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Abstract

We develop a framework for deriving dynamic monotonicity results in long-term

stochastic contracting problems with symmetric information. Specifically, we construct

a notion of concave separable activity that encompasses many prevalent contractual

components (e.g., wage, effort, level of production, etc.). We then provide a tight

condition under which such activities manifest a form of seniority in every contracting

problem in which they are present: any change that occurs in the level of the activity

over time favors the agent. Our work unifies and significantly generalizes many exist-

ing results and can also be used to establish monotonicity results in other settings of

interest.
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1 Introduction

Interactions between a principal and an agent often take place in complex and dynamic

environments: seasonality and random shocks affect demands, workers accumulate skills,

and business opportunities arrive and disappear at random. Contracts are used to specify

the obligations of each party and, in particular, how these obligations should respond to

changes in the contracting environment. Faithfully describing realistic contracting environ-

ments and deriving optimal contracts therein is eminently difficult. A standard approach

is to fully characterize the optimal contracts in a “stylized” contracting problem that cap-

tures the essential features of the original setting. This approach has been used to derive

valuable insights into qualitative features of real-life phenomena in a wide array of economic

settings. For example, Harris and Holmström (1982), Holmström (1983), Postal-Vinay and

Robin (2002a,b), and Burdett and Coles (2003) study competitive labor markets and derive

a downward wage rigidity property; Krueger and Uhlig (2006) study competitive insurance

markets and show that changes in the terms of insurance contracts always favor the in-

sured; Albuquerque and Hopenhayn (2004) study entrepreneur financing and find that an

entrepreneur’s access to capital increases over time; Fudenberg and Rayo (2019) and Bird

and Frug (2020) study effort dynamics and show that a worker’s effort decreases over time;

and Forand and Zápal (2020) study dynamic project selection and find that project selection

criteria change in the agent’s favor as time goes by.

In this paper, we take an alternative approach to studying the qualitative features of

desirable contracts that circumvents the need to fully characterize optimal contracts. We

develop a conceptual framework and use it to establish a general dynamic monotonicity

result that unifies and remarkably generalizes most of the monotonicity results developed

in the above-mentioned papers.1 Furthermore, the framework we develop is significantly

more general not only with respect to the potential complexity of the environment in which

the interaction occurs but also in terms of the structure of the contractual components en-

compassed by our result. Thus, in addition to offering a generalization and unification of

several seemingly unrelated results in the existing literature, our framework paves the way

for deriving related results for new, more intricate, contractual components in richer settings.

1The only exceptions are Albuquerque and Hopenhayn (2004) and Fudenberg and Rayo (2019). We
discuss the connection between their monotonicity results and our result in Section 7.
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The key restrictions we impose are that information is symmetric and that only the prin-

cipal has commitment power. We model a contracting problem as a stochastic game—in

each period the players play a randomly drawn stage game, observe its outcome, and collect

payoffs—in which the principal commits to a long-term strategy and the agent reoptimizes

his play at every history. As the calendar time, previous stage games, and the players’ past

moves may affect the games the players will play in the future, the class of contracting

problems we consider is fairly general. It accommodates a wide variety of settings, includ-

ing, but not limited to, settings where the agent’s cost of effort depends on past events,

there is seasonality in demand, there is uncertainty about the principal’s ability to provide

compensation in the future, there are long-term (or storable) investment opportunities, or

there are R&D processes that may change future production methods and costs.

The main notion we develop is that of activity. Broadly speaking, an activity is a re-

curring component of the interaction for which the players have monotone and opposite

preferences. Examples include worker’s daily effort, monthly wage, production volume,

level of authority of a bureaucrat or a unit in an organization, financing to an entrepreneur,

quality of supplied products, and more. Some activities are unilaterally controlled by one

of the players (e.g., worker’s effort) while others are jointly controlled by both players (for

instance, consider a situation where output depends on the agent’s effort as well as the

amount of resources provided by the principal). Our analysis will show that the class of

jointly controlled activities gives rise to a strategic aspect that is absent in the case of the

unilaterally controlled activities.2

Two characteristics of activities will play an important role in our analysis: concavity

and separability. An activity is concave if the principal’s activity-related payoff is a strictly

concave function of the agent’s activity-related payoff. An activity is separable if changes

within the activity do not affect the distribution of games that the players will play in the

future. Note that the separability requirement allows events unrelated to the activity to

affect the availability of the activity in the future. Hence, situations where the availability

of an activity is endogenous and/or path-dependent fall within the scope of our analysis.

2The activities in the above papers, with the exception of Forand and Zápal (2020), are unilaterally
controlled activities.
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Our main result identifies a property of concave separable activities that guarantees

that, in optimum, and irrespectively of the exact details of the contracting problem, the

level of the activity changes over time only in the direction that favors the agent (Theorem

1). Furthermore, our result is tight in the sense that, under mild technical requirements,

for every concave separable activity that fails to satisfy the property, there exist contracting

problems in which, as time goes by, the level of the activity changes in the opposite direction

(Proposition 2).

The essence of the mechanism behind our result can be described as “incentive-constrained

smoothing.” Intuitively, consider an incentive-compatible contract and, for each concave

separable activity, consider the joint play induced by the contract in all components of the

interaction except for that specific activity. Mechanically, this play can be thought of as im-

posing incentive-compatibility constraints on how the designated activity can be played over

time. The concavity of the activity implies that smoothing out fluctuations in the activity-

play over time is profitable. However, in general, such smoothing may destabilize incentive

compatibility by creating new (within activity) deviation opportunities. In this light, an

additional contribution of this paper is in showing how a relatively standard intertemporal

smoothing argument can be extended to much richer models of dynamic contracting and,

in particular, in identifying tight limits imposed by short-run activity-specific strategic in-

centives.

The rest of the paper is organized as follows. In Sections 2 and 3, we define the con-

tracting environment and develop the notion of activity. Section 4 reports the main result

of the paper (Theorem 1). Section 5 offers a (partial) converse of Theorem 1, and Section

6 is devoted to some robustness results. We review the related literature in Section 7 and

offer concluding remarks in Section 8. All proofs are relegated to Appendix A.

2 Contracting Environment

We consider dynamic interactions between a principal and an agent that can be represented

as follows. In each period t ∈ {1, 2, ..., T}, where T ≤ ∞, the players play a randomly drawn
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(strategic-form) stage game G(t), observe the outcome of G(t), and receive payoffs. The

game in period t is drawn from a commonly known history-dependent distribution f(ht),

where ht lists the realized (stage) games in all previous periods (G(1), ..., G(t− 1)) and the

players’ actions in those games. We refer to a stochastic process f(·) as a contracting problem.

We assume that the only asymmetry between the players is in their ability to commit.

While the principal enjoys full commitment power, the agent cannot commit to a course

of play. Thus, it is convenient to think of the principal’s problem at the beginning of the

interaction in terms of committing to a contract that the agent would find optimal to fol-

low at any history. Formally, a contract specifies, for every finite history ht, an action

profile in every3 G(t) ∈ supp(f(ht)). A contract is incentive compatible if, for every pair

(ht, G(t)) such that G(t) ∈ supp(f(ht)), the agent’s continuation strategy (from period t

onwards) specified by the contract is a best response to the principal’s continuation strategy

specified by the contract. We assume that the players maximize (discounted) expected util-

ity and use the same positive discount factor δ. Hence, the principal’s objective is to select

an incentive-compatible contract that maximizes his expected discounted value at time zero.

3 Concave Separable Activities

In this section, we develop the main concept of the paper, which can be used to draw

economically relevant conclusions in complex or even partially specified contracting prob-

lems (we illustrate some applications in Section 4.2). We start by defining an activity and

presenting some examples, after which we define a notion of separability with respect to a

contracting problem.

3.1 Activities

We denote a strategic-form game between a principal and an agent by G = 〈Sp, Sa;up, ua〉,

where Si and ui : Sp × Sa → R are, respectively, the action space and the vNM utility

3Note that we do not assume that the action space in G(t) is countable. Thus, our framework can
accommodate “mixing” by the principal, by setting his action space to be the set of lotteries over his pure
actions in a simpler strategic-form game.
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function of player i ∈ {a, p}.

Definition (Activity). An activity is a pair (G,Σ), where G = 〈Sp, Sa;up, ua〉 and Σ ⊆ Sp × Sa,

such that there exists a real-valued non-degenerate interval L and a bijection η : L→ Σ for

which the functions up ◦ η : L→ R and ua ◦ η : L→ R are continuous and strictly monotone

in opposite directions.

To define when an activity is available in a given period we first define the addition

operator ⊕ for games. Roughly speaking, the game G1⊕G2 is played when the players play

the games G1 and G2 simultaneously “side by side” and their payoffs are added.

Definition (The ⊕ operator). Given a pair of strategic-form games between a principal

and an agent, G1 = 〈S1
p , S

1
a;u1

p, u
1
a〉 and G2 = 〈S2

p , S
2
a;u2

p, u
2
a〉. The strategic-form game

G1 ⊕ G2 is defined as 〈Sp, Sa;up, ua〉, where, for i ∈ {p, a}, Si := S1
i × S2

i , and, for all

action profiles ((s1
p, s

2
p), (s

1
a, s

2
a)) ∈ Sp×Sa, ui : Sp×Sa → R satisfies ui((s

1
p, s

2
p), (s

1
a, s

2
a)) =

u1
i (s

1
p, s

1
a) + u2

i (s
2
p, s

2
a).

Using this operator we can now state the following definition.

Definition (Activity in a Contracting Problem). The activity (G,Σ) is available in period

t if the realized game in t, G(t), can be written as G′ ⊕G for some game G′.

It is useful to emphasize certain aspects of the above definitions. In essence, an activity

is a part of the interaction over which the players have opposite preferences, and that can

be measured in terms of linearly ordered levels (the interval L) and adjusted continuously.

Note that the definition of activity is agnostic about the choice of L. A particularly useful

candidate, especially in general arguments, is L = ua(Σ), i.e., measure the activity in terms

of the agent’s activity-related payoff; however, when specific applications are considered,

alternative units (e.g., production volume) may be natural and convenient. Additionally,

defining when an activity is part of the interaction via the operator ⊕ imposes important

restrictions on the relation between the activity and the rest of the interaction in periods

when the activity is available. First, the players’ payoffs in the activity-game G are addi-

tively separable from other payoffs obtained in the same period. Second, the action space

in periods when the activity is available must have a cross-product structure. This rules

out the possibility that activity-related actions impose restrictions on the players’ possible

actions outside of G and vice versa.
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Since there is a bijection between Σ and an interval L, and the players’ preferences are

strictly monotone in opposite directions on L, an activity can be thought of as a means

of transferring utility between the players. Given an activity (G,Σ), let Up(u) denote the

principal’s payoff from the (unique) action profile in Σ for which the agent’s payoff is u.

Formally, Up : ua(Σ)→ R is defined as

Up(u) = up ◦ (ua|Σ)−1(u),

where (ua|Σ) is ua restricted to the domain Σ.

Definition (Concavity). An activity (G,Σ) is concave if the function Up(·) is strictly con-

cave.

In other words, an activity is concave if the principal’s marginal loss due to an increase in

the agent’s utility from the activity is strictly increasing.4

3.2 Examples of Activities

The most basic class of activities are those that are unilaterally controlled by one of the

players, namely, activities (G,Σ) for which G has a singleton action space for one player. For

notational convenience, when player i has a singleton action space, we denote his available

action by i∅. A prominent example in this class is a periodic wage paid by the principal:

when w ≥ 0 is the agent’s wage, the principal’s and agent’s payoffs are −w and g(w),

respectively, for some increasing function g(·). The formulation in terms of an activity is

(Gwage,Σwage), where

Gwage = 〈Sp = R+, Sa = {a∅};up(w, a∅) = −w, ua(w, a∅) = g(w)〉,
and Σwage, in this case, is equal to the set of all possible outcomes of Gwage. If the function

g(·) is strictly concave, then this activity is concave.

The above is perhaps the simplest possible example of an activity. For a slightly richer

example consider the following scenario. When the agent arrives at work, he chooses whether

to work on task Y or on task X. Assume that working on task Y generates a payoff of 1 for

both players, whereas if the agent decides to work on task X, the players’ payoffs depend on

4In Corollary 1 below, we will provide a weaker version of our result for the case where Up(·) is weakly
concave.
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the agent’s choice of effort x ∈ [0, 1]. If the agent chooses effort x, he bears the cost of effort

c(x) and the principal obtains a profit of π(x), where both c(x) and π(x) are continuous

and increasing functions.

Suppose that we are interested in formalizing the agent’s effort on task X as an activity

(GX ,ΣX). Tasks X and Y are assumed to be mutually exclusive. Hence, in order for the

agent’s choice of strategy in GX to impose no restrictions on his choice of strategy in the

rest of the stage game, it must be the case that both the choice to work on X and the choice

to work on Y are part of GX . The set ΣX , in this case, is a strict subset of the set of possible

outcomes of GX that includes only the action profiles that are directly related to task X.

The following is a possible formulation of the agent’s work on task X as an activity:

GX = 〈Sp = {p∅}, Sa = {Y } ∪ [0, 1];up(p∅, sa), ua(p∅, sa)〉,
where

up(p∅, sa) =

1 if sa = Y

π(sa) if sa 6= Y

; ua(p∅, sa) =

1 if sa = Y

−c(sa) if sa 6= Y

,

and

ΣX = {p∅} × [0, 1].

Both of the previous activities are special in that the games in the specification of those

activities (i.e., Gwage and GX) are, in fact, single-player decision problems. To illustrate an

activity that is jointly controlled by both players consider a production process where, first,

the principal provides capital k, after which the agent can either supply labor l or reallocate

the capital provided by the principal for his private benefit.5

For concreteness, suppose that the output is given by z(l, k) = min{l, k} and that the

value of output z for the principal is π(z). In addition, suppose that the principal’s marginal

cost of capital, the agent’s marginal cost of providing labor, and the agent’s marginal utility

from capital used for private benefit are all 1. This activity can be represented as (Gz,Σz),

where

Gz = 〈Sp = R+, Sa = R+ ∪ {steal};up(k, sa), ua(k, sa)〉,

5This is similar to the production process described in Albuquerque and Hopenhayn (2004).
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where

up(k, sa) =

−k if sa = steal

π(z(sa, k))− k if sa 6= steal

; ua(k, sa) =

k if sa = steal

−sa if sa 6= steal

,

and

Σz = {(sp, sa) ∈ R2
+ : sp = sa}.

The activity is concave if π(·) is strictly concave. Note that, in this example, there are two

types of action profiles that do not belong to Σz: those where the agent steals the capital

and those where the input bundle is inefficient (k 6= l).

3.3 Separability

Up until now, we have only considered the relation between an activity and other parts

of the interaction within a stage game. We conclude this section by defining a notion of

separability that places a dynamic restriction on the contracting problem.

Definition (Separability with respect to a Contracting Problem). An activity (G,Σ) is

separable with respect to f(·) if for any pair of same-length histories ht, ĥt along which the

sequence of realized games {G(τ)}t−1
τ=1 is identical the following holds:

If there is s < t such that

1. G(s) = G′ ⊕G for some G′, and

2. the sequence of outcomes of (G(1), ..., G(s − 1), G′, G(s + 1), ..., G(t − 1)) is identical

under ht and ĥt,

then f(ht) = f(ĥt).

Notice that our notion of separability is inherently asymmetric. It only requires that

changes in the action profile in the activity-game G not affect the stochastic process accord-

ing to which future games are drawn. By contrast, changes that affect the future distribution

of games through actions outside the activity-game G are entirely legitimate. Thus, this

notion of separability does not rule out situations where the availability of activities is en-

dogenously controlled by the players.
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The object of interest in this paper is concave activities that are separable with respect

to the contracting problem under consideration. We refer to such activities as concave

separable activities.

4 Monotonicity of Concave Separable Activities

To state the key condition of our main result, we define the following activity-specific func-

tions.6 Given an activity (G,Σ), the function Ūa : Σ → R maps every action profile σ ∈ Σ

to the agent’s highest payoff in G provided that the principal’s action is7 σp (where σp is

the principal’s part of the action profile σ),

Ūa(σ) = sup
sa∈Sa

ua(σp, sa).

Next, given a pair of distinct action profiles σ1, σ2 ∈ Σ, we define the function

φ(σ1, σ2) =
Ūa(σ1)− Ūa(σ2)

ua(σ1)− ua(σ2)
.

Our main result establishes that there is an intrinsic connection between the dynamics

of concave separable activities and the following property of φ(·, ·).

Property 1. The activity (G,Σ) satisfies Property 1 if φ(σ1, σ2) ∈ [0, 1] for every pair of

distinct action profiles σ1, σ2 ∈ Σ.

Property 1 restricts the extent to which the agent’s incentives to deviate (within the activity-

game G) may vary between action profiles in Σ. For any (distinct) profiles σ1, σ2 ∈ Σ, two

magnitudes need to be compared: (i) the difference between the agent’s payoffs under σ1

and σ2, and (ii) the difference between the agent’s maximal attainable payoffs when only

the principal plays in accordance with σ1 and σ2. Property 1 holds if, for any σ1, σ2 ∈ Σ,

(i) and (ii) do not have opposing signs, and the absolute value of (i) is at least as large as

the absolute value of (ii).

6To simplify notation, we don’t explicitly add (G,Σ) as an argument of these functions, but leave this
dependence implicit.

7To ease notation, we define the mapping Ūa on action profiles in Σ rather than on the principal’s actions
consistent with these profiles.
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In many cases, it is easy to verify that Property 1 holds. For instance, if an activity is

unilaterally controlled by the principal (i.e., the agent’s action space in the activity-game

is a singleton), then the numerator and denominator of φ(·, ·) are always identical. Hence,

Property 1 holds on the upper bound, φ(σ1, σ2) ≡ 1. On the other hand, if an activity is

unilaterally controlled by the agent (i.e., the principal’s action space in the activity-game is

a singleton), then the two terms in the numerator of φ(·, ·) are the same. Hence, Property

1 holds on the lower bound, φ(σ1, σ2) ≡ 0. The following proposition summarizes the above

discussion.

Proposition 1. Unilaterally controlled activities satisfy Property 1.

It follows that the first two activities described in Section 3.2 (periodic wage and the

agent’s effort on task X) satisfy Property 1. By contrast, the joint-production example with

the production function z(l, k) = min{l, k} (last example in Section 3.2) does not satisfy

Property 1: In order to increase production, both players need to provide more inputs. Since

providing labor is costly to the agent, it follows that an increase in the intended production

decreases the agent’s payoff. On the other hand, “more capital on the table” increases the

agent’s deviation payoff. As the numerator and denominator of φ(·, ·) are of opposing signs,

Property 1 does not hold.

So far, we have illustrated situations where Property 1 either holds on the boundaries

or is violated “from below” (i.e., φ(·, ·) < 0). To complete the picture, consider a slightly

modified version of our joint-production example where the principal and the agent must

jointly produce one unit of output and the production function is z(l, k) = l + k
α for some

α > 0. A possible representation of this activity is given by

Gz = 〈Sp = R+, Sa = R+ ∪ {steal};up(k, sa), ua(k, sa)〉,
where

up(k, sa) =

π(1)− k if sa ≥ 1− k

−k else

; ua(k, sa) =

k if sa = steal

−sa if sa 6= steal

,

and

Σ = {(k, l) ∈ R2
+ : k = α · (1− l)}.
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Note that φ(σ1, σ2) = α for any distinct8 σ1, σ2 ∈ Σ. This provides an example of an ac-

tivity that satisfies Property 1 strictly within the unit interval if α ∈ (0, 1), as well as of an

activity that violates the property from above if α > 1.

The activities in most of the papers we mentioned earlier are unilaterally controlled and

hence Property 1 readily holds. The above discussion shows that this property has substan-

tial restrictive power when more complex—jointly controlled—activities are considered. In

the next section, we show that Property 1 draws the exact limits to the standard smoothing

arguments, imposed by short-term activity-specific incentives. Notably, a condition simi-

lar to our Property 1 appeared as part of Assumption9 A.3 in Ray (2002) who considers

an abstract repeated-game setting with partial commitment. While the environments and

mechanisms in Ray (2002) and the present paper are substantially different (see discussion

in Section 7), it seems that restrictions on the extent to which deviation payoffs may vary

relative to “on-path” modifications are crucial for deriving dynamic properties of contracts

at large.

4.1 Main Result

Given an activity (G,Σ) we refer to a player’s payoff from action profiles in Σ as his activity-

related payoff.

Definition (Nondecreasing Agent’s Activity Payoff). Fix a contracting problem f(·), an

incentive-compatible contract therein, and an activity (G,Σ). The agent’s activity-related

payoff is nondecreasing over time if there is zero probability of observing a history in which

there exist two periods t < s such that (G,Σ) is available in both periods, the action profiles

played in G in these periods are both members of Σ, and ua(σt) > ua(σs).

We are now ready to state the main result of the paper.

Theorem 1. Let (G,Σ) be a concave activity that is separable with respect to f(·). If (G,Σ)

satisfies Property 1, then, under any optimal contract, the agent’s activity-related payoff is

nondecreasing over time.

8For any (k, l), (k′, l′) ∈ Σ, φ((k, l), (k′, l′)) = k′−k
(−l′)−(−l) =

α(1−l′)−α(1−l)
l−l′ = α.

9Ray’s assumption also imposes continuity of payoffs from other contractual components. Such continuity
is crucial for Ray’s construction, which relies not on the curvature of payoffs but rather on the possibility
of marginally modifying several contractual components to enable the principal to appropriate surplus.
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An intuitive explanation of this result, as well as two corollaries about weakly concave

activities and the relation between multiple activities within the same contracting problem,

can be found in Section 4.3.

4.2 Implications and Applications of Theorem 1

Theorem 1 unifies and significantly generalizes many classic as well as more recent results

in the literature. A substantial strand of literature has shown that an employee’s wage rises

over time when there are fluctuations in the value of his outside option. See, for example,

Harris and Holmström (1982), Holmström (1983), Postal-Vinay and Robin (2002a, 2002b),

and Burdett and Coles (2003). To derive their results, these papers specify a full-blown

model of the labor market that embeds fluctuations in the worker’s outside option, and

then use that specific structure to obtain the downward rigidity of wage directly. This

standard approach is inherently limited as it derives the result only for the particular spec-

ification under consideration. By contrast, our result establishes the downward rigidity of

wage in any contracting problem where wage constitutes a concave separable activity, as is

the case in all the aforementioned papers.

In addition, our approach draws connections between seemingly unrelated monotonicity

results that have been derived in the literature. For example, in addition to the body of

literature on wage dynamics mentioned above, our result generalizes monotonicity results

regarding the dynamics of insurance contracts (Marcet and Marimon 1992 and Krueger and

Uhlig 2006), effort dynamics (Bird and Frug 2020), and dynamic project selection (Forand

and Zápal 2020). The objects of interest in each of these papers are concave separable ac-

tivities that satisfy Property 1, and hence Theorem 1 delivers the qualitative monotonicity

results derived directly in all of these papers.10

In Appendix B we establish the connection between Theorem 1 and some of the afore-

mentioned monotonicity results in a more formal manner. In particular, we first construct

the exact mapping between the models suggested in those papers and our general frame-

work. Then, we show that the objects of interest in those papers can be represented as

10In Forand and Zápal (2020) there are multiple projects that can be thought of as weakly concave
separable activities. Their result follows from two corollaries of Theorem 1 that we establish in Section 4.3.
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concave separable activities that satisfy Property 1 and, hence, by Theorem 1, must exhibit

a monotone dynamics under an optimal contract.

Theorem 1 can also be used to establish related monotonicity results in other settings of

interest. Examples of possible applications include:

Power Allocation in Organizations. — It is well known that within large organizations

incentives are often provided via the reallocation of power rather than via monetary transfers

(e.g., Cyert and March 1963; Aghion and Tirole 1997; Li, Matouschek, and Powell 2017).

“Excess power,” i.e., the power a division manager has beyond what is required for him to

perform his job, can sometimes be represented as a concave separable activity. Our result

shows that the evolution of a division manager’s power is inherently related to his potential

benefit from abusing his power. If the potential for abuse of power is low, then increasing the

manager’s power should have a small impact on his incentive to deviate and Property 1 is

likely to hold. In this case, Theorem 1 implies that the manager’s power can only increase

over time. If, on the other hand, the potential for abuse of power is high, then the dynamics

of power need not be monotone and will depend on the details of the contracting problem.

Quality Provision over Time. — In a dynamic interaction between a supplier (the

principal) and a client (the agent), the quality of the supplied goods may be an important

component of the contractual terms. In some cases, quality provision constitutes a concave

separable activity.11 In such cases, as quality is unilaterally controlled by the supplier, it

will satisfy Property 1 (Proposition 1). Hence, by Theorem 1, quality can only increase over

time, regardless of the details of the contracting problem.

Foreign Investments. — Consider a setting of foreign direct investment or entrepreneur

financing (à la Thomas and Worrall 1994 and Albuquerque and Hopenhayn 2004) where, in

some periods, a lender (the principal) finances production by an entrepreneur (the agent)

who may default on his debts. In the above papers the amount of funding in each period

is not an activity as the chosen level of funding restricts the entrepreneur’s actions in the

rest of the interaction.12 However, in alternative specifications of such financing problems,

the (periodic) funding may constitute a concave separable activity. If the entrepreneur’s

payoff from defaulting is such that Property 1 holds, then by Theorem 1 the level of fund-

11For example, if the supplier has access to a competitive market where he can sell the goods he does not
sell to the client, and the market’s marginal valuation for quality is higher than the client’s.

12Albuquerque and Hopenhayn (2004) derive a monotonicity result that relies on this restriction. We
discuss their result in detail in Section 7.
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ing can only increase over time regardless of the exact specification of the financing problem.

4.3 Intuition and Corollaries of Theorem 1

We now use a simple example to illustrate the intuition for Theorem 1. Consider a four-

period contracting problem where the agent exerts effort in periods 1 and 3, and the principal

compensates him in periods 2 and 4. In the present illustration, we will mainly focus on the

compensation component of the interaction. Therefore, we will simplify the part related to

effort as much as possible by assuming that the principal’s and agent’s possible actions in

periods t ∈ {1, 3} are, respectively, Sp(t) = {p∅} and Sa(t) = {0, xt}, where xt > 0 measures

the agent’s cost of effort required in period t. Moreover, we restrict attention to cases where

it is strictly optimal for the principal to incentivize positive effort in both t = 1 and t = 3,

and assume that players do not discount the future.

Assume first that compensation is provided via (Gwage,Σwage) (the periodic wage ac-

tivity that is specified in the first example in Section 3.2). If (Gwage,Σwage) is concave, it

is immediate that the cheapest way to compensate the agent for his total effort (x1 + x3)

is to pay him a wage worth x1+x3

2 utils in each of periods 2 and 4. When x1 ≥ x3, this

form of compensation satisfies all incentive-compatibility constraints and is thus uniquely

optimal. If, on the other hand, x1 < x3, this form of compensation is not incentive com-

patible in period13 3. To restore incentive compatibility, some of the compensation must be

postponed from period 2 to 4, which would lead to an increasing compensation over time.

A decreasing compensation plan (where the wage paid in period 4 is strictly lower than that

paid in period 2), however, is suboptimal for all x1 and x3.

An alternative way to frame the argument (which will later make the role of Property

1 more transparent) is as follows. Suppose that a decreasing compensation plan is proposed.

Reducing the compensation in period 2 by a small amount and increasing it in period 4 so

that the agent’s total utility from wage remains the same decreases the overall cost of com-

pensation (this is a basic smoothing argument). If the original decreasing compensation plan

13Recall that compensation is nonnegative and so the only threat available for the principal from period 3
onwards is to provide a compensation of zero in period 4. Since x3 > x1, the compensation for the average
effort is insufficient to incentivize the agent to exert the necessary effort in period 3.
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was part of an incentive-compatible contract, then, a fortiori, so is the modified compensa-

tion plan, because postponing compensation only relaxes some of the incentive-compatibility

constraints of the forward-looking agent.

The above argument relies on the implicit assumption that changing the level of com-

pensation in a given period does not create new deviation opportunities for the agent (a

property that is reflected in the fact that φ(·, ·) = 1 for the activity (Gwage,Σwage)). Assume

now that compensation in our example is provided via a more complex concave activity for

which the agent’s deviation payoff does vary with the level of compensation. To fix ideas,

suppose that our agent is a civil servant who is compensated by being granted a higher

level of authority. To keep the illustration concise, we will assume that, given any level of

authority, the civil servant decides whether or not to abuse his authority, and that abus-

ing authority provides him with the highest payoff (within the activity game), for every

authority level granted by the principal. Denote this activity by (Gauthority,Σauthority),

where

Gauthority = 〈Sp = [y, y], Sa = {use, abuse};up(sp, sa), ua(sp, sa)〉,
and

Σauthority = [y, y]× {use}.

As before, start with a decreasing and incentive-compatible compensation plan (now

via (Gauthority,Σauthority)) and consider a smoothing modification that reduces the princi-

pal’s cost of compensation while keeping the agent’s total utility from compensation fixed.

What is now unclear is whether this modification results in an incentive-compatible con-

tract. Property 1 guarantees that this is indeed the case. To see this, we now analyze the

agent’s considerations in periods 2 and 4.

In period 2, the smoothing modification generates a shift from an action profile σ = (sp, use)

to an action profile σ̂ = (ŝp, use), such that ua(ŝp, use) < ua(sp, use). Property 1 implies

that

0 ≤ ua(sp, abuse)− ua(ŝp, abuse)

ua(sp, use)− ua(ŝp, use)
,

and so it follows that ua(ŝp, abuse) ≤ ua(sp, abuse). Property 1 therefore implies that the

civil servant’s payoff from abusing authority does not increase in period 2. The modifica-
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tion of the civil servant’s compensation schedule is such that his continuation payoff from

following the contract does not change in period 2. Thus, it remains optimal for him to

adhere to the terms of the (modified) contract in period 2.

In period 4, the smoothing modification generates a shift from an action profile σ′ = (s′p, use)

to an action profile σ̂′ = (ŝ′p, use), such that ua(ŝ′p, use) > ua(s′p, use). Property 1 implies

that
ua(ŝ′p, abuse)− ua(s′p, abuse)

ua(ŝ′p, use)− ua(s′p, use)
≤ 1,

that is, ua(ŝ′p, abuse)−ua(s′p, abuse) ≤ ua(ŝ′p, use)−ua(s′p, use). In other words, the increase

in the civil servant’s deviation payoff in period 4 is bounded from above by the increase in

his payoff from following the contract in that period. Hence, the modified contract remains

incentive compatible in period 4 as well.

In addition to providing an intuition for our main result, the above discussion is also

suggestive of two corollaries that follow from Theorem14 1. First, it reveals the exact role

of the concavity assumption in our characterization: smoothing the agent’s activity-related

payoff is strictly profitable for the principal. If an activity is only weakly concave (i.e.,

Up(ua) is only weakly concave), then smoothing the agent’s activity-related payoff does not

decrease the principal’s profit. Hence, we can establish the following corollary.15

Corollary 1. Let (G,Σ) be a weakly concave activity that is separable with respect to f(·).

If (G,Σ) satisfies Property 1 and an optimal contract exists, then there exists an optimal

contract in which the agent’s activity-related payoff is nondecreasing over time.

Corollary 1 is particularly important for a special class of activities. Recall that a (stage)

game can represent the principal randomizing over a finite set of alternatives, and observe

that an activity based on such a game will only be weakly concave.

Second, in a contracting problem with multiple activities (e.g., a problem where an agent

14The proofs of these corollaries are analogous to the proof of Theorem 1 and are therefore omitted.
15The agent’s activity-related payoff from a concave separable activity is nondecreasing over time under

every optimal contract, and so Theorem 1 can be phrased in a way that holds vacuously if an optimal
contract does not exist. By contrast, the agent’s activity-related payoff from a weakly concave separable
activity may not be nondecreasing over time under some optimal contracts, and so the corollary cannot be
phrased in a way that holds vacuously if an optimal contract does not exist.
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exerts effort in return for wage), useful qualitative properties of the joint dynamics can be

inferred. In particular, consider a contracting problem that contains two concave separable

activities that satisfy Property 1. In an optimal contract, the marginal cost of increasing the

agent’s activity-related payoff via one activity today must be no greater than the marginal

cost of doing so via the other activity in the future. In other words, observing the level of

a single activity in a given period establishes a bound on the level of every activity in the

contracting problem in the future.

Corollary 2. Let (G̃, Σ̃), (Ĝ, Σ̂) be two concave activities that satisfy Property 1 and are

separable with respect to f(·), and consider a history where (G̃, Σ̃) is available in period s,

and (Ĝ, Σ̂) is available in period t > s. If the selected action profiles in G̃ and Ĝ in those

periods are, respectively, σ̃ ∈ Σ̃ and σ̂ ∈ Σ̂, then16 Ũ ′p (ũa(σ̃))) ≤ Û ′p (ûa(σ̂))).

In addition to linking the dynamics of genuinely distinct activities, Corollary 2 enables

us to draw useful inferences about components of an interaction that resemble activities,

but do not satisfy additive separability in their payoffs or do not have the cross-product

structure of the strategy space. For instance, consider an interaction where the agent per-

forms different types of tasks and his utility from wage in a given period depends on the

task performed in that period. In particular, suppose that there are two possible tasks: a

regular task that is always available and requires an effort of e = 1 and an opportunity task

that arrives occasionally and, if implemented, demands the agent’s full attention—i.e., it

replaces the regular task—and requires an effort of e = 2. In each period, the principal

chooses wage w ∈ R+ and the agent’s utility from wage is
√
w
e .

The game played in “regular periods,” i.e., when only the regular task is available, is

Greg = 〈Sp = R+, Sa = {1};up(w, 1) = π(1)− w, ua(w, 1) =
√
w〉,

where π(1) denotes the principal’s profit from the regular task. The game Greg, together

with Σ being the set of all its outcomes, forms the activity of wage in regular periods. In

“opportunity periods,” the periodic game is

Gopp = 〈Sp = R+, Sa = {1, 2};up(w, e) = π(e)− w, ua(w, e) =

√
w

e
〉,

where π(2) denotes the principal’s profit from the opportunity task. Note that this game

reflects both the selection among mutually exclusive tasks and the choice of wage. Since the

16We denote payoff functions associated with (G̃, Σ̃) by a tilde, and those associated with (Ĝ, Σ̂) by a hat.
Moreover, recall that for a concave activity we denote by U ′p(·) the right-hand side derivative of Up(·).
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agent’s utility from wage is task-dependent, we need two “different activities” to formally

represent wage in opportunity periods. In addition, since tasks are mutually exclusive,

while the set Σ varies with the selected task, in order to satisfy the cross-product structure,

the activity game for these two activities is identical and given by Gopp. This, in turn,

implies that even the wage payments in periods when the regular task is performed require

two distinct activities since Gopp 6= Greg. Hence, to fully describe the dynamics of wage,

formally, we need to jointly consider three wage-related activities. By Theorem 1, the

wage paid via each of these activities separately will never decrease over time. Corollary 2

complements the analysis and links the different activities. In particular, while wage need

not be monotone over time, it can only decrease between a period in which the opportunity

task is performed and a period in which the regular task is performed.

5 Tightness of Theorem 1

Our characterization in Theorem 1 is tight in the sense that, under mild technical condi-

tions, the level of an activity that does not satisfy Property 1 changes over time in the

principal’s favor in some contracting problems. To illustrate this point, we first revisit the

joint-production activities from the third example in Section 3.2, after which we provide a

formal (partial) converse to Theorem 1.

Recall that Property 1 holds if 0 ≤ φ(σ1, σ2) and φ(σ1, σ2) ≤ 1 for all σ1, σ2 ∈ Σ. There-

fore, to demonstrate that the dynamics of an activity that does not satisfy Property 1 may

be inconsistent with the dynamics implied by Theorem 1, we present two counterexamples.

In particular, for the case where φ(·, ·) < 0, we consider a production technology under

which capital and labor are complements, whereas for the case where φ(·, ·) > 1 we consider

a production technology where capital and labor are (strong) substitutes. In each case,

we construct a counterexample by an appropriate choice of compensation and production

opportunities. To simplify the counterexamples, we assume that the players do not discount

the future.

Pay at the End. — For the case where Property 1 is violated because φ(·, ·) < 0, sup-

pose that the production function is min{l, k2}, where, as before, l is the agent’s labor input
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and k is the capital provided by the principal. Moreover, assume that there are production

opportunities in periods 1 and 2. To further simplify the counterexample, suppose that

the principal has very limited discretion on how to provide compensation to the agent: the

principal can only decide whether or not to pay the agent a compensation of 1 at the end

of the interaction (period 3).

Efficient production requires that if the agent provides l units of labor, then the principal

provides k(l) = 2l units of capital. Therefore, we set Σ = {(k, l) ∈ R2
+ : k = 2l}. Let

σ̂ = (2l̂, l̂) and σ̃ = (2l̃, l̃) for l̂ 6= l̃. Under our assumptions that both the agent’s marginal

cost of labor and his marginal utility from reallocating capital are 1, we obtain

φ(σ̂, σ̃) =
2l̂ − 2l̃

−l̂ − (−l̃)
= −2.

As the main focus of the present illustration is on the agent’s incentives, we prefer not to

provide a needlessly detailed concrete specification under which the above activity is concave,

but simply assume that the principal seeks to maximize the agent’s aggregate labor l1 + l2

(where lt denotes the agent’s labor in period t ∈ {1, 2}) and, between pairs (l1, l2) that

add up to the same total, the principal prefers the one with the minimal difference between

l1 and l2. Under these assumptions, the optimal contract can be identified by solving the

following linear programming problem

max{l1 + l2} such that:

(IC1) 1− l1 − l2 ≥ 2 · l1,

(IC2) 1− l2 ≥ 2 · l2,

where ICt is the agent’s incentive-compatibility constraint in period t. The unique solution

to this linear programming problem is (l1 = 2
9 , l2 = 1

3 ). That is, the optimal contract in-

duces an increasing labor schedule, and hence the agent’s activity-related payoff decreases

over time in contrast to the dynamics implied by Theorem 1.

To understand the intuition for this counterexample, observe that the agent’s continu-

ation utility after he provides labor in period 2 is 1 (since only the compensation in pe-
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riod 3 is left), whereas his continuation utility after providing labor in period 1 is 1 − l2.

Accordingly, the threat of losing the continuation utility is greater in period 2 than in pe-

riod 1. This, in turn, implies that the agent’s gain from deviating in the activity-game

(U(k(lt), lt) − ua(k(lt), lt) = k(lt) + lt = 3lt) under an incentive-compatible contract can

be greater in period 2 than in period 1. Since this gain is increasing in labor, the maxi-

mal amount of labor the agent can be asked to provide is higher in period 2 than in period 1.

Carrot and Stick. — For the the case where Property 1 is violated because φ(·, ·) > 1,

consider the production function l + k
2 and suppose that there is an “output target” of 1

that must be fulfilled in each of periods 2 and 4. Under this production technology, the

principal’s efficient capital input as a function of the agent’s labor input is k(l) = 2(1− l),

and so we set Σ = {(k, l) ∈ R2
+ : k = 2(1 − l)}. As we have shown in the beginning of

Section 4, for this activity, φ(σ1, σ2) = 2 for any pair of distinct action profiles σ1, σ2 ∈ Σ.

To complete the description of the interaction, suppose that in period 1 the agent chooses

whether to opt out, which secures him a payoff of 0, or to participate. If the agent partici-

pates, the principal’s compensation opportunities are as follows: he can provide a compen-

sation of 1 at the end of the interaction (period 5); and in period 3, he can either offer a

compensation of 1
2 or impose a fine of 1. The agent’s incentive-compatibility constraints are

(IC1)
1

2
+ 1− l2 − l4 ≥ 0;

(IC2)
1

2
+ 1− l2 − l4 ≥ 2(1− l2)− 1;

(IC4) 1− l4 ≥ 2(1− l4).

Note that IC4 is equivalent to l4 ≥ 1, while the assumed production target and tech-

nology give l4 ≤ 1. Thus, a contract is incentive compatible only if l4 = 1. Moreover,

the incentive-compatibility constraints in periods 1 and 2 evaluated at l4 = 1 jointly imply

that the agent’s labor input in period 2 must equal 1
2 . Thus, the only incentive-compatible

contract has the agent’s labor increase from l2 = 1
2 to l4 = 1.

Intuitively, in this counterexample the principal’s ability to punish the agent for deviating

in period 2 is greater than his ability to punish the agent for deviating in period 4. Ac-
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cordingly, the agent’s gain from deviating in the activity-game (U(k(lt), lt)− ua(k(lt), lt) =

(k(lt) + lt = 2− lt) can be greater in period 2 than in period 4. Since this gain is decreas-

ing in labor, the principal may have to require more labor in period 4 than in period 2.

Indeed, due to the choice of compensation opportunities, the principal must require a full

unit of labor in period 4 but cannot require that amount of labor in both periods, and so

the agent’s labor increases over time. Hence, the agent’s activity-related payoff decreases

over time under the optimal contract, in contrast to the dynamics implied by Theorem 1.

To establish a converse result to Theorem 1 beyond the above examples, we need to

address two relatively technical points. First, in both counterexamples, Σ is chosen in such

a way that it is suboptimal for the principal to specify an action profile outside of Σ in the

activity-game G. In general, as the definition of an activity is agnostic about the choice of Σ,

it may be the case that the principal will select action profiles outside of Σ under an optimal

contract. For example, consider the joint-production activity-gameGz, where z = min{l, k2},

that is paired with the inefficient set of input bundles Σ′z = {(k, l) ∈ R2
+ : k = 2l + 1}.

Even though (Gz,Σ
′
z) is a well-defined activity, any contract in which the principal selects an

action profile in Σ′z is worse than some contract in which he assigns capital efficiently. Hence,

an action profile in Σ′z will never be played under an optimal contract in any contracting

problem. To circumvent such problems, in our converse result we restrict attention to

activities that satisfy the following efficiency notion.

Definition (Strictly Pareto-Efficient Activity). An activity (G,Σ) is strictly Pareto-efficient

if the payoffs associated with every action profile in Σ are on the Pareto frontier of the convex

hull of the payoff set of G, and are not a convex combination of payoffs associated with action

profiles outside of Σ.

Second, Property 1 stipulates that a “small change” in the agent’s activity-related payoff

does not have a large impact on his deviation payoff. Thus, a class of activities that obviously

fail to satisfy Property 1 are those for which the agent’s deviation payoff is discontinuous

with respect to his activity-related payoff. To bypass the need to use a solution concept

that is suitable for such discontinuous contracting problems (e.g., ε-optimality) we restrict

attention to activities for which the function ūa : ua(Σ)→ R, defined as

ūa(ua) = Ūa(η(ua)),
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where η : ua(Σ) → Σ is a bijection that satisfies the requirements in the definition of the

activity, is continuous.17 In our converse result we fully construct optimal contracts. To

simplify their derivation we further assume that ūa(·) is differentiable.

Proposition 2. Let (G,Σ) be a strictly Pareto-efficient concave activity for which ūa(·) is

differentiable and Property 1 does not hold. There exists a contracting problem f(·) with

respect to which (G,Σ) is separable such that the agent’s activity-related payoff decreases

over time under the optimal contract.

6 Robustness

A natural question that arises is whether the dynamics of activities that “almost” satisfy

Property 1 can admit arbitrary decreases in the agent’s activity-related payoff or if any

such decreases will be “small.” It turns out that violations of the upper and lower bounds

of Property 1 have an asymmetric impact on the possible dynamics of a concave separable

activity. In particular, given a sequence of activities that are identical on Σ, and for which

the infimum of φ(·, ·) converges to zero, the size of the maximal decrease in the agent’s

activity-related payoff converges to zero as well. On the other hand, if the supremum of

φ(·, ·) exceeds one even slightly, then there exist contracting problems in which a large de-

crease in the agent’s activity-related payoff is observed.

To illustrate the intuition for the first result alluded to above, consider, for example,

a parametrized family of activities, {(Gc,Σ)}c∈ R++
such that, within Σ, all of the activ-

ities are identical and satisfy ua(Σ) = [0, 1] and Up(u) = −u2/2 (recall that Up(u) is the

principal’s payoff from the unique action profile in Σ from which the agent’s payoff is u);

whereas the agent’s payoffs in Gc outside of Σ are such that Ū ca(σ) = 1 + c− cua(σ) (where

Ū ca(σ) is the agent’s highest payoff in Gc when the principal plays σp). This specification

is convenient because for every such (Gc,Σ), φ(σ, σ′) = −c for any pair of distinct action

profiles18 σ, σ′ ∈ Σ.

17An alternative converse to Theorem 1 that does not impose continuity on ūa(·) and uses ε-optimality
as a solution concept is available upon request.

18φ(σ, σ′) =
Ūa(σ)−Ūa(σ′)
ua(σ)−ua(σ′) =

(1+c−cua(σ))−(1+c−cua(σ′))
ua(σ)−ua(σ′) = −c.
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Consider a contracting problem with no discounting with respect to which (Gc,Σ) is

separable and in which it is available in periods 1 and 2. Moreover, assume that u1 > u2

under an optimal contract, where ut is the agent’s (Gc,Σ)-related payoff in period t. By a

standard smoothing argument, decreasing the agent’s activity-related payoff in period 1 by a

small ε and increasing it in period 2 by the same ε is profitable for the principal. Therefore,

our assumption that u1 > u2 is part of an optimal contract implies that the aforemen-

tioned modification is not incentive compatible. Since φ(·, ·) ≤ 1, increasing the agent’s

activity-related payoff in period 2 cannot violate the incentive-compatibility constraint in

that period. Therefore, the above modification must violate the incentive-compatibility con-

straint in period 1.

Reducing the agent’s activity-related payoff by ε in period 1 has two effects. First, it

reduces the agent’s utility in that period (on the path of play) by ε; second, it increases the

agent’s payoff from deviating in that period by εc. Thus, increasing the agent’s activity-

related payoff in period 2 by (1 + c)ε restores incentive compatibility. The principal’s

marginal profit from such a modification is −U ′p(u1) + U ′p(u2)(1 + c). Since U ′p(ua) = −ua
and ut ≤ 1, the marginal profit from this modification is positive if u1 − u2 > c. Hence,

u1 > u2 can be consistent with optimality only if u1−u2 ≤ c (i.e., the bound on the decrease

in agent’s utility from period 1 to period 2 vanishes with c).

While the above example has a very specific structure, the main part of the argument—

that smoothing a decrease in the agent’s activity-related payoff when φ(·, ·) ≤ 1 can violate

the incentive-compatibility constraint only in the earlier period—is general. This obser-

vation plays a fundamental role in our robustness result. In particular, it implies that if

smoothing the agent’s activity-related payoff between two periods violates incentive com-

patibility, then the principal can always restore incentive compatibility by increasing the

agent’s activity-related payoff in the later period. Hence, if φ(·, ·) is bounded from be-

low (and does not exceed one), we can place an upper bound on the size of a decrease

in the agent’s activity-related payoff by comparing the marginal gain from smoothing the

agent’s activity-related payoff and the marginal cost of increasing his aggregate (discounted)

activity-related payoff.
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Proposition 3. Consider a set of concave activities {(Gc,Σ)}c∈R++ for which Σ, (ua|Σ), (up|Σ)

are identical, ua(Σ) is compact, and (Gc,Σ) are such that φ(·, ·) ⊆ [−c, 1]. There exists a

set of positive numbers {M c}c∈R+
for which limc→0M

c = 0, such that the agent’s (Gc,Σ)-

related payoff does not decrease over time by more than M c in any contracting problem with

regard to which (Gc,Σ) is separable.

On the other hand, if φ(·, ·) > 1, then smoothing a decrease in the agent’s activity-

related payoff can violate the incentive-compatibility constraint only in the later period.

Consequently, smoothing a decrease in the agent’s activity-related payoff may require the

principal to increase the agent’s continuation utility in the non-activity part of the contract-

ing problem. However, as some contracting problems do not contain such compensation op-

portunities (or providing additional compensation is prohibitively costly), a large decrease

in the agent’s activity-related payoff can be observed if φ(·, ·) > 1.

Proposition 4. Let (G,Σ) be a strictly Pareto-efficient concave activity for which ūa(·) is

differentiable, ua(Σ) is compact, and φ(·, ·) is bounded from below by 1 + c for some c > 0.

There exists a contracting problem with respect to which (G,Σ) is separable, in which, under

the optimal contract, the agent’s activity-related payoff decreases by max
σ,σ′∈Σ

{
ua(σ)−ua(σ′)

}
.

7 Literature Review

The monotonicity result we derive embeds many results that have been mentioned through-

out the paper. Harris and Holmström (1982), Holmström (1983), Postal-Vinay and Robin

(2002a, 2002b), and Burdett and Coles (2003) analyze labor markets and establish that an

employee’s wage does not decrease over time. Marcet and Marimon (1992) and Krueger and

Uhlig (2006) study the dynamics of insurance contracts and show that the transfer received

by the insured does not decrease over time. Bird and Frug (2020) show that while wage

increases over time, the effort (exerted on identical tasks) decreases over time, and Forand

and Zápal (2020) show that project selection criteria shift in the agent’s favor as time goes by.

In Albuquerque and Hopenhayn (2004) and Fudenberg and Rayo (2019), the authors

also assume symmetric information and full commitment on the part of the principal, and

obtain a dynamic monotonicity result. However, the results in these papers do not follow

from Theorem 1. Albuquerque and Hopenhayn (2004) consider a model of entrepreneur
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financing where the entrepreneur’s profit from production in a given period, which depends

on the capital he receives, is an upper bound on his repayment to the lender in that period.

Thus, the cross-product structure of available actions does not hold and so (periodic) financ-

ing is not an activity. Moreover, the mechanism that generates the monotonicity result in

Albuquerque and Hopenhayn (2004) is different from our “incentive-constrained smoothing”

mechanism and so their result does not require concavity of the payoff functions but only

quasi-concavity. At the start of the interaction in their model, the entrepreneur owes a large

debt to the lender and hence has a low continuation utility. Since the entrepreneur’s devia-

tion payoff in a given period is increasing in the size of the loan he received in that period,

the entrepreneur’s continuation utility limits the size of the loan he can receive. As time

goes by, the entrepreneur repays the initial debt and his continuation utility increases, and

hence it becomes incentive compatible for him to receive larger, and more efficient, loans.

Fudenberg and Rayo (2019) show that an apprentice’s unskilled effort decreases over time.

However, the unskilled effort in their model is not an activity: first, the sum of the appren-

tice’s skilled and unskilled effort must be less than one (which violates the cross-product

structure of available actions), and second, the apprentice’s cost of effort is a function of his

aggregate effort level (which violates separability of payoffs).

Our dynamic monotonicity result relies on the assumptions that there is symmetric in-

formation and that the principal has full commitment power. Earlier work on stochastic

environments has shown that if one (or both) of these assumptions is relaxed, optimal out-

comes may necessitate nonmontone dynamics. For example, Möbius (2001), Hauser and

Hopenhayn (2008), and Samuelson and Stacchetti (2017) show this in the context of “trad-

ing favors,” and Li, Matouschek and Powell (2017), Bird and Frug (2019), and Lipnowski

and Ramos (2020) show this in the context of dynamic project selection.

Another related paper is Ray (2002) who studies a model where the principal has partial

commitment power in a repeated (and constant across periods) interaction. Ray shows that,

regardless of the exact details of the interaction, if it is not possible to support unconstrained

efficient agreements in all periods, then there is a form of transition in the agent’s favor as

time goes by. Specifically, Ray shows that the periodic contract converges over time to the
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agent’s preferred contract.19 The driving force behind Ray’s result is that compensating the

agent for his current actions in the future increases his liability (should he deviate) in the

intermediate periods. In an environment where unconstrained Pareto efficiency is precluded

by limited liability, this enables the principal to increase his payoff by offering agreements

that are nearer to the Pareto frontier in those intermediate periods.20 By contrast, we do not

study the evolution of the agent’s payoffs over time (which, in fact, can exhibit any dynamics

due to the fluctuations in the environment), but rather show that certain components of

the contract shift monotonically in the agent’s favor due to an activity-specific incentive-

constrained smoothing motive.

8 Concluding Remarks

Persistent Asymmetric Information. — The methodology developed in this paper can be ex-

tended beyond symmetric information environments and used to derive monotonicity results

in contracting problems endowed with certain types of asymmetric information. Consider,

for example, a model in which the agent works on stochastically arriving tasks in which the

agent’s productivity of effort is strictly concave and his cost of effort is linear. However,

assume that the marginal cost of effort is the agent’s private information and is constant

over time. In such a model there is a screening element in the principal’s problem that is

absent in this paper. Since the arrival of tasks is stochastic and the agent can stop working

at any time, finding the optimal intertemporal allocation of information rents is a complex

problem. Nevertheless, we now briefly explain how our methodology can be used to show

that the optimal effort schedule for every type of agent is nonincreasing over time.

In principle, in this screening problem there are two possible reasons for offering a con-

tract with an increasing effort schedule to a certain type of agent: either to maximize the

principal’s profit from that agent-type, or to reduce the cost of providing information rents

to other agent-types. From Theorem 1, we know that an increasing effort schedule does not

maximize the principal’s profit from his interaction with any single agent-type. Hence, an

19Thomas and Worrall (2018) generalize Ray’s results to a setting where both agents can take an action,
and neither of them can commit. Moreover, they establish that in their setting efficient (relational) contracts
may exhibit qualitative properties that cannot occur in Ray’s setting.

20Lazear (1981), among others, shows that similar mechanisms are relevant also in dynamic contracting
problems with full commitment.
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increasing effort schedule can only be offered to a certain agent-type if it reduces the cost

of providing information rents to other agent-types.

Incentive compatibility in this model requires that, given a “menu of contracts,” every

agent-type (weakly) prefers accepting the contract intended for him (and adhering to its

terms indefinitely) to selecting a contract intended for another type, adhering to its terms

until an arbitrary point of the interaction, and then disregarding it. Notice that smoothing a

decrease in one agent-type’s effort schedule (weakly) reduces every agent-type’s payoff from

selecting that contract and adhering to its terms until any point in time. Hence, smoothing

a decrease in the effort schedule of one agent-type (weakly) reduces the cost of providing

information rents to other agent-types. Thus, in optimum, the principal will offer contracts

with a nonincreasing effort schedule to all agent-types.

Unconnected Support for Activity Levels. — Our definition of an activity requires that

the set of possible activity levels be a real-valued interval. This assumption, which may seem

like a mere simplification, is, in fact, necessary for our main result. Consider a contracting

problem with an infinite horizon and a discount factor of δ = 1
2 . Moreover, assume that in

each of the first two periods the agent can exert an effort of e ∈ {0, 1, 2}, and that in every

period the principal can provide compensation worth 2 utils to the agent.

Requiring high effort (e = 2) in period 1 and low effort (e = 1) in period 2 is not in-

centive compatible: the agent’s discounted cost of effort is 2 + δ = 5
2 , whereas his maximal

discounted utility from compensation from period 2 onward is δ 2
1−δ = 2. Thus, requiring

high effort in both periods is also not a viable option. However, requiring low effort in period

1 and high effort in period 2 is incentive compatible: in both periods the agent’s discounted

cost of effort is 2, which is exactly his discounted utility from future wages if the principal

provides compensation from period 2 onwards. Therefore, under the optimal contract, the

agent’s effort increases over time, even though Property 1 holds and effort is separable with

respect to the contracting problem.
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Appendices

A Proofs

We use the following notation in the proofs. We denote a generic periodic game by G̃, a

generic action profile therein by s(G̃), and a generic finite history by h̃. Let ω̃ = (h̃, G̃)
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denote the history and the game that has been realized following that history. We refer to

ω̃ as the state.

Proof of Theorem 1

For a generic contract X and state ω̃ denote by X(ω̃) the action profile suggested by X

at ω̃. For any ω̃ at which (G,Σ) is available and the action profile that is played in G under

X is an element of Σ, we sometimes replace s(G̃) with (σ(ω̃), s−G(ω̃)), where σ(ω̃) is the

action profile that is played in G at ω̃.

Consider an incentive-compatible contract C and suppose that there exists a state ωt for

which there exist ∆ > 0, p > 0, and a set Ωt′ of states of length t′ > t that are consistent

with ωt such that: 1) (G,Σ) is available at ωt and at every ωt′ ∈ Ωt′ , and the action profile

in G, specified by C, in those states is an element of Σ, 2) ua(σ(ωt)) − ua(σ(ωt′)) ≥ ∆ for

every ωt′ ∈ Ωt′ , and 3) Pr(Ωt′ |ωt, C) = p.

Next, we show that the continuation of C at ωt is suboptimal by modifying the activity-

play relative to C. Such modifications do not alter the distribution of periodic games, since

(G,Σ) is separable with respect to f(·).

We begin by defining a continuation contract at ωt that smooths out the decrease in the

agent’s payoff from (G,Σ) under C. Fix an ε > 0 for which ε + ε
pδ(t′−t) < ∆ and define Ĉ

by making the following modifications to the activity-play under C.

First, given the action profile suggested by C at ωt, (σ(ωt), s
−G(ωt)), define

Ĉ(ωt) = (σ̂(ωt), s
−G(ωt)),

where σ̂(ωt) is the action profile in Σ for which ua(σ̂(ωt)) = ua(σ(ωt)) − ε. This action

profile exists since, by the choice of ε, it provides the agent with an activity-related payoff

that is between two feasible activity-related payoffs, and by the definition of an activity the

set of possible activity-related payoffs is an interval.

In the subsequent steps, we denote a generic sequence of periodic games and their play

between periods t1 and t2 by Ξt2t1 = {G(τ), s(G(τ))}t2τ=t1 .

Second, we modify the contract so that the first change does not alter the path of play

in the periods up to t′. Formally, for τ ∈ {t + 1, . . . , t′ − 1} and any (Ξτ−1
t+1 , G(τ)) that are
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consistent with some ωt′ ∈ Ωt′ , define

Ĉ
(
ωt, (σ̂(ωt), s

−G(ωt)),Ξ
τ−1
t+1 , G(τ)

)
= C

(
ωt, (σ(ωt), s

−G(ωt)),Ξ
τ−1
t+1 , G(τ)

)
.

Third, we decrease the agent’s payoff from (G,Σ) in period t′. For any

ωt′ =
(
ωt, (σ(ωt), s

−G(ωt)),Ξ
t′−1
t+1 , G(t′)

)
∈ Ωt′ and action profile suggested by C at ωt′ ,

(σ(ωt′), s
−G(ωt′)), define

Ĉ
(
ωt, (σ̂(ωt), s

−G(ωt)),Ξ
t′−1
t+1 , G(t′)

)
= (σ̂(ωt′), s

−G(ωt′)),

where σ̂(ωt′) is the strategy profile in Σ for which ua(σ̂(ωt′)) = ua(σ(ωt′)) + ε
pδt′−t . This

profile exists for the same reason described above.

Finally, we modify the contract so that the previous changes do not alter the path of

play after t′. Formally, for any τ > t′ and any Ξt
′−1
t+1 that is consistent with some ωt′ ∈ Ωt′

and (Ξτ−1
t′+1, G(τ)) that are consistent with C, define

Ĉ
(
ωt, (σ̂(ωt), s

−G(ωt)),Ξ
t′−1
t+1 , G(t′), (σ̂(ωt′), s

−G(ωt′)),Ξ
τ−1
t′+1, G(τ)

)
=

C
(
ωt, (σ(ωt), s

−G(ωt)),Ξ
t′−1
t+1 , G(t′), (σ(ωt′), s

−G(ωt′)),Ξ
τ−1
t′+1, G(τ)

)
.

Lemma A.1. Ĉ is incentive compatible.

Proof. For all states ωs such that s ≥ t′ and ωs /∈ Ωt′ , Ĉ is identical to C and so Ĉ is

incentive compatible at such states.

At ωt′ ∈ Ωt′ , the agent’s continuation utility from following the contract increases by

ua(σ̂(ωt′))−ua(σ(ωt′)) while his deviation payoff increases by Ūa (σ̂(ωt′))− Ūa (σ(ωt′)). By

Property 1, Ūa(σ̂(ωt′ ))−Ūa(σ(ωt′ ))
ua(σ̂(ωt′ ))−ua(σ(ωt′ ))

≤ 1. Since ua(σ̂(ωt′)) − ua(σ(ωt′)) > 0, it follows that

Ūa (σ̂(ωt′))− Ūa (σ(ωt′)) ≤ ua(σ̂(ωt′))− ua(σ(ωt′)) and so Ĉ is incentive compatible at ωt′ .

Since Ĉ and C are identical at all states (strictly) between periods t and t′, it follows that

Ĉ is incentive compatible at all such states.

At ωt, by the construction of Ĉ, if the agent does not deviate, then the expected dis-

counted increase in his payoff in period t′ equals the decrease in his payoff at ωt. By Prop-

erty 1, 0 ≤ Ūa(σ̂(ωt))−Ūa(σ(ωt))
ua(σ̂(ωt))−ua(σ(ωt))

. Since ua(σ̂(ωt)) < ua(σ(ωt)), it follows that Ūa(σ̂(ωt)) ≤

Ūa(σ(ωt)). Thus, Ĉ is incentive compatible at ωt.
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Lemma A.2. The principal’s continuation payoff at ωt under Ĉ is greater than his contin-

uation payoff under C.

Proof. Since the activity-related payoff is additively separable from any other payoff in the

contracting problem, conditional on ωt, the contract Ĉ outperforms the contract C if

Up (ua(σ(ωt))− ε) + pδt
′−t
∫
Up

(
ua(σ(ωt′)) +

ε

pδt′−t

)
dµ >

Up (ua(σ(ωt))) + pδt
′−t
∫
Up (ua(σ(ωt′))) dµ,

where µ denotes the distribution of states in Ωt′ induced by the contract C, conditional on

ωt. We establish that this inequality holds via the following smoothing argument. Since

Up(·) is concave, it has left- and right-hand side derivatives, which we denote, respectively,

by ∂−Up(·) and ∂+Up(·).

Up

(
ua(σ(ωt))− ε

)
+ pδt

′−t
∫
Up

(
ua(σ(ωt′)) +

ε

pδt′−t

)
dµ >

Up

(
ua(σ(ωt))

)
− ε · ∂+Up

(
ua(σ(ωt))− ε

)
+

pδt
′−t
∫ (

Up

(
ua(σ(ωt′))

)
+

ε

pδt′−t
· ∂−Up

(
ua(σ(ωt))−∆ +

ε

pδt′−t

))
dµ =

Up

(
ua(σ(ωt))

)
+ pδt

′−t
∫
Up

(
ua(σ(ωt′))

)
dµ−

ε

(
∂+Up

(
ua(σ(ωt))− ε

)
− ∂−Up

(
ua(σ(ωt))−∆ +

ε

pδt′−t

))
>

Up

(
ua(σ(ωt))

)
+ pδt

′−t
∫
Up

(
ua(σ(ωt′))

)
dµ,

where the first inequality follows from the fact that Up(·) is decreasing and strictly concave,

and the second inequality follows from the same fact and the choice of ε.

If the agent’s activity-related payoff is not nondecreasing over time under C, then there

exists a set of length-t states with positive measure, Ωt, at which (G,Σ) is available and the

action profile in G (specified by C) in those states is an element of Σ, such that for each

ωt ∈ Ωt there exists a set Ωt′(ωt) that satisfies the following properties: 1) Ωt′(ωt) is a set

of states of length t′, where t′ > t, that are consistent with ωt, 2) (G,Σ) is available at each

ωt′ ∈ Ωt′(ωt), and the action profile in G (specified by C) in those states is an element of

Σ, 3) there exists ∆ > 0 such that ua(σ(ωt))− ua(σ(ωt′)) ≥ ∆ for every ωt′ ∈ Ωt′(ωt), and
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4) Pr(Ωt′(ωt)|ωt) = p for some p > 0. To obtain a contract that is better than C, at every

ωt ∈ Ωt perform the modification described above. This is feasible as each modification is

performed on the continuation contract from a distinct state, and thus these modifications

are mutually exclusive. Moreover, these modifications do not violate incentive compatibility

at states ωs, where s < t, as, by construction, the modification performed at ωt does not

change the agent’s continuation utility at that state.

Proof of Proposition 2

To establish this result we construct a counterexample with two parameters, u′, u′′ ∈

ua(Σ), and select appropriate parameter values for each violation of Property 1. The coun-

terexample is an interaction where in period 1 the agent chooses whether to Enter the

interaction or Quit. In period 2 the players play the activity-game G. In period 3 the agent

can either Quit the interaction or Continue, and the principal can either Continue with

the interaction by giving the agent a payoff of −u′ or Quit by giving the agent a payoff of

−ūa(u′). In period 4 the players play the activity-game G, and in period 5 the principal

can either Capitalize on the interaction by giving the agent a payoff of −u′′ and receive a

(large) payoff himself, or Quit the interaction by giving the agent a payoff of −ūa(u′′).

Formally, the counterexample is constructed from the following games:

G1 = 〈Sp = {p∅}, Sa = {Q,E};up(·, ·) ≡ ua(·, ·) ≡ 0〉

G3 =

〈
Sp = Sa = {Q,C};up(·, ·) ≡ 0, ua(sp, sa) =

−u
′ if sp = C

−ūa(u′) if sp = Q

〉

G5 =

〈
Sp = {Q,C}, Sa = {a∅};up(sp, a∅) =

m if sp = C

0 if sp = Q

,

ua(sp, a∅) =

−u
′′ if sp = C

−ūa(u′′) if sp = Q

〉

Gn = 〈Sp = {p∅}, Sa = {a∅};up(·, ·) ≡ ua(·, ·) ≡ 0〉 ,

where m is a (sufficiently) large positive number. The contracting problem is given by

f(·) = Gn if either player played Q in the past. Otherwise f(ht) = Gt for t ∈ {1, 3, 5}, and

f(ht) = G for t ∈ {2, 4}. Finally, we assume that δ = 1.

First, we restrict attention to contracts in which whenever (G,Σ) is available the specified
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action profile is an element of Σ. Hence, we can denote by σt the action profile that should

be played in period t ∈ {2, 4}. Under an optimal contract the principal must incentivize the

agent to Enter and then incentivize him to play his action in the action profile σt, without

quitting the interaction. Note that in this counterexample it is without loss of generality to

assume that after the agent deviates the principal quits. Thus, the incentive-compatibility

constraints are

ua(σ2)− u′ + ua(σ4)− u′′ ≥ 0 IC1

ua(σ2)− u′ + ua(σ4)− u′′ ≥ Ūa(σ2)− ūa(u′) IC2

−u′ + ua(σ4)− u′′ ≥ −u′ IC3

ua(σ4)− u′′ ≥ Ūa(σ4)− ūa(u′′) IC4.

We now show that there exist u′ > u′′ such that under the unique optimal contract

ua(σ2) = u′ and ua(σ4) = u′′. Note that for such a contract all incentive-compatibility

constraints are binding. Since Up(·) is a strictly concave and decreasing function, this im-

plies that a contract can be both incentive compatible and more profitable than the one

suggested above only if ua(σ2), ua(σ4) ∈ (u′′, u′).

Case 1: φ(σ′′, σ′) = −c for some distinct σ′′, σ′ ∈ Σ and c > 0. Due to the differentiabil-

ity of ūa(·) there exists u∗ ∈ ua(Σ) for which dūa

du (u∗) ≤ −c. Moreover, as any discontinuity

of the function dūa

du (·) is an essential discontinuity, there exists a non-degenerate interval to

the left or to the right of u∗ on which dūa

du (·) ≤ − c
2 . Let J be one such interval.

The concavity of Up(·) implies that we can choose u′′ < u′ ∈ J such that for any

ε ∈ (0, u′ − u′′) it holds that Up(u
′) + Up(u

′′) > Up(u
′ − ε) + Up(u

′′ + ε(1 + c
2 )) (we

prove that such values exist in Lemma A.3 that is established below). In order for σ2, σ4

to satisfy (IC1), where ua(σ2), ua(σ4) ∈ (u′′, u′) and ua(σ2) = u′ − ε̃ , it must be that

ua(σ4) ≥ u′′ + ε̃(1 + c
2 ). However, by the choice of u′′ and u′, for any such σ2, σ4 it holds

that Up(ua(σ2)) + Up(ua(σ4)) < Up(u
′) + Up(u

′′).

Case 2: φ(σ′′, σ′) = 1 + c for some distinct σ′′, σ′ ∈ Σ and c > 0. In this case, by an

analogous argument to the one used in case 1, there exists an interval J ⊂ ua(Σ) on which

dūa

du (·) ≥ 1 + c
2 . Set u′′ and u′ to be the endpoints of J . Note that the action profile σ4 for
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which ua(σ4) = u′′ is the only one in Σ for which the agent’s activity-related payoff is an

element of J and IC4 holds.

To complete the proof, we must show that the restriction we imposed on the contracting

space (by which the action profile in even periods is an element of Σ) is without loss of

generality. To see this, note that under an optimal contract neither player quits the inter-

action along the path of play. Moreover, the agent must receive a nonnegative utility from

any incentive-compatible contract (otherwise he will play Q in period 1). Since the agent’s

utility in the contract defined above is zero, it follows that if this contract were suboptimal

in the unrestricted contracting space, the players’ payoffs in the above contract in period 2

or 4 would be Pareto-dominated by the average of two action profiles in G (outside of Σ).

However, this contradicts the assumption that (G,Σ) is strictly Pareto-efficient.

Lemma A.3. Consider a concave activity (G,Σ). For any k > 0 and u1 ∈ int(ua(Σ)),

there exists ũ2 ∈ ua(Σ) such that ũ2 < ũ1 and, for any ε > 0,

Up(ũ1) + Up(ũ2) > Up(ũ1 − ε) + Up(ũ2 + ε(1 + k)). (1)

Proof. As Up(·) is concave it is absolutely continuous on any compact interval that is a

subset of ua(Σ), and hence differentiable a.e., and (1) can be written as

∫ ũ1

ũ1−ε
U ′p(u)du >

∫ ũ2+ε(1+k)

ũ2

U ′p(u)du. (2)

As Up(·) is concave the LHS of (2) is bounded from below by εU ′p(ũ1), and the RHS of (2)

is bounded from above by (1 + k)εU ′p(ũ2). Select ũ2 < ũ1 at which Up(·) is differentiable

and U ′p(ũ1) > (1 + k)U ′p(ũ2).

Proof of Proposition 3

Consider the activity (Gc,Σ) and a contracting problem f(·) with respect to which that

activity is separable. Suppose that under a given incentive-compatible contract there exist

ωt,∆ > 0, p > 0 and a set of states Ωt′ of length t′ > t that are consistent with ωt such

that: 1) (G,Σc) is available at ωt and at every ωt′ ∈ Ωt′ , and the action profile in G in

those states is an element of Σ, 2) ua(σ(ωt)) − ua(σ(ωt′)) ≥ ∆ for every ωt′ ∈ Ωt′ , and 3)

Pr(Ωt′ |ωt) = p.
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Consider modifications of the continuation contract at ωt that are analogous to the

modification of Ĉ in the proof of Theorem 1, with the exception that at period t′ the

agent’s activity-related payoff is increased by αε, for some α > 1
pδt′−t (as opposed to by

exactly ε
pδt′−t ). Recall that such changes are always feasible for a sufficiently small ε (since

the agent’s activity-related payoff is between two feasible values), and do not impact the

distribution of future games (since (Gc,Σ) is separable). Furthermore, as α > 1
pδt′−t and

φ(·, ·) ≤ 1, such changes (weakly) relax the incentive-compatibility constraints at all states

apart from ωt.

For any α < 1
pδt′−t

∂−Up(ua(σ(ωt)))
∂+Up(ua(σ(ωt′ )))

, where ∂−Up(·) and ∂+Up(·) are, respectively, the left-

and right-hand side derivatives of Up(·), the above modification is profitable for sufficiently

small ε. Moreover, as φ(·, ·) ≥ −c the above modification is incentive compatible at ωt if

α ≥ 1+c
pδt′−t . Thus, if

∂−Up(ua(σ(ωt′ ))+∆)
∂+Up(ua(σ(ωt′ )))

> 1 + c there exists a modification that is both

profitable and incentive compatible.

Define

Xc = {x : x > 0 and ∃u ∈ ua(Σ) s.t.
∂−Up(u+ x)

∂+Up(u)
≤ 1 + c}.

It follows, that if ∆ > sup{Xc} there exists a modification of the contract under considera-

tion that is both profitable and incentive compatible.

Since Up(·) is concave it is differentiable a.e., and hence the set Xc is nonempty for

any c > 0. As ua(Σ) is compact sup{Xc} is finite, and so we can set M c = sup{Xc}.

Finally, note that M c decreases when c decreases, and that since Up(·) is strictly concave,

limc→0M
c = 0.

Proof of Proposition 4

The proof of this result uses the same counterexample used in the second part of the proof

of Proposition 2. To construct a decrease of size maxσ,σ′∈Σ(ua(σ) − ua(σ′)) in the agent’s

activity-related payoff under the unique optimal contract, use that counterexample and set

the endpoints of J to be the payoffs that support the maximum.

B Monotonicity of Concave Separable Activities in Se-

lected Papers

In this appendix we apply Theorem 1 to obtain the monotonicity results of selected papers.
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Harris and Holmström (1982)

Consider the model presented in Harris and Holmström (1982) for a specific level of education

e. The contracting problem in that paper consists of21:

A parametrized quitting game

Gmq =

〈
Sp = {p∅}, Sa = {Q,C};up(p∅, sa) ≡ 0, ua(p∅, sa) =


m

1−δ if sa = Q

0 if sa = C

〉
,

where m is the belief about the agent’s ability and Q (C) represents the agent’s choice to

quit (continue with) his current employer;

a parametrized profit game (that signals the agent’s ability)

Gyπ = 〈Sp = {p∅}, Sa = {a∅}; , up(p∅, a∅) =
y

δ2
, ua(p∅, a∅) = 0〉,

where y is the output generated by the agent;

a null game

GN = 〈Sp = {p∅}, Sa = {a∅};up(p∅, a∅) = ua(p∅, a∅) = 0〉;
and a game that represents the activity of wage

Gwage = 〈Sp = R+, Sa = {a∅};up(w, a∅) = −w
δ
, ua(w, a∅) =

U(w)

δ
〉,

where w is the agent’s wage, and U(w) is his strictly concave vNM utility function from

wage.

The function f(·) is given as follows. G(1) = Gm1
q , where m1 is the prior expectation over

the agent’s ability. If the agent chooses Q, then in all future periods G(t) = GN ; otherwise

G(2) = Gwage, and G(3) = Gy1π , where y1 is drawn from a normal distribution with mean

m1 and precision p1 = p̂1
p̂1+1 , where p̂1 is the prior precision of the distribution over the

agent’s ability (h1 in their paper). The construction of f(·) proceeds in an iterative manner.

If in a history ht there exists a period in which the agent chose Q in a quitting game, then

G(t) = GN . Otherwise, if t = 3(n− 1) + 1 (for some positive integer n) then G(t) = Gmn
q ,

where mn is drawn according to a normal distribution with expectation pn−1mn−1+yn−1

pn−1+1 and

precision pn = pn−1+1; if t = 3(n−1)+2 then G(t) = Gwage; and if t = 3n then G(t) = Gynπ ,

where yn is drawn according to a normal distribution with expectation mn and precision

1+pnpn−1

pnpn−1
.

In this contracting problem (Gwage,Σwage) (where Σwage = R+×a∅) is a concave separa-

21The interaction in each period of Harris and Holmström (1982) (as well as some of the other papers we
refer to in this appendix) consists of distinct sub-periods. Hence, to embed their model in our framework
we must map each period in their model into multiple periods in our framework, and scale payoffs to adjust
for discounting.
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ble activity. Moreover, it satisfies Property 1 as it is unilaterally controlled by the principal.

Hence, Theorem 1 implies that the wage of an agent that has not quit does not decrease

over time.

Holmström (1983)

We consider the multi-period version of this paper and focus on the contracting problem

between the firm and a single worker it has hired. The contracting problem in this paper is

composed of:

a parametrized quitting game

Gsq =

〈
Sp = Sa = {Q,C};

up(sp, sa) =

Π(s) if sa = sp = C

0 otherwise

, ua(sp, sa) =

0 if sa = sp = C

V (s) otherwise

〉
,

where Q represents the agent’s choice to quit or the firm’s decision to fire him and s is the

state, V (s) and Π(s) are the agent’s value of quitting and the firm’s value of employing the

worker in state s, respectively;

a null game

GN = 〈Sp = {p∅}, Sa = {a∅};up(p∅, a∅) = ua(p∅, a∅) = 0〉;
and a game that represents the activity of wage

Gwage = 〈Sp = R+, Sa = {a∅};up(w, a∅) = −w
δ
, ua(w, a∅) =

U(w)

δ
〉,

where w is the agent’s wage, and U(w) is his strictly concave vNM utility function from

wage.

The function f(·) is given as follows. G(1) = Gs1q , where s1 is the initial state, if either

player chooses Q, then in all future periods G(t) = GN ; otherwise G(2) = Gwage and

G(3) = Gs3q , where s3 is the realized state. The construction of f(·) proceeds in an iterative

manner. If in a history ht there exists a period in which a player chose Q in Gsq, then

G(t) = Gn. Otherwise, in an even period G(t) = Gwage and in an odd period G(t) = Gstq .

The pair (Gwage,Σwage) is a concave activity (for Σwage = R+× a∅) that satisfies Prop-

erty 1. Moreover, it is separable with respect to f(·) if the evolution of st is exogenous (as

in Holmström 1983). Therefore, Theorem 1 implies that the wage of an agent that has not

quit or been fired does not decrease over time, regardless of the evolution of his productivity

and outside options. Note that in Holmström (1983) the evolution of these two objects is
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interconnected; however, this is not needed to obtain this result.

Marcet and Marimon (1992)

We consider the contracting problem analyzed in Section 4 of this paper, where there is

symmetric information and the investor (principal) has full commitment power. Moreover,

Marcet and Marimon study socially efficient outcomes; hence, in general, the manager’s

(who is the agent in their model) consumption is not necessarily an activity as both players

may prefer to increase his consumption. To circumvent this problem we assume that the

weight the planner assigns to the manager’s utility is zero (λ = 0). The contracting problem

in this paper consists of: a parametrized investment game

GIθ,k = 〈Sp = Sa = R+;up(c, i) =
h(k)− c− i

δ
, ua(c, i) =

u(c)

δ
〉,

where k is the capital stock, i is the investment in capital, c is the manager’s consumption

and u(c) is his strictly concave utility function from consumption, h(k) is the production

function (denoted by f(k) in their paper), and θ is an investment shock;

a parametrized (contract) breaching game

GBθ,k =

〈
Sp = {p∅}, Sa = ∪{A,B};up(p∅, sa) = 0, ua(p∅, sa) =

0 if sa = A

V a(k, θ) if sa = B

〉
,

where A (B) represents the agent’s choice to adhere (breach) the contract, and va(k, θ) is

his value from an autarkic regime with an initial state of (k, θ);

an a null game

GN = 〈Sp = {p∅}, Sa = {a∅};up(p∅, a∅) = ua(p∅, a∅) = 0〉.
The function of f(·) is given as follows. G(1) = GBθ1,k1 for some initial state (θ1, k1). If

the agent chooses B in period 1, then G(t) = GN for all t ≥ 2. Otherwise, G(2) = GIθ1,k1

and G(3) = GBθ2,k2 , where θ2 follows from θ1 via an AR1 process and k2 = dk1 +g(i1; θ1) for

some d ∈ [0, 1] and capital accumulation function g(·; ·). The construction of f(·) follows in

an iterative manner. If the agent has played B in the past then G(t) = GN . Otherwise, in

a period where t = 2n − 1 (for some integer n) the players play the game G(t) = GBθn,kn ,

where θn follows an AR1 process and kn = dkn−1 + g(i2n−2; θn), and in period t + 1 = 2n

the players play the game G(t+ 1) = GIθn,kn .

So long as the agent has adhered to the contract, the concave activity (G,Σ) given by

〈Sp = R+, Sa = {a∅};up(c, a∅) = −w, ua(c, a∅) = u(c)〉
and Σ = R+ × a∅ is available in every odd period. Moreover, this activity is separable
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with respect to the contracting problem, and since it is unilaterally controlled by the prin-

cipal it satisfies Property 1. Hence, Theorem 1 implies that the manager’s consumption is

nondecreasing over time under an optimal contract.

Forand and Zápal (2020)

The contracting problem in this paper consists of a finite family of games parametrized

by (va, vp) ∈ R2 (representing different projects) that arrive according to an exogenous

distribution,

Gva,vp = 〈Sp = [0, 1], Sa = {0, 1};up(sp, sa) = saspvp, ua(sp, sa) = saspva〉 ,
where va and vp are, respectively, the agent’s and principal’s payoffs from implementing the

project, sa represents the agent’s consent to implement the project, and sp represents the

probability that they implement it.22

For any Gva,vp such that vavp < 0, (Gva,vp ,Σva,vp) is a weakly concave separable activity

for Σva,vp = {(sp, sa)) : sa = 1}. Since the authors assume that the set of projects is finite

and any deviation provides the agent with a payoff of zero, an optimal contract exists. Hence,

Corollary 1 implies that there exists an optimal contract under which the agent’s utility

from every type of project is nondecreasing over time. Moreover, Corollary 2 establishes

that there is a threshold such that a project is implemented if and only if the marginal cost

of providing one util to the agent is below that threshold.

22Forand and Zápal (2020) describe a slightly different, but equivalent, game. In particular, they assume
each player has a binary choice of whether or not to implement the project, and that the players can
coordinate their choices via a public randomization device.
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