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Abstract

Identifying outperforming mutual funds ex-ante is a notoriously difficult task. We use machine
learning methods to exploit the predictive ability of a large set of mutual fund characteristics that
are readily available to investors. Using data on US equity funds in the 1980-2018 period, the
methods allow us to construct portfolios of funds that earn positive and significant out-of-sample
risk-adjusted after-fee returns as high as 4.2% per year. We further show that such outstanding
performance is the joint outcome of both exploiting the information contained in multiple fund char-
acteristics and allowing for flexibility in the relationship between predictors and fund performance.
Our results confirm that even retail investors can benefit from investing in actively managed funds.
However, we also find that the performance of all our portfolios has declined over time, consistent
with increased competition in the asset market and diseconomies of scale at the industry level.
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1 Introduction

In August 2019, U.S. indexed domestic equity mutual funds and ETFs managed for the first time

more assets than actively managed mutual funds. Many commentators viewed this victory for passive

asset management as the consequence of active managers’ continuing inability to deliver returns above

those of cheaper passive alternatives.1 Indeed, mutual fund research has consistently shown that the

average active fund earns negative risk-adjusted returns (alpha) after transaction costs, fees and other

expenses. However, in recent years a number of studies have documented the ability of different fund

characteristics to predict future fund performance. If investors can successfully exploit performance

predictability, then there is still room for active management in the fund industry. In this paper, we

investigate whether investors can use Machine Learning (ML) combined with publicly available data

to construct portfolios of mutual funds that deliver positive net alpha.

The underperformance of actively managed mutual funds is a very pervasive finding in the mutual

fund literature (Sharpe, 1966; Jensen, 1968; Gruber, 1996; Ferreira et al., 2013). One possible

interpretation of the empirical evidence is that asset managers lack the ability to generate alpha,

so active funds must necessarily underperform passive benchmarks due to transaction costs, fees and

other expenses. However, several studies document the existence of skill among at least a subset of

asset managers (Wermers, 2000; Kacperczyk et al., 2005, 2008; Kacperczyk and Seru, 2007; Barras

et al., 2010; Fama and French, 2010; Kacperczyk et al., 2014; Berk and Van Binsbergen, 2015). If

some managers are skilled, then the relevant question becomes whether investors can benefit from that

skill by identifying the best managers ex-ante. To answer this question, researchers have investigated

if future fund performance can be predicted by past returns. The consensus that emerges from this

literature is that positive risk-adjusted after-fee performance does not persist, particularly once we

account for mutual funds’ momentum strategies (Carhart, 1997).2

Lack of persistence in fund net performance is consistent with the model of Berk and Green (2004),

in which investors supply capital with infinite elasticity to funds they expect to perform best, given the

funds’ history of returns. If there are diseconomies of scale in portfolio management, in equilibrium

funds with more skilled managers attract more assets but offer the same expected risk-adjusted after-

fee performance as any other active fund: that of the alternative passive benchmark (zero). However,

the empirical evidence regarding diseconomies of scale in portfolio management is mixed (Chen et al.,

2004; Reuter and Zitzewitz, 2010; Pástor et al., 2015; Zhu, 2018). Also, mutual fund investors fail

1Gittelsohn (2019). “End of Era: Passive Equity Funds Surpass Active in Epic Shift.” Bloomberg.
(https://www.bloomberg.com/news/articles/2019-09-11/passive-u-s-equity-funds-eclipse-active-in-epic-industry-shift).

2A notable exception is the study of Bollen and Busse (2005), who find some evidence of short-term persistence (one
quarter) among top-performing funds.

2



to appropriately adjust returns for risk, which suggests that investors’ ability to judge mutual fund

performance is less than assumed by Berk and Green (2004) (Berk and Van Binsbergen, 2016; Barber

et al., 2016; Evans and Sun, 2021). In addition, frictions may prevent investors’ flows from driving fund

performance towards zero (Dumitrescu and Gil-Bazo, 2018; Roussanov et al., 2021). Consequently,

whether mutual fund performance is predictable is ultimately an empirical question that has received

considerable attention in the literature. Typically in studies of performance predictability, funds are

ranked every month or quarter on the basis of some fund-related variable, the predictor. Funds are then

allocated to quintile or decile portfolios based on their ranking, and portfolio returns are computed

every period. Finally, portfolios are evaluated on the basis of their risk-adjusted returns. Despite

many attempts, only a few studies, which we review below, are able to select portfolios of funds with

positive risk-adjusted performance after transaction costs, fees and other expenses.

In this paper, we also take on the challenge of identifying mutual funds with positive alpha. Our

approach departs from the existing literature along three important dimensions. First, our goal is

not to discover a new predictor of fund performance. Instead, we aim to provide investors with a

method that can help them exploit any predictability about fund performance that can be found in

the data. More specifically, we consider a large set of fund-related variables or characteristics that

are either readily accessible to investors or can be easily computed from available data, and evaluate

the ability of all the variables to jointly predict performance. By allowing for multiple variables

to predict future performance, we account for the complex nature of the problem at hand. Fund

performance is determined by a host of different factors including the manager’s multifaceted ability,

portfolio constraints, the resources allocated by the asset management firm to the fund manager,

manager incentives and agency problems, the efficiency of the market in which the manager invests,

competition among managers, as well as more direct determinants, such as trading costs, fees, and

other expenses. In this setting, it seems unlikely that using a single variable to predict performance

is as efficient as exploiting more information.

Second, we use ML methods to forecast fund performance based on fund characteristics.

Specifically, we explore three broad classes of ML algorithms: elastic net, gradient boosting, and

random forests, which we discuss in Section 3. ML algorithms are particularly appropriate in this

context as they are well-suited to deal with complex relations between variables. In particular, there is

no a priori reason to believe that the relation between some fund characteristics and fund performance

is linear or even monotonic. Moreover, interactions between different fund characteristics may be

important to predict mutual fund performance (e.g., Shen et al., 2021). ML methods allow for a

very flexible mapping between future fund performance and fund characteristics and can therefore
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help uncover predictability that would be missed by variable-sorting or linear models. Also, ML

algorithms are good at accommodating irrelevant predictors, so they make it possible to consider

multiple potential predictors with lower risk of overfitting than with Ordinary Least Squares (OLS).

Regularization methods such as elastic net and tree-based methods, such as gradient boosting and

random forests, have been applied to solve several problems in Finance (e.g. Rapach et al., 2013;

Bryzgalova et al., 2019; Coulombe et al., 2020; Freyberger et al., 2020; Kozak et al., 2020). We

choose these methods because they have been shown to outperform other ML algorithms in forecasting

economic and financial variables with structured (or tabular) data, as in our case (e.g. Medeiros et al.,

2021; Gu et al., 2020). As a robustness test, in Section 5 we also use feed-forward neural networks.

Third, our approach is dynamic and out-of-sample. The decision of whether and how to exploit

a fund characteristic to identify outperforming funds is taken every time the relationship between

predictors and performance is reevaluated, that is, whenever the portfolio is rebalanced. Also, the

decision is based exclusively on past data. By allowing for changes through time in the relationship

between predictors and performance, our method can accommodate changes in the underlying

determinants of fund performance due to changes in market conditions, investor learning, or changing

strategies by fund managers and management companies.

We implement our approach using monthly data on no-load actively managed US domestic equity

mutual funds in the 1980-2018 period. The first 10 years of data are employed to train the different

ML models to predict one-year ahead risk-adjusted fund performance. More specifically, we define

our target variable as annual risk-adjusted performance in each calendar year, which we estimate

using the five-factor model of Fama and French (2015) augmented with momentum. As predictors, we

consider the values of several fund characteristics in the previous year. We then ask the algorithms

to predict performance in the following year, form an equally-weighted portfolio consisting of funds

in the top decile of the predicted performance distribution, and compute the return of the portfolio

in the following 12 months. For every remaining year, we roll the sample forward one year, train

the algorithms again on the expanded sample, make new predictions for the following year, construct

a new top-decile portfolio and track its return during the next 12 months. This way, we construct

a time series of monthly out-of-sample returns of the top-decile portfolio. Finally, we evaluate the

risk-adjusted performance of the top-decile portfolio over the whole period. For comparison purposes,

in addition to ML algorithms, we use panel OLS estimation with the same predictors to predict risk-

adjusted performance. We also compare the performance of our prediction-based portfolios to that of

an equally-weighted and an asset-weighted portfolio of all available funds. The former is the portfolio

of a mutual fund investor who does not believe that differences in performance across funds are
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predictable. The latter is the portfolio of an investor who relies on the aggregate revealed preferences

of mutual fund investors.

Our results can be summarized as follows. First, two of the three algorithms we consider, Gradient

Boosting (GB) and Random Forests (RF), are able to select a portfolio of funds that delivers positive

and statistically significant performance on a risk-adjusted basis. In particular, the top-decile portfolio

constructed with the GB algorithm earns alpha ranging from 3.5% to 4.2% per year net of all fees,

expenses and transaction costs, depending on the model employed to evaluate performance. If we use

RF to select funds, alpha ranges from 2.4% to 3% per year.

The top-decile portfolios based on both Elastic Net (EN) and OLS deliver positive alpha, although

substantially lower than GB and statistically indistinguishable from zero. However, both EN and OLS

outperform the equally-weighted and asset-weighted portfolios, which earn negative alpha. Therefore,

while portfolios that exploit predictability in the data help investors to avoid underperforming funds,

only GB and RF allow them to benefit from investing in actively managed funds.

These results are robust to whether or not we account for momentum to evaluate the performance

of the top-decile portfolio. Our conclusions do not change either, if we include the liquidity risk factor

of Pástor and Stambaugh (2003) or if we use other models to evaluate the performance of the top-

decile portfolios (but not to construct the portfolios), such as those of Carhart (1997), Cremers et al.

(2013), Hou et al. (2015), and Stambaugh and Yuan (2017). Results are also robust to constructing

portfolios consisting of funds in the top 5% or 20% of the predicted alpha distribution. Finally, the

performance of the top-decile portfolio is just as good or even better if we exclude from our sample

institutional share classes, which implies that retail investors can also benefit from the predictability

of fund performance by employing ML methods.

We also evaluate whether we can obtain improved prediction-based portfolios by resorting to deep

learning methods. Specifically, we follow Gu et al. (2020) and Bianchi et al. (2021) and implement feed-

forward neural networks with up to three layers. The top-decile prediction-based portfolios obtained

with neural networks deliver positive and statistically significant alphas—but systematically lower in

comparison to those obtained with the GB method and similar to those obtained with the RF method.

Second, we focus on the GB-selected portfolio and show that its performance is not driven by a

single characteristic. More specifically, we analyze the importance of each characteristic and find that

the second most important predictor has a very similar importance to that of the most important

predictor. To further explore the performance of our multivariate approach, we obtain the GB-

selected portfolio by including only the top-2, top-3, and top-4 characteristics in terms of variable

importance. We find that the performance of the resulting top-decile portfolio increases with the
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number of predictors, but even with the four most important predictors, it remains well below the

performance of the portfolio that exploits all fund characteristics. These findings suggest that attempts

to exploit the predictive ability of a single fund characteristic to construct portfolios of funds are likely

to be dominated by a multivariate approach.

Third, we show that the relative importance of different variables exhibits substantial variation as

new data becomes available. For instance, the importance of past performance as a predictor (relative

to that of the most important predictor) in the GB method varies from 14% to 86% throughout our

evaluation period. Similar patterns appear in the vast majority of characteristics. Such variation in

importance highlights the need for a dynamic approach, where the predictive relation between fund

characteristics and performance is reevaluated every time the portfolio is rebalanced.

Finally, Jones and Mo (2020) analyze the out-of-sample performance of 27 variables that have

been documented to forecast mutual fund alphas. The authors provide evidence that the predictive

ability of fund characteristics with respect to future fund performance has declined through time due

to an increase in arbitrage activity and competition among mutual funds. Motivated by their finding,

we evaluate the performance of the top-decile portfolio over rolling sample periods of five years. Our

results indicate that the top-decile portfolio selected by GB consistently beats the OLS-selected top-

decile portfolio as well as the equally-weighted and asset weighted portfolios. However, consistent

with the findings of Jones and Mo (2020), alpha declines through the sample period for all portfolios,

including the GB-selected portfolio. This result suggests that the best performing ML algorithm is

able to extract alpha from the mutual fund market, but only when there is any alpha to be extracted

in the first place.

Our results are of great practical importance for investors, financial advisers, managers of funds of

funds, and pension plan administrators. The methods we propose are readily implementable and can be

used to improve fund selection. Importantly, the data requirements are minimal, as all the information

we employ is available in public registries and through commercial data vendors. Naturally, not all

investors are equipped with the resources necessary to apply ML methods to select mutual funds.

However, independent analysts, on which retail investors rely for their mutual fund decisions, can use

the same methods and data we employ in this paper to make their recommendations.

Our paper contributes to a large literature on the predictability of mutual fund performance

(see Jones and Mo, 2020, for a recent survey). Studies in that literature document a significant

association between one fund characteristic and subsequent differences in performance across mutual

funds. However, constructing long-only portfolios of funds based on those characteristics does not

necessarily enable investors to earn positive alphas. For instance, higher expense ratios are strongly
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and negatively associated with lower net fund alphas in the cross-section, but a portfolio that invests

only in the cheapest funds does not outperform its passive benchmarks in net terms. In other words,

the predictive ability of expense ratios with respect to performance helps investors to avoid expensive

underperforming funds, but not to select funds with positive alphas. In fact, only 7 of the 27 studies

identified by Jones and Mo (2020) report positive and statistically significant Carhart (1997) alphas

after fees and transaction costs for long-only portfolios of mutual funds (Chan et al., 2002; Busse

and Irvine, 2006; Mamaysky et al., 2008; Cremers and Petajisto, 2009; Elton et al., 2011; Amihud

and Goyenko, 2013; Gupta-Mukherjee, 2014). We contribute to this literature by providing further

evidence of out-of-sample predictability in positive net alphas. Instead of using a single variable, we

exploit multiple potential predictors and let the importance of each predictor vary through time as

new information becomes available. Also, we introduce flexibility in the relationship between fund

characteristics and future fund performance and allow for interactions between fund characteristics.

Our paper is related to recent research by Wu et al. (2021) and Li and Rossi (2021). Wu et al.

(2021) apply ML to select hedge funds. In particular, they use hedge fund characteristics constructed

from funds’ historical returns to predict future hedge fund alphas. Instead, we exploit both funds’

historical returns and observable fund characteristics to predict mutual fund alphas. Li and Rossi

(2021) use ML to select mutual funds by combining data on fund holdings and stock characteristics.

In contrast, we construct portfolios of funds exploiting only fund characteristics that do not require

the use of fund-holding or stock-characteristic data. Li and Rossi (2021) find that by exploiting

fund holdings and stock characteristics one can build fund portfolios that earn significant alphas.

Our findings complement theirs by showing that investors can alternatively select mutual funds with

significant and positive net alpha by exploiting solely the information contained in fund characteristics.

Our paper is also related to studies that use Bayesian methods to construct optimal portfolios of

mutual funds (Baks et al., 2001; Pástor and Stambaugh, 2002; Jones and Shanken, 2005; Avramov

and Wermers, 2006; Banegas et al., 2013). Unlike those papers, we do not provide recommendations

to investors on how they should allocate their wealth across funds given their preferences and priors

about managerial skill and predictability. Instead, we try to identify active funds with positive alpha

that investors may choose to combine with passive funds and other assets in their portfolios to achieve

better risk-return tradeoffs. Also, while those studies use a monthly rebalancing frequency, here we

adopt a more realistic approach and allow investors to rebalance their portfolios annually.

Finally, our paper also contributes to a growing literature that employs ML methods to address

a broad range of empirical problems in Economics and Finance. These problems include: predicting

global equity market returns using lagged returns of all countries (Rapach et al., 2013); predicting
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consumer credit card delinquencies and defaults (Butaru et al., 2016); measuring equity risk premia

(Gu et al., 2020; Chen et al., 2020); detecting predictability in bond risk premia (Bianchi et al.,

2021); building “deep” factors (Feng et al., 2020); forecasting inflation (Garcia et al., 2017; Medeiros

et al., 2021), and studying the relationship between multiple investor characteristics and portfolio

allocations (Rossi and Utkus, 2020). Masini et al. (2021) provide a review of applications. In the

context of mutual funds, Pattarin et al. (2004), Moreno et al. (2006), and Mehta et al. (2020) employ

different ML methods to improve the classification of mutual funds in accordance to their investment

category, but do not study fund performance. Chiang et al. (1996) and Indro et al. (1999) investigate

the ability of neural networks to predict a mutual fund’s net asset value or its return, respectively.

Whereas those authors focus on forecasting accuracy, our final goal is to identify funds which offer

superior performance.

2 Data and pre-processing

2.1 Data description

We collect monthly information on US domestic mutual funds from the CRSP Survivor-Bias-Free US

Mutual Fund database. Data are collected at the mutual fund share class level and span the 1980-2018

period. Our sample includes both institutional and retail no-load share classes of US funds investing in

domestic equity, including both diversified and sector funds.3 To keep our analysis as close as possible

to the actual selection problem faced by investors, we perform the analysis at the share class level.

Following the mutual fund literature, we apply the following filters. First, we include only share

classes of actively managed funds, therefore excluding ETFs and passive mutual funds. Second, we

include share classes of funds with more than 70% of their portfolios invested in equities. Third, we

exclude classes with less than US$ 5 million of Total Net Assets (TNA) and less than 36 months of

age in order to avoid incubation bias (Evans, 2010). The final sample contains a total of 6,216 unique

share classes, of which 5,561 correspond to diversified equity funds (representing 94% of aggregate

TNA in the sample) and 665 belong to sector funds.

Our data set contains monthly share class-level information on returns (which are reported net

of expenses and transaction costs), TNA, expense ratio, and turnover ratio. We further compute the

following additional characteristics: age (computed as the number of months since the class’s inception

date), monthly flows (computed as the relative growth in the class’s TNA adjusted for returns net of

3We restrict our analysis to share classes that charge no front-end or back-end load, and thus our portfolios do not
incur any rebalancing costs.
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expenses), volatility of flows (computed as the 12-month standard deviation of flows), and manager

tenure (in years).4 Moreover, we use the history of returns to obtain characteristics that come from

the time-series estimation of the Fama and French (2015) 5-factor (FF5) model augmented with

momentum (hereafter, FF5+MOM). In particular, for each fund class and month in our sample, we

run 36-month rolling window regressions of the class’s excess returns on the 5 factors and momentum

in the previous 36 months. We then compute precision-adjusted alphas (the model’s intercept scaled

by its standard error) as well as precision-adjusted betas. We use t-statistics instead of raw alphas and

betas as predictors to account for estimation uncertainty in those quantities (Hunter et al., 2014). We

also use the R2 from the FF5+MOM rolling-window regressions as a predictor of fund performance,

as proposed by (Amihud and Goyenko, 2013).

For each fund class i and month m, we define monthly realized alpha, αi,m, as follows:

αi,m = ri,m − Fmβ̂i,m, (1)

where ri,m is the class’s return in month m in excess of the risk-free rate, Fm is a vector containing

the realization of the market, size, value, profitability, investment, and momentum factors in month

m, and β̂i,m is the vector of factor loadings estimated from the rolling-window regression using the

previous 36 months of data.

Finally, we use the realized alpha from (1) to compute value added for each class and month. Value

added is based on Berk and Van Binsbergen (2015) and is defined as (αi,m + 1
12expense ratioi,m) ×

TNAi,m−1. This variable captures the dollar value extracted by the fund’s manager from the asset

market.5

Table 1 contains a list of the variables employed in our analysis and their definitions. Table 2 reports

the mean, the median, the standard deviation (s.d.), and the number of class-month observations for

each of the characteristics in our sample. Consistent with the literature on fund performance, the

average share class in our sample has negative alpha and loads positively on the market, size, and

momentum factors. The average R2 is 0.9, which suggests that the performance attribution model does

a very good job at explaining variation in returns for equity funds. The total number of class-month

observations varies across variables from 503,521 to 592,493.

4We cross-sectionally winsorize flows at the 1st and 99th percentiles; that is, at each time period we replace extreme
observations that are below the 1st percentile and above the 99th percentile with the value of those percentiles. The
computation of the standard deviation of flows is based on winsorized flows.

5In their paper, Berk and Van Binsbergen (2015) estimate before-fee alpha by regressing funds’ gross returns on the
gross returns of passive mutual funds tracking different indexes. In unreported analyses, we follow their approach and
obtain similar results to those based on the FF5+MOM model.
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2.2 Pre-processing

We pre-process the data deployed to train the ML algorithms as follows. First, we convert our sample

from monthly to annual frequency. We adopt this conversion because the characteristics tend to be

very persistent (very highly autocorrelated) and some of them are reported at the quarterly or even

annual frequency.

Our target variable is the fund’s annual realized alpha, which we compute as the sum of monthly

realized alphas in each calendar year. Our choice of alpha as the target variable is consistent with

the goal of this paper, which is to exploit any existing link between fund traits and the manager’s

ability to generate positive alpha, regardless of the source of alpha. In contrast, Li and Rossi (2021)

use fund excess returns as their target variable, which allows them to study whether the returns of

mutual funds can be predicted from the characteristics of the stocks they hold.

As for the rest of variables, we compute the annual values of flows and value added by averaging

their monthly values from January to December of each year. Flow volatility is already defined at the

annual frequency. For all other variables, we use their values in December of each year. Column 3 of

Table 1 summarizes the pre-processing for each of the variables deployed in the training process of the

ML algorithms.

Second, we follow Green et al. (2017) and standardize each characteristic so that it has a cross-

sectional mean of zero and standard deviation of one. Standardization is often employed in empirical

problems involving ML methods and is important in order to maintain the estimation process of the

ML algorithms scale-invariant. We also set missing characteristic values to the standardized mean of

that month’s non-missing values, i.e., zero.

Third, we build our final data set consisting of the target variable and the pre-processed

characteristics that are used as predictors when training the ML algorithms. As explained above, the

target variable is the fund’s realized alpha in the calendar year. The characteristics used as predictors

are the following one-year-lagged standardized variables: annual realized alpha, alpha (t-stat of the

intercept from the 36-month rolling window regression), TNA, expense ratio, age, flows, volatility of

flows, manager tenure, value added, R2, and the t-stats of the market, profitability, investment, size,

value, and momentum betas (also from the rolling window regression). 6 Figure 1 shows the correlation

matrix between the variables employed in the analysis. The target variable has low correlation with

lagged predictors. However, some predictors exhibit substantial positive and negative correlations,

6We note that both our target variable, annual realized alpha, and some of the predictors are not directly observable
and must be estimated from the data. While this may pose a problem for inference, our goal is not to conduct inference
but to predict future performance.
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with the highest correlation being that between lagged flows and volatility of flows (59%).

Finally, we organize our data in panel structure such that fund classes are indexed as i = 1, ..., Nt

and years as t = 1, ..., T .

3 Methodology

In this section, we describe the ML methods that we use to forecast fund class performance based

on lagged characteristics. Our task consists of predicting each class’s one-year ahead realized alpha,

αi,t+1, using a set of one-year-lagged predictors. We adopt a similar description of asset excess returns

considered in Gu et al. (2020) and describe the fund class’s expected realized alpha as an additive

prediction error model:

αi,t+1 = g(zi,t) + εi,t+1, (2)

where zi,t is a K-dimensional vector or predictors and g(·) is a flexible function used to model the

conditional expected realized alpha and is different for each ML method considered. We also assume

that the functional form of g(·) is the same over time and across different fund classes, that is, the g(·)

function depends neither on i nor t. This assumption allows us to use information from the entire panel

of fund classes, which lends stability to estimates of the risk-adjusted performance for any individual

fund class.

As the baseline prediction method, we consider the ordinary least squares (OLS) method:

min
θ

1

2
||α− g(z, θ)||22,

where g(z, θ) = z′θ, θ is the parameter vector, and ||·||2 denotes the 2-norm. The OLS method provides

an unbiased estimator and a convenient interpretation. However, the performance of OLS is often

poor when the data exhibit high variance, non-linearities and interactions. In these circumstances,

ML methods often outperform the OLS method at the expense of interpretability.

We have selected three broad classes of ML methods: elastic net, random forests, and gradient

boosting. The elastic net approach considers the same linear approximation as OLS but provides

improved parameter estimates (through regularization) when the predictors are correlated. Moreover,

to extend the linear approximation and capture non-linearities and potential interactions between

the predictors, we consider ensembles of decision trees (random forests and gradient boosting) given

that these methods often outperform linear methods in terms of prediction performance in general
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applications with structured (or tabular) data, as in our case (see Medeiros et al., 2021).7

Another important ML method is neural networks. They perform well in terms of prediction

performance when using non-structured data or highly non-linear structured data. To capture these

non-linearities, they require more parameters to be estimated and hence, many more observations in

order to deliver accurate estimates. This is why in practice neural networks may not outperform the

methods we have selected given the type of data we have. Nonetheless, we run a robustness check

in which we implement feed-forward neural networks with up to three hidden layers. The results are

discussed in Section 5.

Finally, it is worth noting that we have not considered other classes of ML tools such as Principal

Component Regression (PCR) or Partial Least Squares (PLS) because they do not perform better

than ridge regression (which is a particular case of elastic net), see Elliott et al. (2013).

Next, we describe the three classes of ML methods considered in the paper.

3.1 Elastic net

Shrinkage or regularization approaches often deliver improved estimates of the parameters for high-

dimensional models with a large number of predicting variables. The elastic net approach proposed

by Zou and Hastie (2005) uses both 1-norm and 2-norm regularization terms to shrink the size of the

estimated parameters. An advantage of this approach is that there is no need to select the relevant

characteristics a priori because overfitting is attenuated by the regularization terms. The general

framework for the elastic net, with two regularization terms, is as follows:

min
θ

1

2
||α− g(z, θ)||22 + λρ ||θ||1 + λ(1− ρ) ||θ||22,

where g(z, θ) = z′θ and θ is the parameter vector. The 1-norm term controls the degree of sparsity

of the estimated parameters and the 2-norm term stabilizes the regularization path. In particular, if

ρ = 0, only the 2-norm is considered, and therefore a ridge regression is performed. After selecting

the hyper-parameter λ, this regression will provide a dense estimator. On the other hand, if ρ = 1,

only the 1-norm is considered, and the Least Absolute Sum of Squares Operator (LASSO) regression

is performed, which provides a sparse estimator.8 We implement the elastic-net framework with two

penalization terms (ρ and λ). In Subsection 3.4 we discuss the procedure used to optimize these two

hyper-parameters.

7Li and Rossi (2021) use the same methods but with different predictors, and excess returns instead of alpha as the
target variable.

8See Hastie et al. (2009, p. 61–73) for a reference on shrinkage methods for regression.
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3.2 Random forests

Random forests are based on a bootstrap aggregation for decision trees (Breiman, 2001). In a decision

tree, the sample is split recursively into several homogeneous and non-overlapping regions based on the

most relevant features or predictors, like high-dimensional boxes. These boxes are better represented

on a tree where at each node a variable split is performed. The tree then grows from the root node to

the terminal nodes, and the prediction is based on the average value of observations in each terminal

node. Decision trees are highly interpretable and select predicting variables automatically by splitting

the sample at each node. However, their prediction performance can be poor because of the high

variance of the predictions.

Random forests reduce the prediction variance of decision trees by averaging across numerous

decision trees. The prediction of a random forest is based on the average prediction over all the

trees in the forest. The reduction in the prediction variance is related to the degree of independence

(correlations) between the individual trees, and because of that the trees should be as less correlated

as possible. To accomplish that, random forests use the bootstrap to randomly select observations for

each tree, and randomly select a subset of predictors (characteristics) at each node of the tree.

In particular, bagging (bootstrap aggregation) is performed in the following way. Let α̂t+1 denote

the prediction of the realized alpha obtained for a sample (zt, αt+1). Then, the bagging prediction for

B bootstrap replicates, α̂t+1,Bag, is

α̂t+1,Bag =
1

B

B∑
b=1

α̂∗t+1,b(z∗t,b, α
∗
t+1,b),

where α̂∗t+1,b denotes the prediction of the b-th decision tree. Then, after drawing a decision tree for

each bootstrap sample, each decision tree is grown by selecting a random set of m (out of K) fund

characteristics at each node, and choosing the best characteristic to split on. The choice of the number

of characteristics at each node, m, is discussed in Section 3.4. In our implementation of the random

forest we set B = 1000. Previous empirical work (e.g. Medeiros et al., 2021; Coulombe et al., 2020)

shows that random forests achieve good prediction performance, specially when the dimension of the

problem is high and the relations between the variables are non-linear and contain interactions.

3.3 Gradient boosting

Instead of aggregating decision trees in an independent way as in the case of random forests, boosting

performs a sequential aggregation of the trees, starting from weak decision trees (those with prediction
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performance slightly better than random guessing) and finishing with strong ones (better performance).

In this fashion, boosting is able to achieve improved predictions by reducing not only the prediction

bias but also the variance (Schapire and Freund, 2012).

Boosting learns how to aggregate decision trees slowly (sequentially) in order to give more influence

to observations that are poorly predicted by previous trees. Gradient boosting aims at improving

prediction performance by using a loss function that is minimized (using the gradient descent) by

adding the prediction error of the trees sequentially. Hence, gradient boosting is able to identify large

residuals from previous iterations (by gradient descent) when minimizing the loss function, which is

usually the mean square error of the predictions in a regression task. In particular, the prediction

function is updated at iteration b as:

F̂b+1(zt) = F̂b(zt)− δbhb(zt)

where F̂ denotes the prediction function, h is a weak tree computed from gradient residuals, δ is the

learning rate (hyper-parameter), and F̂0(zt) = ᾱt+1.

Unlike random forests, gradient boosting tends to overfit the data. To avoid overfitting, more

elements and hyper-parameters are added, such as: tree constraints (number of trees, tree depth,

number of nodes, etc.), shrinkage of the learning rate, random subsampling of the data (without

replacement), penalization of values in terminal nodes (such as in the XGboost algorithm of Chen and

Guestrin, 2016), among others.

3.4 Optimization of hyper-parameters via sample splitting

To optimize the hyper-parameters of the elastic net, random forest, and gradient boosting methods

discussed above, we employ a k-fold cross-validation with k = 5 folds. In a k-fold cross-validation, the

training sample is randomly divided in k groups, and the k−1 folds are used to obtain the predictions

and the remaining one is used as validation set to evaluate the predictions (cross-validation error).

Hence, a grid for each hyper-parameter is selected for each model, and the optimal ones will be those

with smallest cross-validation error.

One potential concern that arises when adopting the k-fold Cross-Validation (CV) method is that

this procedure does not account for the time series nature of the data. In this context, it is common

to resort to pseudo Out-Of-Sample (OOS) evaluation, where a section from the end of the training

sample is withheld for evaluation. However, empirical and theoretical results provided in Bergmeir

et al. (2018) shows that k-fold CV performs favorably compared to both OOS evaluation and other
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time series-specific techniques. The superiority of the conventional k-fold CV method in a time series

context involving ML methods has been found confirmed in Coulombe et al. (2020).

4 Empirical strategy and main results

In this section, we describe in detail the procedure to select fund classes and to evaluate the

performance of the resulting portfolios, and explain the main results of the paper. Although the

analysis is carried out at the mutual fund share class level, throughout this section we refer to fund

share classes as funds.

We use the first 10 years of data on one-year ahead realized alphas (from 1981 until 1990) and

one-year-lagged fund characteristics (from 1980 until 1989) to train each ML algorithm to predict

performance. We then use the values of fund characteristics in December of 1990, which are not

employed in the training process, to ask the previously trained algorithm to predict performance in

the following year (1991). We form an equally-weighted portfolio consisting of funds in the top decile of

the predicted-performance distribution and track the return of that portfolio in the 12 months of 1991.

If, during that period, a fund that belongs to the portfolio disappears from the sample, we assume

that the amount invested in that fund is equally distributed among the remaining funds. For every

successive year, we expand the sample forward one year, train the algorithm again on the expanded

sample, make new predictions for the following year, construct a new top-decile portfolio and track

its return during the next 12 months. This way, we construct a time series of monthly out-of-sample

returns of the top-decile portfolio that spans from January 1991 to December 2018 (346 months).

Finally, we evaluate the performance of the top-decile portfolio. More specifically, we run a

single time-series regression using the 346 out-of-sample monthly returns of the portfolio and the

contemporaneous risk factors. The alpha of the portfolio is the estimated intercept of the time-

series regression. In particular, we use four different models to evaluate portfolio performance: the

Fama and French (1993) three-factor model augmented with momentum (FF3+MOM) proposed by

Carhart (1997); the Fama and French (2015) five-factor model (FF5); the FF5 model augmented

with momentum (FF5+MOM); and the FF5 model augmented with momentum and the aggregate

liquidity factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). Note however, that in all cases,

fund selection is based on predicted performance according to the FF5+MOM model.

Table 3 reports the estimated alphas of the top-decile portfolios of mutual funds selected by the

three ML algorithms—Gradient Boosting (GB), Random Forests (RF) and Elastic Net (EN)—and

by Ordinary Least Squares (OLS). For comparison purposes, we also compute the performance of
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two portfolios constructed using two naive strategies: an Equally Weighted portfolio consisting of

all available classes (EW) and an Asset-Weighted portfolio of all classes (AW), also with annual

rebalancing.

Two important findings emerge from Table 3. First, all prediction-based algorithms, including

OLS, allow investors to construct portfolios with positive alphas. In contrast, naive portfolios earn (in

almost all cases) negative, albeit insignificant, alphas according to the four performance attribution

models considered. Interestingly, the AW portfolio underperforms the EW portfolio, which implies

that the average dollar invested in active funds earns lower risk-adjusted returns than those of the

average fund.

Second, both GB and RF select portfolios of mutual funds with positive alphas that are significant

both statistically and economically. In particular, risk-adjusted returns of the GB-selected portfolio

range from 29.4 bp per month (3.5% per year) according to the FF3+MOM model, to 34.8 bp per

month (4.2% per year) according to the Fama-French 5-factor model. Interestingly, performance is

slightly higher with respect to the FF5 model, which ignores momentum, than with respect to the

FF5+MOM model (3.8% per year), despite the fact that our target variable is alpha with respect to

the FF5+MOM model. If we include exposure to aggregate liquidity risk, performance reduces only

marginally (3.9%). These results suggest that the results of our approach are fairly robust to the

performance attribution model. The alpha of the portfolio of funds selected by the RF algorithm is

lower than that of the GB-selected portfolio, but still positive and statistically significant, ranging

from 20.3 bp per month (2.4% per year) to 25 bp per month (3% per year). In contrast, neither

the portfolio of funds selected using EN nor the OLS-based portfolio achieve statistically significant

alphas. This lack of significance appears to be due both to higher standard errors and lower estimated

alphas.

Interestingly, our best top-decile portfolio earns an alpha with respect to the FF3+MOM model

of 3.5% per year, which is very similar to that of the best top-decile portfolio of Li and Rossi (2021),

2.88%. This is somewhat surprising given that the studies use two disjoint sets of predictors: fund

characteristics in our case, and stock characteristics combined with fund holdings in the study of Li

and Rossi (2021). Thus, our empirical findings complement those of Li and Rossi (2021) by showing

that just like managers’ portfolio strategies, fund traits incorporate information that is relevant for

funds’ risk-adjusted performance.9

9Li and Rossi (2020, Subsections 5.3 and 6.3) show that a linear combination of fund characteristics cannot improve
the information contained in fund holdings and stock characteristics about future fund returns. Nonetheless, we show
that using only fund characteristics with ML methods, one can construct portfolios of mutual funds with alphas similar
to those obtained by exploiting fund holdings and stock characteristics.

16



Although the alphas of both GB- and RF-selected portfolios are significantly different from zero, it

is unclear whether they are also significantly different from that of the OLS-selected portfolio. In order

to address this question, we construct a self-financed portfolio that goes long in the funds included in

the GB portfolio and short in the funds included in the OLS portfolio, and evaluate the performance

of this strategy. Results, reported in Table 4, indicate that the difference in performance between the

top-decile portfolio selected by GB and that selected by OLS is positive and significant, ranging from 21

bp to 25 bp per month (2.5% to 3% per year). A similar conclusion holds for the RF-selected portfolio.

In contrast, the performance of the EN-selected portfolio is statistically indistinguishable from that of

the OLS-selected portfolio. Finally, both the EW and AW portfolios of mutual funds underperform the

portfolio selected by OLS, and the difference in performance is statistically significant for all models

considered.

Our main goal is to select portfolios of funds with positive net alpha, so that investors can combine

them with passive portfolios to achieve better risk-return tradeoffs. However, investors may choose

to invest only in active funds, so it is interesting to study how the top-decile portfolio performs in

terms of mean return and risk. To answer this question, Table 5 reports the following measures for

each portfolio of funds: mean excess returns; standard deviation of returns; Sharpe ratio (mean excess

returns divided by the standard deviation); Sortino ratio (mean excess returns divided by the semi-

deviation); maximum drawdown; and value-at-risk (VaR) based on the historical simulation method

with 99% confidence. The ranking of mean excess returns closely mirrors the ranking in alphas. This

result is far from obvious since the target variable in our training algorithms is fund alpha, and not

fund excess returns, unlike the studies of Wu et al. (2021) and Li and Rossi (2021). Higher mean

excess returns for the prediction-based portfolios are at least partially explained by higher standard

deviation. However, our two best methods in terms of alpha, also deliver portfolios with the highest

Sharpe ratio: 0.184 and 0.169 for GB and RF, respectively, followed closely by the EW portfolio

(0.166). Our conclusions do not change if we consider downside risk: GB and RF select a portfolio of

funds with the highest Sortino ratio. In terms of maximum drawdown, the portfolios selected by EN

and OLS appear to be the riskiest. Finally, the EW and AW portfolios are the safest in terms of VaR.

Taken together, the results in this section suggest that investors can use observable fund

characteristics to improve significantly upon the performance of the average or the asset-weighted

average active share class. This is true even if investors use the worst-performing forecasting

methods, EN and OLS, to predict performance. In other words, EN and OLS help investors avoid

underperforming funds. However, neither EN nor OLS allow investors to identify funds with positive

alpha ex-ante. Only methods that allow for non-linearities and interactions in the relationship between
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fund characteristics and subsequent performance, namely GB and RF, can detect funds with large and

significant positive alphas. Moreover, the resulting portfolios have the highest Sharpe ratio and Sortino

ratio among all the portfolios considered.

5 Robustness checks

In this section, we investigate whether our findings are robust to: (i) considering alternative cut-off

points to select funds; (ii) using alternative models to measure risk-adjusted performance; (iii) building

portfolios of only retail mutual fund share classes; and (iv) using deep learning methods to obtain

prediction-based portfolios. First, we compute the risk-adjusted performance of the prediction-based

portfolios consisting of funds in the top 5% and the top 20% of the predicted performance distribution.

As shown in Table 6, the risk-adjusted performance of the portfolio consisting of the top-5% funds

according to GB is marginally higher than the performance of the top-decile portfolio for all models

considered. However, standard errors are also slightly higher, and as a consequence, t-statistics are

actually smaller. In other words, performance is higher on average but less reliable if we invest only

in the top-5% funds in terms of their predicted alpha. When we consider the top-20% funds, alphas

decline as much as 10 bp per month, but remain statistically significant. Similar conclusions hold for

RF. Just like with the top-decile portfolio, neither EN nor OLS are able to select a portfolio of funds

with positive and significant alpha regardless of the threshold employed.

Second, we check if our results are robust to using alternative factor models for evaluating

performance (not for selecting funds). More specifically, in addition to the four different models

considered in Table 3, we also estimate the risk-adjusted performance of the prediction-based portfolios

using the models of Cremers et al. (2013), Hou et al. (2015) and Stambaugh and Yuan (2017). Results

are qualitatively similar to those of Table 3. GB and RF yield the best results with the top-decile

portfolio earning positive and significant alphas. Portfolios based on forecasts by EN and and OLS

earn positive but insignificant alphas. And EW and AW earn the lowest alphas, which tend to be

negative. The only noteworthy difference with respect to Table 3 is the reduced statistical significance

of the performance of the top-decile portfolio selected by GB and RF when we use the risk factors of

Stambaugh and Yuan (2017) to evaluate performance.

Third, our sample includes both institutional and retail share classes. It is therefore unclear

whether the ML methods considered are simply picking institutional share classes, which usually

charge lower costs and are subject to more stringent monitoring by investors. To answer this question,

we exclude institutional share classes from the sample and repeat the analysis. The results are reported
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in Table 8 and indicate that the risk-adjusted performance of the portfolios of retail funds selected

by GB and RF is as good, and in most cases better, than that reported in Table 3, where investors

can select both institutional and retail share classes. This result suggests that at least part of the

value added by portfolio managers is passed on to retail investors. The fact that the performance

of the top-decile portfolio improves if institutional share classes are removed from the sample could

be explained by the fact that for these classes the relationship between predictors and performance

differs from that for retail classes due to the different nature of competition in this segment of the

market. By removing institutional classes, we may improve the accuracy of the function that maps

fund characteristics into fund performance. Finally, results for the EN, OLS, EW, and AW portfolios

closely mirror those in Table 3.

Finally, we investigate the performance of deep learning methods. We follow Gu et al. (2020) and

Bianchi et al. (2021) and implement feed-forward neural networks with up to 3 hidden layers.10 Our

shallowest neural network has a single hidden layer of 32 neurons, which we denoted NN1. Next, NN2

has two hidden layers with 32 and 16 neurons, respectively; NN3 has three hidden layers with 32,

16, and 8 neurons, respectively. All architectures are fully connected, so each unit receives an input

from all units in the layer below.11 The results for the risk-adjusted performance reported in Table 9

show that prediction-based portfolio obtained with neural networks deliver positive and significant

net alpha in the majority of specifications—but systematically lower in comparison to those obtained

with the best-performer GB method. Moreover, we find that single-layer networks yield prediction-

based portfolios with higher alpha in comparison to multi-layer networks, which suggests that shallow

learning is more appropriate than deep learning in this particular context. This finding partially

corroborates those reported in Gu et al. (2020) who find that neural network performance peaks at

three hidden layers then declines as more layers are added. In our case, neural network performance

peaks at one hidden layer.

10Gu et al. (2020) implement feed-forward neural networks with up to five hidden layers. We refrain from implementing
neural networks with more than three layers since our results suggest that including additional layers is not associated
to better performance in terms of net portfolio alpha; see Table 9.

11We use the methodology for hyper-parameter optimization discussed in Section 3.4 to select the relevant hyper-
parameterers of the NN models. Specifically, we employ a 5-fold cross-validation procedure to select the type of activation
function (hyperbolic tangent, rectified linear unit, or maxout unit), the 1-norm and 2-norm weight regularization, and
the dropout ratios in the input layer and in the hidden layers. In order to avoid overfitting, we employ early stopping
such that the training process is stopped if the mean squared error does not decrease after 10 epochs. We use 50 epochs
to train the networks.
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6 Fund characteristics and fund performance

Our results suggest that allowing for flexibility in the relationship between predictors and fund

performance can help investors select actively managed equity funds that earn positive alphas. A

natural question then is whether the remarkable performance of the best methods is driven by flexibility

alone or by flexibility combined with the multivariate approach, which exploits the predictive ability

of multiple predictors. In this section we explore this question.

We start by quantifying the relative importance of each predictor for each of the four prediction

methods. A number of alternative model-specific and model-agnostic approaches can be employed

to extract and compute variable importance for ML methods (Molnar, 2019). We follow Gu et al.

(2020) and compute the relative importance of each predictor in the GB and RF methods using the

mean decrease in impurity (see, e.g. Breiman, 2001), with the impurity measure being the mean

squared error. We compute predictor importance for the OLS and EN methods as the absolute value

of the t-statistic of each variable and the absolute value of the estimated coefficient of each variable,

respectively.

Figure 2 reports the variable importance for the GB, RF, EN and OLS methods based on the

last estimation window, which corresponds to the largest training sample spanning the 1980-2017

period.12 To facilitate interpretation, we report importance values in relative terms such that the

most important predictor has importance of 100. It is clear from Figure 2 that no single characteristic

dominates in any of the methods. In particular, for the GB method, the second and the third most

important characteristics are almost as important as the first one, while the fourth and fifth are half

as important. For the RF method, the first and second predictors are almost equally important.

EN and OLS are very similar in terms of predictor importance, with four characteristics dominating

the others. Interestingly, R2 is among the top predictors for all methods. However, the methods

differ sharply in the importance of other predictors. More specifically, GB relies heavily on realized

alpha in the previous year, which is less important for RF, and almost ignored by EN and OLS. The

predictions of EN and OLS are, instead, strongly influenced by the fund’s three-year precision-adjusted

alpha. Therefore, the ability of recent performance to improve forecasts of future performance is only

apparent when we allow for non-linearities and interactions between variables. GB and RF exploit

the fund’s precision-adjusted market beta to select funds, but this variable is much less important in

linear methods, which rely, instead, on the fund’s precision-adjusted beta with respect to momentum.

While linear models exploit funds’ expense ratios, their predictive ability is subsumed by other fund

12In unreported results, we compute the average variable importance across all estimation windows and draw similar
conclusions.
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characteristics in non-linear models. These differences highlight the importance of allowing for non-

linearities and interactions in the relation between predictors and fund performance.

Given that non-linear and linear methods rely on different fund characteristics to predict

performance, it is interesting to study how funds selected by different methods differ in terms of

their characteristics. To address this question, we cross-sectionally standardize fund characteristics

and define the top-decile portfolio characteristics at the end of each year as the equally weighted

average of the fund characteristics across funds in the top-decile portfolio. Figure 3 reports the time-

series average of each portfolio characteristic. Interestingly, selected funds are more similar across

methods than suggested by the variable importance chart in Figure 2. In particular, all methods tend

to select funds with realized alpha in the previous year between 0.5 and 0.7 standard deviations above

the average and precision-adjusted three-year alpha between 0.8 and 1.1 standard deviations above

the average. As expected, all methods select funds with below-average R2, although the portfolios

selected by GB and RF are much more skewed towards this feature. All methods select funds with

above-average flows, turnover, and value added, although the methods do not clearly rely on these

characteristics to select funds. All methods tend to select funds with below-average betas. However,

funds selected by GB and RF differ more from the average fund in terms of market beta and linear

methods are particularly skewed towards funds with low investment betas. Interestingly, although

OLS and EN rely on expense ratios to select funds, chosen funds are only 0.1 standard deviations

cheaper than the average fund. In contrast, GB and RF select funds that are about 0.3 standard

deviations more expensive than the average fund.

To further investigate the extent to which very few predictors are responsible for the performance

of the GB method in selecting mutual funds, we repeat the analysis using only the 2, 3, and 4 most

important predictors selected in each estimation round. Results are reported in Table 10. When only

the 2 most important fund characteristics are used to predict performance, the top-decile portfolio of

mutual funds selected by the GB algorithm earns negative alpha according to all models considered,

except for the Fama-French 5-factor model. However, alpha is statistically indistinguishable from

zero. If we include also the third most important predictor, performance becomes positive for all

models, except for the Fama-French 3-factor model, but insignificant. Finally, if we include the fourth

most important predictor, the performance of the top-decile portfolio increases substantially, and even

becomes significant, although in all cases it remains below the performance of the top-decile portfolio

that exploits all predictors by more than 10 bp per month. These results further support the notion

that flexibility is not enough to explain the performance of the GB approach in selecting portfolios of

mutual funds. The method exploits the predictability contained in many different fund characteristics
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and their interactions.

One important feature of our approach is that we do not advocate in favor of a single predictor

and, instead, reevaluate the model as new information becomes available. This feature is an advantage

if the predictive ability of some characteristics changes with time as investors learn to exploit their

predictive content, or if market conditions or manager strategies change. To investigate this possibility,

in Figure 3, we plot the importance of each predictor in each year of the out-of-sample period. The

figure confirms that some of the most important predictors exhibit substantial variation through time

in terms of their relative importance. In particular, the relative importance of market beta ranges

from less than 65% to 100%. The relative importance of R2 can be as low as 50% and as high as

100%. The importance of realized alpha in the previous year is particularly unstable, ranging from

about 20% to 80%.

The results of this section suggest that flexibility in the forecasting method alone does not explain

the outstanding performance of the GB-selected portfolio. The possibility of exploiting information

from multiple variable characteristics also plays a necessary role. The implication is that fund selection

should not be based on a single fund characteristic. Another important lesson is that the predictive

ability of different fund characteristics varies through time, which provides yet another reason why

investors should not rely on a single predictor.

7 Has alpha declined over time?

As mentioned in the introduction, Jones and Mo (2020) provide evidence that the predictive ability

of fund characteristics with respect to future performance has declined over time. They further

show evidence suggesting that this decline is the consequence of an increase in arbitrage activity

and competition among mutual funds. Jones and Mo (2020) use OLS to predict performance, so it is

unclear whether their conclusions extend to portfolios of funds selected by ML methods.

To explore this possibility, we evaluate the out-of-sample performance of the top-decile portfolio

over rolling sample periods of 5 years for the GB, OLS, EW and AW portfolios. The results are reported

in Figure 6. It is evident from the figure that the top-decile portfolio selected by GB consistently beats

the EW and AW portfolios and by a wide margin during most of the sample period. The GB portfolio

of funds also beats the OLS portfolio in every single 5-year period up to the the late 2000s. Since

then, however, the performance of the GB and OLS portfolios have been very similar. Moreover, since

2015 all four portfolios have converged in terms of performance, with negative alphas characterizing

the last years of the sample. Such decline in the performance of prediction-based portfolios of funds
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is consistent with the findings of Jones and Mo (2020). We may therefore conclude that the best

performing ML algorithm is able to extract alpha from the mutual fund market, but only when there

is any alpha to be extracted in the first place.

8 Conclusions

The question of whether mutual fund investors can benefit from active asset management has received

much attention from academics, practitioners, and regulators. In this paper, we posit that the

pessimistic results that dominate the literature could be a consequence of the methods employed to

exploit predictability in fund performance. We contribute to the literature by showing that machine

learning methods can use information contained in multiple fund characteristics to select funds that

earn economically and statistically significant positive risk-adjusted returns net of fees and transaction

costs. Such positive performance is robust to the model employed to evaluate performance and can

be attained by both institutional and retail investors. In contrast, linear forecasting models can help

investors only to avoid negative alphas. Therefore, our results demonstrate that investors, including

retail investors, can benefit from investing in actively managed funds.

23



References

Amihud, Y. and R. Goyenko (2013). Mutual fund’s R2 as predictor of performance. Review of
Financial Studies 26 (3), 667–694.

Avramov, D. and R. Wermers (2006). Investing in mutual funds when returns are predictable. Journal
of Financial Economics 81 (2), 339–377.

Baks, K. P., A. Metrick, and J. Wachter (2001). Should investors avoid all actively managed mutual
funds? A study in bayesian performance evaluation. Journal of Finance 56 (1), 45–85.

Banegas, A., B. Gillen, A. Timmermann, and R. Wermers (2013). The cross section of conditional
mutual fund performance in european stock markets. Journal of Financial Economics 108 (3),
699–726.

Barber, B. M., X. Huang, and T. Odean (2016). Which factors matter to investors? Evidence from
mutual fund flows. Review of Financial Studies 29 (10), 2600–2642.

Barras, L., O. Scaillet, and R. Wermers (2010). False discoveries in mutual fund performance:
Measuring luck in estimated alphas. Journal of Finance 65 (1), 179–216.

Bergmeir, C., R. J. Hyndman, and B. Koo (2018). A note on the validity of cross-validation for
evaluating autoregressive time series prediction. Computational Statistics & Data Analysis 120,
70–83.

Berk, J. and R. Green (2004). Mutual fund flows and performance in rational markets. Journal of
Political Economy 112 (6), 1269–1295.

Berk, J. B. and J. H. Van Binsbergen (2015). Measuring skill in the mutual fund industry. Journal of
Financial Economics 118 (1), 1–20.

Berk, J. B. and J. H. Van Binsbergen (2016). Assessing asset pricing models using revealed preference.
Journal of Financial Economics 119 (1), 1–23.
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Table 1: Variables employed to train ML algorithms

This table reports the variables employed to train the different ML algorithms. The first column
lists the variables, the second column gives the definition of the variables or the procedure used
to calculate their monthly values, and the third column summarizes the criterion adopted to
convert each variable from monthly to annual frequency. ri,m is class i’s return in month m
in excess of the risk-free rate, rfm. Rm, SMB, HML, RMW , MOM , denote the Fama-
French (2015) 5 factors and momentum. βfi,m is class i’s estimated beta coefficient with respect
to factor f from the 36-month rolling window time-series regression of excess returns on the
factors ending in month m− 1.

Variables Definition Pre-processing

Target variable

annual realized alpha αi,m = ri,m − β̂MKT
i,m (Rmm − rfm) −β̂SMB

i,m SMBm Sum of monthly values in the calendar year

−β̂HML
i,m HMLm − β̂CMA

i,m CMAm
−β̂RMW

i,m RMWm − β̂MOM
i,m MOMm

Lagged predictors

annual realized alpha αi,m = ri,m − β̂MKT
i,m (Rmm − rfm) −β̂SMB

i,m SMBm Sum of monthly values in the calendar year

−β̂HML
i,m HMLm − β̂CMA

i,m CMAm
−β̂RMW

i,m RMWm − β̂MOM
i,m MOMm

flows
TNAi,m−TNAi,m−1(1+ri,m)

TNAi,m−1
Average of monthly values in the calendar year

value added (αi,m + 1
12

expense ratioi,m)× TNAi,m−1 Average of monthly values in the calendar year

volatility of flows Std. deviation of monthly flows in the calendar year Variable is defined at the annual frequency

total net assets (TNA) Total assets minus total liabilities as of month-end Year-end value

expense ratio Annual expenses as % of assets under management Year-end value

age (months) Number of months since share class’s inception date Year-end value

manager tenure (years) Number of years since beginning of manager’s mandate Year-end value

turnover ratio min{aggregate sales,aggregate purchaches }
12-month TNA

Year-end value

alpha (intercept t-stat) α̂
s.e.(α̂)

based on 36-month rolling-window Year-end value
regression of FF5+MOM model ending in m− 1

market beta (t-stat) β̂MKT

s.e.(β̂MKT )
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

profitability beta (t-stat) β̂RMW

s.e.(β̂RMW )
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

investment beta (t-stat) β̂CMA

s.e.(β̂CMA)
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

size beta (t-stat) β̂SMB

s.e.(β̂SMB)
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

value beta (t-stat) β̂HML

s.e.(β̂HML)
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

momentum beta (t-stat) β̂MOM

s.e.(β̂MOM )
based on 36-month rolling-window Year-end value

regression of FF5+MOM model ending in m− 1

R2 R-squared of the 36-month rolling-window Year-end value
regression of FF5+MOM model ending in m− 1
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Table 2: Descriptive statistics

This table reports monthly descriptive statistics (mean, median, standard deviation, and the
number of class-month observations) for the variables employed in the analysis. All variables
are measured at the fund share-class level and correspond to US domestic equity funds in the
1980-2018 period.

mean median s. d. class-month obs.

monthly return 0.72% 1.11% 5.01% 592,483

monthly realized alpha -0.12% -0.13% 2.24% 553,311

alpha (intercept t-stat) -0.423 -0.418 1.229 553,620

TNA (USD mill.) 628.0 86.6 2,462.5 592,988

expense ratio 1.16% 1.07% 0.65% 589,816

age (months) 143.1 113.0 111.7 592,988

flows 0.005 -0.003 0.042 589,735

manager tenure (years) 7.929 6.753 5.211 547,146

turnover ratio 0.854 0.590 1.277 588,217

volatility of flows 0.055 0.028 0.078 589,735

value added -0.182 -0.011 11.120 503,521

market beta (t-stat) 16.111 14.330 10.590 553,620

profitability beta (t-stat) -0.102 -0.103 1.450 553,620

investment beta (t-stat) -0.452 -0.489 1.506 553,620

size beta (t-stat) 1.575 0.751 3.834 553,620

value beta (t-stat) -0.018 -0.083 2.135 553,620

momentum beta (t-stat) 0.099 0.100 1.905 553,620

R2 0.904 0.941 0.123 553,620
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Table 3: Performance of ML-selected portfolios of funds

This table reports the monthly out-of-sample alphas (in %) of the prediction-based top-decile
fund portfolios obtained with the following machine learning methods: Gradient Boosting
(GB), Random Forests (RF), and Elastic Net (EN). The table also reports the alphas for
prediction-based portfolios obtained with OLS, as well as with two naive strategies: Equally-
Weighted (EW) and Asset-Weighted (AW) portfolios of all available funds. Alphas are
computed as the intercept of the regression of the excess monthly portfolio returns against
the Fama and French (1993) three-factor model augmented with momentum (FF3+MOM)
proposed by Carhart (1997), Fama and French (2015) five factors (FF5), and the FF5 model
augmented with momentum (FF5+MOM) and with the liquidity risk factor of Pástor and
Stambaugh (2003) (FF5+MOM+LIQ). The sample period corresponds to our out-of-sample
window and spans from January 1991 to December 2018 (346 months). Standard errors with
Newey-West adjustment for 12 lags are in parentheses. One, two, and three asterisks indicate
that the coefficient is significant at the 10%, 5%, and 1% level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ

GB 0.294** 0.348*** 0.319** 0.325***
(0.121) (0.133) (0.123) (0.124)

RF 0.203** 0.250** 0.211** 0.213**
(0.086) (0.100) (0.089) (0.091)

EN 0.069 0.098 0.104 0.114
(0.066) (0.069) (0.071) (0.071)

OLS 0.070 0.099 0.105 0.115
(0.066) (0.070) (0.072) (0.071)

EW -0.019 -0.013 -0.022 -0.020
(0.047) (0.046) (0.046) (0.046)

AW -0.045 -0.038 -0.041 -0.039
(0.037) (0.036) (0.037) (0.037)
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Table 4: Long-short alphas with respect to OLS

This table reports the monthly out-of-sample alphas (in %) of the long-short portfolios formed
with the alternative prediction-based and benchmark strategies. All long-short portfolios are
computed with a short leg on the prediction-based top-decile portfolios obtained with the OLS
method. For instance, “GB minus OLS” refers to a long-short portfolio that is long on the
prediction-based top-decile portfolio obtained with the Gradient Boosting (GB) method and
short on the top-decile portfolio obtained with the OLS method. A similar definition applies
to the remaining long-short strategies that have long positions in the top-decile portfolios
obtained with the Random Forests (RF) and Elastic Net (EN) methods as well as with the
Equally-Weighted (EW) and Asset-Weighted (AW) strategies of all available funds. Alphas are
computed as the intercept of the regression of the monthly long-short portfolio returns against
the Fama and French (1993) three-factor model augmented with momentum (FF3+MOM)
proposed by Carhart (1997), Fama and French (2015) five factors (FF5), and the FF5 model
augmented with the momentum factor (FF5+MOM) and with the liquidity risk factor of
Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The sample period corresponds to our out-
of-sample window and spans from January 1991 to December 2018 (346 months). Standard
errors with Newey-West adjustment for 12 lags are in parentheses. One, two, and three asterisks
indicate that the coefficient is significant at the 10%, 5%, and 1% level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ

GB minus OLS 0.225** 0.249** 0.214** 0.210**
(0.097) (0.105) (0.094) (0.093)

RF minus OLS 0.133*** 0.151** 0.106** 0.098*
(0.051) (0.063) (0.051) (0.051)

EN minus OLS 0.000 -0.001 -0.001 -0.001
(0.007) (0.007) (0.007) (0.007)

EW minus OLS -0.089* -0.112** -0.127** -0.135***
(0.046) (0.050) (0.050) (0.049)

AW minus OLS -0.114** -0.137** -0.146*** -0.154***
(0.048) (0.053) (0.053) (0.052)

Table 5: Mean excess returns and risk

This table reports the following measures for each portfolio of funds: mean excess returns;
standard deviation of returns; Sharpe ratio (mean excess returns divided by the standard
deviation); Sortino ratio (mean excess returns divided by the semi-deviation); maximum
drawdown; and value-at-risk (VaR) based on the historical simulation method with 99%
confidence.

Mean excess Std. dev. Sharpe Sortino Max. Historical
return return Ratio ratio Drawdown VaR 99%

GB 0.91% 4.91% 0.184 0.282 52.2% 11.0%
RF 0.82% 4.87% 0.169 0.256 53.1% 12.0%
EN 0.71% 4.78% 0.149 0.219 59.3% 12.0%
OLS 0.72% 4.78% 0.150 0.221 59.2% 11.8%
EW 0.70% 4.24% 0.166 0.242 51.7% 10.0%
AW 0.65% 4.30% 0.150 0.216 53.1% 10.6%
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Table 6: Alphas of top-5% and top-20% ML fund portfolios

This table reports the monthly out-of-sample alphas (in %) of the prediction-based portfolios
consisting of the funds belonging to the top-5% and top-20% of the distribution of the predicted
performance. Prediction-based portfolios are obtained with the following machine learning
methods: Gradient Boosting (GB), Random Forests (RF), and Elastic Net (EN). The table
also reports the alphas for prediction-based portfolios obtained with OLS, as well as with two
naive strategies: Equally-Weighted (EW) and Asset-Weighted (AW) portfolios of all available
funds. Alphas are computed as the intercept of the regression of the excess monthly portfolio
returns against the Fama and French (1993) three-factor model augmented with momentum
(FF3+MOM) proposed by Carhart (1997), Fama and French (2015) five factors (FF5), and
the FF5 model augmented with momentum (FF5+MOM) and with the liquidity risk factor of
Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The sample period corresponds to our out-
of-sample window and spans from January 1991 to December 2018 (346 months). Standard
errors with Newey-West adjustment for 12 lags are in parentheses. One, two, and three asterisks
indicate that the coefficient is significant at the 10%, 5%, and 1% level, respectively.

top-5% portfolios top-20% portfolios

FF3+MOM FF5 FF5+MOM FF5+MOM FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ +LIQ

GB 0.365** 0.439** 0.388** 0.393** 0.179** 0.219** 0.200** 0.206**
(0.158) (0.179) (0.161) (0.162) (0.091) (0.099) (0.093) (0.094)

RF 0.304*** 0.349*** 0.295*** 0.296*** 0.139* 0.178** 0.150** 0.153**
(0.108) (0.119) (0.109) (0.111) (0.074) (0.084) (0.076) (0.077)

EN 0.096 0.133 0.146 0.155* 0.030 0.046 0.056 0.065
(0.082) (0.090) (0.091) (0.089) (0.057) (0.058) (0.062) (0.061)

OLS 0.086 0.120 0.135 0.145 0.029 0.046 0.055 0.063
(0.086) (0.094) (0.095) (0.093) (0.060) (0.061) (0.064) (0.064)
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Table 7: Alphas of ML fund portfolios based on alternative factor models

This table reports the monthly out-of-sample alphas (in %) of the prediction-based top-decile
fund portfolios obtained with the following machine learning methods: Gradient Boosting
(GB), Random Forests (RF), and Elastic Net (EN). The table also reports the alphas for
prediction-based portfolios obtained with OLS, as well as with two naive strategies: Equally-
Weighted (EW) and Asset-Weighted (AW) portfolios of all available funds. Alphas are
computed as the intercept of the regression of the excess monthly portfolio returns against
the Cremers et al. (2013) factors, Hou et al. (2015) factors, and Stambaugh and Yuan (2017)
factors. The sample period of each regression varies depending on the available sample of
factors returns. Cremers et al. (2013) monthly factors returns were downloaded from the
web page of Antti Petajisto and span the January 1991 - January 2014 period (277 months).
Hou et al. (2015) monthly factors returns were downloaded from the q-factors data library
at www.global-q.org and span the January 1991 - December 2018 period (336 months).
Stambaugh and Yuan (2017) monthly factor returns were downloaded from the webpage of
Robert Stambaugh and span the January 1991 - December 2016 period (312 months). Standard
errors with Newey-West adjustment for 12 lags are in parentheses. One, two, and three asterisks
indicate that the coefficient is significant at the 10%, 5%, and 1% level, respectively.

Cremers et al. (2013) Hou et al. (2015) Stambaugh and Yuan (2017)
factors factors factors

GB 0.285** 0.332** 0.243*
(0.134) (0.143) (0.131)

RF 0.151* 0.237** 0.149
(0.077) (0.112) (0.100)

EN 0.061 0.113 0.095
(0.068) (0.082) (0.075)

OLS 0.064 0.112 0.098
(0.070) (0.083) (0.077)

EW 0.020 -0.008 -0.017
(0.038) (0.035) (0.048)

AW -0.052** -0.038 -0.026
(0.026) (0.031) (0.038)
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Table 8: Alphas of ML fund portfolios when considering only retail share classes

This table reports the monthly out-of-sample alphas (in %) of the prediction-based top-decile
fund portfolios when excluding from our sample institutional share classes. Prediction-based
portfolios are obtained with the following machine learning methods: Gradient Boosting (GB),
Random Forests (RF), and Elastic Net (EN). The table also reports the alphas for prediction-
based portfolios obtained with OLS. Alphas are computed as the intercept of the regression of
the excess monthly portfolio returns against the Fama and French (1993) three-factor model
augmented with momentum (FF3+MOM) proposed by Carhart (1997), Fama and French
(2015) five factors (FF5), and the FF5 model augmented with momentum (FF5+MOM)
and with the liquidity risk factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The
sample period corresponds to our out-of-sample window and spans from January 1991 to
December 2018 (346 months). Standard errors with Newey-West adjustment for 12 lags are
in parentheses. One, two, and three asterisks indicate that the coefficient is significant at the
10%, 5%, and 1% level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ

GB 0.347** 0.408*** 0.367*** 0.371***
(0.134) (0.147) (0.136) (0.136)

RF 0.223** 0.240** 0.223** 0.226**
(0.088) (0.093) (0.090) (0.090)

EN 0.048 0.080 0.083 0.090
(0.068) (0.069) (0.071) (0.070)

OLS 0.045 0.077 0.080 0.088
(0.068) (0.068) (0.071) (0.070)

EW -0.005 0.002 -0.007 -0.006
(0.049) (0.049) (0.048) (0.048)

AW -0.032 -0.024 -0.027 -0.026
(0.039) (0.038) (0.038) (0.039)
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Table 9: Alphas of ML fund portfolios obtained with neural networks

This table reports the monthly out-of-sample alphas (in %) of the top-decile prediction-
based portfolios obtained with feed-forward Neural Networks (NN) with 1, 2, and 3 hidden
layers. Alphas are computed as the intercept of the regression of the excess monthly portfolio
returns against the Fama and French (1993) three-factor model augmented with momentum
(FF3+MOM) proposed by Carhart (1997), Fama and French (2015) five factors (FF5), and the
FF5 model augmented with the momentum factor (FF5+MOM) and with the liquidity risk
factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The sample period corresponds
to our out-of-sample window and spans from January 1991 to December 2018 (346 months).
Standard errors with Newey-West adjustment for 12 lags are in parentheses. One, two,
and three asterisks indicate that the coefficient is significant at the 10%, 5%, and 1% level,
respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ

NN1 0.176** 0.196** 0.201*** 0.211***
(0.073) (0.078) (0.077) (0.074)

NN2 0.173** 0.192** 0.198** 0.209***
(0.077) (0.080) (0.080) (0.078)

NN3 0.096 0.115 0.131* 0.140*
(0.069) (0.073) (0.075) (0.075)

Table 10: Alphas of ML fund portfolios using only the most important predictors

This table reports the monthly out-of-sample alphas (in %) of the top-decile prediction-based
portfolios obtained with the Gradient Boosting (GB) method when only a subset of fund
characteristics are used to predict performance. Specifically, portfolios are obtained when only
the top-2, top-3, and top-4 predictors in terms of variable importance for the GB method
are included. Alphas are computed as the intercept of the regression of the excess monthly
portfolio returns against the Fama and French (1993) three-factor model augmented with
momentum (FF3+MOM) proposed by Carhart (1997), Fama and French (2015) five factors
(FF5), and the FF5 model augmented with the momentum factor (FF5+MOM) and with the
liquidity risk factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The sample period
corresponds to our out-of-sample window and spans from January 1991 to December 2018 (346
months). Standard errors with Newey-West adjustment for 12 lags are in parentheses. One,
two, and three asterisks indicate that the coefficient is significant at the 10%, 5%, and 1%
level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+LIQ

top-2 regressors -0.024 0.026 -0.004 -0.011
(0.264) (0.274) (0.259) (0.263)

top-3 regressors 0.015 0.055 0.022 0.022
(0.095) (0.102) (0.099) (0.101)

top-4 regressors 0.194** 0.254** 0.201** 0.202**
(0.095) (0.114) (0.099) (0.101)
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Figure 1: Correlation matrix between the target variable and fund characteristics

This figure reports correlation coefficients between the target variable (annual realized alpha) and fund characteristics used as predictors.
Predictors are lagged one year with respect to the target variable.
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Figure 2: Variable importance

This figure reports the importance of each characteristic as a predictor of performance relative to the most important characteristic. Funds in
the GB and OLS portfolios are selected based on their performance as predicted by a gradient boosting algorithm and ordinary-least-squares,
respectively. Each portfolio is constructed at the beginning of each calendar year and kept for the following 12 months. Importance is computed
at the beginning of the last out-of-sample year, as explained in Section 6.
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Figure 3: Portfolio characteristics

This figure reports the time series average of the top-decile portfolio characteristics. We cross-sectionally standardize fund characteristics and
define the top-decile portfolio characteristics at the end of each year as the equally weighted average of the fund characteristics across funds in
the top-decile portfolio. The figure reports the time-series average of each standardized portfolio characteristic.
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Figure 4: Time series of variable importance for the GB method

This figure plots the evolution through time of the importance of each characteristic as a predictor of performance relative to the most important
characteristic, for both the GB and OLS methods. Funds in the GB and OLS portfolios are selected based on their predicted performance according
to a gradient boosting algorithm and ordinary-least-squares, respectively. Each portfolio is constructed at the beginning of each calendar year
and kept for the following 12 months. Importance is also computed at each year.
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Figure 5: Percentage of funds belonging to consecutive top-decile portfolios

This figure reports time series average of the percentage of funds belonging to consecutive prediction-based top-decile portfolio obtained with the
gradient boosting (GB), random forest (RF), elastic net (EN) and OLS methods.
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Figure 6: Rolling window (60-month) portfolio alphas

This figure reports the estimated intercepts of rolling 60-month regressions of excess returns of four portfolios of funds on the Fama-French five
risk factors augmented with momentum. Funds in the GB and OLS portfolios are selected based on their predicted performance according to a
gradient boosting algorithm and ordinary-least-squares, respectively. EW and AW denote an equally weighted and an asset weighted portfolio of
all available funds, respectively. Each portfolio is constructed at the beginning of each calendar year and kept for the following 12 months.
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