu, denoted by yu :R++×T →R+ and xu :R++×T →R+ respectively, are given by

yu(a,T) := alu(a,T) and xu(a,T) := alu(a,T)−T
(
alu(a,T)

)
.

Given a > 0, let Ua :R+× [0,a] →R be defined by Ua(c, y) := u(c, y/a). For (c, y,a) ∈R3++
with y< a, define

Ua
c (c, y) := ∂Ua(c, y)

∂c
, Ua

y (c, y) := ∂Ua(c, y)
∂y

, and ηa(c, y) :=−
Ua

y (c, y)

Ua
c (c, y)

.

The following condition was introduced by Mirrlees (1971, Assumption B, p. 182) and

termed agent monotonicity by Seade (1982).

Definition 4. A utility function u ∈U satisfies agent monotonicity if ηa(c, y)≥ ηa′
(c, y) for

each (c, y) ∈R2+ and 0< a < a′ with y< a.

Agent monotonicity is a single crossing condition whereby the consumers’ indifference

curves in the space of pre-tax income-consumption pairs, (y, c), are flatter for more productive
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agents. It is equivalent to the condition that (in the absence of taxation) consumption is a

nondecreasing function with respect to productivity, for any nonwage income (Mirrlees, 1971,

p. 182). Any preference violating the agent monotonicity condition would necessarily treat

consumption as an inferior good (Myles, 1995, p. 136).

The set of all the members of U satisfying agent monotonicity is denoted by U ∗.

Inequality comparisons are based on the standard relative Lorenz ordering. An income
distribution is a vector z = (z1, ..., zn) ∈ Rn+ of incomes arranged in increasing order, i.e.,

z1 ≤ ·· · ≤ zn. Given two income distributions z = (z1, ..., zn) and z′ = (z′1, ..., z′n) with zn, z′n > 0,

we say that z is at least as equal as z′ if z Lorenz dominates z′, i.e., if

∑k
i=1 zi∑n
i=1 zi

≥
∑k

i=1 z′i∑n
i=1 z′i

, for all k ∈ {1, ...,n}. (3)

For u ∈ U ∗, and given pre-tax and post-tax income functions yu and xu, an ability

distribution a = (a1, ...,an) ∈ A and a tax schedule T ∈ T determine a pre-tax income
distribution

yu(a,T) := (
yu(a1,T), ..., yu(an,T)

)
and a post-tax income distribution

xu(a,T) := (
xu(a1,T), ..., xu(an,T)

)
.2

In the absence of taxation, i.e., if T ≡ 0, one has yu(a,0)= xu(a,T).

The following is the central notion of inequality reducing tax schedule.

Definition 5. Let u ∈ U . A tax schedule T ∈ T is income inequality reducing with
respect to u, which we denote as u-iir, if xu(a,T) Lorenz dominates yu(a,0) for each ability

distribution a := (a1, ...,an) ∈A and for each pre-tax and post-tax income functions yu and

xu.

Observe that the ‘iir’ relation compares post-tax income distributions with the income

distribution in the absence of taxation, and requires the former to be at least as equal as the

latter, according to the relative Lorenz criterion.

3 The results

To begin, we recapture a result from Carbonell-Nicolau and Llavador (2018).

Theorem 1 (Carbonell-Nicolau and Llavador (2018, Theorem 1)). Given u ∈ U ∗, a tax
schedule in T is u-iir only if it is marginal-rate progressive.

Theorem 1 asserts that marginal-rate progressivity is necessary for a tax schedule to

be inequality reducing. With endogenous income (and unlike in the endowment economy

2Under the agent monotonicity condition, in both cases the vector components are arranged in increasing
order. See Carbonell-Nicolau and Llavador (2018).
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framework of Jakobsson (1976) and Fellman (1976)), the effect of a tax on gross incomes, in

addition to the disposition of its tax rates, determines the distributional effects of taxation.

This suggests that consumer preferences, and their interaction with tax structures, are

bound to play an important role in the formulation of inequality reducing properties of tax

systems. The main result in Carbonell-Nicolau and Llavador (2018) demonstrates that this is

indeed the case: only certain classes of preferences guarantee that the set of all marginal-rate

progressive taxes are iir.

The contribution of this paper is threefold. First, we show that requiring all marginal-rate

progressive tax schedules to be iir may be overly restrictive. Indeed, such a requirement

rules out common classes of preferences, such as the constant elasticity of substitution (CES)

and the quasi-linear utility functions. Second, we extend the analysis in Carbonell-Nicolau

and Llavador (2018) by identifying necessary and sufficient conditions on preferences for

which various subsets of progressive tax schedules are iir. This allows us to identify the

utility functions within the CES and the quasi-linear families for which there exist subsets of

progressive, iir tax schedules (Section 4). Finally, we decompose the effect of a tax schedule

on income inequality into two conditions on the wage elasticity of income, called the tax

rate effect and the subsidy effect, shading light on the forces that determine whether tax

schedules are inequality reducing.

Consider subclasses of Tprog characterized by the number of brackets and the ranges for

their intercepts with the vertical axis and their marginal tax rates. Formally, given K ∈Z+,

B ⊆R+ and subsets R0, ...,RK of [0,1), let Tprog(B,R0, ...,RK ) be the set of all (K +1)-bracket

marginal-rate progressive tax schedules (α0, (t0, ..., tK ), (y0, ..., yK )) ∈ Tprog with intercept

α0 ∈ B, marginal tax rates t0, ..., tK with tk ∈ Rk for each k ∈ {0, ...,K}, and bracket thresholds

y1, ..., yK , i.e.,

Tprog(B,R0, ...,RK ) := {
(α0, (t0, ..., tK ), (y0, ..., yK )) ∈Tprog :α0 ∈ B and (t0, ..., tK ) ∈ R0 ×·· ·×RK

}
.

Let D be the set of all (B, (Rk)∞k=0) with B ⊆R+ and Rk ⊆ [0,1) for each k. For each (B, (Rk)) ∈
D, define

Tprog(B, (Rk)) := ⋃
K∈Z+

Tprog(B,R0, ...,RK ).

When R0 = R1 = ·· · = R, we write Tprog(B,R) for Tprog(B, (Rk)). Observe that Tprog =
Tprog(R+, [0,1)).

Given B ⊆R+ and R ⊆ [0,1), define

Tlin(B,R) := {−b+ ry ∈Tlin : b ∈ B and r ∈ R}

and

B := ⋃
b∈B

{
b′ ∈R+ : b′ ≥ b

}
.
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The next theorem provides a necessary and sufficient condition for all the members in

the subclass Tprog(B, (Rk)) of Tprog to be iir.3

Theorem 2. Given u ∈U ∗ and (B, (Rk)) ∈D,

[
Tu-iir ⊆Tprog

]
and

[
Tprog(B, (Rk))⊆Tu-iir ⇐⇒Tlin

(
B,

⋃
k

Rk

)
⊆Tu-iir

]
.

The first containment follows immediately from Theorem 1. The bracketed equivalence

asserts that the members of the set Tprog(B, (Rk)) of progressive tax schedules in Tprog whose

intercept α0 is greater than or equal to the infimum of B (infB) and whose k-th marginal tax

rate tk lies in Rk are all iir if and only if all the linear taxes with intercept greater than or

equal to infB and marginal tax rates in
⋃

k Rk are iir.

For B =R+ and Rk = [0,1) for each k, one has that Tprog(B, (Rk))=Tprog and Tlin(B,
⋃

k Rk)=
Tlin; in this case, Theorem 2 immediately gives Theorem 2 in Carbonell-Nicolau and Llavador

(2018):

Corollary 1 (to Theorem 2). Given u ∈U ∗, Tu-iir =Tprog if and only if the members of Tlin

are u-iir.

Theorem 2 implies that in order to determine whether the members of Tprog(B, (Rk))

are iir, one can restrict attention to the inequality reducing properties of the subclass

Tlin(B,
⋃

k Rk) of linear tax schedules.

We now provide necessary and sufficient conditions on preferences under which the

subclasses Tprog(B, (Rk)) of marginal-rate progressive taxes are inequality reducing. In light

of Theorem 2, this is tantamount to characterizing the family of preferences for which the

members of a subset Tlin(B,R) are inequality reducing (this is done in Theorem 3 below).

This characterization then allows us to present a variant of Theorem 2 in terms of first

principles (see Theorem 4 below).

When T is a linear tax schedule in Tlin with T(y)=−b, where b ≥ 0, we write lu(a,b) for

lu(a,T). For each (a,b) ∈R++×R+, lu(a,b) is a solution to the problem

max
l∈[0,1]

u (al+b, l) . (4)

Since u is strictly quasiconcave on R++× [0,1), for each (a,b) ∈R++×R+, there is a unique

solution lu(a,b) to (4). For given b ≥ 0, the derivative of the map a 7→ lu(a,b) exists for all

but perhaps one a > 0.4

For (a,b) ∈R++×R+, define the elasticity of income with respect to ability at ability level

a and endowment b as

ζu(a,b) := ∂(alu(a,b)+b)
∂a

· a
alu(a,b)+b

.

3The theorem generalizes Theorem 2 in Carbonell-Nicolau and Llavador (2018) and can be proven using an
adaptation of the proof of that theorem. The details are provided in the Appendix.

4This is proved in Carbonell-Nicolau and Llavador (2018, page 45).
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Given B ⊆R+ and R ⊆ [0,1), let U (B,R) be the set of all u ∈U ∗ satisfying the following

condition:

ζu((1− r)a,b)≤ ζu(a,0), for all (a,b, r) ∈R++×B×R. (5)

The following result shows that (5) is indeed the relevant condition to characterize the

familiy of preferences for which the corresponding subclass of linear tax schedules, Tlin(B,R),

is inequality reducing. The proof is relegated to the Appendix.5

Theorem 3. For u ∈U ∗, the members of Tlin(B,R) are u-iir if and only if u ∈U (B,R).

Now combining Theorem 2 and Theorem 3 yields the main result of this paper.6

Theorem 4. Given u ∈U ∗ and (B, (Rk)) ∈D,

[
Tu-iir ⊆Tprog

]
and

[
Tprog(B, (Rk))⊆Tu-iir ⇐⇒ u ∈U

(
B,

⋃
k

Rk

)]
.

The bracketed equivalence asserts that the members of the set Tprog(B, (Rk)) of progress-

ive tax schedules in Tprog whose intercept α0 is greater than or equal to infB and whose k-th

marginal tax rate tk lies in Rk (for each k) are all iir if and only if u ∈U (B,
⋃

k Rk), i.e., if and

only if the elasticity of income with respect to ability satisfies the following condition:

ζu((1− r)a,b)≤ ζu(a,0), for all (a,b, r) ∈R++×B×
(⋃

k
Rk

)
. (6)

In the remainder of this section, we first obtain a decomposition of the inequality in con-

dition (6) that is useful to develop intuition for Theorem 4 in applications, and then consider

the extreme cases of perfect complementarity (resp. substitutability) between consumption

and leisure, outlining some intuition. We conclude with a reformulation of our decomposition

in terms of the elasticity of substitution between consumption and leisure.

As per Theorem 4, the members of the set Tprog(B, (Rk)) of progressive tax schedules in

Tprog are all iir if and only if condition (6) is fulfilled. To understand condition (6), it is useful

to rewrite the inequality ζu((1− r)a,b)≤ ζu(a,0) as

ζu((1− r)a,b)−ζu(a,0)≤ 0

and decompose the magnitude on the left-hand side, ζu((1− r)a,b)−ζu(a,0), as the sum of

two effects, called the subsidy effect (the first bracketed term below) and the tax rate effect
5Theorem 3 subsumes Theorem 3 in Carbonell-Nicolau and Llavador (2018), which states that the members

of Tlin are u-iir if and only if u ∈ Û , where Û is the class of utility functions u ∈U ∗ satisfying the following
two conditions: (i) ζu(a,b) ≤ ζu(a,0) for all (a,b) ∈ R++ ×R+; and (ii) the map a 7→ ζu(a,0) defined on R++
is nondecreasing. It follows from the proof of Theorem 3 in Carbonell-Nicolau and Llavador (2018) that
Û =U (R+, [0,1)).

6This result refines Corollary 3 in Carbonell-Nicolau and Llavador (2018).
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(the second bracketed term below), respectively:

ζu((1− r)a,b)−ζu(a,0)= [ζu((1− r)a,b)−ζu((1− r)a,0)]+ [ζu((1− r)a,0)−ζu(a,0)]. (7)

The subsidy effect measures how the elasticity of income with respect to ability changes

when a non-subsidized a(1− r)-agent receives a subsidy b, while the tax rate effect measures

the change in this elasticity when ability decreases from a to (1− r)a.

Condition (6) requires that the two effects combined lower ζu, but either effect may

increase this elasticity, as long as it is offset by the other effect. Note that if ζu(a,0) is

increasing in a (resp., if ζu(a,b) is decreasing in b for every a), then the tax rate effect (resp.

the subsidy effect) loosens the constraint in (7) (and hence condition (6)), ceteris paribus.

Note also that, by suitably restricting the subset of progressive tax schedules, the tax rate

effect can be suppressed. Indeed, if Rk = {0} for each k, i.e., if the marginal tax rates are

set equal to zero, then the tax rate effect vanishes, and the total effect in (7) reduces to the

subsidy effect.

A negative subsidy effect (which loosens the constraint in (6)) implies that the relative

sensitivity of income with respect to ability decreases with the introduction of a subsidy,

thereby reducing income dispersion. A negative tax rate effect (which loosens the constraint

in (6)) implies that the elasticity of income increases with ability; in this case, any given tax

rate has a higher impact on the income of higher ability individuals, thereby reducing income

inequality. A positive tax rate effect works in the opposite direction, i.e., it exacerbates the

income differences between low ability and high ability individuals, but may be offset by a

sufficiently large (and negative) subsidy effect.7

With this decomposition in mind, it is useful to evaluate condition (6) and its relation to

the degree of substitutability of consumption and leisure. In the remainder of this section,

we consider the two extreme cases of perfect complements and perfect substitutes. In Section

4, we apply our decomposition of the inequality in (6) to standard parameterized families of

preferences.

Consider first the extreme case when consumption and leisure are perfect complements.

Because leisure is bounded above by 1, the underlying utility function has an upper bound,

with (1, c∗) as the optimal bundle, where c∗ is the “ideal” consumption level corresponding to

the maximum leisure level (see Figure 1). Individuals of higher ability, whose consumption

entails a lower opportunity cost in terms of leisure time, choose higher consumption levels. As

a grows large, the optimal consumption level converges to c∗. Hence, at least for a sufficiently

large ability, consumption (and hence income) increases at a declining proportion with ability.

This implies that, for large enough a, ζ(a,0) decreases with a, implying that the tax rate

effect works in the ‘wrong’ direction.

7A subsidy tends to reduce the sensitivity of income with respect to ability (rendering the subsidy effect
negative) for relatively low-ability individuals.
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To evaluate the subsidy effect, consider how ζu changes when a (non-subsidized) a-agent

receives a subsidy b. Because the optimal consumption level converges to c∗ as a grows large,

at least for large a (and, in fact, for every a, as shown below), consumption increases at a

declining proportion with the introduction of a subsidy b. Thus, ζu(a,b) is decreasing in b,

and the second effect loosens condition (6).

leisure

1

consumption

c*

b

a+b

a'+b

a
a'

Ray

u*

u'

u

Figure 1: Perfect complements. Individual choice for different ability levels and exogenous
income b. The ray represents the bundles with the “correct” proportions between leisure and
consumption. The maximum utility level u∗ is attained for the bundle (1, c∗). For sufficiently
high abilities, income (the chosen level of consumption) cannot increase at increasing rates.
Hence, the elasticity of income to ability must decrease and not all progressive taxes are
income inequality reducing (Theorem 3 and Corollary 1).

Consequently, the two effects have opposite signs, and the net effect is ambiguous. How-

ever, since the subsidy effect has the correct sign, the tax rate effect can be eliminated, as

per the previous discussion, by setting the tax rates equal to zero. Therefore, any fixed

subsidy is inequality reducing. Intuitively, a fixed subsidy compresses the agents’ optimal

leisure-consumption bundles (and hence the income/consumption levels) along the upper

part of the ray in Figure 1, thereby reducing income inequality.

Next, we show that, even when the tax rate effect is positive, a sufficiently large subsidy

effect offsets the tax rate effect and renders the associated tax schedule inequality reducing.

Formally, if the equation c =αl represents the ray in Figure 1, we have

ζu(a,b)=


a(α−b)
(α+a)(b+a) if 0≤ b ≤α,

0 if b >α.

First, note that it is always possible to reduce inequality by means of a sufficiently large

subsidy; indeed, for b ≥ α, condition (6) is always satisfied. For the more interesting case
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leisure

1

consumption

b

a'+b

a''+b

a'

a''
u'

u''

Figure 2: Perfect substitutes. Individual choice for different ability levels and exogenous
income b. Individuals with a sufficiently high ability, like a′′, choose zero leisure; while those
with sufficiently low ability, like a′, choose zero labor. Hence, the elasticity of income to
ability is non-decreasing and all progressive taxes are income inequality reducing (Theorem
3 and Corollary 1).

when 0≤ b <α, the tax rate effect is given by

ζu((1− r)a,0)−ζu(a,0)= αra
(α+a)(α+ (1− r)a)

, (8)

while the subsidy effect is

ζu((1− r)a,b)−ζu((1− r)a,0)= −bα−ab(1− r)
(α+ (1− r)a)(b+ (1− r)a)

.

Observe that the two effects vanish as a grows large. The combined effect can be expressed

as

ζu((1− r)a,b)−ζu(a,0)= −bα2 −2bαa(1− r)−ba2(1− r)+αra2(1− r)
(α+a)(α+a(1− r))(b+a(1− r))

.

Since condition (6) requires that the combined effect be negative for all (a,b, r) ∈R++×B×
(
⋃

k Rk), a necessary and sufficient condition for a tax schedule to be inequality reducing is

that the subsidy, b, satisfy b ≥αr for all r ∈⋃
k Rk. When this condition is satisfied, the tax

rate effect converges to zero (as a →∞) faster than the subsidy effect.

Next, consider the other extreme, the case when consumption and leisure are treated as

perfect substitutes. This case cannot be studied using conditions (6) and (7) directly, since it

does not satisfy the underlying strict quasiconcavity assumption. However, it is useful to
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illustrate, by means of a simple example, the trade-off between the tax rate effect and the

subsidy effect in the case of linear consumer preferences.

Under perfect substitutability between consumption and leisure, and in the absence of

taxation, high ability individuals choose zero leisure, while low ability individuals choose

zero labor (Figure 2), and there is a threshold ability level a such that, for an a-agent, any

amount of labor is optimal. A fixed subsidy b with zero marginal tax rates shifts the budget

line of each agent up in a parallel fashion, leaving the slope unchanged. Therefore, it does

not change the threshold ability level, and the resulting after-tax distribution is a shifted up

version of the distribution with no taxes/subsidies. Using directly the definition of Lorenz

domination in (3), it is easy to see that the shifted up version is inequality reducing.

Consequently, when consumption and leisure are perfect substitutes, any pure subsidy

reduces inequality for any distribution of abilities. However, unlike pure subsidies, propor-

tional tax rates need not be inequality reducing. This implies that the tax rate effect need not

have the correct sign. To illustrate, consider a common marginal tax rate τ on all incomes,

which reduces the slope of each agent’s budget line and hence increases the threshold ability

level below which agents do not work. Choose a three-level ability distribution such that,

in the absence of taxes/subsidies, the lower ability agent does not work, while the other

two agents consume no leisure. The associated income distribution is (0,1,2). Suppose that

taxing all incomes at marginal tax rate τ yields the after-tax income distribution (0,0,2(1−τ))

(i.e., the threshold ability level below which agents do not work rises above 1, so that, under

the proportional tax, only the most productive agent with a = 2 consumes no leisure). Using

the definition of Lorenz domination in (3), it is easy to see that (0,0,2(1−τ)) does not Lorenz

dominate (0,1,2), and so proportional taxes are not inequality reducing. However, adding a

sufficiently large subsidy offsets the effect of the tax rate. Indeed, adding a subsidy b to a

uniform marginal tax rate τ on all incomes does not change the threshold ability level below

which agents do not work and shifts the income distribution (0,0,2(1−τ)) up by the subsidy

amount b. The resulting after-tax distribution, (b,b,b+2(1−τ)), Lorenz dominates (0,1,2)

whenever b ≥ 2
3 (1−τ) (recall (3)).

The analysis of the two extreme cases suggests that there is a trade-off between the

tax rate effect, which may have the incorrect sign, and the subsidy effect, which reduces

inequality. It also hints at forces that are likely to be relevant in intermediate cases: while,

for a given ability distribution, subsidy levels can be found for which the subsidy effect

outweighs the tax rate effect, the existence of a subsidy threshold that yields a negative net

effect for any given ability distribution depends on the limiting behavior—and the speed of

convergence—of the two effects as the ability level grows large.

Next, we turn to an alternative formulation of our main condition in (6) emphasizing the

relationship between the elasticity of income with respect to ability, ζu, and the elasticity of

substitution between consumption and leisure. This relationship is spelled out by means of
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the following identity:

σu(a,b) :=−∂ [(1− lu(a,b))/cu(a,b)]
∂a

· a
(1− lu(a,b))/cu(a,b)

=−
∂(1−lu(a,b))

∂a · cu(a,b)− (1− lu(a,b)) · ∂cu(a,b)
∂a

(cu(a,b))2 · acu(a,b)
1− lu(a,b)

=−∂(1− lu(a,b))
∂a

· a
1− lu(a,b)

+ ∂cu(a,b)
∂a

· a
cu(a,b)

=−εu(a,b)+ζu(a,b),

where σu and εu denote, respectively, the elasticity of substitution between consumption and
leisure and the elasticity of leisure with respect to ability.8 In light of this identity, condition

(6) can be reformulated as follows:

σu((1− r)a,b)+εu((1− r)a,b)≤σu(a,0)+εu(a,0), for all (a,b, r) ∈R++×B×
(⋃

k
Rk

)
. (9)

The next section evaluates the elasticity condition in (6) (via the decomposition in (7))

within two important families of preferences: the constant elasticity of substitution (CES)

and the quasi-linear preferences.

4 Applications

This section characterizes the subclasses of progressive taxes that are inequality reducing

for two commonly used families of income-leisure preferences: the constant elasticity of

substitution (CES) and the quasi-linear preferences. The CES utility function (often in

its Cobb-Douglas version) is very common in the literature on life-cycle models (Heckman

and MaCurdy, 1982; French, 2005; Blundell et al., 2016), while static models with fixed

costs traditionally work with quasi-linear preferences (Cogan, 1981).9 These utilities are

also dominant in surveys and textbooks on labor supply and fiscal policy (Pencavel, 1986;

Killingsworth and Heckman, 1986; Auerbach and Kotlikoff, 1987; Keane, 2011; Blundell

et al., 2016).

For each case, we first specify the family of utility functions and calculate their elasticities.

We then characterize, as an application of Theorem 4, the utility parameters for which there

8Here we use the gross substitution definition adopted in Mas-Colell et al. (1995, p. 97), associated to the
consumer problem for an a-agent whose non-wage income is b:

max
((1−l),c)

u(1− l, c)

s.t.

a(1− l)+ c = a+b.

There are, however, several alternative formulations for the notion of elasticity of substitution. See, e.g., Stern
(2011).

9Static models tend to specify a labor supply function directly, which makes it difficult to identify a widely
used utility function (Keane, 2011, page 966).
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exist classes of iir tax schedules and develop intuition for our findings. Formal proofs are

relegated to the Appendix.

4.1 Constant elasticity of substitution (CES) utility

Consider the well-known CES utility function

u(c, l) :=
cγ+β(1− l)γ if γ ∈ (0,1),

−cγ−β(1− l)γ if γ< 0,
(10)

where 1
1−γ determines the elasticity of substitution between consumption and leisure, and β

is a positive constant.10 One has

lCES(a,b)=


(

a
β

) 1
1−γ−b

a+
(

a
β

) 1
1−γ

if
(

a
β

) 1
1−γ ≥ b,

0 otherwise,

alCES(a,b)+b =


(

a
β

) 1
1−γ (a+b)

a+
(

a
β

) 1
1−γ

if
(

a
β

) 1
1−γ ≥ b,

b otherwise,

ζCES(a,0)=


(1−γ)a

1
1−γ+aβ

1
1−γ+bγβ

1
1−γ

(1−γ)(a+b)
(
a

γ
1−γ+β

1
1−γ

) if
(

a
β

) 1
1−γ ≥ b,

0 otherwise,

and

ζCES((1− r)a,b)=


(1−γ)((1−r)a)

1
1−γ+(1−r)aβ

1
1−γ+bγβ

1
1−γ

(1−γ)((1−r)a+b)
(
((1−r)a

γ
1−γ+β

1
1−γ

) if
(

a
β

) 1
1−γ ≥ b,

0 otherwise.

Proposition 1. Let u be the CES utility function given in (10). Suppose that R ⊆ [0,1) and
supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir if and only if γ ∈ [1

2 ,1), where
B∗ := {b ∈R+ : b ≥ b}.

As γ tends to 1, the CES utility function is approximately linear, and consumption

and leisure become perfect substitutes. As γ tends to −∞, the indifference curves are

approximately “right angles,” i.e., consumption and leisure become perfect complements.

Proposition 1 states that when the elasticity of substitution is large enough, i.e., when

consumption and leisure substitute “sufficiently well” for each other, there are (nonempty)
10For the CES utility function, we have

σu(a,b)=
 1

1−γ if
(

a
β

) 1
1−γ ≥ b,

0 otherwise.
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subclasses of progressive tax schedules whose members are inequality reducing. Specifically,

in this case it suffices to choose a sufficiently large subsidy for a progressive tax schedule to

be inequality reducing.

For the CES utility function, the decomposition in (7) gives a tax rate effect of

ζCES((1− r)a,0)−ζCES(a,0)=
γ

[
a

γ
1−γβ

1
1−γ

(
1− (1− r)

γ
1−γ

)]
(1−γ)

[(
a

γ
1−γ +β 1

1−γ
)(

((1− r)a)
γ

1−γ +β 1
1−γ

)] ≥ 0 (11)

and a subsidy effect of

ζCES((1− r)a,b)−ζCES((1− r)a,0)= −b
(1− r)a+b

≤ 0. (12)

Because the tax rate effect is positive, it makes it harder for the inequality in (6) to hold, while

the subsidy effect, being negative, loosens the constraint in (6). Recall that the members

of Tprog(B∗,R) are inequality reducing if and only if the sum of the two effects is negative

for all (a,b, r) ∈R++×B∗×R. Consequently, we need the subsidy effect to offset the tax rate

effect for all (a,b, r) ∈R++×B∗×R. Note that while the subsidy effect is independent of the

elasticity of substitution, γ, this parameter influences the tax rate effect. In particular, if

the elasticity of substitution, γ, is low enough, i.e., less than zero, then the tax rate effect

explodes as a grows large: as a increases, consumption increases at a declining proportion,

thereby reducing the elasticity of income with respect to ability, and the magnitude of this

reduction increases exponentially with a.11 Since the subsidy effect vanishes as a grows

large, and, for γ< 0, the tax rate effect explodes as a grows large, it is clear that, when γ< 0,

not all members of Tprog(B∗,R) are inequality reducing.

For relatively large values of the elasticity of substitution, i.e., for γ > 0, the tax rate

effect vanishes as a grows large. Intuitively, for large γ, the CES utility is close to the linear

case, i.e., the case when consumption and leisure are perfect substitutes, and, as discussed in

Section 3, in this case, high ability agents, whose consumption entails a lower opportunity

cost in terms of leisure, tend to minimize their consumption of leisure, devoting most of their

time to production and consumption, which leads to small changes in the elasticity of income

with respect to ability, as a increases (for large enough a). While, for γ> 0, the tax rate effect

vanishes as a grows large, since we need the subsidy effect (which also vanishes as a grows

large) to offset the tax rate effect, the subsidy effect cannot go to zero faster than the tax rate

effect. In the proof of Proposition 1, we show that, for γ ∈ (0, 1
2 ), the subsidy effect goes to

zero faster than the tax rate effect, while for γ ∈ [1
2 ,1), the opposite is true. This explains the

restrictions on γ in Proposition 1.

Alternatively, one can use the characterization of inequality reducing tax systems given

in (9). For the CES family of utility functions, the elasticity of substitution, σu, is constant

11This contrasts with the case of perfect complements, discussed in Section 3, where the tax rate effect in (8)
vanishes as a grows large.
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(in fact, equal to 1
1−γ if (a/β)

1
1−γ ≥ b, zero otherwise), and so condition (9) reduces to

εu((1− r)a,b)≤ εu(a,0), for all (a,b, r) ∈R++×B×
(⋃

k
Rk

)
,

where εu is the elasticity of leisure with respect to ability, and a decomposition analogous to

that in (7) can be applied directly to the above condition. Because

εCES(a,b)= a
a+b

−
β

1
1−γ +

(
1

1−γ
)
a

γ
1−γ

β
1

1−γ +a
γ

1−γ
,

the tax rate effect, expressed in terms of the elasticity of leisure with respect to ability, is

given by

εCES((1− r)a,0)−εCES(a,0)=
β

1
1−γ +

(
1

1−γ
)
a

γ
1−γ

β
1

1−γ +a
γ

1−γ
−
β

1
1−γ +

(
1

1−γ
)
((1− r)a)

γ
1−γ

β
1

1−γ + ((1− r)a)
γ

1−γ
,

while the subsidy effect is

εCES((1− r)a,b)−εCES((1− r)a,0)= (1− r)a
(1− r)a+b

−1≤ 0,

and so the latter effect has the “correct” sign. Because

∂

∂a

β
1

1−γ +
(

1
1−γ

)
a

γ
1−γ

β
1

1−γ +a
γ

1−γ

= γ2β
1

1−γ a
2γ−1
1−γ

(1−γ)2
(
β

1
1−γ +a

γ
1−γ

)2 ≥ 0,

it follows that the tax rate effect has the “wrong” sign. Both the tax rate effect and the

subsidy effect vanish as a tends to infinity. Consequently, in order for the net effect to be

negative for all a, the rate of convergence for the subsidy effect needs to be lower than that

for the tax rate effect. As per the previous discussion, this occurs when γ ranges between 1
2

and 1.

Remark 1. When γ→ 0, the CES utility function converges to the Cobb-Douglas utility func-

tion, and, in this limiting case, marginal-rate progressive and only marginal-rate progressive

tax schedules are iir, i.e., Tu-iir =Tprog.12 The peculiarity of the Cobb-Douglas utility function

is that it has no tax rate effect. Indeed, its wage elasticity of income is constant for b = 0:

ζCD(a,b) = a/(a+ b); therefore, the tax rate effect vanishes (ζCD((1− r)a,0)−ζCD(a,0) = 0),

and the sum of the subsidy and the tax rate effects reduces to a negative subsidy effect, (12),

which always satisfies condition (6).
12This was established in Carbonell-Nicolau and Llavador (2018, Remark 3).
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Remark 2. As pointed out by several authors (see, e.g., Slemrod, 1998; Slemrod and Kopczuk,

2002; Saez et al., 2012), behavioral elasticities also play an important role in the optimal

taxation literature. Roughly speaking, larger elasticities of taxable income with respect to

the tax rate imply that less progressive tax systems are optimal. In our model, an income

tax causes a deadweight loss as individuals substitute away from consumption to leisure,

and so the deadweight loss per dollar of revenue depends on the elasticity of substitution

between consumption and leisure, which is directly related to the compensated elasticity of

income with respect to the tax rate. Section 5 provides a discussion on the methodological

differences between our analysis and the literature on optimal taxation.

4.2 Quasi-linear utility

Consider the quasi-linear utility function

uQL(c, l) := c+ β(1− l)1−δ

1−δ , (13)

where β> 0 and δ> 0, with δ 6= 1.13 One has

lQL(a,b)=
1−

(
β

a

)1/δ
if a ≥β

0 if a <β,
(14)

and

alQL(a,b)+b =
a+b−a

(
β

a

)1/δ
if a ≥β

b if a <β.

Define θ(a) :=
(
β

a

)1/δ
. Note that θ(a) < 1 for a > β, and θ((1− r)a)− θ(a) > 0 for r ∈ (0,1).

Compute

ζQL(a,b)=


(1−δ)θ(a)+δ
δ
(

b
a−θ(a)+1

) if a ≥β,

0 otherwise.

The decomposition in (7) shows that the subsidy and tax rate effects move in opposite

directions.

For a > (1− r)a ≥β, the subsidy effect is negative:14

ζQL((1− r)a,b)−ζQL((1− r)a,0)= −b (δ+ (1−δ)θ((1− r)a))
δ(1−θ((1− r)a)) ((1− r)a(1−θ((1− r)a))+b)

≤ 0 (15)

(recall that θ((1− r)a)≤ 1).

Since the labor supply in (14) is independent of the subsidy b, introducing a subsidy b
leaves the distribution of labor income intact, and so the subsidy results in a shift of all labor

incomes up by the magnitude of the subsidy, which reduces inequality, and the effect of the

13The MRS(c, l) tends to +∞ as l → 1− (recall the Inada condition in (1)) if and only if δ> 0.
14The case when (1− r)a <β is trivial, since the associated elasticity is zero.
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income shifts on inequality tend to be smaller when the labor incomes being shifted up are

large. This is consistent with a negative subsidy effect which tends to zero as a converges to

infinity. In fact, it is easy to verify that the ratio in (15) vanishes as a tends to infinity.

The tax rate effect is positive:

ζQL((1− r)a,0)−ζQL(a,0)= θ((1− r)a)−θ(a)
δ(1−θ(a))(1−θ((1− r)a))

≥ 0. (16)

For the quasi-linear utility function, an increase in a leads to an increase in labor (via a

pure substitution effect). As a increases, the marginal rate of substitution of leisure for

consumption (i.e., the amount of consumption that an agent must gain in order to give up

one unit of leisure) at the optimal consumption bundle increases, and the relative increase in

labor and income with respect ability diminishes with a, implying a positive tax rate effect

that vanishes as a grows large.

Whether the subsidy or the tax rate effect dominates depends on the elasticity of leisure

with respect to ability, which is given by (minus) the inverse of the parameter δ, so that

leisure is elastic for δ< 1 and inelastic for δ> 1.15 Proposition 2 states that when the demand

of leisure is relatively elastic (i.e., δ ∈ (0,1)), any progressive tax schedule with a sufficiently

large subsidy is inequality reducing.

The parameter δ is also related to the elasticity of substitution between consumption and

leisure. As δ→ 0, consumption and leisure become perfect substitutes. As δ grows large, uQL

converges to the Leontief utility function that characterizes the case of perfect complements.

The elasticity of substitution between consumption and leisure is given by

σQL(a,b)=−εQL(a,b)+ζQL(a,b)=


1
δ

(
1+ θ(a)+δ(1−θ(a))

b
a+1−θ(a)

)
if a ≥β,

0 otherwise,

where, recall, θ(a)= (β/a)1/δ. Consequently, σQL converges to zero (the elasticity of substitu-

tion for the extreme case of perfect complements) as δ tends to infinity, and σQL converges

to infinity (the elasticity of substitution for the extreme case of perfect substitutes) as δ

approaches zero.

Proposition 2 asserts that progressive tax schedules with sufficiently high subsidies are

inequality reducing provided that the elasticity of substitution between consumption and

leisure is relatively high (i.e., when δ ∈ (0,1)).

Proposition 2. Let u be the quasi-linear utility function given in (13). Suppose that R ⊆ [0,1)

and supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R) ⊆Tu-iir if and only if δ ∈ (0,1),
where B∗ := {b ∈R+ : b ≥ b}.

15It is easy to see that the demand for leisure is (β/a)1/δ (for a ≥β), and hence the elasticity of leisure with
respect to ability is −1/δ.
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As shown in the proof of Proposition 2 (see Appendix D), the subsidy effect dominates if

and only if

b ≥ aβ1/δ (
1− (1− r)1/δ) (1− r)

δ−1
δ

δa1/δ+ (1−δ)β1/δ .

Because this inequality must hold for all a, the lower bound on the subsidy, b, is finite if and

only if δ≤ 1. (Otherwise the right-hand side goes to infinity with a.)

Since both the subsidy and the tax rate effects (equations (15) and (16), respectively)

vanish as the ability level tends to infinity, and since the two effects have opposite signs, if the

subsidy effect goes to zero faster than the tax rate effect—as is the case here for δ> 1—then,

for large abilities, the tax rate effect outweighs the subsidy effect and the associated tax

schedule is not inequality reducing.

5 Concluding remarks

This paper characterizes consumer preferences for which various subclasses of progressive

tax schedules are inequality reducing, and provides a decomposition of the distributional

effects of income tax systems into a tax rate effect and a subsidy effect, each capturing

different aspects of the transition between before-tax and after-tax income distributions.

The framework considered here, which subsumes that in Carbonell-Nicolau and Llavador

(2018), allows one to expand the set of consumer preferences by suitably restricting the

set of progressive taxes. This is illustrated in Section 4 for two standard families of utility

functions: the CES and the quasi-linear utility functions.

We conclude with two comments. The first comment has to do with the methodological

differences between our analysis and the literature on optimal income taxation. A first differ-

ence lies in the cardinal nature of inequality measures, which contrasts with the standard

ordinal representation of preferences in consumer theory. As pointed out in Carbonell-Nicolau

and Llavador (2018), alternative inequality metrics based on welfare, rather than income,

pose problems in that the Lorenz ordering is not generally invariant to strictly increasing

transformations of utility vectors. A second difference stems from the requirement that

tax systems reduce inequality regardless of the distribution of abilities they are applied

to. This requirement is at odds with the approach taken in the optimal taxation literature,

which characterizes optimal tax structures for a given ability distribution. Consequently, our

results are not directly comparable with those from the optimal taxation literature.

The second comment concerns our assumptions underlying consumer behavior. In ad-

opting the framework of the standard Mirrless model, we view taxpayers as purely self-

interested, tax-compliant agents. There is, however, a sizable literature on social norms,

broadly defined, emphasizing aspects of preferences beyond the mere selfish pursuit of private

consumption, such as relative consumption, ‘social status’ effects, inequality aversion, loss

aversion, warm-glow and stigma effects of charitable donations, and the importance of non-

pecuniary factors in voluntary tax compliance. Part of this literature assesses the empirical

relevance of these behavioral assumptions (see, e.g., Alesina et al., 2011; Bowles and Park,
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2005; Fehr and Schmidt, 2003), while other papers study the normative and positive implica-

tions for tax systems. For example, Ireland (2001), Abel (2005), and Aronsson et al. (2016)

characterize optimal income taxes in the presence of status effects and benchmark levels of

consumption. In general, their results are sensitive to the distribution of abilities, as in the

literature on optimal income taxation. Alesina et al. (2011) review positive redistributive

theories—whereby taxes are collectively chosen via a voting mechanism—under inequality

aversion. These theories are limited in that they severely restrict the set of allowable tax

schedules to obtain equilibrium existence, and are generally not able to handle nonlinear

taxes.

The literature on tax compliance has more direct implications for our analysis. This

literature shows that concerns of fairness and reciprocity play an important role in voluntary

tax compliance or tax moral (Luttmer and Singhal, 2014; Kleven, 2014). If tax evasion is

likely affected by the perceived fairness of the tax system (Alm et al., 1995), one should

expect inequality reducing tax schedules, insofar they are perceived as fairer, to induce more

tax compliance.

The extension of our analysis to a broader set of social norms, along the lines of the cited

literature, constitutes a natural avenue for future research.

Appendix

In this appendix, we present the proofs of Theorem 2, Theorem 3, Proposition 1, and Pro-

position 2. Each proof is preceded by a restatement of its corresponding theorem for the

convenience of the reader.

The proofs of Theorem 2 and that of Theorem 3 adapt arguments from the proofs of

Theorem 2 and Theorem 3 in Carbonell-Nicolau and Llavador (2018).

The following two lemmas, whose proofs can be found in Carbonell-Nicolau and Llavador

(2018) (see their Lemma 2 and Lemma 3), are instrumental in the proofs of Theorem 2 and

Theorem 3.

Lemma 1. Given u ∈U , (c, y) ∈R2++, and q ∈ (0,+∞), there exists an a > y such that ηa(c, y)=
q.

Lemma 2. Given u ∈U ∗, a tax schedule T ∈T is u-iir if and only if for any ability distribu-
tion a ∈A and for any pre-tax and post-tax income functions yu and xu,

xu(ai,T)
yu(ai,0)

≥ xu(ai+1,T)
yu(ai+1,0)

∀i ∈ {1, . . . ,n−1} : yu(ai,0)> 0. (17)

A Proof of Theorem 2

Theorem 2. Given u ∈U ∗ and (B, (Rk)) ∈D,

[
Tu-iir ⊆Tprog

]
and

[
Tprog(B, (Rk))⊆Tu-iir ⇐⇒Tlin

(
B,

⋃
k

Rk

)
⊆Tu-iir

]
.
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Figure 3: Figure for Theorem 2

Proof. The first containment follows immediately from Theorem 1.

Suppose that u ∈U ∗ and (B, (Rk)) ∈D.

Since Tlin(B,
⋃

k Rk)⊆Tprog(B, (Rk)), the ‘only if ’ part of the equivalence is obvious.

Assume now that the members of Tlin(B,
⋃

k Rk)⊆Tu-iir. We need to prove that Tprog(B, (Rk))⊆
Tu-iir. By Lemma 2, this is equivalent to showing that that condition (17) holds for any

T ∈Tprog(B, (Rk)), for any ability distribution a ∈A , and for any pre-tax and post-tax income

functions yu and xu.

Take T = (α0, t, y) ∈Tprog(B, (Rk)) and, for each income threshold yk of T, define the linear

tax schedule Tk(y) := tk y−αk with α0 ∈ B, tk ∈ Rk for k ∈ {0, ...,K}, and αk :=αk−1+(tk−tk−1)yk

for k ∈ {1, . . . ,K}.

Pre-tax and post-tax income functions, yu and xu, are uniquely defined, since preferences

are strictly quasiconcave and the tax function T is convex. For k ∈ {1, ...,K}, define the

abilities a−
k and ak such that

a−
k :=min

{
a : yu(a,Tk−1)= yu

k
}

and ak :=max
{
a : y(a,Tk)= yk

}
(see Figure 3). Lemma 1 guarantees that a−

k and ak exist and are well-defined for all

k ∈ {1, . . . ,K}.

Furthermore, since T is marginal-rate progressive (and hence tk−1 < tk for all k ∈
{1, . . . ,K}), agent monotonicity (Definition 4) implies that a−

k ≤ ak < a−
k+1.
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Next, define the following family of sets covering (0,+∞):

A :=
{
(0,a−

1 ],
{[

a−
k ,ak

]}K
k=1 ,

{[
ak,a−

k+1
]}K−1

k=1 , [aK ,+∞)
}

.

We first show that condition (17) is satisfied for ability distributions contained in each

element of the family A.

(i) Consider first the interval (0,a−
1 ]. Observe that yu(a,T) = yu(a,T0) for all a ≤ a−

1 .

Because T0 is a linear tax, it is u-iir, and so Lemma 2 gives

xu(a,T)
yu(a,0)

= xu(a,T0)
yu(a,0)

≥ xu(a′,T0)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a ≤ a′ ≤ a−
1 . (18)

(ii) For [aK ,+∞), a symmetric argument shows that

xu(a,T)
yu(a,0)

≥ xu(a′,T)
yu(a′,0)

∀aK ≤ a ≤ a′. (19)

(iii) Now consider the interval [a−
k ,ak] for k ∈ {1, . . . ,K}. Observe that

yu(ak,T)= yu(ak,Tk)= yk = yu(a−
k ,Tk−1)= yu(a−

k ,T).

Because the map a 7→ yu(a,T) is monotone (Mirrlees, 1971, Theorem 1), yu(a,T)= yk

for all a ∈ [a−
k ,ak], and yu(a′,0)≥ yu(a,0) for all a−

k ≤ a ≤ a′ ≤ ak. Therefore,

xu(a,T)
yu(a,0)

= yk −T(yk)
yu(a,0)

≥ yk −T(yk)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a,a′ ∈ [a−
k ,ak], a ≤ a′. (20)

(iv) Finally, consider the interval [ak,a−
k+1] for k ∈ {1, . . . ,K − 1}. By construction, we

have yu(a,T) = yu(a,Tk) for all a ∈ [ak,a−
k+1]. Therefore, since Tk is a linear tax

in Tlin((B,
⋃

k Rk), and hence u-iir, Lemma 2 gives

xu(a,T)
yu(a,0)

= xu(a,Tk)
yu(a,0)

≥ xu(a′,Tk)
yu(a′,0)

= xu(a′,T)
yu(a′,0)

∀a,a′ ∈ [ak,a−
k+1], a ≤ a′. (21)

Combining equations (18)-(21) we obtain (17) for every a ∈A . ■

B Proof of Theorem 3

Theorem 3. For u ∈U ∗, the members of Tlin(B,R) are u-iir if and only if u ∈U (B,R).

Proof. Given u ∈ U ∗, B ⊆R+, and R ⊆ [0,1), the members T(y) = −b+ ry of Tlin(B,R) are

u-iir if and only if the map

a 7→ xu(a,T)
yu(a,0)

= a(1− r)lu(a,T)+b
alu(a,0)

= a(1− r)lu((1− r)a,b)+b
alu(a,0)

(22)



24

defined onR++ is nonincreasing for every (b, r) ∈ B×R (Lemma 2). Equivalently, the members

of Tlin(B,R) are u-iir if and only if

(1− r)
(
(1− r)a′ ∂lu((1−r)a′,b)

∂a + lu((1− r)a′,b)
)
a′lu(a′,0)

(a′lu(a′,0))2

−
((1− r)a′lu((1− r)a′,b)+b)

(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

(a′lu(a′,0))2 ≤ 0

(23)

for every (a′,b, r) ∈R++×B×R.16 Since the above inequality can be expressed as

(1− r)a′
(
(1− r)a′ ∂lu((1−r)a′,b)

∂a + lu((1− r)a′,b)
)

(1− r)a′lu((1− r)a′,b)+b
≤

a′
(
a′ ∂lu(a′,0)

∂a + lu(a′,0)
)

a′lu(a′,0)
,

or, equivalently, as

ζu((1− r)a′,b)≤ ζu(a′,0), (24)

we see that the members of Tlin(B,R) are u-iir if and only if (24) holds for every (a′,b, r) ∈
R++×B×R. Consequently, for u ∈ U ∗, the members of Tlin(B,R) are u-iir if and only if

u ∈U (B,R). ■

C Proof of Proposition 1

Proposition 1. Let u be the CES utility function given in (10). Suppose that R ⊆ [0,1) and
supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if γ ∈ [1

2 ,1),
where B∗ := {b ∈R+ : b ≥ b}.

Proof. Since u ∈ U ∗, given b ≥ 0, B∗ := {b ∈ R+ : b ≥ b}, and R ⊆ [0,1), Theorem 4 gives

Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if u ∈U (B∗,R).

Given (a,b, r) ∈R++×B∗×R, if ( a
β

)
1

1−γ < b, then ( (1−r)a
β

)
1

1−γ < b, implying ζCES(a,0)= 0≥
0 = ζCES((1− r)a,b). If ( a

β
)

1
1−γ ≥ b > ( (1−r)a

β
)

1
1−γ , then ζCES(a,0) ≥ 0 = ζCES((1− r)a,b). Let

( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b, and split the total effect into the subsidy and tax-rate effects:

ζCES((1−r)a,b)−ζCES(a,0)=
[
ζCES((1− r)a,b)−ζCES((1− r)a,0)

]
+

[
ζCES((1− r)a,0)−ζCES(a,0)

]
.

After some manipulation, it follows that the subsidy effect is non-positive:

ζCES((1− r)a,b)−ζCES((1− r)a,0)= −b
(1− r)a+b

≤ 0; (25)

16More precisely, the map defined in (22) is nonincreasing for every (b, r) ∈ B×R if and only if for every
(b, r) ∈ B×R, (23) holds for all but perhaps one a′ > 0.
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while the tax-rate effect is non-negative:

ζCES((1− r)a,0)−ζCES(a,0)=
γ

(
a

γ
1−γβ

1
1−γ

(
1− (1− r)

γ
1−γ

))
(1−γ)

((
a

γ
1−γ +β 1

1−γ
)(

((1− r)a)
γ

1−γ +β 1
1−γ

)) ≥ 0 (26)

Therefore, the total effect is negative if and only if

ζCES((1− r)a,b)−ζCES(a,0)=
γ

(
a

γ
1−γβ

1
1−γ

(
1− (1− r)

γ
1−γ

))
(1−γ)

((
a

γ
1−γ +β 1

1−γ
)(

((1− r)a)
γ

1−γ +β 1
1−γ

)) − b
a+b

≤ 0

The previous inequality is equivalent to

γ
(
a

1
1−γβ

1
1−γ

(
1− (1− r)

γ
1−γ

))
(1−γ)

((
a

γ
1−γ +β 1

1−γ
)(

((1− r)a)
γ

1−γ +β 1
1−γ

)) ≤ b

1−
γ

(
a

γ
1−γβ

1
1−γ

(
1− (1− r)

γ
1−γ

))
(1−γ)

((
a

γ
1−γ +β 1

1−γ
)(

((1− r)a)
γ

1−γ +β 1
1−γ

))


Arranging terms gives

a
1

1−γ (a(1− r))
1

1−γ
[
(a(1− r))−1((1−γ)a

1
1−γ +aβ

1
1−γ )(a(1− r)β

1
1−γ + (a(1− r))

1
1−γ )

−γβ 1
1−γ (a

1
1−γ +aβ

1
1−γ )

]
b

≥ a
1

1−γ (a(1− r))
1

1−γ
[
(a

1
1−γ +aβ

1
1−γ )(a(1− r)β

1
1−γ + (1−γ)(a(1− r))

1
1−γ )

−((1−γ)a
1

1−γ +aβ
1

1−γ )(a(1− r)β
1

1−γ + (a(1− r))
1

1−γ )
]

.

This simplifies to[(
(1−γ)a

1
1−γ +aβ

1
1−γ

)(
β

1
1−γ + (a(1− r))

γ
1−γ

)
−γβ 1

1−γ
(
a

1
1−γ +aβ

1
1−γ

)]
b

≥ a1+ 1
1−γβ

1
1−γγ

(
1− r− (1− r)

1
1−γ

)
.

(27)

We claim that if supR < 1 there exists b ≥ 0 such that Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and

only if γ ∈ [1
2 ,1). To see this, it suffices to show that (i) for γ < 1

2 and b ≥ 0, there exists

(a,b, r) ∈R++×B∗×R with ( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b such that (27) does not hold, and (ii) for

γ ∈ [1
2 ,1), there exists b ≥ 0 such that for (a,b, r) ∈R++×B∗×R with ( a

β
)

1
1−γ ≥ ( (1−r)a

β
)

1
1−γ ≥ b,

(27) holds.

The bracketed term on the left-hand side of (27) is positive for a large enough (indeed, for

any a if γ< 0 or γ= 1/2). Therefore, for a large enough, (27) is equivalent to

b ≥
a1+ 1

1−γβ
1

1−γγ
(
1− r− (1− r)

1
1−γ

)
(
(1−γ)a

1
1−γ +aβ

1
1−γ

)(
β

1
1−γ + (a(1− r))

γ
1−γ

)
−γβ 1

1−γ
(
a

1
1−γ +aβ

1
1−γ

) =:Λ(a).
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For γ< 1/2,γ 6= 0, Λ(a) converges to infinity as a tends to infinity. Consequently, for any

b ≥ 0, there exists (a,b, r) ∈R++×B∗×R with ( a
β

)
1

1−γ ≥ ( (1−r)a
β

)
1

1−γ ≥ b such that (27) does not

hold.

If γ= 1
2 , Λ(a) is increasing in a and converges to rβ2 as a →∞. Consequently, it suffices

to set b =β2 supR ≤β2.17

If γ ∈ (1
2 ,1), Λ(a) tends to 0 as a →∞, and so, if supR < 1, there exists b such that for

(a,b, r) ∈R++×B∗×R with ( (1−r)a
β

)
1

1−γ ≥ b, (27) holds.18 ■

D Proof of Proposition 2

Proposition 2. Let u be the quasi-linear utility function given in (13). Suppose that R ⊆ [0,1)

and supR < 1. Then there exists b ≥ 0 such that Tprog(B∗,R) ⊆ Tu-iir ⊆ Tprog if and only if
δ ∈ (0,1), where B∗ := {b ∈R+ : b ≥ b}.

Proof. Since u ∈ U ∗, given b ≥ 0, B∗ := {b ∈ R+ : b ≥ b}, and R ⊆ [0,1), Theorem 4 gives

Tprog(B∗,R)⊆Tu-iir ⊆Tprog if and only if u ∈U (B∗,R).

Given (a,b, r) ∈R++×B∗×R, if a ≤β/(1−r), then ζu((1−r)a,b)= 0≤ ζu(a,0). If (1−r)a >β,

then ζQL(a,0)≥ ζQL((1− r)a,b) if and only if

(1− r)a(θ((1− r)a)−θ(a))−b((1−δ)θ(a)+δ)
δ(1−θ(a))((1− r)a(1−θ((1− r)a))+b)

≤ 0, (30)

where θ(a)=
(
β

a

)1/δ
.

Observe that θ(a)< 1 since a >β; and that θ((1− r)a)−θ(a)=
(( 1

1−r
)1/δ−1

)(
β

a

)1/δ > 0, for

r ∈ (0,1). Therefore, the denominator in (30) is positive, and the inequality holds if and only

if the numerator is negative, that is,

(1− r)a(θ((1− r)a)−θ(a))−b((1−δ)θ(a)+δ)≤ 0.
17For example, if β= 1 and the maximum marginal tax rate is 1

2 , then it suffices to consider the set of all the
marginal-rate progressive tax schedules that provide a subsidy of at least $ 1

2 .
18For instance, if γ= 3

4 , supR = 0.6, and β= 1, (27) becomes[
(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)

]
b ≥ 0.75a4(1− r)(1− (1− r)3). (28)

If b = 81, then given (a,b, r) ∈R++×B∗×R with ( (1−r)a
β

)
1

1−γ = (1− r)4a4 ≥ b ≥ b, i.e., a ≥ b
1
4

1−r ≥ b
1
4

1−r = 3
1−r , (28) is

equivalent to

b ≥ 0.75a4(1− r)(1− (1− r)3)
(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)

, (29)

and since
0.75a4(1− r)(1− (1− r)3)

(0.25a4 +a)(1+ (a(1− r))3)−0.75(a4 +a)
< 81

and b ≥ b, it follows that (29) holds.
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After some manipulation, this is equivalent to

b ≥ aβ1/δ (
1− (1− r)1/δ) (1− r)

δ−1
δ

δa1/δ+ (1−δ)β1/δ . (31)

The right-hand side of the inequality is bounded above if and only if δ≤ 1 (otherwise it tends

to infinity as a →∞). Hence, for δ ∈ (0,1), there exists b such that for (a,b, r) ∈R++×B∗×R
with (1− r)a >β, (31) holds. And, if δ> 1 and b ≥ 0, there exists (a,b, r) ∈R++×B∗×R with

(1− r)a >β such that (31) does not hold. ■
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