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Abstract

The main insight of the literature on strategic information trans-
mission is that even a small conflict of interest between a fully in-
formed sender (e.g., a financial adviser) and an uninformed receiver
(an investor) often poses considerable difficulties for effective commu-
nication. However, in many real-life situations, the sender is not fully
informed at the outset but gradually studies the case before offering
advice. The gradual arrival of information to the sender weakens the
strategic barriers between the players and significantly improves com-
munication.

JEL classification: D82, D83

∗Universitat Pompeu Fabra and Barcelona Graduate School of Economics. E-mail:
alexander.frug@upf.edu.

1



1 Introduction

Decision-makers often rely on experts’ advice. If the interests of the parties
involved are not perfectly aligned, the expert may have an incentive to con-
ceal or misrepresent information in an attempt to manipulate the decision-
maker’s actions. In Crawford and Sobel’s (1982) model of strategic costless
communication, a fully informed sender (expert) reports to an uninformed
receiver (decision-maker), who then takes an action that affects the payoffs
of both players.1 A fundamental insight of the model is that even a small
conflict of interest between the players may significantly restrict the amount
of information that can be transmitted in equilibrium.

The assumption that the sender is fully informed at the beginning of the in-
teraction may be a reasonable approximation in some cases. However, many
real-world advising interactions involve an important stage of learning on
the expert’s part. For example, a therapist needs to inspect the patient be-
fore advising an appropriate treatment; a financial adviser has to study the
client’s financial situation prior to offering certain plans and products; an
appraiser needs to inspect many different characteristics of an asset before
suggesting a value or a sale price to the buyer. Sometimes, while acquir-
ing information, the expert may communicate intermediate and inconclusive
impressions, even though it is well understood that the receiver will make a
decision only upon the expert’s final word.

This paper is concerned with advising interactions in which the expert’s in-
formation gradually improves over time. I argue that, in many situations,
this natural friction together with a simple “update-as-you-go” reporting pro-
tocol significantly weakens the adverse effect that slightly conflicting interests
are believed to have on the overall quality of communication.

Recently, several models of cheap-talk communication in which the sender’s
learning process is endogenously controlled by one of the players have been

1Numerous variants and extensions of the model were developed in recent decades in an
attempt to improve our understanding of various situations of strategic communication.
Sobel (2013) provides a comprehensive review of the communication literature.
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studied in the literature. Ivanov (2015, 2016) and Frug (2016) assume that
the dynamic arrival of information can be prespecified by the receiver, and
Frug (2018) assumes that the sender covertly selects which experiment to
perform in each period. The ability to determine endogenously what infor-
mation will arrive in each period turns out to be an exceptionally powerful
tool; careful design of the sender’s information structures in different peri-
ods may fully relax the sender’s incentive constraints and lead to extremely
informative communication.2

Models in which the players determine what information arrives in each pe-
riod offer insights into optimal dynamic information control. In many cases,
however, the players have a limited effect (if any) on the process of infor-
mation arrival. Understanding and quantifying the effect of gradualness
of information arrival in such cases is challenging: the effect varies from
one learning process to another, and it is typically not as stark as that
of endogenously designed learning. Nonetheless, identifying the substantial
and rather general benefits inherent in such gradualness is essential since it
may put many real-life interactions of communication in a different perspec-
tive. For instance, a common component that is present in many advising
interactions—the expert’s need to study the case before offering advice—may
restore high-quality communication in spite of a small conflict of interest.

In this paper, I consider the canonical uniform-quadratic constant-bias spec-
ification3 of the model by Crawford and Sobel (1982), and examine the im-
plications of a rich family of learning processes on the overall quality of com-
munication. Specifically, I consider all binary interval learning processes.
Under any such learning process, in every period, the sender learns whether
the state is above or below some threshold. While this class of learning pro-
cesses is special in some aspects (e.g., the information set in each period is

2See, in particular, Ivanov (2016) and Frug (2016) where a complete separation of the
state space is consistent with equilibrium.

3In this I follow many other theoretical papers, such as Blume, Board, and Kawamura
(2007), Goltsman, Hörner, Pavlov, and Squintani (2009), Ivanov (2010), and Krishna and
Morgan (2001, 2004). Under this specification, the state is uniformly distributed on the
unit interval and the players have quadratic loss functions. The conflict of interest between
the players is reflected in the sender’s bias b > 0.

3



an interval), it is also very rich: these learning processes differ from one an-
other in the thresholds at which the sender’s information is refined over time.
Various specifications of the thresholds may induce very different learning
dynamics in terms of the general speed of learning and the relative quality
of information on different regions of the state space.

The main result of the paper identifies a simple (and tight) condition on the
sender’s learning, that guarantees the existence of an equilibrium where every
interval of the receiver’s information partition has the following property: the
communication game à la Crawford and Sobel in which the state is uniformly
distributed on that interval does not have informative equilibria. In brief, the
condition requires that the learning process not contain signals that generate
significantly superior information on low states, relative to the information
they provide on high states of the world.

To illustrate the result, suppose that the sender’s bias is b = 1
100 . Under

the most informative Crawford–Sobel equilibrium, the receiver’s information
partition consists of 7 intervals and the length of the rightmost interval
is greater than 1

4 . Now suppose that the sender is initially uninformed,
but every period he learns whether the state belongs to the upper or lower
half of his previous information set. The general construction developed in
this paper will show that, in this case, there exists an equilibrium where
the receiver’s information partition consists of 32 intervals of equal length.
What if this simple learning process on the part of the sender is replaced
by an arbitrary binary interval learning process? Provided that it satisfies
the aforementioned condition, there exists an equilibrium under which the
receiver’s information partition consists of more than 25 intervals, all of which
are shorter than 1

25 , irrespectively of the details of the learning process.

The paper proceeds as follows. Section 2 presents the model and the class
of admissible learning processes. Section 3 presents the benchmark and the
terminology of short and long intervals. The main result is given in Section
4. Concluding remarks are offered in Section 5. The proof of Proposition 2
appears in Section 6.
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2 Model

There are two players, sender and receiver. When the receiver chooses a ∈ R
at state θ ∈ [0, 1], his payoff is

−(θ − a)2,

and the sender’s payoff is
−(θ + b− a)2,

where the constant b > 0 is the sender’s bias. At the start of the game,
both players are uninformed and share the common prior belief that θ is
drawn from a uniform distribution over the unit interval. In each period,
conditional on reaching that period, the sender observes a signal realization
and then reports to the receiver (the signals and reports are described below).
At the end of each period, the receiver decides whether to postpone action, in
which case the interaction proceeds to the next period, or to choose a ∈ R,
in which case the interaction ends and the players receive payoffs.

Binary interval learning process. In each period t ∈ N, the sender observes
a signal realization st ∈ {left, right} that reveals whether θ is below (st =

left) or weakly above (st = right) a given threshold in the interior of his
information set prior to observing st. A particular binary interval learning
process determines the thresholds of the signals. Rather than specifying the
values of the thresholds directly, it is convenient to describe a learning process
by a function that assigns to each finite sequence of signal realizations σ the
probability to observe the signal realization “left” immediately after σ,

q(σ) = Prob[(σ, left)|σ].

The set of all binary interval learning processes is fully characterized by the
set of all functions Σ → (0, 1), where Σ denotes the set of all finite binary
sequences of {left, right}.

Example 1. The function q(·) ≡ 1
2 corresponds to the “completely balanced”
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learning process in which, every period, the sender’s information set is par-
titioned into two equal intervals. From the ex-ante perspective, the sender’s
information structure at the end of period t is given by 2t intervals of length
2−t each.

Example 2. Let q(σt) = 1
3t , where σt is a sequence of signal realizations

before period t. A special feature of this example is that, as time goes by,
the sender’s information partition does not approach full information. For
instance, if θ ≥ 1

2 , the sender’s information set is an interval of length greater
than 1

2 , regardless of the number of observed signal realizations.4

The focus of this paper is on the effect of gradualness in information arrival
rather than on the effect of the sender’s permanent lack of high-quality in-
formation. Therefore, only learning processes in which the sender eventually
learns the state with an arbitrary accuracy will be considered. The following
set of binary interval learning processes is considered admissible:

Q = {q : Σ→ (0, 1)| ∃ε > 0, ∀σ ∈ Σ, q(σ) ∈ (ε, 1− ε)}.

It is easy to see that any binary interval learning process in Q has the prop-
erty that, for any θ ∈ [0, 1] and δ > 0, there exists t ∈ N such that if the state
is θ, then the sender’s information set in period t is an interval of length at
most δ. From now on, elements of the set Q will be referred to as binary
interval learning processes.

Reports. In each period t, after observing the realization of st, the sender
reports mt ∈ {left, right}. The particular reporting protocol is inessential;
the result of this paper holds as long as there are at least two available
messages for the sender in each period.

4Let [xT , 1] denote the sender’s information set at the beginning of period T ∈ N after
he observes st = right, for all t < T . Note that xT ≤

∑T
t=1

1
3t
<
∑∞

t=1
1
3t

= 1
2
for all

T ∈ N.
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3 Fully Informed Sender Benchmark

The benchmark of the analysis in this paper is the case where a fully informed
sender submits a single report to the receiver.5 (For our present purposes,
I do not restrict the report to be binary but allow it, for instance, to be
an element of the unit interval.) By an argument akin to the revelation
principle, it can be shown that allowing the sender to transmit multiple
reports would not expand the set of equilibrium outcomes, as long as the
reporting opportunities are deterministic. Krishna and Morgan (2004) have
shown that allowing for multiple reports and introducing randomness into
future reporting opportunities may lead to more informative communication.
The authors also show how such randomness can be induced endogenously
if both players are active in the communication phase.6

In the gradual learning model of the present paper, multi-stage communi-
cation is not used as a means to introduce randomness into future commu-
nication opportunities. The value of organizing information transmission in
multiple reports will come directly from the gradual arrival of information
to the sender. To focus on this aspect of multi-stage communication, I as-
sume that the sender’s reporting opportunities are not random and that the
receiver does not actively participate in a “conversation.”

The uninformative equilibrium always exists.7 A well-known property of
the benchmark is that informative equilibria exist if and only if b ≤ 1

4 . An
equivalent statement that will be useful in this paper is the following.

Observation 1 Fix b > 0 and an interval J . Consider the informa-
tion transmission game á la Crawford and Sobel where, instead of the unit
interval, the state is uniformly distributed on J . The game has informative
equilibria if and only if the length of J is at least 4b.

5For details on the properties mentioned in this discussion, see Crawford and Sobel
(1982), Section 4.

6For a more general treatment of a similar idea see Aumann and Hart (2003).
7If the sender’s report affects the receiver’s action in equilibrium, then the equilibrium

is informative; otherwise the equilibrium is uninformative.
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Short and Long Intervals

Following Observation 1, for a given value of b > 0, an interval of length at
least 4b will be referred to as a long interval and an interval of length below
4b will be referred to as a short interval. This classification of intervals will
play a main role in the analysis.

In the most informative Crawford–Sobel equilibrium, only the leftmost in-
terval in the receiver’s information partition is short, and the quality of the
receiver’s information (weakly) decreases with the state (the intervals become
longer as the state increases). In the next section, I show that both of these
properties no longer hold when the sender’s information arrives gradually
over time.

4 Main Result

I now return to the model presented in Section 2. For the next result, recall
the definition of the golden ratio conjugate,

Φ =
1

ϕ
,

where ϕ = 1+
√

5
2 is the golden ratio. It is useful to note the approximate

values, Φ ≈ 0.618 and Φ2 ≈ 0.382.

Proposition 1 Let q(·) ∈ Q be a binary interval learning process such
that q(σ) ≥ Φ2 for all σ ∈ Σ. Then, there exists an equilibrium in which
every element of the receiver’s information partition is a short interval.

The Proposition will follow as an immediate corollary of Proposition 2. To
interpret the condition in Proposition 1, recall that if q(σ) = 1

2 , the signal
that follows σ partitions the sender’s information set into two equal intervals.
Thus, it can be thought of as a balanced signal that provides information of
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the same quality on low and high states of the world (given σ). If, for
example, q(σ) < 1

2 , then the sender’s information set after (σ, right) is a
longer interval—and thus reflects a lower quality of information—than that
after (σ, left). In this case, the signal that follows σ is more informative at
the bottom. By contrast, a signal that is more informative at the top is one
for which the q-value is above 1

2 .

Proposition 1 states that whenever the sender’s learning process does not
contain signals that are significantly more informative at the bottom, the
receiver can obtain, in equilibrium, “high-quality information” in all states, in
the sense that the length of his information set (an interval) would fall below
4b, regardless of the specifics of the learning process. To see the effect of such
gradual learning on the players’ payoffs relative to the benchmark, note that
the receiver’s expected payoff from any (finite) information partition P is
the negative of the expected variance,

−E [var(θ)|P] = −
∑
J∈P

(ˆ
θ∈J

(θ − E[θ|θ ∈ J ])2dθ

)
.

In addition, in any equilibrium, from the ex-ante perspective, the sender’s
and receiver’s expected payoffs are identical up to a constant. Thus, the
expected variance of the receiver’s equilibrium information partition is a
natural measure of the loss of information in that equilibrium.

Proposition 1 offers an easy (and tight) upper bound on the expected variance
of the receiver’s information partition: since all intervals in this partition are
short, the expected variance is bounded from above by the variance of the
smallest long interval (an interval of length 4b), which equals 4

3b
2. Figure 1

plots the parabola 4
3b

2 and the expected variance under the most informative
Crawford–Sobel equilibrium (the non-smooth function)8 as a function of b.

8For details, see Crawford and Sobel (1982), Section 4.
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Figure 1: Expected variance as a function of b ∈ [0, 1
4 ].

For example, when b = 1
100 , any learning process for which the condition

in Proposition 1 holds allows for an equilibrium where all intervals in the
receiver’s information partition are shorter than 1

25 . The upper bound on
the expected variance of the receiver’s information partition in this case
is, approximately, 25 times lower than the expected variance induced by
the most informative Crawford–Sobel equilibrium (which partitions the unit
interval into only 7 intervals).

4.1 Equilibrium of Short Intervals

An important aspect of the result in Proposition 1 is that it can be attained
in an equilibrium where the sender uses a simple and intuitive strategy by
which he reports truthfully and without delay all the gradually arriving
information, until a short interval is reported. I now provide some definitions
and then turn to a formal description of the players’ strategies.

Definitions

Let Ŝ be the sender’s reporting policy under which, in each period t, he
reports truthfully the realization of st if and only if his information set prior
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to observing st is a long interval; otherwise, when st refines an already short
interval, the sender reveals no information (e.g., chooses mt at random in a
manner that is uncorrelated with st).

Any information partition that consists of finitely many intervals will some-
times be written as 〈θ1, ...θk〉, where 0 < θi < θi+1 < 1 for all i < k, and
any consecutive pair (together with the bounds 0 and 1) represents the end-
points of an interval in the information partition. The receiver’s information
partition induced by Ŝ is denoted by IR.

For each finite sequence of sender’s reports h, let IR(h) denote the receiver’s
information set induced by h and Ŝ.

Fix b > 0. The sequence of reports h̄ is called a terminal sequence of reports
if IR(h̄) is a short interval and any proper prefix of h̄ corresponds to a long
interval.9 Denote the set of all terminal sequences of reports by

H̄ = {h̄ : |IR(h̄)| < 4b and
(
∀h v h̄; h 6= h̄⇒ |IR(h)| ≥ 4b

)
}.

For h̄ ∈ H̄, denote by a(h̄) the receiver’s optimal action under the belief that
the state is uniformly distributed on IR(h̄), and let Ā = {a(h̄) : h̄ ∈ H̄} be
the set of all actions that are optimal for the receiver under beliefs induced
by terminal sequences of reports.

Let H = {h : ∃h̄ ∈ H̄ s.t. h v h̄} be the set of all prefixes of elements of H̄,
and let H̊ = H\H̄ be the set of all proper prefixes of elements of10 H̄.

Strategies

Let R∗ be the receiver’s strategy by which he postpones action at any h ∈ H̊,
and chooses a(h̄) at any h for which h w h̄ ∈ H̄ (i.e., h contains the terminal

9Given a sequence y = {yj}nj=1, n ∈ N, a sequence y′ is a prefix of y, y′ v y, if
y′ = {yj}n

′
j=1 for some n′ ≤ n. If n′ < n, then y′ is a proper prefix of y.

10The sets H̄, H, and H̊ depend on b; to ease the exposition, this is not reflected
explicitly in the notation.
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sequence of reports h̄ as a prefix).

Let S∗ be the sender’s strategy where at histories consistent with Ŝ the
sender reports as specified by Ŝ, and at histories inconsistent with11 Ŝ the
reports are determined by backward induction given the receiver’s strategy12

R∗.

Proposition 2 Fix b > 0 and consider a binary interval learning process
q(·) ∈ Q. If q(σ) ≥ Φ2 for all σ ∈ H̊, then the pair of strategies (S∗, R∗)

constitutes an equilibrium.

The proof of Proposition 2 appears in Section 6. When (S∗, R∗) constitutes
an equilibrium, it is referred to as an equilibrium of short intervals. To
develop an intuition for the result, it is useful to start with an observation
regarding the following single-period communication game.

Observation 2 Fix b > 0, an interval J , and x ∈ (inf J, sup J). Consider
the information transmission game in which it is commonly known that the
state is uniformly distributed on J and that the sender knows whether the
state is below or above x. Truth-telling is incentive compatible if and only if
J is a long interval.

To see this, suppose that θ is uniformly distributed over [0, z] and fix x ∈
(0, z). Suppose that the sender knows that θ ∈ [0, x). In this case, the
sender’s “bliss-point” equals E [θ|θ ∈ [0, x)] + b = x

2 + b. Given the symmetry
of the quadratic loss function, the sender will choose a report that induces
the receiver to take the action nearest to x

2 + b. Truth-telling induces the
receiver’s action E [θ|θ ∈ [0, x)] = x

2 , while a dishonest report that θ ∈ [x, z]

11Histories that are inconsistent with Ŝ from the perspective of the sender are histories
of the form (< s1,m1 >, ..., < sT ,mT >) along which there exists t ≤ T such that st 6= mt

and the sender’s information set before observing st is a long interval.
12Reports at histories inconsistent with Ŝ can be calculated backwards since attention is

restricted to learning processes where after finitely many reports, the receiver considers all
subsequent reports uninformative. In case of multiple optimal reports at a given history,
any selection would be equally good since different selections correspond to the same
sender’s expected payoff in this as well as all previous information sets.
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induces the action x+z
2 . Thus, truth-telling is incentive compatible13 if and

only if (x
2

+ b
)
− x

2
≤ x+ z

2
−
(x

2
+ b
)
,

which is equivalent to z ≥ 4b.

Now consider the original interaction where information arrives gradually.
Observation 2 shows that, given the receiver’s strategy R∗, when the game
reaches a report that partitions a long interval into two short intervals, truth-
telling is incentive compatible. Interestingly, Observation 2 is completely
independent of x. This suggests that a myopic sender (who considers any in-
formation arrival as definitive) is willing to reveal all of his gradually arriving
information (regardless of the thresholds), until the receiver’s information set
becomes a short interval. The requirement in Proposition 2 that the q-values
of the relevant signals be at least Φ2 is only needed to provide inter-temporal
incentives for truth-telling to the forward-looking sender. The asymmetry
between signals that are more informative at the top and those more infor-
mative at the bottom is illustrated in the following example.

Example 3. Consider the learning process qlow(·) ≡ 1
3 . For b = 1

6 , there are
three terminal sequences of reports

H̄ = {(m1 = left), (m1 = right,m2 = left), (m1 = right,m2 = right)},

and the receiver’s information partition is IR =
〈

1
3 ,

5
9

〉
. In this case, S∗

cannot be part of an equilibrium: if s1 = left, the sender prefers to deviate
tom1 = right with the intent to reportm2 = left, regardless of s2. Consistent
with to the logic of Observation 2, the union of the sender’s information set
given s1 = left, [0, 1

3), and the right-adjacent interval in IR, [1
3 ,

5
9), forms a

short interval since 5
9 <

2
3 = 4b.

Now consider the learning process qhigh(·) ≡ 2
3 . Note that, in any period,

qlow(·) and qhigh(·) generate information partitions that reflect one another
13An upwardly biased sender never finds it optimal to lie if he learns that θ ∈ [x, z].
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around 1
2 . Therefore, for b = 1

6 , I
R =

〈
4
9 ,

2
3

〉
and

H̄ = {(m1 = left,m2 = left), (m1 = left,m2 = right), (m1 = right)}.

Conditional on s1 = m1 = left, since IR(left) is a long interval, truth-telling
is optimal in period 2. Truth-telling in period 1 is optimal as well: since
the sender’s information set given s1 = left is a long interval, misreporting
upwards would induce an action that is too high, even from the perspective
of the upwardly biased sender (also, since b > 0, he would never find it
beneficial to lie if s1 = right). In this case, the profile of strategies (S∗, R∗)

constitutes an equilibrium.

Note that the union of the sender’s information set given (s1, s2) = (left, right),
[4
9 ,

2
3), and the right-adjacent interval in IR, [2

3 , 1], forms a short interval (as
in the case of qlow(·)). The difference between the two learning processes is
that, by the end of period 2 (when [4

9 ,
2
3) becomes an element of the sender’s

information partition), the sender cannot deviate to induce the right-adjacent
interval in IR since the belief that θ ∈ [2

3 , 1] can only be induced in period
1.

The intuition of the proof of Proposition 2 is as follows. Conditional on
being truthful before period t, it would never be attractive for the sender
to distort his report downwards (say mt = left while st = right), since he
is upwardly biased. Therefore, suppose that st = left. The forward-looking
sender compares, given his information, the expected payoff under S∗ with
the payoff he can obtain by deviating to mt = right and choosing an optimal
post-deviation plan of reports from t + 1 onwards. The first part of the
proof shows that an optimal post-deviation plan of reports has a very simple
structure: regardless of future signal realizations, the sender will induce the
receiver to take the lowest possible action. The second part of the proof shows
that truth-telling is optimal in period t since misreporting would induce the
receiver to take an action that is too high, even from the perspective of the
upwardly biased sender. Both parts of the proof rely on the fact that signals
cannot be too informative at the bottom.
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Tightness

The following example illustrates how modifying a signal along the learning
process affects the long-run considerations of the sender, and shows that Φ2

is a tight lower bound on the q-values of the relevant signals under which
Proposition 2 holds.

Example 4. Consider a learning process where q(·) ≡ Φ2 and suppose that
4b = Φ. In this case, H̄ = {(left), (right, left), (right, right)}, and14 IR =〈
Φ2,Φ

〉
. By Proposition 2, S∗ is consistent with an equilibrium. However,

since
∣∣IR(left) ∪ IR(right,left)

∣∣ = 4b, upon observing s1 = left, the sender is
indifferent between truth-telling and reporting m1 = right, with the intent
to report m2 = left in period 2. Replacing either s1 or s2 (which follows
s1 = right) with a signal whose q-value is Φ2 − ε for a small ε > 0 shifts
the original threshold Φ to the left, and so IR(left) ∪ IR(right,left) becomes
a short interval (Figure 2 illustrates the effect of modifying only s1 where
both thresholds are affected). S∗ is no longer consistent with an equilibrium
as the sender would deviate in period 1.

Figure 2: Receiver’s information partition under S∗.

It is worth noting that the value of the bias b = Φ
4 in the above illustration

does not play any special role. For any b ∈ (0, Φ
4 ), one can construct a similar

example where, after several periods of learning and reporting truthfully, the
players arrive at an information set of length 4b

Φ . Modifying the continuation
of learning on that interval as before would have similar effects to those
illustrated above for the interval [0, 1].

14By the definition of Φ, we have Φ2 + (1− Φ2)Φ2 = Φ.
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5 Remarks

Gradual Learning, Partial Information, and Intermediate Reports. Recall the
completely balanced learning q(·) ≡ 1

2 from Example 1. When b = 1
100 , in

the equilibrium of short intervals, the sender reports truthfully in the first 5
periods and the receiver’s information partition IR consists of 32 intervals of
equal length. If the periodic reports are replaced by only one communication
opportunity at the end of period 5, it is incentive compatible for the sender
to reveal all of his information. Moreover, the same equilibrium outcome can
be achieved if the sender is endowed with a static information structure IR

prior to communication. The value of intermediate reports is thus unclear,
and the overall effect of gradualness in information arrival boils down to
the observation that the amount of information that can be transmitted in
equilibrium is not monotone in the quality of the sender’s information (e.g.,
Fischer and Stocken 2001, Ivanov 2010).

These points are special to completely balanced learning. To see the dynamic
aspect of learning consider qhigh(·) ≡ 2

3 from Example 3 and recall that when
b = 1

6 , I
R =

〈
4
9 ,

2
3

〉
. If the sender’s gradual learning is replaced by the static

information structure
〈

4
9 ,

2
3

〉
, truth-telling is no longer incentive compatible:

reporting falsely that θ ≥ 2
3 when the information set is [4

9 ,
2
3) is strictly

profitable. This does not happen when learning is gradual since the sender
decides to avoid the report that θ ≥ 2

3 at an early stage of learning while his
information set is still [0, 2

3).

In the above example, the reports in both periods are terminal for at least
some signal realizations. To illustrate the value of intermediate reports,
suppose that the sender’s information partitions in periods 1 and 2 are, re-
spectively,

〈
1
2

〉
and

〈
1
3 ,

1
2 ,

3
4

〉
. The equilibrium of short intervals for b = 1

8

yields IR =
〈

1
3 ,

1
2 ,

3
4

〉
. In this equilibrium, the sender reports whether the

state is above or below 1
2 , at the end of period 1. This report is essential.

Since the union of the middle elements of IR is a short interval, IR is incon-
sistent with equilibrium without the report in period 1. Such intermediate

16



reports facilitate information transmission not only because they are trans-
mitted while the sender’s incentive constraints are weaker but also because
they provide a context for future reports.

Strategic Information Withholding. In the equilibrium of short intervals, the
sender never withholds “transmittable” information: whenever a new piece
of information arrives, he reports it immediately if and only if revelation of
this information is incentive compatible in the static game in which no ad-
ditional information is expected. While this equilibrium provides a general
lower bound on the effect of gradualness in information arrival, it need not
be optimal. Consider again qhigh(·) ≡ 2

3 and suppose, for simplicity, that
b = 1

4 . In the equilibrium of short intervals, only the first signal realization
is revealed, so IR =

〈
2
3

〉
. If no information is transmitted in period 1, it

becomes incentive compatible to reveal whether the state is above or below
4
9 in period 2. Ex ante, both players strictly prefer the receiver’s informa-
tion partition

〈
4
9

〉
over

〈
2
3

〉
since the former is “more balanced.” Whether

and when information withholding is desired depends on the specifics of the
learning process. Characterizing the circumstances in which complicated
forms of communication outperform the simple update-as-you-go dynamics
of the equilibrium of short intervals is left as an open question.

6 Proof of Proposition 2

The following additional notation will be used. For every sequence of signal
realizations σ, let IS(σ) be the sender’s information set induced by σ, and
for every sequence of reports h ∈ H, let Ā(h) = {a(h̄) : h̄ ∈ H̄ and h v h̄}
be the set of all receiver’s actions that are optimal under some terminal
sequence of reports that is consistent with h.

By the definition of R∗, it is immediate that R∗ is a best response to S∗. It
will be shown that, if the condition specified in the proposition is satisfied,
S∗ is a best response to R∗.
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Throughout the proof, let σ = (s1, ..., st) ∈ H and h = (m1, ...,mt) ∈ H

denote, respectively, the sequences of signal realizations and reports such
that mt′ = st′ for all t′ < t, and st 6= mt.

Step 1 Suppose that the sender observed σ and reported h. Then, an
optimal continuation of reports for the sender does not depend on future
signal realizations.

Misreporting downwards: Let st = right andmt = left. From the assumption
that h ∈ H, it follows that, for all a ∈ Ā(h), a < inf(IS(σ)). Since b > 0, for
every value of θ ∈ IS(σ), the sender strictly prefers the receiver’s maximal
action among those that can be induced given h. Therefore, given σ and h,
it is uniquely optimal for the sender to choose future reports that induce the
receiver’s action maxĀ(h), regardless of future signal realizations.

Misreporting upwards: Let st = left and mt = right. By supermodularity
of the sender’s preferences, if the sender prefers the action minĀ(h) over all
other actions in Ā(h) when θ = sup(IS(σ)), then the same is true for all
θ ∈ IS(σ). To prove this for θ = sup(IS(σ)), it is sufficient to show that15

∣∣Ā(h) ∩
(
sup(IS(σ)), sup(IS(σ)) + 2b

)∣∣ ≤ 1.

If h ∈ H̄, then
∣∣Ā(h)

∣∣ = 1. Suppose that h ∈ H̊, and let a1 = min Ā(h) and
a2 = min

(
Ā(h)− {a1}

)
. Denote by hleft the terminal sequence of reports

that continues h and induces a1. Observe that hleft ends with mτ = left for
some τ > t. Consider hright = (m1, ...,mτ ) that differs from hleft only in mτ ,
which equals “right” under hright. Note that |IR(hleft)∪IR(hright)| ≥ 4b, and
that hright need not be a terminal sequence of reports.

Case 1.1: hright ∈ H̄. In this case, a2 = E[IR(hright)]. Since IR(hleft) and
IR(hright) are disjoint, a1 and a2 are separated by at least 2b.

15At state θ = sup(IS(σ)), for receiver’s actions above sup(IS(σ)) + b, the sender’s
payoff is monotonically decreasing in the receiver’s action. Moreover, the sender’s payoff
from any receiver’s action a ≥ sup(IS(σ)) + 2b is below his payoff from any action in the
interval

(
sup(IS(σ)), sup(IS(σ)) + 2b

)
.
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Case 1.2: hright ∈ H̊. In this case,

4b ≤ |IR(hright)| ≤ (1− Φ2) · |IR(hleft) ∪ IR(hright)|,

where the first inequality follows from hright ∈ H̊, and the second from the
assumption q(·) ≥ Φ2. Dividing by (1− Φ2) we get

∣∣IR(hleft) ∪ IR(hright)
∣∣ ≥ 4b

1− Φ2
.

The following lower bound on the length of IR(hleft) can be obtained

|IR(hleft)| ≥ Φ2 4b

1− Φ2
= Φ · 4b ≥ 2b;

the first inequality follows from q(·) ≥ Φ2, the equality is equivalent to the
definition of Φ, and the second inequality is obvious as Φ > 1

2 . In particular,
it follows that a2 > sup(IR(σ)) + 2b, which completes the proof of step 1.

Step 2 Truth-telling in period t is optimal, provided that all previous
reports were truthful.

Suppose that the sender observes and reports σ truthfully. Before observing
additional signal realizations, the players have the same information set and
rank all receiver’s information partitions over this set identically.16 This
observation gives a simple but useful lower bound on the sender’s expected
payoff from continuing with the strategy S∗, namely, his expected payoff in
the event that communication terminates immediately,

E
[
uS(a = E[IS(σ)], θ)|θ ∈ IS(σ))

]
,

where uS(a, θ) denotes the sender’s payoff at state θ when the receiver’s
action is a. It will be shown that, if there was truth-telling in all previous
periods, the sender’s payoff from misreporting the last signal in σ, i.e., st,
falls below that lower bound.

16Provided that, given any information, the receiver chooses an action that is equal to
the expected state, the players’ expected payoffs differ by a constant b2.
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Misreporting downwards is not profitable: Suppose that st = right and mt =

left. As shown in step 1, it is optimal for the sender to induce the receiver
to take a single action a = maxĀ(h) (where h is as defined in the beginning
of the proof). Since maxĀ(h) < E[IS(σ)] and b > 0,

E[uS(a = E[IS(σ)], θ)|θ ∈ IS(σ))] > E[uS(a = maxĀ(h), θ)|θ ∈ IS(σ))].

Misreporting upwards is not profitable: Suppose that st = left and mt =

right. First consider the case where σ ∈ H̊. In this case, |IS(σ)| ≥ 4b, and
hence

E[uS(a = E[IS(σ)], θ)|θ ∈ IS(σ))] ≥ E[uS(a = sup(IS(σ)), θ)|θ ∈ IS(σ))]

with equality if |IS(σ)| = 4b. Since sup(IS(σ)) ≥ E[IS(σ)] + 2b, any single
action a′ > sup(IS(σ)) yields a lower expected payoff for the sender. Thus,
from the result in step 1, it follows that misreporting the realization of st is
not profitable.

Now, suppose that σ ∈ H̄. The interval IS(σ) is an element of IR. Let I+ de-
note the interval right-adjacent to IS(σ) in this partition (i.e., sup(IS(σ)) =

inf(I+) ). The argument in step 1 showed that, following a dishonest report
mt = right, it is optimal for the sender to induce the receiver’s belief that
θ ∈ I+. To complete the proof, it is sufficient to show that |IS(σ)∪I+| ≥ 4b.

If the receiver’s belief θ ∈ I+ is induced by a sequence of reports of length t,
then, since S∗ prescribes an informative report of st after the (t−1)-prefix of
σ, it follows that |IS(σ) ∪ I+| ≥ 4b and the proof is complete. Assume now
that the receiver’s belief θ ∈ I+ is induced by a sequence of τ > t informative
reports. This has two implications. First, since sup(IS(σ)) = inf(I+), it
must be the case that mτ = left. The assumption that q(·) ≥ Φ2 implies
that

|I+| ≥ Φ2 · 4b.

Second, h ∈ H̊ and hence
∣∣IS(h)

∣∣ ≥ 4b (recall that h is the sequence of
reports of length t that differs from σ only in the last component). By an
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argument similar to the one given in Case 1.2, the assumption that q(·) ≥ Φ2

implies that

|IS(σ)| ≥ Φ2 4b

1− Φ2
.

Since IS(σ) and I+ are disjoint intervals, by the definition of Φ,

|IS(σ) ∪ I+| ≥
(

Φ2

1− Φ2
+ Φ2

)
· 4b = 4b.

This completes the proof of step 2 and the proposition follows. �
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