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Abstract

Evidence from the cognitive sciences suggests that some choices are conscious and reflect

individual volition while others tend to be automatic. Under these circumstances, standard

economic modeling might not always be applicable because not all choices are the result of

individual tastes. We propose a behavioral model that can be used in standard economic

analysis that formalizes the way in which conscious and automatic choices arise. We then

present a novel method capable of identifying a set of conscious choices from observed behavior

and discuss its usefulness as a framework for studying asymmetric pricing and empirical puzzles

in different settings.
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1 Introduction

Behavioral economics has posed a serious challenge to standard economic theory by docu-

menting and analysing numerous behaviors inconsistent with preference maximization. In-

consistencies tend to emerge when individuals do not exert the effort to consciously analyze

the problem at hand, e.g., Carroll et al. (2009). A key question then arises. When are people

choosing consciously?

This paper provides the first theoretical framework that considers the coexistence of con-

scious and automatic behavior and provides a means to understand the nature of individual

decisions in different situations once this duality is taken into account. As highlighted by

Simon (1987) and Kahneman (2002), even experts such as managers, doctors, traders, or

policy makers often make automatic decisions. Nevertheless, the sources of automatic choices

remain underexplored in economics.1

Evidence from the cognitive sciences suggests that the familiarity of the choice environ-

ment is the key determinant of the relationship between conscious and automatic choices.

Unconscious, automatic choices are made in familiar environments. Thus, if we wish to

understand the role of automatic decisions in markets, we need (i) to create a model of

automatic choices that takes into account the role played by the familiarity of the decision

environment and (ii) to analyze whether it is possible from observed behavior to distinguish

between conscious and automatic choices in order to understand the underlying preferences.

To answer the first question, we propose a simple formalization of evidence drawn from

the cognitive sciences, on when and how choices should be conscious or automatic.2 In

Section 2, we present a decision maker described by this simple procedure. Whenever the

decision environment is familiar, i.e., whenever its similarity with past experience, measured

by a similarity function, passes a certain threshold, past behavior is replicated. This is

the source of automatic choices. Otherwise, the best option is chosen by maximizing a

1Although there is a growing attention in economics to conscious and intuitive or automatic reasoning.
See for example Rubinstein (2007) and Rubinstein (2016) for a distinction between conscious and intuitive
strategic choices by players of a game, the distinction in Cunningham and de Quidt (2016) between implicit
and explicit attitudes or the focus of Gilboa and Wang (2019) on sticking to the status quo as the result of
conscious deliberation.

2See section 4.2 for the cognitive foundations of the model.

2



rational preference relation. This is the source of conscious choices. Consider, for example,

a consumer who buys a bundle of products from the shelves of a supermarket. The first time

he faces the shelves, he tries to find the bundle that best fits his preferences. Subsequently, if

the prices and arrangement of products do not change too much, he will perceive the decision

environment as familiar and will automatically stick to the bundle chosen previously. If, on

the other hand, the change in prices and arrangement of the products is evident to him, his

choice will again be based on preference maximization.3

Even in such a simple framework, there is no trivial way to distinguish which choices are

made automatically and which are made consciously. Following the example, suppose our

consumer is faced with a slightly different problem with more options but he sticks with the

original choice. Is it because he prefers the original bundle to the new ones? Or is it because

he is choosing automatically?

We show how to find conscious choices and hence restore the standard revealed preference

analysis by being able to tell which environments were not familiar. Section 3.1 assumes (i)

that the decision maker behaves according to our model and (ii) that the similarity function

is known, while the threshold is not.4 We then show that, for every sequence of decision

problems, it is possible by means of an algorithm to identify a set of conscious observations

and an interval within which the similarity threshold should lie. That is, we provide a novel

method for restoring revealed preference analysis.

First notice that new observations, i.e., those in which the choice is an alternative never

chosen before, must be conscious. No past behavior could have been replicated. Starting from

these observations, the algorithm iterates the following idea. If an observation is consciously

generated, any other less familiar observation, that is any decision problem which is less

similar to those that preceded it, must be also consciously generated. Returning to our

consumer, if we know that after a change in the price of the products on the shelf, the

consumer chose consciously, then he must also have done so on all those occasions where the

change was even more evident.

3This is in line with the ideas presented in Woodford (2019) where it is stated that “. . . people should not
be modeled as behaving differently in situations that they do not recognize as different. . . ”

4See Section 3.1 for a justification of the latter hypothesis. See the appendix for an empirical strategy
for estimating the similarity function when shared in a population.

3



The algorithm identifies a set of automatic decisions in a similar fashion, that is, it first

highlights some decisions that must be automatic and then finds more familiar observations

to reveal other automatic decisions. Notice that knowing whether some decisions were made

automatically is very important for understanding the way in which familiarity of environ-

ments is determined. Even if automatic choices do not reveal individual preferences, they

tell us which problems are considered familiar, i.e., similar enough, by the decision maker,

hence enabling the identification of the interval in which the similarity threshold should lie.

The algorithm assumes that the decision maker behaves according to our model, hence

the falsifiability of the model becomes a central concern. In Section 3.2 we propose a testable

condition that is a weakening of the Strong Axiom of Revealed Preference that characterizes

our model and thus renders it falsifiable. Section 4 clarifies the connection between the

model and methods introduced here and the economics and cognitive sciences literatures.

Section 5 shows how the model can be an effective tool for standard economic analysis by

displaying its usefulness to understand different empirical regularities. In particular, it shows

that consumers described by the model can have asymmetric responses to price changes, i.e.,

they react more to price increases than to price decreases. Thus, firms might have incentives

not to adapt prices to costs only when when costs go down. This phenomenon, known

as asymmetric pricing, is an important empirical puzzle to which the model provides a

possible theoretical explanation. Section 6 concludes. The appendix describes a procedure

for empirically estimating the similarity function when shared by a population of otherwise

heterogeneous agents.

2 Dual Decision Processes

2.1 The Model

Let X and E be two sets. The decision maker (DM) faces, at time t, a decision problem

(At, et) with At ⊆ X and et ∈ E. The set of available alternatives At at time t, from which

the DM has to make a choice, is called the menu. An alternative is any choice element,

such as a consumption bundle, a lottery or a consumption stream. The environment et is
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a description of the possible characteristics of the problem faced by the DM at time t. We

denote by at ∈ At the chosen alternative at time t. With a little abuse of the notation, we

refer to the pair formed by the decision problem (At, et) and the chosen alternative at as

observation t. Notice that the same menu or environment can appear more than once in the

sequence.

A chosen alternative is the outcome of a two-stage choice procedure which describes

the DM and formalizes the duality of automatic and conscious choices. Formally, let σ :

E×E → [0, 1] be the similarity function. The value σ(e, e′) measures the degree of similarity

between environment e and environment e′. The automatic self is endowed with a similarity

threshold α ∈ [0, 1] that delimits which pairs of environments are similar enough. Whenever

σ(e, e′) > α the individual considers e to be similar enough to e′. At time t, and faced with

the decision problem (At, et), the automatic self executes a choice if it can replicate the choice

of a previous period s < t such that σ(et, es) > α. The choice is the alternative as chosen in

one such period. The maximizing self is endowed with a preference relation � over the set of

alternatives. For ease of exposition, we assume that � is a strict order, i.e. an asymmetric,

transitive and complete binary relation, defined over X. At time t, if the maximizing self is

activated, it chooses the alternative at that maximizes � in At.
5 Summarizing:

at =

as for some s < t such that σ(et, es) > α and as ∈ At,

the maximal element in At with respect to � , otherwise.

Three remarks are useful here. First, notice that automatic and conscious decisions are

separated by the behavioral parameter α. In some sense, α is summarizing the cost of using

the cognitively demanding system. The higher the cost, the lower the threshold. Thus,

parameter α captures individual heterogeneity as preferences do. Notice that, while the

similarity function has been widely studied in cognitive sciences, e.g. Tversky (1977), Medin

et al. (1993) and Hahn (2014), the cognitive costs of activating conscious decision processes

remain an unknown quantity.6

5The idea that conscious behavior arises from the maximization of a preference relation is a simplification
which we use to focus the analysis on the main novelties of the framework presented in this paper. For a
more detailed discussion regarding this point, see section 6.

6There is growing attention in decision theory though to the empirical estimation of cognitive parameters
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As a second remark, notice that we are describing a class of models because we do not

impose any particular structure on replicating behavior. We do not specify which alternative

will be chosen when more than one past choice can be replicated. This class can accommodate

many different behaviors , e.g., choosing the alternative that was chosen in the most similar

past environment, or choosing the alternative that maximizes the preference relation over

those chosen in similar enough past environments, etc.7 All of the following analysis is valid

for the class as a whole.

As a final remark, notice that an environment can be as simple as the menu or as com-

plex as the framing of alternatives. For illustrative purposes, we propose some examples of

relevant environments for economic applications and a possible similarity function for use in

such cases.

Environments as Menus: In many economic applications it seems sensible to view the

entire menu of alternatives, e.g. the budget set, as the main driver of analogies. That is, E

could be the set of all possible menus and two decision problems are perceived to be as similar

as their menus are. In this framework, E = 2X \ {∅}.

Environments as Attributes: The alternatives faced by decision makers are often bundles

of attributes. In such contexts, it is reasonable to assume that the attributes of the available

alternatives determine the decision environment. If A is the set containing all possible at-

tributes, then E = 2A \ {∅}.

Environments as Frames: We can think of the set E as the set of frames or ancillary

conditions as described in Salant and Rubinstein (2008) and Bernheim and Rangel (2009).

Frames are observable information that is irrelevant for the rational assessment of alterna-

tives; for example, the way the products are displayed on a shelf. Every frame can be seen

as a set of irrelevant features of the decision environment. Thus, if the set containing all

possible irrelevant features is F , we have E = 2F \ {∅}.

The cognitive sciences provide different ways to model the similarity function based on em-

for richer theoretical models, e.g., Cerreia-Vioglio et al. (2012), Rustichini et al. (2016), and Dardanoni et al.
(2020).

7This last specification of the model can be seen as a theory for consideration set formation through
similarity with past experiences hence relating the model to the literature interested in limited attention,
e.g. Masatlioglu et al. (2012), Manzini and Mariotti (2014a) and Cattaneo et al. (2020)
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pirical evidence. In all the previous examples it is natural to assume that the similarity

function relates different environments according to their commonalities and differences.

For example, σ(e, e′) = |e∩e′|
|e∪e′| , that is, the similarity of two environments increases with the

proportion of shared characteristics . This function is just a symmetric specification of the

more general class considered in Tversky (1977). Henceforth, we take E and σ as given.8

2.2 An example

This section provides an example to illustrate the behavioral process we are modeling. Al-

though the example is abstract, it shows very directly how the model works. For a more

concrete application of the model to an interesting economic setting, please refer to section

5.1.

Let X = {1, 2, 3, ..., 10}. We assume that environments are menus, i.e. E is the set of

all non-empty subsets of X and that σ(A,A′) = |A∩A′|
|A∪A′| . Suppose that the automatic self is

described by α = .55 and that the preference 1 � 2 � 3 � · · · � 10 describes the maximizing

one. We now clarify the choices our DM makes from the following ordered menus:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 3, 4, 7 2, 4, 7 1, 3, 6 1, 2, 3, 4 2, 4, 8 2, 4, 8, 9, 10

a1 = 3 a2 = 3 a3 = 1 a4 = 2 a5 = 1 a6 = 1 a7 = 2 a8 = 2

In the first period, the DM has no prior experiences, therefore the maximizing self is

active. Thus, the choice results from the maximization of preferences, that is, a1 = 3. Then,

in the following period, given that σ(A2, A1) = 4
6
> .55, the automatic self is active and

therefore we will observe a replication of past choices, that is, a2 = 3. Period 1’s environment

makes period 2’s one fluent. Now, in period 3, notice that the similarity between A3 and A2

or A1 is below the similarity threshold and that this makes the maximizing self active. The

preference relation is maximized and therefore a3 = 1. By similar reasoning applied for the

fourth and fifth periods, it can be seen that a4 = 2 and a5 = 1. Then, in period six, the

automatic self is active given that σ(A6, A3) = 3
5
> .55, leading to a6 = 1. In period seven,

8It is not always possible to obtain all the information relating to the similarity function, that is why in
the online appendix we consider the possibility of running the whole analysis with just incomplete relative
information regarding the comparison between environments.
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given no sufficiently similar past environment, the maximizing self is active and therefore

a7 = 2. Finally, in the last period, the automatic self again becomes active, given that

σ(A8, A7) = 3
5
> .55 and behavior will therefore be replicated, i.e. a8 = 2.

One may wonder what an external observer would be able to infer from this choice

behavior. Section 3.1 addresses this point.

3 Theoretical Analysis of Dual Decision Processes

Section 3.1 analyzes how to classify observations generated by the model. In particular, it

proposes an algorithm that can identify two sets, one containing only observations generated

by the maximizing self and one containing observations automatically generated. This can

be seen as a way of identifying the welfare relevant domain as proposed in Bernheim and

Rangel (2009). Section 3.2 then shows that a simple restriction on one of these sets can

characterize the whole class of models.

3.1 Revealed Preferences

In this section, we discuss how to recognize which observations were automatically or con-

sciously generated in a DD process. This information is crucial to elicit the unobservables

in the model that are the sources of individual heterogeneity, that is, the preference relation

and the similarity threshold. In fact, we can think of the similarity function as a cultural

component common to most individuals, while the similarity threshold is the source of indi-

vidual heterogeneity in automatic processes. Thus, the similarity function is taken as given,

while the similarity threshold α is elicited from observed behavior.9 Notice that the similar-

ity function and the similarity threshold define a binary similarity function that is individual

specific. Thus, by separating the similarity function from the similarity threshold we are

9This assumption is in line with the stance taken in the cognitive sciences. In fact, similarity comparisons
are generally taken as a more interpersonal component while cognitive costs are specific to the individual.
See for example Tversky (1977), Medin et al. (1993) or Hahn (2014) and subsequent related literature ,
which also provides a variety of methods for identifying the similarity function. The idea here is that, even
if , everyone in a certain society implicitly agrees that an Italian restaurant is more similar to a French one
than to a Chinese one, they might not all perceive the Italian and the French ones, for example, to be so
close as to be indistinguishable, i.e., to be similar enough. The appendix uses this assumption to estimate
the similarity function. In the online appendix, the function is identified with rich enough data.
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able to associate individual heterogeneity to a parameter relating to individual cognitive

costs without too many degrees of freedom hampering the technical analysis.

It is easy to recognize a set of observations that are undoubtedly generated by the max-

imizing self. Notice that all those observations in which the chosen alternative was not a

previous choice must belong to this category. This is so because, as no past behavior has

been replicated, the automatic self could not be active. We call these observations new

observations.

In order to identify a first set of automatically-generated observations, notice that, being

rational, the maximizing self cannot generate cycles of revealed preference. As is standard,

a set of observations t1, t2, . . . , tk forms a cycle if ati+1
∈ Ati , i = 1, . . . , k − 1 and at1 ∈ Atk ,

where all chosen alternatives are different. Given the above reasoning, for every cycle there

must be at least one observation that is automatically generated. Intuition suggests that

the one corresponding to the most familiar environment should be a decision mimicking past

behavior. The following definition helps in formalizing this idea.

The unconditional familiarity of observation t is

f(t) = max
s<t,as∈At

σ(et, es).

Whenever there is no s < t such that as ∈ At, we say f(t) = 0.

That is, unconditional familiarity measures how similar observation t is to past observa-

tions from which behavior could be replicated, i.e., those past decision problems for which

the chosen alternative is present at t. Then, we say that observation t is a most familiar in

a cycle if it is part of a cycle of observations within which it maximizes the unconditional

familiarity value. Given the above reasoning, these observations must be generated by the

automatic self.

The major challenge is to relate pairs of observations in such a way as to allow the

knowledge of which self generated one of them to be transferred to the other. In order to do

so, we introduce a second measure of familiarity of an observation t, which we call conditional

familiarity. Formally,

f(t|at) = max
s<t,as=at

σ(et, es).
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Whenever there is no s < t such that as = at, we say f(t|at) = 0.

That is, conditional familiarity measures how similar observation t is with past obser-

vations from which behavior could have been replicated, i.e., those past decision problems

for which the choice is the same as at t. The main difference between f(t) and f(t|at) is

that the former is an ex-ante concept, i.e., before considering the choice, while the latter

is an ex-post concept, i.e., after considering the choice. Our key definition uses these two

measures of familiarity to relate pairs of observations.

Definition 1 (Linked Observations) We say that observation t is linked to observation

s, and we write t ∈ L(s), whenever f(t|at) ≤ f(s). We say that observation t is indirectly

linked to observation s if there exists a sequence of observations t1, . . . , tk such that t = t1,

tk = s and ti ∈ L(ti+1) for every i = 1, 2, . . . , k − 1.

The definition formalizes the key idea behind the algorithm. Observation t is linked

to observation s if its conditional familiarity is lower than the unconditional familiarity of

s. As explained below, once an observation is categorized as consciously or automatically

generated, it is through its link to other observations that such knowledge can be extended.

First consider an observation t which is known to be new, and hence consciously gener-

ated. This implies that its corresponding environment is not similar enough to any other

previous environment. In other words, f(t) ≤ α. That is, f(t) is a lower bound for α. Then,

any observation s for which the conditional familiarity is less than f(t) (s ∈ L(t)) must also

be generated by the maximizing self. In fact, f(s|as) ≤ f(t) ≤ α implies that no past behav-

ior that could have been replicated in s comes from an environment that is similar enough

to the one in s. This implies that f(s) ≤ α, potentially refining the lower bound for α. In

fact, it could be that f(t) < f(s). It is easy to see that this reasoning can be iterated by

finding the observations linked to s. In fact, if f(t) < f(s), there might exists observations

that are linked to s but not to t (observations that are indirectly linked to t). Denote by

DN the set of all those observations that are indirectly linked to new observations, that is

the set obtained through the iteration of the previous procedure.

Similarly, consider a most familiar observation in a cycle t, that is known to be auto-

matically generated. Any observation s for which the unconditional familiarity is greater
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than the conditional familiarity of t (t ∈ L(s)) must also be generated by the automatic

self. In fact, we know that α < f(t|at) because t is generated by the automatic self. That

is, f(t|at) defines an upper bound for α. Then, any observation s to which t is linked has

unconditional familiarity greater than α, which implies that some past behavior could be

replicated by the automatic self, and therefore that such an observation must also be gener-

ated by the automatic self. This implies α < f(s|as), potentially refining the upper bound

for α. In fact, it could be that f(s|as) < f(t|at). Again, the reasoning can be iterated by

finding the observations to which s is linked. In fact, if f(s|as) < f(t|at), s might be linked

to observations to which t is not (observations to which t is indirectly linked). Let DC be

the set obtained by iterating the reasoning, that is, the set of all observations to which most

familiar observations in a cycle are indirectly linked.

The binary relation determined by the concept of linked observations is clearly reflexive;

thus, new observations and most familiar observations in a cycle are contained in DN and DC

respectively. Thus, we can start from a small subset of observations undoubtedly generated

either automatically or consciously, and thence infer which other observations are of the

same type.

Now we can state the main result of this section. The previous reasoning establishes

that observations in DN are generated by the maximizing self, while observations in DC

are generated by the automatic self. As a consequence, it must be that the revealed prefer-

ence of observations in DN is informative with respect to the preferences of the individual.

Moreover, we can identify an interval within which the similarity threshold must lie. In fact,

notice that since observations in DN are generated by the maximizing self, we know that

maxt∈DN f(t) ≤ α and also that, since observations in DC are generated by the automatic

self, α < mint∈DC f(t|at).

Before stating the proposition, it is useful to highlight that x is revealed preferred to

y for a set of observations O, i.e., xR(O)y, if there is a sequence of different alternatives

x1, x2, . . . , xk such that x1 = x, xk = y and for every i = 1, 2, . . . , k− 1 ∈ O, it is xi = at and

xi+1 ∈ At for some t.

Proposition 1 For every collection of observations D generated by a DD process:
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1. all observations in DN are generated by the maximizing self while all observations in

DC are generated by the automatic self,

2. if x is revealed preferred to y for the set of observations DN , then x � y,

3. max
t∈DN

f(t) ≤ α < min
t∈DC

f(t|at).

Proof. In the text.

We here use the example in section 2.2 to show how the algorithm works.

Algorithm: Example of Section 2.2

Suppose that we observe the decisions made by the DM in the example in section 2.2, without

any knowledge regarding his preferences � or similarity threshold α.

We can easily notice that the only new observations are observations 1, 3 and 4; hence,

we can directly infer that the corresponding choices were conscious.

Given no other new observations are present, we now need to go one step further. We

know that the choice was conscious in period 3 and one can easily find that f(5|a5) = 2
5
≤

3
7

= f(3), which means that observation 5 is linked with observation 3 and, by Proposition

1, this reveals that it, too, was conscious.

Now that we know that observation 5 was conscious, a similar argument can be applied

to observation 7. We cannot directly link observation 7 either to observation 1, 3 or 4,

because f(7|a7) = 1
2
> max{f(1), f(3), f(4)}. However, we can indirectly link observation 7

to observation 3 through observation 5, because f(7|a7) = 1
2
≤ 1

2
= f(5), thus making 7 an

element of DN . No other observation is indirectly linked to observations 1, 3 or 4 and hence,

DN = {1, 3, 4, 5, 7}. The method rightfully excludes all automatic choices from DN .

This example presents inconsistencies in the revealed preference. Observations 3 and 6

are both in conflict with observation 2. That is, observations 2 and 3 and 2 and 6 form cycles.

Then, noticing that max{f(2), f(3)} = f(2) and that max{f(2), f(6)} = f(2) = f(6) we can

say that observations 2 and 6 are generated by the automatic self thanks to Proposition 1,

given they are most familiar in a cycle.

Notice then, however, that observation 6 is linked to observation 8 given that f(6|a6) =

3
5
≤ f(8) = 3

5
, thus revealing that the latter must also have been automatically generated.

12



Thus, we obtain that DC = {2, 6, 8}, which were the observations rightfully excluded from

DN . No decision made by the maximizing self has been cataloged as automatic.

The modified revealed preference exercise helps us determine that alternative 1 is better

than any alternative from 2 to 7, alternative 3 is better than any alternative from 4 to 6,

and alternative 2 is better than alternatives 4, 7 and 8, as is indeed the case. The value of

the similarity threshold α can, by Proposition 1, be correctly determined to be in the interval

[0.5, 0.6) thanks to the information retrieved from observations 7 and 8 respectively.

DN contains new observations and those indirectly linked to them.10 It may be the

case that some consciously-generated observations are not linked to any observation in DN ,

thus making DN a proper subset of the set of all consciously-generated observations. For

this reason, nothing guarantees that D \DN are automatically-generated observations and

hence, Proposition 1 must show how to dually construct a set of automatic decisions DC .

Nonetheless, if the observations are rich enough, it is possible to guarantee that DN and DC

contain all conscious and automatic decisions, respectively.11 More importantly, notice that

Proposition 1 relies on one important assumption, which is that the collection of observations

is generated by a DD process. The following section addresses this issue. As it turns out,

the whole class is characterized by a simple restriction on DN .

3.2 A Characterization of Dual Decision Processes

In Section 3.1 we showed how to elicit the preferences and the similarity threshold of an

individual who follows a DD process. Building upon the results of that section, we here

provide a necessary and sufficient condition for a set of observations to be characterized as

a DD process with a known similarity function. In other words, we provide a condition that

can be used to falsify our model.

From the construction of the set DN , we understand that a necessary condition for a

dataset to be generated by a DD process is that the indirect revealed preference obtained

from observations in DN , i.e. R(DN), must be asymmetric. It turns out that this condition

10DN is never empty because it always contains the first observation.
11Material available in the online appendix.
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is not only necessary but also sufficient to represent a sequence of decision problems as if

generated by a DD process. A simple postulate of choice characterizes the whole class of DD

processes.

Axiom 1 (Link-Consistency) A sequence of observations {(At, et, at)}Tt=1 satisfies Link-

Consistency if, in every cycle, there is at least one observation that is not indirectly linked

to a new observation.

This is a weakening of the Strong Axiom of Revealed Preference. In fact, it allows for

cycles but only of a particular kind. Preferential information gathered from observations

in DN cannot be inconsistent. The following theorem shows that this condition is indeed

necessary and sufficient to characterize DD processes with known similarity.

Theorem 1 A sequence of observations {(At, et, at)}Tt=1 satisfies Link-Consistency if and

only if there exist a preference relation � and a similarity threshold α that characterize a

DD process.

Proof. Necessity: If {(At, et, at)}Tt=1 is generated by a DD process, then it satisfies Link-

Consistency as explained in the text.

Sufficiency: Now suppose that {(At, et, at)}Tt=1 satisfies Link-Consistency. We need to

show that it can be explained as if generated by a DD process. Notice that Link-Consistency

implies that the revealed preference relation defined over DN , i.e. R(DN), is asymmetric.

In fact, asymmetry of R(DN) means that it is not possible to construct cycles comprised of

observations in DN . Using standard mathematical results, we can find a transitive comple-

tion of R(DN), call it �. By construction, all decisions in DN can be seen as the result of

maximizing � over the corresponding menu.

Define α = maxt∈DN f(t). Notice that by definition of DN , there is no observation s /∈ DN

such that f(s|as) ≤ f(t) for some t ∈ DN . This implies that, for all s /∈ DN , f(s|as) > α,;

thus, it is possible to find, for each one, a preceding observation which it would appear to

replicate. In particular, the one defining f(s|as).

Thus, we can represent the choices as if generated by an individual with preference rela-

tion � and similarity threshold α.
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The theorem is saying that Link-Consistency makes it possible to determine whether the

DM is following a DD process or not. In particular, when the property is satisfied, we can

characterize the DM’s preferences with a completion of R(DN) which is asymmetric thanks to

Link-Consistency and use the lower bound of α as described in Proposition 1 to characterize

the similarity threshold. In fact, by construction, for any observation t outside DN it is

possible to find a preceding observation that can be replicated, i.e., the one defining f(t|at).

Notice that we do not assume any particular structure for the sequence of observations we

use as data, and hence that the characterization of preferences does not need to be unique,

even when the similarity is known.12

Finally, it is important to highlight that the whole analysis developed until now follows

through even when the knowledge of the similarity is only partial and that the model is fal-

sifiable even when there is no information regarding the similarity comparisons. To see the

latter, notice that Link-Consistency implies that there must be no cycles among new obser-

vations, a concept which is independent of the particular choice of similarity function. To see

the former, the online appendix contains a generalization of the identification algorithm and

of the characterization, assuming that only a partial preorder, i.e., a reflexive, transitive but

possibly incomplete binary relation, over pairs of environments is known. Such an extension

is very general. It is potentially relevant in many contexts where it is not possible to estimate

the cardinal similarity function but only the relative order it represents. It is also robust to

even weaker assumptions, when, for example, only some of the binary comparisons between

pairs of environments are known. Returning to the example used in the introduction, we

might not know how the DM compares different prices and dispositions of products on the

shelf, but we might know that, for any combination of prices, a minor change in just one price

results in a more similar environment than a major change in all prices. The logic behind

the algorithm extends directly by using the ordinal information contained in the preorder to

define the familiarity of the environments. The only result that cannot be replicated, due

to the absence of cardinal information regarding similarity comparisons, is the estimation of

12Material providing a full characterization of the procedure with rich enough data is available in the online
appendix. Richness is obtained either by assuming that the data come from a homogeneous population, as
is standard in the literature when dealing with path dependent models, or by assuming that the implicit
memory of the DM is bounded and that the bound is known.
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the interval in which the similarity threshold should lie.

4 The Model in Context

In this section, we show how the paper relates to the literature and what evidence from the

cognitive sciences it is formalizing.

4.1 Related Literature

In our model the presence of similarity comparisons makes behavior automatic. That is, if

two environments are similar enough, then behavior is replicated. This is a different approach

with respect to the theory for decisions under uncertainty, which was proposed in Gilboa

and Schmeidler (1995) and summarized in Gilboa and Schmeidler (2001). In case-based

decision theory, as in our model, the decision maker uses a similarity function in order to

assess how much alike are the problem he is facing and the ones he has in his memory.

In that model the decision maker tends to choose the action that performed better in past

similar cases. There are two main differences with the approach we propose here. First, from

a conceptual standpoint, our model relies on the idea of two selves interacting during the

decision-making process. Second, from a technical point of view, our model uses similarity in

combination with a threshold to determine whether the individual replicates past behavior

or maximizes preferences, while in Gilboa and Schmeidler (1995) preferences are always

maximized. Thus, as Section 6 suggests, case-based decision theory may be ingrained in the

more general structure proposed here. The model in Gilboa and Schmeidler (1995) can be

seen as a particular way of making conscious decisions. Nevertheless, both models agree on

the importance of analogies for human behavior.

We would like to stress that, although our proposed behavioral model is new, the idea

that observed behavior may be the outcome of interaction between two different selves is

not novel and dates back, at least, to Strotz (1955). Strotz-type models, such as Laibson

(1997), Gul and Pesendorfer (2001) or Fudenberg and Levine (2006), are different from the

behavioral model introduced here, since they represent the two selves as two agents with
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different and conflicting preferences, usually long-run vs short-run preferences.13 In our

approach, however, the two selves are inherently different one from the other. One uses

analogies to deal with the environment in which the decision maker acts, while the other

uses a preference relation to consciously choose among the available options. Furthermore,

the issue of which self drives a particular decision problem depends on problems experienced

in the past and their degree of similarity with the current one, and not on whether the

decision affects the present or the future. Nevertheless, we do not exclude the possibility

that analogy formation may be influenced to some extent by whether the decision affects the

present or the future.

Finally, it is important to notice that the preference revelation strategy used in this paper

agrees with the one used in Bernheim and Rangel (2009), who analyze the same problem of

eliciting individual preferences from behavioral datasets, which they do in two stages. In a

first stage, they take as given the welfare relevant domain, that is the set of observations from

which individual preferences can be revealed; and then, in a second stage, they analyze the

welfare-relevant observations and propose a criterion for the revelation of preferences that

does not assume any particular choice procedure to make welfare judgments.14 Albeit similar,

our approach differs in two important aspects. Firstly, we model conscious and automatic

choices, and, in Section 3.1, we propose a particular method for finding the welfare-relevant

domain, i.e. the algorithm highlighting a set of conscious choices. Secondly, we propose a

specific choice procedure, and perform standard revealed preference analysis on the relevant

domain; thus our method, by being behaviorally based, is less conservative for the elicitation

of individual preferences. In this sense, our stance is also similar to the one proposed in

Rubinstein and Salant (2012), Masatlioglu et al. (2012) and Manzini and Mariotti (2014b),

who make the case for welfare analysis based on the understanding of the behavioral process

that generated the data. These differences are crucial. If we apply Bernheim and Rangel

13In some models, the difference between the two selves stems from the fact that they have different
information. See, for example, Cunningham (2015), which proposes a model of decision making where the
two selves hierarchically aggregate information before choosing an alternative. Other papers use more than
two selves to rationalize individual choices, but all selves are still represented by different preference relations;
see, for example, Kalai et al. (2002), Manzini and Mariotti (2007) and Ambrus and Rozen (2015).

14Notice that Apesteguia and Ballester (2015) also propose a choice-procedure free approach for measuring
the welfare of an individual from a given dataset. They do this by providing a model-free method to measure
how close actual behavior is to the preference that best reflects the choices in the dataset.
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method to the example in Section 2.2, without identifying the welfare relevant domain, we

would not know, for example, how the DM would compare 1 and 3 and we would find that

3 is preferred 2 which is a wrong inference that our method avoids by considering the model

that generated the data. Without the tools provided by the model, it would be impossible

to properly identify the relevant domain hence invalidating any inference aimed at guiding

welfare enhancing policies.15

4.2 Cognitive Foundations of the Model

The cognitive sciences have always distinguished between conscious and unconscious pro-

cesses. More recently, this duality has been incorporated into Dual Process Theory, as

described in Evans and Frankish (2009) and Kahneman (2011), which divides mental pro-

cesses into two categories, analytical (or conscious) and analogical (or automatic).16 Using

these findings, the objective here is twofold, (i) to propose a simple initial formalization of

automatic processes with falsifiable implications and (ii) to model the interaction between

conscious and automatic processes in a tractable way. We abstract from more in-depth mod-

eling of conscious behavior, which is represented here by the rational model. Nevertheless,

the framework developed in this paper is flexible enough to allow for alternative models of

conscious processes, as explained in more detail in Section 6.

Unconscious or automatic processes are extremely context dependent.17 In particular, the

main determinant for the activation of non-deliberative processes is the subjective experience

of ease associated with a particular situation, i.e., fluency, due to the characteristics of the

environment. Studies surveyed by Oppenheimer (2008), one of the leading scholars in fluency

15Notice that this problem could be even more serious. Suppose we observe a DM described by a DD
process who is first choosing between the two worse alternatives contained in X. Then, suppose she faces
an increasing series of menus in which new and better alternatives are included, but the changes in the
environment are not enough to activate the maximizing self. Our DM would always choose the second
to last alternative. Bernheim and Rangel method, if we take the whole series of decision problems as the
relevant domain, would wrongly infer that the second to last alternative is preferred to any other alternative
while our method would only infer that the second to last is preferred to the worst alternative. This example
makes clearer that Bernheim and Rangel method needs a model to define the relevant domain to avoid wrong
inferences.

16Many papers helped in developing the theory, including Schneider and Shiffrin (1977), Evans (1977),
McAndrews et al. (1987), Evans (1989), Reber (1989), Epstein (1994) and Evans and Over (1996).

17See Ouellette and Wood (1998), Bargh (2005), Wood et al. (2005), Ji and Wood (2007), Neal et al.
(2011), Marteau et al. (2012), Neal et al. (2012), Lisman and Sternberg (2013), Miller et al. (2019).
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research, show that in fluent, familiar, situations, individuals’ decisions are less conscious,

that is, more automatic. Disfluent situations, on the other hand, lead to conscious behavior.18

Hence, it becomes crucial for the purposes of this paper to be able to formalize what fluency

of an environment is. In fact, the literature does not provide a formal model to think about

these problems.

Paraphrasing Oppenheimer (2008), a situation becomes more fluent as it becomes more

familiar. That is, an experience is more fluent the easier is the unconscious perception of

its similarity with past experiences.19 Thus, we introduce a first formalization of familiarity

here through two main channels. First, an environment is more familiar the greater its

similarity with environments experienced in the past.20 This is measured by the similarity

function. Second, problems requiring new solutions due to a lack of previous solutions,

cannot be considered familiar. That is, a decision problem is familiar if past behavior can be

replicated. Clearly, these are simplifications; but they are in line with evidence in cognitive

sciences showing that automatic processes are based on analogical reasoning, i.e., similarity

judgments with the past, which activate automatic responses.21 The main idea we are

depicting is that environments that are similar with the past prompt automatic responses

that are drawn from past experiences. This is also in line with the evidence in Woodford

(2019) which calls for the introduction of these ideas in economics.

Then, the second important step is to model the dichotomy between conscious and au-

tomatic processes. The majority of the evidence points to the fact that analogical reasoning

is parallel.22 That is, automatic processes operate continuously; unconsciously assessing the

18This literature is closely related to that on limited attention in cognitive sciences, where agents con-
sciously analyze a situation only if it is novel enough, see Woodford (2019).

19This is in line with research on priming, which studies the influence of unconscious or implicit memory
on behavior through environmental cues, which appears to be one of the main sources of fluency. As defined
in Tulving and Schacter (1990), priming is an unconscious change in the ability to identify or produce an
item as a result of a specific prior encounter with that item. Priming creates a sense of familiarity and
ease, which make the environment fluent and behavior automatic and coherent with the context. See Bargh
(2005) for a survey on priming.

20Notice that , given that we are describing implicit memory, we assume perfect memory, in line with
research in neurosciences as already summarized in Graf (1990). For a more recent survey, see Dew and
Cabeza (2011).

21See Ouellette and Wood (1998), Bargh (2005), Wood et al. (2005), Ji and Wood (2007), Evans and
Frankish (2009), Kahneman (2011)Neal et al. (2011), Marteau et al. (2012), Neal et al. (2012), Lisman and
Sternberg (2013) and Miller et al. (2019).

22See Evans and Frankish (2009) for a survey of the evidence.
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nature and familiarity of the environment.23 On the other hand, conscious processes are

costly and are fully activated only when the environment is disfluent or novel, i.e., unfa-

miliar. In the model, the parallel nature of analogical reasoning is represented by the fact

that similarity comparisons are always drawn and the costly nature of the conscious system

is captured by the similarity threshold. The higher the threshold, the lower the cost; that

is, fewer environments will be perceived as fluent or familiar. This assumption enriches the

model and aligns it more closely with the evidence. In fact, the fluency of an environment

is a concept that intertwines similarity with past experiences with the cost of conscious

processing.24 Conscious processes are needed when new responses are required due to the

novelty of the environment, either because it is not similar enough with past experiences or

because no behavior can be replicated.25 This is very much in line with recent research in

neuroscience and other cognitive sciences which sustains that unconscious processes are con-

text dependent and generate habits while non-habits are the outcome of conscious responses

(Ouellette and Wood (1998), Wood et al. (2005), Ji and Wood (2007), Neal et al. (2011),

Marteau et al. (2012), Neal et al. (2012), Lisman and Sternberg (2013), Miller et al. (2019)).

Finally, notice that, in this model, the relationship between automatic and conscious

processes does not have to be completely dichotomous. As already stated, here, we present

and analyze a class of models, some specifications of which make the relationship between

automatic and conscious processes more complementary. For example, choosing the alter-

native that maximizes preferences over those chosen in similar-enough past environments.

In this sense, the automatic system would be simplifying the problem by creating a fluent

consideration set on which the conscious system would be maximizing preferences.

23See Sun et al. (2020) for recent evidence about this.
24Notice that the model abstracts from the notion that the cost of conscious processing can be a function

of the environment. This is clearly a simplification to avoid having too many degrees of freedom, but it is
certainly an interesting avenue for future research.

25We do not exclude the possibility that, in such instances, the conscious response would be to choose a
similar enough alternative in a similar enough environment.
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5 The Model as a Tool

The aim of this section is to show how the model can be used as a tool for standard economic

analysis. It begins with an illustration of how to apply the model, highlighting its tractability

and main behavioral implications. It then gives new insights into the problem by showing

that DD processes are a possible explanation for the puzzling phenomenon of asymmetric

pricing. Finally, the reasoning is generalized to show that the model’s key implications

provide a useful lens for gaining perspective on empirical regularities in a variety of fields.

5.1 An Application: Asymmetric Pricing

In what follows, the model is used to provide a simple explanation for the phenomenon of

asymmetric pricing, that is, the asymmetric response of firms to changes in costs. Although

prices are increased when costs rise, there is no tendency to reduce them when costs fall.

This well-documented fact is at odds with standard economic theory, despite affecting two

thirds of markets, as highlighted in the seminal paper by Peltzman (2000). The evidence in

Peltzman (2000) is quite overwhelming and excludes more standard explanations, such as

collusion or menu costs. In fact, the phenomenon is present in all kinds of markets, regardless

of the level of competition. Various models have been put forward, as will be explained below,

but, first, let us show that DD processes provide a fairly natural alternative explanation.

Consider two firms competing over a market comprised of consumers described by a DD

process and whose automatic systems make analogies over price vectors, i.e., given constant

wealth, over budget sets. Meanwhile, the firms face cost shocks. The key idea is that the

presence of DD consumers creates a demand in the second period that is dependent on prices

in the first and responds asymmetrically to price changes. In the second period, if prices rise,

consumers react rationally, being unable to replicate past behavior, given that their budget

sets have shrunk. However, due to heterogeneous similarity thresholds, if prices fall, not all

consumers will adapt their behavior, since some will replicate past behavior. Thus, unless

the price drop is big enough, some consumers will fail to perceive the change, and demand

will therefore be much less elastic. Under certain circumstances, this particular demand
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structure gives firms incentives to maintain prices with falling costs and adjust them as costs

rise. The following subsections clarify this reasoning.

5.1.1 Setting

Imagine two firms, A and B, competing à la Bertrand over two periods.26 The game struc-

ture is common knowledge among the firms. First-period costs are symmetric, marginally

constant and normalized to 1, that is, c1
A = c1

B = 1, where cti represents the costs of firm i in

period t. In period 2, costs are independently drawn for each firm i = A,B as follows:

c2
i =

(1 + β) with π probability

(1− β) with 1− π probability

with β ∈ (0, 1).

Consumers are described by a DD process and have V units of wealth in each period.

The automatic system compares price vectors. In the first period, consumers are rational,

given that there is no past to replicate. In the second period, their behavior depends on

firms’ pricing decisions and their own similarity thresholds, which are distributed over the

population with density function f . This means that the heterogeneity of the population is

modeled through different costs of maximizing-self activation.

In this setting, asymmetric pricing can be defined as the asymmetric pricing response of

firms to changes in costs. The following definition formalizes the concept.

Definition 2 (Asymmetric Pricing) Firm i, with i = A,B, is pricing asymmetrically if,

in the second period, it increases prices when costs go up while it does not decrease prices as

costs go down.

5.1.2 Analysis

In this section, we look for the subgame perfect equilibria of the game, focusing on an equi-

librium in pure strategies. First of all, notice that, given the symmetry of the environment,

26Competition à la Bertrand assures that asymmetric pricing is not the outcome of firms’ market power
while also making the assumption of having just two firms less relevant. In fact, the whole analysis can be
generalized to n firms.
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we study firms choosing the same action in period one. For now, let p1
A = p1

B = p1, where

pti is the price charged by firm i in period t. We now look at the second period decision.

W.l.o.g., the analysis concerns firm A’s decision in the second period.

The demand faced by firm A in period two depends not only on prices in period one, but

also on the pricing decisions of firm B in period two. Let:

µ(αn) =

∫ αn

0

f(α)dα

with

αn = σ(p1
A, p

1
B; p2

A, p
2
B)

That is, µ represents the fraction of consumers who make automatic purchase decisions in

period two. Thus we have the following.

If p2
B = p1

d2
A(p1

A, p
1
B, p

2
A, p

2
B) =


0 if p2

A > p2
B,

1
2
V
p1

if p2
A = p2

B,

µ(α1)1
2
V
p1

+ (1− µ(α1))1 V
p2A

if p2
A < p2

B.

While if p2
B 6= p1, we get

d2
1(p1

A, p
1
B, p

2
A, p

2
B) =



0 if p2
A > p2

B ≥ p1,

1
2
V
p2A

if p1 < p2
A = p2

B,

1
2
V
p1

if p1 = p2
A = p2

B,

1 V
p1

if p1
1 = p2

A < p2
B,

µ(α2)1
2
V
p1

+ (1− µ(α2))0 if p2
B < p2

A ≤ p1,

µ(α2)1
2
V
p1

+ (1− µ(α2))1 V
p2A

if p2
A < p2

B ≤ p1.

Notice that α1 ≥ α2, given that, in scenario 2, both firms might have changed prices, so

fewer consumers will perceive the environment as being sufficiently similar.
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First of all, to understand whether firms want to adapt prices when costs are low, let us

examine what happens when costs are low for both firms, that is, c2
A = c2

B = 1 − β, let us

assume that firm A believes that firm B will not change prices, that is, p2
B = p1. Then, if

firm A lowers prices it gets:

(p2
A − (1− β))(µ(α1)

1

2

V

p1
+ (1− µ(α1))1

V

p2
A

)

By contrast, if it does not lower prices, it gets:

(p1 − (1− β))
1

2

V

p1

That is, firm A does not charge p2
A = p1 − ε if the following condition is satisfied.

F (α1) ≥ p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

(1)

Derivation of Condition (1).

(p1 − (1− β))
1

2

V

p1
≥ (p2

A − (1− β))(µ(α1)
1

2

V

p1
+ (1− µ(α1))1

V

p2
A

)

with p1 > p2
A > (1− β). can be rewritten as:

µ(α1) ≥ 2(p2
A − (1− β))p1 − (p1 − (1− β))p2

A

(p2
A − (1− β))(2p1 − p2

A)

That is:

F (α1) ≥ 2(p2
A − (1− β))p1 − (p1 − (1− β))p2

A

(p2
A − (1− β))(2p1 − p2

A)

If we let p2
A = p1 − ε, we obtain Condition (1).

The following subsection will show that this condition can hold under many general cir-

cumstances. For now, it is important to highlight that the condition is essential for an

equilibrium with asymmetric pricing to exist. In fact, on the one hand, by standard argu-

ments, firms always adapt prices when costs are high, as the proof of the following proposition

24



clarifies. On the other hand, it is only if Condition (1) is satisfied that they make no price

cuts when costs are low.

Proposition 2 There is an equilibrium with asymmetric pricing only if Condition (1) holds.

Proof. Firstly, when costs are high, i.e., c2
A = 1 + β, firm A will adapt prices such that

p1 6= p2
A = 1 + β. Suppose firm A does not adapt prices, that is, p2

A = p1. Suppose, then,

that p2
A = p1 ≥ 1 + β. In this case, firms would be making positive profits in both periods,

under any circumstance, and hence would have incentives to undercut each other in the first

period, thus leading to p1 < 1 + β. Clearly, it cannot be that p2
A = p1 < 1 + β, because firm

A would have incentives to deviate in the second period in order to avoid negative profits.

Thus, it must be that p1 6= p2
A = 1 + β.

As a second point, notice that, when firm A has low costs in period two, i.e., c2
A = 1− β,

while firm B has high costs, c2
B = 1 + β, we will have that p2

A = 1 + β − ε, given that

p2
B = 1 + β, as per the previous reasoning. For simplicity, we assume that, in this case,

p2
A = 1 + β and that firm A wins the entire market.

Now, supposing that Condition (1) is satisfied, we need to solve for p1. Clearly, price

competition among firms requires p1 to be such that expected profits in period 1 are zero.

That is:

(p1 − 1)
1

2

V

p1
+ π2(p1 − (1− β))

1

2

V

p1
+ π(1− π)2β

V

1 + β
= 0

So we get

p1 =
(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)4β

First notice that p1 < 1. In fact

(1 + β)(1 + π2(1− β)) < (1 + β)(1 + π2) + π(1− π)4β

given that (1 + β)(1 + π2(1− β)) < (1 + β)(1 + π2) and π(1− π)4β > 0. Moreover, clearly,

p1 > 1− β. In fact:

p1 − (1− β) =
β((1 + β)− π(1− π)4(1− β))

(1 + π2)(1 + β) + π(1− π)4β
> 0
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given that
1 + β

1− β
> 4π(1− π),

where the left hand side is greater than 1, while the maximum of the right hand side is 1.

To be sure that p1 can be an equilibrium price when Condition (1) is satisfied, firms must

have no incentives to deviate. In fact, they may still want to deviate unilaterally in the first

period. That is, firms might be prepared to accept greater short-term losses in order to win

the entire market in the second period, and thereby make greater long-term profits. Thus,

for p1 to be an equilibrium price, it must be that

(p1 − 1)
1

2

V

p1
+ π2(p1 − (1− β))

1

2

V

p1
+ π(1− π)2β

V

1 + β
>

> (p1 − ε− 1)
V

p1 − ε
+ π2(p1 − ε− (1− β))

V

p1 − ε
+ π(1− π)2β

V

1 + β

Or:

0 > (p1 − ε− 1)
V

p1 − ε
+ π2(p1 − ε− (1− β))

V

p1 − ε
+ π(1− π)2β

V

1 + β
.

which can be rewritten as

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)2β
> p1 − ε.

A sufficient condition is that

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)2β
> p1 =

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)4β
,

which is always true. Firms have no incentive to deviate and hence they do not change prices

whenever costs decrease while they increase prices when costs inflate. This concludes the

proof.

Notice that proposition 2 is saying two things. Firstly, if Condition (1) does not hold, then

firms have incentives to deviate unilaterally and therefore, by standard arguments, prices

will be equal to costs, thus there is no price asymmetry. Secondly, if Condition (1) holds,
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there is an equilibrium with asymmetric pricing but more equilibria are possible. In fact,

the whole analysis is based on firm A’s belief that firm B does not change prices. If firm A

believes otherwise, then its incentives to change prices might be stronger and an additional

standard equilibrium, with prices equal to costs, would be possible.27

Finally, it is worth highlighting the following.

Remark 1 Whenever Condition (1) holds, there is an equilibrium at which firms enjoy a

mark up in period 2 when costs are low.

In fact, if Condition (1) is satisfied, p1 ∈ (1− β, 1) and therefore firms have negative profits

in period 1 that are compensated by expected positive profits in period 2. This implies

that prices align with costs only when costs are high. While not central to understanding

asymmetry in pricing, this remark is interesting because it means that, in this simple setting,

firms might enjoy mark-ups in pure strategies, even under Bertrand competition.

5.1.3 Analysis of Condition (1)

In this section, we analyze whether there are general settings under which Condition (1)

holds.

To determine when Condition (1) is satisfied, we need to make some assumption regarding

the automatic system and the distribution of the similarity threshold in the population. As

a first step, let the similarity function be:

σ(p1
A, p

1
B; p2

A, p
2
B) =

1

1 + d((p1
A, p

2
A), (p1

B, p
2
B))

where d((p1
A, p

2
A), (p1

B, p
2
B) = ((p1

A − p2
A)2 + (p1

B − p2
B)2)

1
2 is the Euclidean distance between

price vectors in the two periods. Under the assumptions of Condition (1) we have that

((p1
A − p1

B)2 + (p2
A − p2

B)2)
1
2 = ε. Thus, we have:

µ(α1) =

∫ 1
1+ε

0

f(α)dα = F
( 1

1 + ε

)
27Notice that, if Condition (1) holds, such an equilibrium would not be trembling-hand perfect, given that

the belief that firm B will change prices can be sustained only by allowing mistakes by firm B.
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Thus, Condition (1) can be rewritten as follows:

F
( 1

1 + ε

)
≥ p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

,

which leads to remark 2.

Remark 2 If F
(

1
1+ε

)
≥ 1

1+ε
for any ε, Condition (1) is satisfied.

Proof of Remark 2. Remark 2 stems from the fact that p1 < 1 and so

F
( 1

1 + ε

)
≥ 1

1 + ε
>

p1

p1 + ε
>

p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

,

where the last inequality stems from the fact that the last term is always positive.

Notice that F
(

1
1+ε

)
≥ 1

1+ε
for any ε for many distributions, e.g. the uniform distribu-

tion or any positively-skewed Beta distribution, such as Beta(1, n) with n > 1. However,

this is only a sufficient condition. Whenever F
(

1
1+ε

)
< 1

1+ε
for some ε, Condition (1) must

be checked and no general conclusions can be drawn without making further assumptions.

However, there is an interesting implication of the model worth noting .

Remark 3 If F
(

1
1+ε

)
< p1

p1+ε
for some ε, then there exists a β big enough such that Condi-

tion (1) fails.

The remark is a direct consequence of the fact that

lim
β→1

1− β
(p1 − ε− (1− β))

= 0

Remark 3 is of particular interest, as it is consistent with empirical findings. In fact,

Peltzman (2000) finds that asymmetric pricing is present in markets where cost shocks are

not particularly big. That is, empirically, the bigger the cost shocks, the less asymmetric

the behavior of firms in adjusting prices to costs. Similar results are found in Chen et al.

(2008). The intuition behind Remark 3 in our setting is straightforward. Ceteris paribus,

the higher the β, the more room there is for a firm to decrease the price to a degree that

is perceived by enough consumers to make it profitable. In fact, in general, given that the
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second term on the right hand side of Condition (1) is decreasing in β, the greater the β,

the more likely it is for Condition (1) to fail. Thus, under certain circumstances, if the cost

shock is big enough, the asymmetric response of demand to price changes disappears.

This marks a crucial distinction between the theoretical explanation provided here and

the models that have been presented in the literature to reconcile asymmetric pricing with

economic theory. In fact, since Peltzman (2000), there have been many attempts to explain

the phenomenon of asymmetric pricing by abstracting from menu costs or market power,

which have been rejected by the data. All models include, as in our framework, some kind

of inelasticity of demand in response to price changes.

One strand of the literature (Yang and Ye (2008), Tappata (2009), Lewis (2011), Cabral

and Fishman (2012)) has used search models to explain such inelasticities. The main idea is

that consumers form expectations regarding the distribution of prices based on past price or

cost realizations and thus tend to search less intensely when prior price or cost realizations

have been high, while searching more intensely when they have been low. This gives firms

incentives to react asymmetrically to cost changes. Another strand, Levy et al. (2004), has

used rational inattention to create inelastic response of demand to price changes. According

to this model, consumers decide not to allocate attention to small price changes because it

is costly for them to do so. This means that demand is symmetrically inelastic for small

price changes, irrespective of their direction. Clearly, firms facing this kind of demand have

incentives to raise prices for small changes in costs given the demand does not change but

have no incentives to reduce prices for minor cost changes because they would not increase

demand. Despite its simplicity, the explanation provided here has some crucial features that

enable it to reconcile both strands of literature with the empirical evidence. First of all,

as Remark 3 shows, it is able, like rational inattention models, to relate the presence of

asymmetric pricing to the magnitude of the cost shock affecting an industry. None of the

papers using search models is able to reconcile this fact, because the friction of searching

would make asymmetric pricing always optimal for firms, regardless of the magnitude of

the shock. Secondly, like search models, this model maintains the asymmetric response of

demand to price changes, which is present in the data.28 A third noteworthy feature of

28See next section for a more detailed explanation of how asymmetry of responses can arise.
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the general framework presented here, which sets it apart from other settings, is that the

model allows each consumer’s choice to be either conscious or automatic, i.e. rational or

not, depending on the features of the environment, hence making the overall proportion of

agents that are rational or not in the population endogenous to the problem at hand. That

is, heterogeneity of behavior is easily obtained through the distribution of α, thus making

the model tractable.

Finally and most importantly, DD processes provide a new conceptual framework in

which the source of inertia in behavior is due to the characteristics of the choice environment

and how they affect similarity comparisons, not utility, which is a distinctive feature with

implications that clearly differentiate this from other families of models. This point is made

clearer in the following subsection.

5.2 Inertia, Asymmetry, Heterogeneity, and Markets

Section 5.1 showcased how the model can be easily applied to standard economic settings

to obtain new insights into systematic empirical puzzles. This section shows that the key

behavioral implications of Section 5.1 are, in fact, not specific to that application and can be

extended to different settings to gain fresh perspectives on puzzling phenomena. The model

has three general implications which serve this purpose well.

Inertia: In Section 5.1, in the second period, consumers stick with the same firm, if the

change in their budget set is not big enough. That is, they exhibit inertia if the environ-

ment is not dissimilar to what they have experienced previously. Thus, inertia is not due to

consumers’ preferences.

Inertia in behavior is almost ubiquitous in the data and arises in DD processes due to

the influence of the decision environment characteristics on similarity comparisons. Possible

orthogonality between preferences and similarity is the main difference between the model

developed here and other models. In fact, habit formation and rational inattention mod-

els, which are central in the literature, also introduce inertia but they do so through the

preferences of the individual.

This fundamental difference is very closely connected to the evidence from the cognitive
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sciences, as explained in Section 4.2. In particular, the present model reproduces two key

findings from this literature. The first is that habits and inertia are highly dependent on en-

vironmental cues (Camerer et al. (2005), Wood et al. (2005), Verplanken (2006), Verplanken

(2010), Marteau et al. (2012), Neal et al. (2012), Lisman and Sternberg (2013)) and the

second is that this environmental dependence can be unrelated, and sometimes orthogonal,

to the underlying preferences of the individual (Ouellette and Wood (1998), Ji and Wood

(2007), Neal et al. (2011), Miller et al. (2019)). That is, inertia does not appear to be the

outcome of individual preferences, either by comparison with a reference (habit formation),

or by the optimization of scarce attentional resources (rational inattention).29

Thus, changes in the choice environment, which influence analogies but not preferences,

should affect choices under DD processes, but not under other families of models. This is a

key difference that can be tested in the data. For example, suppose that doctors are described

by DD processes and make analogies between patients’ symptoms. We should then expect

(i) doctors bundle together patients with similar profiles in a suboptimal way, with possibly

no regard for the optimality of the treatment or their preferences and, (ii) older doctors to

replicate past actions by automatically responding to similar symptoms observed in the past,

for instance, prescribing older (branded) drugs and treatments. Hellerstein (1998), Frank

and Zeckhauser (2007), and Patel et al. (2016) find that this is indeed the case empirically.

To explain the same phenomena, models that build inertia on preferences must assume that

there are unreasonable costs involved in processing the information or disrupting habits and

that these costs change with age.

Importantly, DD processes can also replicate empirical regularities explained by other

families of models. Suppose, for example, that households are influenced in their automatic

similarity comparisons by budget sets, as in the application. Then, changes in income will

activate automatic responses (behavioral inertia ) when they are not big enough, while ac-

tivating conscious, adaptive behavior otherwise. Abundant evidence suggests that this is

indeed the case. Household behavior is sticky with respect to changes in income, but the

stickiness depends on the magnitude of the change (Souleles (1999), Reis (2006), Carroll et al.

29We do not exclude the possibility that conscious behavior may be influenced by these considerations.
What we wish to underline here is that a key source of behavioral inertia are automatic processes dependent
upon analogies and environmental cues and not on individual preferences.
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(2011), Carroll et al. (2018), Fuster et al. (2018)).30 Similarly traders in financial markets

appear to underreact to news, but this underreaction seems to depend on the magnitude of

the change (Cutler et al. (1991), Bernard (1993)). DD processes can explain those outcomes

when traders’ automatic systems are influenced by analogies between information sets, for

example.

Asymmetric and symmetric responses to environmental changes: In Section

5.1, consumers respond asymmetrically to positive and negative changes in the environment.

In fact, in the second period, the same absolute change in the price vector causes different

behavioral responses depending on the sign of the change. If prices decrease, replication

of past behavior is possible, as the previously chosen bundle is included in the new budget

set. Hence, if the change in the environment is not enough to activate the maximizing self,

past behavior should be replicated. By contrast, any increase in prices precludes replication

of past behavior, hence leading to re-optimization. From an observational standpoint, con-

sumers should show more sensitivity to adverse changes than to advantageous ones, unless

the magnitude of the change is large enough to activate the maximizing self in any case. Fur-

thermore, responses to changes that preclude replication should be more rational and quickly

disrupt habits – as observed, for example, with active decisions in Carroll et al. (2009).31

There is significant evidence that these are indeed key patterns in individual behavior.

While consumers tend to respond more strongly to negative changes of income than to

positive ones, this asymmetry disappears as the magnitude of the shock increases and if

consumers, e.g., savers, are able to replicate past consumption decisions, (Dargay (2001),

30Interestingly enough, as in the application, response of consumption to changes in income seem to be
higher the greater the volatility of the income process in terms of magnitude of changes, see Reis (2006).

31To better understand the connection with Carroll et al. (2009), notice that they find the following:
...compelling new hires to make active decisions about 401(k) enrollment raises the initial fraction that enroll
by 28 percentage points relative to a standard opt-in enrollment procedure, producing a savings distribution
three months after hire that would take thirty months to achieve under standard enrollment.
This kind of outcome would be predicted by DD processes whenever active decisions mean that agents have
no default or compulsory choice, and hence would be expected to make a conscious decision, thus overcoming
behavioral inertia. In situations in which conscious behavior can lead to optimal choice, given a DD process,
this kind of regime is clearly optimal, in line with the claims made by Carroll et al. (2009). Nevertheless,
even when the decision is active, the choice may still not be conscious if the decision problem is familiar to
one encountered before and behavior can be replicated. This can potentially lead to suboptimal behavior, as
an anonymous referee suggested. While these issues deserve further investigation, they transcend the aims
of this study.
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Reis (2006), Bunn et al. (2018), Fuster et al. (2018), Christelis et al. (2019), Surico and

Trezzi (2019)). Consumers also react asymmetrically to changes in prices, taxes and asset

returns, especially in the case of smaller changes and under higher liquidity constraints (Bid-

well et al. (1995), Adeyemi and Hunt (2007), Bracha and Cooper (2014), Wadud (2014),

?).32 If we combine inertia and asymmetry of responses, we should expect agents described

by DD processes to react to negative changes in the same way as rational consumers with

liquidity constraints. By contrast, we should expect less responsiveness to positive changes

than would be rationally predicted; a pattern which indeed appears in the data.

Endogeneity of heterogeneous behavior: Section 5.1 showed that, by varying the

similarity threshold in the population, it is easy to create endogenously heterogeneous ag-

gregate behavior within the class of models presented here. At any given moment in time,

the proportion of consumers choosing consciously and the proportion automatically sticking

to past behavior are endogenously determined by the change in the decision environment.

This key component of the models is what makes them tractable.

An important issue in macroeconomics is, in fact, how to introduce endogenously het-

erogeneous household behavior to match empirical data (Mankiw (2000), Sims (2003)). DD

processes indicate a possible route with solid cognitive foundations. Their appeal, more-

over, is threefold. Firstly, DD processes provide a simple way to reproduce many empirical

facts relating to inertia and adaptation at the individual level.33 Secondly, through the

distribution of the similarity threshold, the framework can be easily calibrated to match

heterogeneous aggregate behavior. Thirdly, by clearly separating automatic decisions from

conscious ones, this class of models allows for an added layer of heterogeneity in behavior;

households might differ in the way they make conscious decisions. Thus, standard models

of heterogeneous behavior can be incorporated into a DD process. These characteristics

distinguish DD processes from other frameworks.

Models of rational inattention, for example, can reproduce some of the empirical facts,

32The asymmetric response of demand to price changes has also received a great deal of attention in
marketing (Krishnamurthi et al. (1992), Kalyanaram and Winer (1995), Mazumdar et al. (2005), Karle et al.
(2015)).

33For further dynamic implications, see the end of this section.
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but, as admitted on various occasions by Sims (Sims (2003) and Sims (2006)), they raise three

key problems. First, and more importantly, at the aggregate level, informational frictions

average out, thus preventing the model from reproducing the kind of aggregate behavior

that is observed in the data. Next, rational inattention models become complicated once

departing from the simplest specifications, thus making their application difficult. Finally,

the cognitive foundations of these models are weak. In particular, people do not appear to

make a rational, utilitarian choice of which information to ignore.34

DD processes are able to overcome these problems in a simple way. Yet, new issues

arise. In fact, two key questions which need to be researched further to apply the model to

different markets are: what are the relevant environments, and which similarity function best

describes behavior? In this paper and in the online appendix, we provide different possible

solutions to these questions. The cognitive sciences and calibration might help to push the

research forward.

As a final point regarding heterogeneity, it is worth noting that DD processes also allow

heterogeneous behavior to arise from experience. Since automatic processes are based on

implicit memory, otherwise equal decision makers with different past experiences may behave

differently. This is an important characteristic, which could enable the model to be used to

analyze the impact of experience on the quality of decision making (Heckman et al. (2013)),

a possibility that we leave for future research.

Finally, it is worth highlighting two dynamic implications of the model. The first is that,

due to the orthogonality between preferences and similarity, it accommodates a boiling frog

argument.35 Any time an adverse change in the environment allows for replication of past

behavior, individuals described by a DD process can be manipulated to stick to past choices,

34For evidence in favor of rational inattentiveness see Dewan and Neligh (2020).
35“The boiling frog is a fable describing a frog being slowly boiled alive. The premise is that if a frog is put

suddenly into boiling water, it will jump out, but if the frog is put in tepid water which is then brought to a
boil slowly, it will not perceive the danger and will be cooked to death. The story is often used as a metaphor
for the inability or unwillingness of people to react to or be aware of sinister threats that arise gradually
rather than suddenly.” Wikipedia. Although this feature of the model might appear odd, it closely maps
cognitive science ideas, e.g., Chugh and Bazerman (2007) and references therein, by enabling the depiction
of the boiling frog syndrome. See Offerman and Van Der Veen (2015) for evidence of the phenomenon in
economics. Notice that this feature also differentiates the model from satisficing and rational inattention
models.
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simply by changing the environment as slowly as possible. For example, in the application,

if consumers’ wealth grows after the second period, firms can introduce very slow price in-

creases, and thus increase their margins, as consumers continue to buy the same bundle.

Combining this intuition with the one regarding firms’ pricing behavior under decreasing

costs, we should observe relatively frequent, small price increases and large, while infre-

quent, price decreases as well as seeing firms’ margins increase with increasing prices. This

has been well-highlighted in the data (Chen et al. (2008)), and is worth further investigation.

The second implication is that decision makers overreact to some environmental changes.

To understand this point, suppose that a DM described by a DD process automatically sticks

to past behavior at time t after a change in the environment. Now, suppose a further, larger

change and that, this time, the DM behaves consciously at time t+1 by reacting to the change

in the environment, while also taking into account previously unperceived past changes. To

an observer, this appears an overreaction to the change at t+ 1 and the DM’s behavior will

be correlated with past changes in the environment. This is a general pattern of behavior

that has been observed both in macroeconomic data (Reis (2006)) and in financial markets

(De Bondt and Thaler (1985)), and can be easily accommodated by DD processes when

dynamic implications are taken into account.

6 Final Remarks

The cognitive sciences have highlighted the fact that choices can be divided into two cate-

gories; conscious and automatic. This greatly hinders the use of standard economic models,

which do not generally take into account the existence of automatic choices and their de-

pendence on environmental cues.

The key contribution of this paper is to provide a novel formalization of this duality. The

proposed framework allows us to restore classic revealed preference analysis and to analyze

various empirical regularities, as shown in Section 5. More generally, it provides a fresh way

of understanding the coexistence of sticky and adaptive behavior and generates predictions

consistent with the data, but different from those made by other theories.

The model is also useful for addressing welfare issues by crucially restoring a revealed
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preferences approach. However, the approach proposed here highlights an issue that is

usually neglected: cognitive costs. The upper and lower bounds of the similarity threshold

range are defining, respectively, a lower and upper bound of the cognitive costs of activation

of the maximizing self. This could be useful in welfare analysis. It also raises the question

for future research of how to relate such costs to utility.36

The development of a new framework encompassing conscious and automatic choices

required some simplifying assumptions. First, we assumed that conscious behavior is the

maximization of a given preference relation. In some cases, this assumption can be too

strong, since inconsistency is also possible in conscious choices. Fortunately, the framework

and analysis illustrated here do not depend on the assumption of a particular type of con-

scious behavior . For any given decision environment, analogies determine a partition with

two components, one containing problems that are similar enough to the reference environ-

ment and another containing those that are not. This partition is based on a single simple

assumption; that automatic choices must stem from the replication of past behavior, which

is in line with cognitive and neuro science research. Alternative conscious behaviors are

possible. The only element of the formal analysis that has to be changed is the consistency

requirement, which needs to be tested on those problems in DN . Obviously, to find automatic

choices, we should analyze violations of such requirements.

A second assumption was that the similarity function is known and the environments

are given. Although the first of these assumptions can be relaxed, as shown in the online

appendix, some knowledge of similarity comparisons is nonetheless essential.37 Automatic

behavior can be consistent with the maximization of some preference relation, thus making

the observation of inconsistent behavior insufficient for the correct categorization of decisions.

Analogies add a layer of complexity to the problem, thus calling for richer data. Several

steps in this direction are possible. The first would be to relax the assumption of known

environments. An understanding of the key elements of a decision problem for similarity

comparisons is crucial for the study of individual decision making, as noted by Woodford

36Notice that, even when such costs can be related to utility, e.g., the similarity between two environments
depends on the closeness between the respective maximum obtainable utility values , the relevance of the
analysis in Section 3.1 remains intact due to the possible boiling frog pattern.

37Alternatively, one needs a large enough population of individuals sharing the same similarity function,
as shown in the appendices.
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(2019). The model proposed here provides a setting for the structured consideration of this

issue, which is left for future research. A second possibility for a better identification of

conscious and automatic decisions might be to complement the framework introduced here

with richer datasets (e.g., by including response times) to categorize individual decisions.

For example, Caplin and Martin (2016) and Alós-Ferrer (2018) provide formal frameworks

in which automatic responses are taken as given and use drift diffusion models to predict

the correlation between response times and conscious or automatic behavior. One option

would be to use unusually long response times to identify conscious responses and use this

information, together with new observations, to perform algorithmic analysis, as presented

here. The models in Caplin and Martin (2016) and Alós-Ferrer (2018) can help to specify

an unusually long response, thus giving structure to the exercise.38

Finally, an interesting avenue for future research would be to gain a deeper understanding

of the impact of analogical reasoning on behavior. First, the application in Section 5 makes

the simplifying assumption that the similarity function is σ(e, e′) = 1
1+d(e,e′)

. This, however,

is not necessarily the case. In fact, the analysis throughout the paper assumes no specific

functional form. Allowing for other possibilities might help to explain, for example, why a

change in price from 1.99 to 1.98 triggers very different behavioral responses than a change

from 1.99 to 2.00. If the similarity function is such that σ(1.98, 1.99) > σ(2.00, 1.99), more

people will react automatically to the first than to the second change, thus leading to different

behavioral responses.39 Second, the similarity between 1 and 2 euros, e.g., 1
2
, is much higher

than the similarity between 100 and 200 euro cents, e.g., 1
101

. This might explain why people

behave differently with nominal changes that do not affect real values (see for example Ert

and Erev (2013)).

38Notice that the use of dual information, that is, the use of unusually rapid response times to identify
automatic responses, can be somewhat more problematic, because there is no reason why responses cannot
be both conscious and rapid, particularly in the case of very easy problems.

39I thank an anonymous referee for making this interesting connection.
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A Appendix

A.1 Estimation of the Similarity Function

The similarity function is a key component of a DD process and, for the sake of exposition,

in this paper, it is assumed to be at least partially known. Nonetheless, we discuss in what

follows how to estimate it by studying the choice behavior of a group of individuals sharing

the same similarity function.40 In other words, we are assuming that the population follows

a DD process. Notice, however, that, once the similarity is estimated, this assumption can

be falsified, as explained in the main text.

Consider a continuous population of individuals sharing the similarity function σ, with a

continuous and independent distribution of the similarity threshold over [0, 1]. Sequences of

decision problems and preferences are independently distributed. Suppose, for now, that the

preference distribution is known. This assumption is quite common in empirical analysis and

can be relaxed in some cases, as explained below. It implies that, for every A ⊆ X, the pro-

portion of agents in the population that would choose alternative x ∈ A, for any alternative

x ∈ A, is known. Let π(x|A) represent such a proportion. Before proceeding to the analysis,

notice that, even in this circumstance, the revelation of individual preferences would still be

relevant for policy purposes. In fact, knowing the aggregate preference distribution is not

equivalent to knowing the preferences of each individual.

Now, assume that, for every pair of environments e, e′ ∈ E, there exists a representative

subpopulation of agents such that, for each agent:

• there exists some t′ such that t′ is new, at′ = x for some x ∈ X and et′ = e′.

• there exists some t > t′ such that x ∈ At, no alternative in At \ {x} has been chosen

before t and et = e.

• there is no s ∈ (t′, t) such that as = x.

The main result of this section shows that we can compare the similarity of two different pairs

of environments by considering the aforementioned respective subpopulations and sampling

40The idea that similarity comparisons are affected by culture has been studied at least since Whorf (1941).
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them. Formally, denote by ν(x|e, e′, At) the average relative number of randomly- sampled

individuals sticking to x at t, as defined in the previous richness condition. That is, for any

pair of environments (e, e′), we take a sample of finite magnitude n from the aforementioned

subpopulations and compute the average ratio of individuals in that sample who stick to

y. This average is ν(x|e, e′, At). Notice that the considered alternatives and sequences of

decision problems that satisfy the richness condition might differ across different pairs of

environments.

Proposition 3 (Eliciting the Similarity) For every two pairs of environments (e, e′) and

(g, g′), Pr(|ν(x|e, e′, At) − π(x|At)| ≥ |ν(x′|g, g′, At′) − π(x′|At′)||σ(g, g′) > σ(e, e′))
p→ 0.

That is, the probability of having |ν(x|e, e′, At)−π(x|At)| ≥ |ν(x′|g, g′, At′)−π(x′|At′)| when

σ(g, g′) > σ(e, e′) probabilistically converges to zero.

Proof. First, notice that |ν(x|e, e′, At) − π(x|At)| 6= 0 for only two reasons, (i) sam-

pling noise, (ii) automatic decisions. Given that the samples to estimate ν(x|e, e′, At)

are independent, as the dimension of the sample grows, the law of large numbers ap-

plies; therefore the first concern disappears in the limit. This leaves us with the sec-

ond. Given that α is continuously and independently distributed in the population, if

|ν(x|e, e′, At)− π(x|At)| ≥ |ν(x′|g, g′, At′)− π(x′|At′)| in the limit, it must be because more

people are replicating behavior in sequence (e, e′) than in sequence (g, g′). That is, there

always exists a non-negligible part of the whole population with similarity threshold α in the

interval [σ(g, g′), σ(e, e′)) and, since thresholds are independent of preferences, and the only

behavior that can be replicated is that in which the choice of x or x′ was new, the result

follows.

The main intuition of Proposition 3 is the following. |ν(x|e, e′, At) − π(x|At)| measures

how different from the underlying primitives the behavior in the representative sample

is with respect to the preferences in the whole population. There are two reasons why

|ν(x|e, e′, At) − π(x|At)| might not be zero. Either the sample has some agents making

automatic choices or some noise. The law of large numbers causes the second concern to

disappear, thus enabling us to reveal the similarity between different pairs of environments
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simply by comparing the previous differences for the different pairs.

The previous result is general and holds true for any underlying relationship between

environments and menus. Nevertheless, whenever At ∩ et = ∅, e.g., decision environments

are frames, we can relax the assumption on the knowledge of preferences. In fact, we would

only need to know π(x|A) for all A ⊆ X for just one alternative x and the analysis would

follow as before, except that, this time, the same alternative can be used to estimate the

similarity of different pairs of environments.41

41Even more generally, suppose there are two alternatives x, y ∈ X such that {x, y} ∩ e = ∅ for any e ∈ E
and that π(x|{x, y}) is known. Then the richness condition would be as follows. Assume that, for every pair
of environments e, e′ ∈ E, there exists a representative subpopulation of agents such that, for each agent:

• there exists some t′ such that t′ is new, at′ = x for some x ∈ X and et′ = e′.

• there exists some t > t′ such that At = {x, y}, and y has never been chosen before t and et = e.

• there is no s ∈ (t′, t) such that as = x.

then the estimation of the similarity would be exactly the same, just using this special pair of alternatives.
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