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ABSTRACT

Satellite imagery is becoming ubiquitous and is released with ever higher frequency. Research has
demonstrated that Artificial Intelligence (AI) applied to satellite imagery holds promise for automated
detection of war-related building destruction. While these results are promising, monitoring in
real-world applications requires consistently high precision, especially when destruction is sparse
and detecting destroyed buildings is equivalent to looking for a needle in a haystack. We demonstrate
that exploiting the persistent nature of building destruction can substantially improve the training
of automated destruction monitoring. We also propose an additional machine learning stage that
leverages images of surrounding areas and multiple successive images of the same area which further
improves detection significantly. By combining these steps, we construct an automated classification
of building destruction which allows real-world applications and we illustrate this in the context of
the Syrian civil war.

Keywords Conflict · Destruction · Deep Learning · Remote Sensing · Syria

1 Introduction

Building destruction during war is a specific form of violence that is particularly harmful to civilians, commonly used
to displace populations, and therefore warrants special attention. Yet, data from war-ridden areas are typically scarce,
often incomplete, and highly contested, when available. The lack of such data from conflict zones severely limits media
reporting, humanitarian relief efforts, human rights monitoring, reconstruction initiatives, as well as the study of violent
conflict in academic research. A novel solution to this problem is to use remote sensing to identify destruction in
satellite images [1, 2, 3]. This approach is gaining momentum as high-resolution imagery is becoming readily available
at ever higher frequency, yielding weekly or even daily images. At the same time recent methodological advances
related to deep learning have provided sophisticated tools to extract data from these images [4, 5, 6, 7].

While seminal research has demonstrated the use of automated classifiers for destruction detection, practical applications
have so far been hampered by severe problems with labeling, domain transfer and class imbalance in real world imagery
from urban war zones. As a consequence, international organizations such as the United Nations, the World Bank, and
Amnesty International use remote sensing with manual human classification to produce damage assessment case studies



[8, 9, 10]. On the other hand, providers of conflict data for research purposes still rely heavily on news and eyewitness
reports which leads to large data publishing lags and potential biases [11, 12, 13, 14, 15, 16, 17]. An automated building
damage classifier for use with satellite imagery, which has a low rate of false positives in unbalanced samples and allows
tracking on-the-ground destruction in close to real-time, would therefore be extremely valuable for the international
community and academic researchers alike.

In this article, we present a new way of combining computer vision techniques and publicly available high-resolution
satellite images to produce building destruction estimates that are of practical use to both practitioners and researchers.
The standard architectures for this task are convolutional neural networks (CNNs)1 as they have achieved unprecedented
success in large-scale visual image classification with error rates beating humans [18, 19]. We train a CNN to spot
destruction features from heavy weaponry attacks (i.e. artillery and bombing) in satellite images such as the rubble
from collapsed buildings or the presence of bomb craters.

We make three relevant methodological contributions. First, we introduce a novel label augmentation method for
expanding destruction class labels by making reasonable assumptions about the data generating process using contextual
information. Second, we introduce a two-stage classification process to control for spatial and temporal noise where the
results from the CNN are processed through a random forest model that relies on spatial and temporal leads and lags to
improve classification performance. Third, we apply our trained computer vision model to repeated satellite images of
the entire populated areas of major Syrian cities, including parks and highways, and produce longitudinal estimates of
building destruction over the course of the recent civil war.

We demonstrate that our method yields high performance in out-of-sample tests and validate its ability for destruction
monitoring using a separate database of heavy weaponry attacks. Our results highlight the importance of repeated
satellite imagery in combination with temporal filtering to improve monitoring performance. As a result, our approach
can be applied to any populated area provided that repeated, high-resolution (i.e. sub-meter) satellite imagery is
available.

Why Automated War Destruction Monitoring Is Hard

Several studies have demonstrated the use of computer vision on satellite imagery to identify different types of
destruction [2, 20, 21, 3, 22, 23, 24, 25, 26]. In many cases this is destruction from natural disasters which tends
to be spatially concentrated. While performance results from the literature are encouraging, they typically focus
on evaluations at one point in time and training/validating on datasets composed of equal numbers of damaged and
undamaged images.

Precision performance in repeated destruction scans of entire cities with heavily unbalanced classes, as in our application,
have not been explicitly presented in the literature so far. Part of the reason for this gap is that automated methods
need to be able to detect building destruction in an empirical context where the vast majority of images do not feature
destruction. Class imbalance is a common problem in machine learning applications but the detection of destruction in
war zones faces an extreme level of imbalance. Even in a city which suffered as much destruction as Aleppo, only 2.8%
of all images of populated areas contain a building that was classified as destroyed by UNOSAT in September 2016.

Figure 1 depicts this quite clearly. In the left panel (a) we see the full extent of Aleppo, with all destroyed building
annotations depicted as red dots. The right panel (b) zooms into the central area of Aleppo, just east of the historic
Citadel, which was heavily attacked. The red dots coincide clearly with patterns of destruction from heavy weaponry
attacks in the satellite images. But destruction only affected a small fraction of buildings, even in this heavily affected
part of the city.

With such class imbalance even a small false positive rate (FPR) will result in an unacceptable absolute number of
false positive predictions in applications which would yield destruction data that are practically useless due to high
measurement error. A simple example illustrates this: Suppose we have 100,000 sample images of which 1000 are
destroyed. A "low" FPR of 15% together with a true positive rate (TPR) of 90% implies that the classification model
will produce 14,850 false positives and 900 true positives, resulting in a precision below 6%. In other words, conditional
on predicting destruction, such a classifier would be wrong more than 94% of the time. Note that the same classifier
produces a "high" precision score of 86% on a 1:1 balanced sample.

The task of automated monitoring over time is typically further complicated by a lack of training data, i.e. the low
number of destruction labels available in any given city. This can quickly lead to overfitting in machine learning as
the training set consists of a narrow selection of building types, neighborhoods, sun and satellite angles, changing
vegetation or weather phenomenona like snow and cloud coverage. These problems are known as spatial and temporal

1For a glossary of technical key terminology, see the Supplementary Information (SI)
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Figure 1: Imagery of Aleppo 09/18/2016. Red dots indicate UNOSAT annotations as destroyed. Areas enclosed by
magenta lines are no analysis zones, excluded from the UNOSAT damage assessment due to being non-civilian. The
yellow line encloses the populated areas of Aleppo under analysis. Sources: Google Earth/Maxar satellite imagery and
UNITAR/UNOSAT damage annotations.

domain shift [27]. Temporal domain shift is a particularly serious problem in our application as destruction monitoring
requires the generation of a reasonable timeline with repeated scans of the same city. This emphasizes the need for a
robust solution to this problem which ensures some comparability across time.

Our approach aims at solving these problems. We exploit the time dimension of the images and labels to alleviate
the domain shift problems and extreme class imbalance. We also make a point of reporting precision performance in
unbalanced samples to provide realistic insights into the potential performance in applications.
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Figure 2: Image Sampling and Prediction Process. Timeline shows 23 Aleppo images. The first image, from 06/26/2011
is used as pre-war image when training the classifier. All other 22 images are used as post images. Images are split
into over 95,000 patches which serve as a unit of analysis and are separated into test and training sample before the
analysis. Labels for the patches come from UNITAR/UNOSAT annotation dates shown as black dots on the timeline.
Annotations are extended forward and backward in time beyond these dates under the assumption that buildings which
are labeled destroyed at some point remain destroyed throughout the period of observation. Those which are labeled as
not destroyed at a given time were not destroyed before. Patches which are not destroyed at an annotation date but
destroyed at a later annotation date have an unknown class. All patches which are not classified as destroyed in the last
annotation date are of unknown class (set to missing) after that date.
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Table 1: Sample overview
(1) (2) (3) (4) (5)

City Total
images

Total
patches

Total
labeled
images

Total
labeled
patches

Share
destroyed
patches

Aleppo 22 2,106,412 4 1,626,920 1.83%
Daraa 13 202,462 4 125,231 1.00%
Deir-Ez-Zor 7 98,602 4 84,723 2.86%
Hama 9 285,057 3 224,365 3.73%
Homs 5 200,035 2 83,941 8.26%
Raqqa 8 180,184 3 112,481 1.96%

All 64 3,072,752 20 2,257,661 2.26%
Note: Column (1) reports the number of "post-" satellite images / time periods,
excluding the first "pre"-image for each city. Column (2) reports the resulting
number of patches in the populated areas of the respective city based on available
imagery. Column (3) refers to the number of images / time periods for which
UNITAR/UNOSAT labels are available. Column (4) is the number of patches for
which UNITAR/UNOSAT damage labels for the "destroyed" class are available after
label augmentation. Column (5) is the share of "destroyed" labels over the number
of labeled patches. Sources: Author calculations based on Google Earth/Maxar
satellite imagery and UNITAR/UNOSAT damage annotations.

Method

Satellite Data

Most of our sample comes from Aleppo which we use as our main proof-of-concept due to the size of the city and the
high availability of repeated images and labels. To train and evaluate our model, we use 22 high-resolution satellite
images from Aleppo and a total of 42 images from five other Syrian cities (see Table 1). All images used in this analysis
are obtained from Google Earth [28], are georeferenced, orthorectified, and feature three bands (RGB) as well as a
ground sampling distance of ca. 50cm per pixel.

Sample images cover the period 2011 to 2017, after the onset of the civil war in Syria, during which extensive destruction
from heavy weaponry attacks occurred across all sample cities. We use an additional, early image for each city (for
example, 26 June 2011 in Aleppo) as the “pre” image and call the later 64 images as the “post” images. Our method
relies on change detection – i.e. when classifying images, the pre image is compared to the respective post image.

To move as close as possible to the automated monitoring task we transform all images into millions of 64x64 pixel
sub-images that we call patches. These patches are the unit of observation for training and testing, and the final step
which we call scanning or dense prediction in which the classifier is used to produce fitted values for every patch in the
study areas. Ground area coverage of each patch can vary slightly, but is approximately 1,024 (i.e. 32 × 32) square
meters. Importantly, the size of a specific patch remains constant over time.

Column (2) in Table 1 reports the sample size in terms of patches for the six cities in our sample. For Aleppo, for
example, we have over 95,000 patches per image times 22 images, which gives approximately 2.1 million patches.
Importantly, this is panel data where images of the same patch are repeated 22 times.

Destruction Labels

We combine the imagery data with georeferenced building damage labels from the United Nations Operational Satellite
Applications Programme (UNOSAT) of the United Nations Institute for Training and Research (UNITAR) [8]. Over the
course of the Syrian civil war, UNOSAT produced building destruction annotations by manual inspection of satellite
images for severely affected Syrian cities. For Aleppo, these manual assessments were conducted at four different dates,
one each year between 2013 and 2016. Column (3) in Table 1 reports the number of these assessments.

UNOSAT damage annotations were categorized in three degrees of damage: moderate and severe damage as well as
completely destroyed. In our analysis we rely on the latter class due to the fact that destruction patterns for the other
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labels were not always clearly visible in the satellite images. Our method classifies the satellite images as destroyed if
at least one UNOSAT annotation of destruction is inside a patch.

Our analysis of building destruction focuses on the urban areas of Syrian cities. For Aleppo this is depicted by the area
enclosed by the yellow line in Figure 1. Areas enclosed by magenta lines correspond to so-called "no analysis" areas,
which have been left out by UNOSAT in their damage annotations due to these zones hosting non-civilian buildings.
Consequently, these areas are also excluded from the training process. But we scan these areas and make use of these
scans for out-of-sample validation. Sample image patches for destroyed areas pre- and post- destruction are presented
in Figure S1 and non-destroyed ones, including damaged buildings, are shown in Figure S2 in the SI.

The ideal annotation dataset to analyze this problem would be composed of pixel-wise classification of all damaged and
non-damaged buildings across the sample cities for all time periods. Labels like this could then be used to train models
to identify the footprint of destroyed buildings using satellite images [3, 22]. However, because of the significant cost
of annotating destruction footprints, UNOSAT only provides point coordinates (centroids) of destroyed buildings. We
match these point labels to our image patches by attributing a label to the closest patch centroid. One issue with this
method of generating labels is that buildings have different sizes and, therefore, some UNOSAT labels are surrounded
by more visible destruction than others. We address this issue through a second stage, described below, in which we
exploit spatial information.

Contextual Label Augmentation and Test Sample

The computer vision task is to train an algorithm to detect destruction from the visual bands of high-resolution daylight
satellite images. Training deep learning architectures typically requires large training datasets including thousands of
labels, which are extremely rare in our empirical context.

Consequently, as reported in column (3) of Table 1, we have a maximum of four UNOSAT annotation dates to work
with for certain cities, for others three or only two (i.e. Homs). Compared to the number of annotations, we usually
have significantly more raw images available, as shown in column (1). In addition, few label dates perfectly coincide
with the date of a satellite image. This generates an "uncertain class" in which patches cannot be attributed clearly to
either the destroyed or not destroyed class because destruction could have occurred between the labeling date and the
date of the image.

To increase the number of labeled data points we exploit the fact that reconstruction was largely absent in the areas of
interest during the study period between 2013 and 2017 (see Table S4). Our label augmentation approach assumes that
positive samples at time ti also remained positives at subsequent times tj > ti, i.e. that destruction persists throughout
the period of the civil war. And conversely, that negative samples at time tj also had to be negatives at times ti < tj .

We solve two problems using this approach. First, we expand the size of our training data set by boosting the number
of labels to close to 2.3 million of which approximately 51,000 show destruction. Second, by including additional
time periods in our training sample, we improve the performance of our classifier in its ability to handle domain shift.
Our method of label augmentation is conservative given that we assign missing values to all patches that remain in the
uncertain class - those for which we cannot know with certainty whether destruction has occurred in the past or those
for which we do not know with certainty that they will be labeled not destroyed in the future.

Figure 2 illustrates our method for generating training and test samples. Given the temporal and spatial structure of
the data, extra care must be taken when splitting the sample for training and testing to avoid overfitting. Standard
cross-sectional cross-validation procedures are not appropriate since they could show the network patches from different
times, but the same location in training and testing. We therefore use the patch identifier to perform sample splitting,
whereby 70% of patches are reserved for training and 30% for testing across temporal periods. All performance
measures reflect accuracy as measured from data reserved in the test set.

CNN Architecture and Two-stage Classification Procedure

Another innovation in our approach is the use of a two-stage classification procedure that feeds the predicted destruction
estimates from the initial CNN model into a random forest classifier. With respect to the CNN architecture, we
experimented with several different types of CNNs. For each of these we optimized hyper-parameters according to
accuracy results in the validation set. The results of these experiments suggested the use of a relatively flat CNN
architecture as described in section 1 of the SI.

To the output of the CNN model we apply a second machine learning stage, intended to exploit the temporal and spatial
clustering of destruction. Specifically, the labels and predicted values from the CNN are used to train a random forest
model that relies on information from two spatial lags around each patch location and two temporal leads/lags around
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each date. The random forest uses these spatial and temporal features from the raw CNN scores plus the spatial standard
deviation to generate a prediction for the test sample and the dense prediction.

The logic behind this second stage approach is that destruction is not only serially correlated, but also spatially clustered.
We separate this step from the deep learning stage for maximum flexibility and modularity. This allows us to vary
the information set that we use in the second stage model. In particular, we experimented with using only spatial
information and different temporal lag structures and discuss their relative importance below.

Data Generation

As a final step we train the second stage on all available data and predict values for every patch-period combination
in our data. This simulates the data generation problem where the trained architecture is used to interpret all patches
at all points in time including those patches that had missing labels. The result is what we call dense predictions and
this forms the raw material for additional validation exercises. As reported in column (2) of Table 1, the result is a
panel dataset of destruction predictions at the patch level for six cities with varying time periods with over 3 million
patch-time observations.

Results

Overall Performance
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(a) Precision Using First-stage Only.
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Figure 3: (Top Left) Precision-Recall Curve, Unbalanced Versus Balanced Sample. Reported performance is in the 30%
training sample either by up-sampling the positives to reach a 1:1 sample (orange curve) or by evaluating at the original
sample proportions (blue curve). (Bottom Left) Precision-recall curve, unbalanced sample. First stage model versus two
alternative second stage models. As in Figure a) blue curve shows performance after the first stage. Dashed maroon
curve shows performance after the second stage which uses training of a random forest on temporal and spatial leads
and lags in the training sample. Dotted purple curve shows performance when using only spatial lags and no additional
temporal information. (Right) Average second stage dense patch-wise destruction prediction scores for Aleppo city,
Syria. Green color indicates low prediction scores, red color indicates high prediction scores. Color bins reflect deciles
of second stage fitted values with full spatial and temporal smoothing. Sources: Google Earth/Maxar satellite imagery,
UNITAR/UNOSAT damage annotations, and author calculations.

Our first stage CNN classifier achieves an Area Under the Curve (AUC) of 0.86 in the test sample of the first stage
(i.e. with the raw output from the CNN) and an AUC of 0.92 after the second stage random forest procedure (see
Figure S4). The associated ROC curve implies a true positive rate of 0.8 is achieved a false positive rate of 0.17. At
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Table 2: Model performance when varying second-stage module in the unbalanced sample
(1) (2) (3) (4)

First- Second-stage (CNN+RF)
stage

(CNN)
City raw with

spatial
leads/lags

with
spatial &
temporal
leads/lags

with
spatial &
temporal
leads/lags

precision precision precision AUC

Aleppo 16.1 16.9 35.7 91.5
Daraa 4.2 4.6 11.7 89.0
Deir-Ez-Zor 11.0 12.1 21.7 80.0
Hama 54.5 65.2 68.0 91.0
Homs 25.8 34.9 55.2 85.7
Raqqa 12.8 17.4 32.1 87.6

All 24.5 28.7 42.5 90.7
Note: first-stage predictions from convolution neural network (CNN)
and second-stage predictions from random-forest model (CNN+RF)
with spatial leads/lags (column 2) and spatial and two temporal
leads/lags (columns 3 and 4). Columns (1) through (3) report the
average precision and column (4) the "Area Under the Curve" (AUC).
Sources: Author calculations based on Google Earth/Maxar satellite
imagery and UNITAR/UNOSAT damage annotations.

a more conservative, higher threshold for a positive classification a true positive rate of 0.5 is associated with a false
positive rate of only 0.025. However, the class imbalance is extremely relevant here. The ROC curve and its AUC are
classification performance measures which are not affected by class imbalance in the sample and therefore do not allow
us to discuss the impact of class imbalance in our sample. In what follows, we therefore focus on precision statistics to
highlight the problem of unbalanced classes in applications of automated destruction detection.

Figure 3 summarizes our main results across cities. The top left panel (a) presents two precision-recall curves from the
test sample which depict the out-of-sample performance of our classification approach. The dashed orange curve plots
the precision-recall trade-off in the balanced sample. The average precision here is 0.86 and the curve suggests a very
mild trade-off with a precision of over 0.9 at a recall rate of 0.5, for example. In contrast, the solid blue line depicts the
performance of the same model when taking into account unbalanced classes that the automated destruction detection
would face in the actual application in the test sample. Clearly precision is much lower with the average precision being
a mere 0.24. For a recall rate of 0.5 the first stage reaches a precision of below 0.2. This illustrates impressively how
class imbalance in real application can change the precision-recall trade-off in this exercise.

In the bottom left panel (b) we illustrate the improvement in precision that we achieve by applying the second stage.
The figure compares precision-recall curves for the first stage (solid blue line), as in panel (a), with the improvements
from the second stage models, all evaluated in the unbalanced test sample. The second stage average precision increases
to 0.29 with only spatial smoothing (dotted purple line) and 0.43 with temporal and spatial smoothing (dashed maroon
line). This highlights a key insight from our experiments with the modular second stage. The use of temporal smoothing
is absolutely crucial for reaching better precision in the second stage. The gains of the spatial smoothing are relevant in
some cases but the real boost in performance arises when using temporal information to validate predictions coming out
of the first stage.

In panel (c) of Figure 3, we show an example of the final output of our methodology - the continuous dense prediction
scores generated from the second stage. The figure shows the average patch-wise dense predictions across the entire
city of Aleppo, including no-analysis zones. Red color indicates high predicted scores and green indicates low scores.
Generally, the red areas coincide with the destruction annotations in Figure 1. In addition, roads and parks are clearly
visible as dark green (lowest destruction probability) or yellow patches. This is not only evidence of the power of our
approach in picking up housing destruction, but it also shows how the classifier has learned that roads and parks are
never destroyed buildings.
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(a) Raw Satellite Image 06/12/2016 (b) Continuous Prediction Scores 06/12/2016 (c) Binary Predictions 06/12/2016

(d) Raw Satellite Image 09/18/2016 (e) Continuous Prediction Scores 09/18/2016 (f) Binary Predictions 09/18/2016

Figure 4: Example of Raw Satellite Images (left panel) and Second-stage Patch-wise Continuous Predictions Scores
(middle panel) and Binary Classification (right panel) for Ramouse Neighborhood of Aleppo, Syria. Before (first row)
and after (second row) heavy weaponry attacks. Green color indicates low prediction scores, red color indicates high
prediction scores. Color bins reflect deciles of fitted values. Binary classification cutoff optimized to reach 50 percent
recall in the test sample. Satellite image recording dates: 06/12/2016 (before) and 09/18/2016 (after). Approximate
image centroid location: 36.1525 decimal degrees North and 37.1332 East. Sources: Google Earth/Maxar satellite
imagery and author calculations.

The Role of the Second Stage Module

The second stage plays a key role for boosting performance to levels that imply practical gains from automatizing
destruction monitoring in our sample. It is important to consider that, while the cities in our sample are all in the same
country, they are of different size, have different building types and are situated in different landscapes with a variety of
vegetation and seasonal changes. In addition, label and image availability differ dramatically. As shown in Table 1 the
vast majority of images in our sample comes from Aleppo due to its large size and elevated image availability - less than
one third of all images come from other cities (Table S3 summarizes the results from training on Aleppo exclusively). If
our approach can adapt to these very different conditions it means we can be optimistic about applications elsewhere.

Table 2 provides details on the performance improvements through the second stage procedure by city. In column
(1) we report performance of the first stage by city. This reveals strong differences in performance across cities with
average precision ranging from a mere 4.2 percent for Daraa to an impressive 54.5 percent for Hama (for corresponding
precision-recall curves, see Figure S5). To a large degree this is driven by sample imbalances where Daraa suffered
only 1 percent of destroyed patches on average whereas Hama suffered almost four times as much.

The second stage boosts this performance substantially. This is most notable for the worst performing cities for which
precision improves two- to threefold in the full model (column 3). How does the full model achieve this improvement
in performance? Table 2 confirms the role of the temporal smoothing shown in Figure 3. However, the city-by-city
analysis also reveals interesting differences across cities where Homs and Hama seem to benefit more from the spatial
smoothing. In both cities, destruction is indeed clustered heavily in some neighborhoods so that this clustering might be
useful in reinforcing patch-wise predictions in the second stage. Our predictions for Daraa, Deir-Ez-Zor and Aleppo
rely much more on repetition and temporal smoothing. We confirm the role of temporal smoothing in Table S5 by
varying temporal lags and providing performance estimates without spatial smoothing.
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The improvements with temporal smoothing suggest the domain shift problem across time plays an important role
when angles, lighting, vegetation and seasons change. Our results therefore highlight the potential role of repeated
high-frequency imagery and temporal smoothing for providing useful destruction monitoring. The extreme imbalance
combined with small samples imposes serious trade-offs for monitoring but we will show in the following section that
monitoring can be brought to work even in the case of Aleppo which has one of the more unbalanced samples in our
dataset.

External Validation Exercises

We conduct two validation exercises to illustrate the merits of our approach. We first make use of the no-analysis areas
in Aleppo (see Figure 1) that have been entirely excluded from the training process. One of these zones corresponds to
the Ramouse neighborhood in the southernmost tip of our study area in Aleppo – an area which our classifier identified
as heavily destroyed as depicted in panel (c) of Figure 3.

In Figure 4 we show satellite imagery from a subarea of the Ramouse neighborhood at two points in time, before
(06/12/2016, top row) and after (09/18/2016, bottom row) a major heavy weaponry attack. We show raw satellite
images (left panel), patch-wise visualizations of the second-stage continuous predictions scores (middle panel), and
a binary classification (right panel). Due to the classifier not having been trained on this area, this exercise serves
as a good out-of-sample validation test. Visual inspection of the raw images shows no destruction before (panel a),
but extensive building destruction after the attacks (d). Comparing the continuous prediction scores before (b) and
after the attack (e), shows a significant increase in predicted destruction by our approach which coincides clearly with
the locations of actual destruction of buildings in the area. Note that the model also classifies correctly areas without
building destruction, such as the industrial compounds in the Northeast and Southwest of the image, as not destroyed at
both points in time. The same applies to the fields and roads in the East and the forest in the West. The panel on the left
shows one way of converting continuous prediction scores into a binary classification. The threshold chosen here is
optimized to reach a level of 50 percent recall in the test sample. One can observe that the before period is consistently
classified as non-destroyed (with one exception), whereas destruction is indicated in affected areas after the attacks.

Figure 4 demonstrates that the classifier is able to identify destruction in parts of the city which were not part of the
training sample. This is important as it shows that we are able to successfully solve the spatial and temporal domain
shift problems within Aleppo and thus generate a time series of destruction data in this way. If our automated method
was to augment human monitoring this is the kind of data that would be passed to human verification.

Given our strategy of expanding labels forward and backward in time, it becomes particularly important to verify the
ability of our approach to approximate the timing of destruction. We therefore validate our dense predictions in an
event study framework which relies on an external dataset of georeferenced bombing events in Syria. In particular,
we rely on 731 bombing events with precise location information from the Live Universal Awareness Map project
(LiveUAmap). We merge these events with our pooled sample of dense predictions at the patch-time level. We then
conduct an event study regression on a sample of over 2.8 million observations to test whether our prediction scores
increase in the aftermath of an externally reported bombing event (see SI section 2 for details).

We present a coefficient summary plot for two second-stage modules in Figure 5. The graph shows clearly that bombing
events are positively and significantly correlated to the destruction scores at the time- and patch-level. Note that the
baseline hazard of destruction, i.e. the mean of the dependent variable, is very small in our sample (see Table S2).
Compared to the baseline level of the respective destruction score, the point estimates imply increase of 29% and 37%,
respectively, after a bombing event is reported in a given cell. This is a substantial increase if one keeps in mind that not
all bombing events will result in the destruction of a building, introducing attenuation bias in the regression. The Figure
also shows that temporal smoothing implies big gains in overall signal strength, with the coefficients from the full
model represented by the red diamonds being consistently above the spatial only model as depicted by the blue squares.

Discussion

Building destruction due to heavy weapon attacks is a particularly salient form of war-related violence. Destruction is
often used as a military strategy to displace population and is responsible for tremendous human suffering beyond the
loss of life. Likewise, organizations like the Red Cross warn that massive destruction of urban infrastructure (also called
urbicide) has dramatic knock-on effects on health as it implies the destruction of water and power supplies as well as
hospitals. Therefore, reliable and updated data on destruction from war zones plays an important role for humanitarian
relief efforts, but also for human rights monitoring, reconstruction initiatives, media reporting, as well as the study of
violent conflict in academic research. Studying this form of violence quantitatively, beyond specific case studies, is
currently impossible due to the absence of systematic data.

9

https://syria.liveuamap.com/


-.0
2

0
.0

2
.0

4
.0

6
C

oe
ffi

ci
en

t

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
Event time

Spatial smoothing only Full spatial/temporal smoothing

Figure 5: Event Study Validation Exercise Pooled Sample. External bomb event data from LiveUAmap is positively
and significantly correlated with satellite predicted war destruction at the patch level. The figure shows coefficients
from a regression of 5 leads and lags of bombing events identified in the event data against our continuous destruction
prediction score from the second stage. Point estimates depicted by blue squares correspond to second stage continuous
prediction scores with spatial smoothing only and red diamonds correspond to the full model with spatial and temporal
smoothing. Error bars represent 95% confidence intervals. Dashed line indicates the occurrence of a bombing event in
the event data and coefficients capture the response in predicted damage. The full regression specification and results
are reported in SI section 2 and Table S2, respectively. Sources: LiveUAmap event data and author calculations.

Our method of identifying building destruction combines the existing state of the art of computer vision methods with
an additional post-processing step, and exploits the time dimension of destruction data to expand the training data set.
This allows us to exploit the repetition of imagery to bring down error rates in when classifying destruction. Thanks to
these advances, we are able to achieve an AUC of above 0.9 and an average precision of over 0.42 in the unbalanced
sample from six Syrian cities. We also show that our approach is able to identify the timing and location of building
destruction out-of-sample, i.e. in areas of Aleppo that have not been used for training the classifier.

These results are encouraging and allow applicability for automated destruction classification, and even close to
real-time tracking for policy purposes. Our method is particularly well-placed to take advantage of the ever increasing
temporal granularity of imagery. Our calculations suggest that human manual labeling of our entire dataset would cost
approximately 200,000 USD and additional repetitions of imagery would increase these costs almost proportionally.
With an automated method like ours, higher image frequency helps precision and comes at only marginal extra costs.
However, our results also suggest limitations where average precision falls, e.g. if only a very low share, less than one
percent, of a city is destroyed. For applications requiring high precision in heavily imbalanced prediction problems
such as the monitoring of several cities, we believe that the real use case for our approach will be in a decision
support framework in which the predictions are combined with human verification to create much faster and accurate
on-the-ground violence detection. Iterations between machine learning and human verification can also help improving
the training process [29] and could be easily integrated in our approach.

The performance of our method could be further improved by increasing the size of the training dataset, which could
also help adapt it to classify destruction in other war zones around the globe. Further performance improvement
could be achieved through fine tuning, a common practice in deep learning in which the network is pre-trained with a
large sample of building destruction from a variety of contexts in the first step, and then refined by training on heavy
weaponry destruction. This could be implemented by using a recent public dataset of natural disaster destruction
imagery that provides a sample of 98,000 annotated buildings across 3 levels of damage [30]. Moreover, domain
adaptation techniques developed for deep learning could be used to try to further minimize the remaining domain biases
[31].

Our label augmentation technique is driven by strong assumptions and should therefore be regarded only as a first
step in understanding the dynamic classification of building destruction over time. A particularly fruitful direction for

10



future research could be to model the data generating process of what we call the "uncertain class" between changing
labels and after the last label date. This should then be combined with label smoothing to generate probabilistic labels
[32]. Such a holistic approach would also need to think about label priors regarding the reconstruction process. Future
applications of such an approach would then be able to augment the human-classification process of verifying violence –
so-called digital humanitarians [33] – and track the post-war recovery within the same classifier model.

The destruction data that can be generated with monitoring approaches such as the one presented in this article opens
up possibilities for a set of new research agendas in the social sciences [34]. For example, our approach may advance
the academic literature on understanding the micro-level determinants of violence [35, 36, 37, 38, 39, 40, 41]. At what
stage in a conflict is building destruction used? What can be done to reduce civilian fatalities during urban warfare?
What are the effects of building destruction on displacement compared to other kinds of violence such as small firearms?
Can reporting-based violence data be used to reduce error in the remote sensing exercise or can combined measures be
developed [42, 43]? Can destruction data be used to reveal biases in reporting-based measures? An additional potential
application of our method is conflict forecasting systems like the "Violence Early-Warning System" (ViEWS) which
rely on spatial violence dynamics in their forecasts [44].

Finally, there are important ethical concerns in war destruction monitoring which should be considered. Research in the
social sciences has shown that monitoring tends to reduce armed violence between states, but there are also examples
where the opposite is true [45, 46]. Theoretically, we can identify specific scenarios in which monitoring worsens the
situation on the ground. If local actors are using the flow of information about atrocities to displace population and
do not fear repercussions linked to the monitoring of these atrocities then monitoring itself can increase violence and
should, therefore, not be conducted publicly.
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