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Abstract

Bid delegation to specialized intermediaries is common in the auction systems used to sell

internet advertising. When the same intermediary concentrates the demand for ad space from

competing advertisers, its incentive to coordinate client bids might alter the functioning of

the auctions. Using proprietary data from auctions held on a major search engine, this study

develops a methodology to detect bid coordination. It also presents a strategy to estimate a

bound on the search engine revenue losses imposed by coordination relative to a counterfactual

benchmark of competitive bidding. In the data, coordination is detected in 55 percent of the

cases of delegated bidding observed and the associated upper bound revenue loss for the search

engine ranges between 5.3 and 10.4 percent.
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1 Introduction

Sponsored search auctions are those auction mechanisms used to allocate advertisement space on

the results web page of search engines like Google, Microsoft Bing and Yahoo!. They represent one

of the fastest growing and most economically relevant forms of internet advertising, accounting for

approximately half of the total revenues of this market, which in the United States alone totalled

$107.5 billion in 2018 (IAB, 2019). In recent years, advertisers have switched from individually

managing their bidding campaigns to delegating them to specialized agencies known as Search

Engine Marketing Agencies (SEMA).1 Moreover, many of these SEMAs belong to a handful of

agency networks (seven in the US) that conduct all bidding activities through centralized agency

trading desks (ATDs). As a result, the same entity (be it a SEMA or ATD) often bids in the same

auction on behalf of different advertisers.

The ultimate impact of this ongoing trend is difficult to predict. On the one hand, SEMAs

and ATDs can help the functioning of this market by both fostering advertisers’ participation and

improving the quality of the ads consumers receive. But, on the other hand, the agencies’ possibility

to lower the payments of their clients by coordinating their bids changes the strategic interaction

in these auctions, and hence their functioning. Decarolis, Goldmanis and Penta (2020) (DGP

hereafter) provides a theoretical analysis of price bid coordination, showing that the Generalized

Second Price (GSP) auction – the most common auction format for this kind of auctions – is

particularly vulnerable to this type of bidding coordination, even when agencies only control a

small number of advertisers. This is due to the fact that agency bidding in the GSP auction

may have both a direct and an indirect effect on revenues: the first is due to the lower payments

associated with the lower bids of the agency bidders; the second is due to the equilibrium effects

that manipulating the agency’s bids may have on the bidding strategies of the independents, which

– as it will be discussed below – typically operate side-by-side with agencies in this market.2

A question of obvious interest is to quantify the extent to which bid coordination can be a

relevant channel through which SEMAs can hurt the search engine revenues. This is a crucial ques-

tion since this revenue loss might negatively impact investments, thus lowering the service quality

and, through it, consumers’ welfare. Under the equilibrium structure of the GSP auction, even

the relatively small coalitions (i.e., advertisers bidding through the same intermediary) observed in

the data – the modal coalition size is 2 – might trigger large revenue losses, depending on intricate

features such as the location of the coalition advertisers in the ad ranking, the value that different
1As shown by the SEMrush data described later, 80 percent of the auctions held on Google in the US for popular

keywords involve at least 1 bid submitted through an intermediary.
2Competitive bidding in the GSP was first studied by Varian (2007) and Edelman, Ostrovsky and Schwarz (2007)

(EOS hereafter) in a complete information setting, and then by Borgers et al. (2013); an incomplete information
model is studied by Gomes and Sweeney (2014). The role of marketing agencies in online ad auctions was first
studied by DGP, who analyzed both the GSP and the VCG auction formats, maintaining Varian (2007)’s complete
information assumption and allowing agencies to control arbitrary subsets of bidders.
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advertisers assign to the ad slots up for sale and more nuanced features.

In this study we propose an easy-to-implement method to determine whether bid coordination

is present in the data and, if so, to quantify its revenue effects. This paper thus supplements the

theoretical analysis in DGP, by showing how that theoretical model can be applied to search auc-

tions data. In particular, DGP characterize different types of coordination strategies, depending

on the extent to which the coalition is willing to trade off collusive profits with higher chances of

being identified as colluding by a monitor. The methodology we develop in this paper consists of

two steps. First, by exploiting repeated observations (i.e., auctions) for the same keyword, our

methodology determines which behavioral model between collusion and competition fits the data.

Then, the second step of the procedure uses bids, and DGP’s theoretical results on the coordination

strategy identified in the first step, to back out the underlying bidders’ valuations. Under coor-

dinated bidding, the true underlying valuations of coalition bidders are not point-identified from

the data, only their bounds are. We thus use the upper bound, together with the point-identified

values of non-coalition bidders, to quantify counterfactual revenues under competitive bidding and

to separately quantify the direct and indirect effects of coordination mentioned earlier.

The novelty of our contribution is not the application of the method in the second step,

which closely tracks ideas in Varian (2007), but the development of a new method to detect bid

coordination in the first step. Indeed, while DGP offers a theoretical characterization of bid

coordination in the GSP and VCG auctions, the present paper develops a way to operationalize

those ideas into an empirical approach that can detect coordination and, hence, enable us to unfold

the quantitative implications of DGP’s theoretical analysis. All this methodology is novel relative

to DGP, although it is obviously built starting from their theoretical framework.

An important assumption that we maintain from DGP is that of complete information re-

garding bidder valuations. We follow the same modelling assumption, but also provide some new

results to support it. In particular, we also derive an estimator for bidders’ valuations under the

incomplete information setting proposed by Gomes and Sweeney (2014), and show through Monte

Carlo simulation that the estimates based on the complete information model approximate well

those obtained from the incomplete information model.

Finally, we present an application of the method to a proprietary dataset of search auctions held

on a major search engine. The dataset consists of a large set of auctions for 71 different keywords:

the search engine selected for us these auctions that involve popularly searched keywords, all having

exactly 2 bidders acting under a common intermediary (i.e., 2-bidder coalitions). The application of

the two-step method reveals that: (i) coordinated bidding is detected in 55 percent of the keywords

analyzed, with most of the cases being classified as a relatively mild form of coordinated bidding.

DGP argues that this form of coordination is undistinguishable from competitive bidding in a

single auction, but our novel methodology is able to identify it by exploiting multiple observations
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from auctions on the same keyword. (ii) Despite its relative mildness, the effect of this form of

coordinated bidding is not negligible, as the associated revenue losses may be as high as ranging

between 5.3 and 10.4 percent of the revenues in the competitive benchmark. (iii) The findings

also indicate that a large fraction of the revenue loss, about three quarters, is due to the indirect

effect – the adjustment of the bids placed by independent advertisers in reaction to the reduced

competition among agency clients – which DGP’s theoretical results highlighted as the main source

of the potential fragility of the GSP auction, vis-a-vis the strategic opportunities of the agencies.

2 Data

Our dataset is based on the internal records of one of the largest search engines.3 This company

keeps track of all the search auctions taking place on its dedicated platform. Thus, every time a

user queries the search engine for a keyword on which at least one advertiser had placed a bid, the

system creates a record which reports: the keyword, the bids of all advertisers winning a position

as well as their identity, ad, quality score, rank, clicks received, and, if present, the identity of their

agency placing the bid.

The sample is based on a set of “historical data ”from years 2010-2011, constructed as a

selection from a representative sample of the search auctions involving some of the most frequently

searched keywords.4 The selection contains all the auctions for those keywords for which no more

than one agency was active in the auctions and this agency represented exactly two advertisers.

This resulted in 71 keywords being selected. Then, the analysis sample was created by collecting all

the search auctions involving these 71 keywords that were held during a randomly selected set of 12

days within a three-month time window around the end of 2010 and the beginning of 2011.5 These

keywords are from different industries and involve different sets of advertisers and intermediaries.

Although they obviously cannot span the vast and diverse market of search advertising, they are

a useful dataset to illustrate our method.

Working with search engine data is a rare opportunity, but necessarily comes with limitations

to the reporting freedom of researchers imposed by confidentiality agreements.6 Hence, to help
3The company name cannot be disclosed, due to a confidentiality agreement.
4The search engine gave us access to these data for research purposes. The data are considered to be sufficiently

old not to represent a threat to its business. However, extensive discussion with the managers at this search engine
convinced us that, despite old, the data is representative of bidding behavior in the last decade. Where we do foresee
the possibility of more substantial qualitative changes, is in the data from the last couple of years, during which
artificial intelligence algorithms have started to become more prominent, somewhat changing the patters in bidding
behavior, but not before that. Finally, we shall remark that the novel methodology we put forward can be applied
broadly to data from any period in which the rules of the auction are set according to the GSP auction rules.

5Specifically, one day was selected at random in each of the 12 sample weeks.
6In fact, despite the stunning economic importance of the sponsored search auction, the confidential nature of the

data has hindered their empirical analysis. Important exceptions are those in Varian (2007), Ghose and Yang (2009),
Athey and Nekipelov (2014), Borgers et al. (2013), Lewis and Rao (2015), Goldman and Rao (2015), and Hsieh,
Shum and Yang (2018), as well as those based on the Microsoft’s Beyond Search initiative, Gomes, Immorlica and
Markakis (2009), Jeziorski and Segal (2015), and Jeziorski and Moorthy (2018). None of which, however, considers
the case of intermediaries.
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assessing external validity of the proprietary data, about which we are not allowed to disclose

further information, we describe some stylized features of the market through publicly available

data on Google sponsored search. Thanks to the availability of these new data, this study presents

a rare opportunity to analyze a phenomenon – bid coordination via intermediaries – that so far has

only been possible to study in the theoretical literature.7 Specifically, we combine two datasets

offering a snapshot of the Google search ads in the US market as of January 2017. The first

dataset is Redbook, which links advertisers to intermediaries; the second is SEMrush, which links

advertisers to search auctions. In particular, the Redbook data allow linking approximately 6,000

among the largest US advertisers to their marketing agencies and these agencies to their agency

networks. We thus consider two advertisers as bidding under a common intermediary when they

are linked either to the same SEMA or to different agencies but belonging to the same ATD. For all

the advertisers in Redbook, we use SEMrush data to create a link with search ad: we combine the

list of keywords on which the 6,000 Redbook advertisers appear among the Google search ads, with

that containing the 10,000 most frequently searched keywords of 2017 in the US (from SEMrush).8

Table 1 presents summary statistics for the resulting sample. Due to the confidentiality agreement

we are bound to, we can neither confirm nor deny that the statistics in Table 1 resemble the

proprietary sample. Nevertheless, we shall stress the similarities in how the two samples were

constructed, that is by looking at very frequently searched keywords on major search engines.

In Table 1, we separate outcomes for the full sample of 1,402 keywords (last four table columns),

from those for the subsample of 1,102 keywords with at least one ad placed by an intermediary

(first four table columns). Intermediated bidding is clearly very common and it involves keywords

that, in terms of the median outcomes, are close to those in the full sample. For both groups, the

median cost-per-click (CPC) is about 80 cents, but the mean exceeds $1.5. Next, search volume

indicates the monthly number (in millions) of search queries for the given keyword, averaged over

the last 12 months. Similarly to the case of the CPC, the average values far exceed the median ones,

especially for the subsample of delegated bidding, thus underscoring the relevance of intermediaries

for keywords with high potential revenues for the search engine. Keywords tend to have substantial

variability in their composition in terms of number of words, characters, and whether they are “long

tail” (i.e., involving at least 4 words) or not. Finally and most crucially, within the subsample of

keywords with delegated bidding, Table 1 reveals that:
7As stated earlier, the theoretical counterpart of this paper is DGP. However, in the closely connected realm of

display ad auctions Mansour, Muthukrishnan and Nisan (2012), Balseiro and Candogan (2017) and Allouah and
Besbes (2017) all offer insightful theoretical models on the role of intermediaries in these auctions. At a more
general level, the analysis of mediators in games has been introduced by Monderer and Tennenholtz (2009) for
complete information settings and by Ashlagi, Monderer and Tennenholtz (2009) for incomplete information ones,
with important extension offered in Kalai (2010) and Roth and Shorrer (2018).

8We combine the dataset in Decarolis and Rovigatti (2021) with the list of the top 10,000 keywords on Google
US (in terms of number of searches) in 2017. We restrict the attention to these popular keywords to enhance the
comparability with the proprietary data. Further details on the data are presented in Decarolis and Rovigatti (2021).
An important feature discussed there regards the ownership structure of the intermediaries and, in particular, the
fact that it is not the case that they are owned by Google, see their appendix K on this.
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Table 1: Summary Statistics: Google Search Auctions - US, 2017

Keywords with at Least 1 Network Full Sample
Mean Median SD Obs Mean Median SD Obs

Cost-per-click (CPC) 1.53 0.81 2.66 1,102 1.76 0.85 3.51 1,402
Search Volume 6.51 0.25 2.54 1,102 1.13 0.25 12.21 1,402
# of Words 1.85 2.00 0.82 1,102 1.87 2.00 0.81 1,402
# of Characters 10.86 10.00 4.96 1,102 11.31 11.00 5.00 1,402
Long Tail 0.03 0.00 0.18 1,102 0.03 0.00 0.18 1,402
Coalition 0.41 0.00 0.49 1,102
Coalition Size 2.78 2.00 1.17 449

Notes: statistics at the keyword level. The last four columns are for the full sample, while the first four are for the
subset of keywords with at least one ad coming from an intermediary. Cost-per-click is in USD; Search Volume is
the (average) monthly number of searches (in millions); the next three variables measure features of the keywords’
length; Long Tail is an indicator variable for keywords composed by at least 4 words; Coalition is an indicator for
the presence among the keyword ads of multiple advertisers affiliated with the same intermediary; Coalition size is
the number of advertisers under the coalition, calculated exclusively for those keywords with coalitions.

(i) Delegation to a shared intermediary is widespread.

(ii) A coalition of at least two bidders is present in 41% of the keywords.

(iii) When a coalition is present, its median size is 2.

(iv) There is never a case of competing coalitions: that is, there is not an auction with two (or

more) agencies representing at least two bidders each.

The evidence from the public dataset thus clarifies how certain features of the proprietary

dataset are not the result of an arbitrary selection, but typical elements of the market. In particular,

we refer to the use in the proprietary data of keywords with 2-bidder coalitions only and with no

instances of competing coalitions. In the following, we will focus exclusively on the proprietary

data, since they contain the essential information (namely, individual bids and quality scores)

needed to apply our methodology.

3 Theoretical Background

Online ad auctions are mechanisms to assign agents i ∈ I = {1, . . . , n} to slots s = 1, . . . , S, n ≥ S

where for simplicity we assume n = S + 1 (the extension to n ≥ S is straightforward). In our

case, agents are advertisers, and slots are positions for ads on a webpage (e.g., on a social media’s

newsfeed for a certain set of cookies, on a search-engine result page for a given keyword, etc.).

Slot s = 1 corresponds to the highest (i.e., best) position, s = 2 to the second-highest, and so

on until s = S, which is the slot in the lowest (i.e., worst) position. Following Varian (2007),

the ‘click-through-rate’ (CTR) of slot s – that is, the number of clicks that an ad in position s

is expected to receive – is equal to the product of a ‘quality effect’, ei ∈ R+, associated to the
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advertiser who obtains the slot, and a ‘position effect’, xs: if bidder i gets slot s, then the expected

number of clicks is eixs. We assume that x1 > x2 > · · · > xS > 0, and let xt = 0 for all t > S.

Finally, we let vi denote the per-click-valuation of advertiser i.

In the GSP auction of the search-engine we analyze, advertisers submit bids bi ∈ R+, which are

then adjusted by the quality scores. The search-engine’s rationale for using such quality scores is

to favor advertisers with idiosyncratically higher CTRs. We thus follow Varian (2007) in assuming

that they coincide with advertisers’ quality effects, (ei)i∈I . Hence, slots are assigned according to

the ranking of the adjusted bids, b̄i = bi · ei: the first slot to the bidder who submitted the highest

adjusted bid, the second slot to the second-highest adjusted bidder, and so on.9 A bidder who

obtains the s-th highest slot pays a price-per-click equal to the minimum bid he would need to

pay to retain the s-th position. We denote bid profiles by b = (bi)i∈I and b−i = (bj)j 6=i; vectors

of adjusted bids (for a given e = (ei)i∈I profile) are denoted by b̄ = (eibi)i∈I and b̄−i = (ejbj)j 6=i.

Finally, we relabel bidders, if necessary, according to the slot they occupy: hence, given a profile

of bids b = (bi, b−i), bi denotes the bid placed by the advertiser in position i, that is the one who

placed the i-th highest adjusted bid b̄i = biei. With this notation, the payoffs which result from

bid profile b, given a vector of quality scores e, can be written as ui (b; e) =
(
vi − ei+1

ei
bi+1

)
eix

i.

Competitive Bidding: Varian (2007) and Edelman, Ostrovsky and Schwarz (2007) identified

a specific refinement in this auction, the lowest-revenue locally envy-free equilibrium, which in this

setting is characterized by the following recursion: bEOSi = vi for all i > S, and for all i = 2, . . . , S,

bEOSi = vi −
xi

xi−1

(
vi −

ei+1

ei
bEOSi+1

)
. (1)

In turn, this characterization implies that the resulting allocation is efficient, in the sense that

positions are assigned so that v1e1 ≥ v2e2 ≥ · · · ≥ vnen. This characterization will represent

our competitive benchmark. It is particularly convenient because, as shown by Varian (2007), the

equilibrium characterization delivers testable predictions, based on the observables of the model

and our dataset (namely, all variables except bidders’ valuations). In particular, a bid profile is

compatible with an EOS equilibrium (for some profile of valuations (vi)i∈I) if and only if for all

j = 2, ..., S:
ejbjx

j−1 − ej+1bj+1x
j

xj−1 − xj
≥ ej+1bj+1x

j − ej+2bj+2x
j+1

xj − xj+1 . (2)

Coordinated Bidding: Decarolis, Goldmanis and Penta (2020) (DGP) provided a theoretical

analysis of the GSP auction, when some of the advertisers’ bids are placed by a common agency.

The agency is modelled as a subset of bidders C ⊆ I, which places bids jointly for their members
9As in Varian (2007) and EOS, we maintain that quality scores, valuations and CTRs are common knowledge

(EOS actually abstracted from quality scores). This complete information environment is the main benchmark
for the literature on the GSP auction. A notable exception is Gomes and Sweeney (2014). Borgers et al. (2013)
maintain the complete information assumption, but consider a more general model of CTRs and valuations. Athey
and Nekipelov (2014) introduce uncertainty over quality scores in a model with competitive bids.

6



in order to maximize their joint surplus, subject to participation and stability constraints. In

particular, DGP put forward the notion of “Recursively-stable Agency Equilibrium” (RAE), which

can be used to study agency bidding in general mechanisms for online ad auctions, and general

agency configurations. Crucially, the RAE’s framework enables to accommodate the case of partial

cartels, i.e. situations in which agencies operate side-by-side with independent bidders, which is

the most relevant case in the data.10 DGP provided several models of agency bidding under RAE,

which correspond to progressively weaker constraints on the behavior of the agency. In the first,

most restrictive model, it is assumed that the agency is constrained to placing bids which could

not be distinguished from a competitive EOS equilibrium by an external observer, within a single

auction, even if the independents had revealed their own valuations to the external observer. DGP’s

characterization of the resulting equilibrium, dubbed “undistinguishable (from EOS) coordination

RAE” (UC-RAE), shows that the UC-RAE is efficient and essentially unique, and it is such that:

(i) all independent bidders bid according to the same recursion as in equation (1); (ii) agency

members instead place bids which are consistent with the same recursion, except that they replace

the true valuations with feigned valuation, (vfi )i∈I , optimally chosen in order to maximize the

agency’s surplus, subject to RAE’s stability constraints. DGP show that, in equilibrium, such

feigned valuations are set at the lowest possible value which ensures that agency clients maintain

their efficient position.11

Similar to Varian’s characterization of the competitive equilibrium (equation (2)), a re-arrangement

of DGP’s characterization of the UC-RAE yields clear testable predictions: for any coalition mem-

ber (other than the highest-placed) j ∈ C\min {i : i ∈ C} who is placed immediately above an

independent (i.e., such that j + 1 /∈ C), the condition in equation (2) must hold with equality.

In the second model, the UC-restrictions is lifted but the agency is restrained to preserving the

allocative efficiency (so called Eff-RAE). DGP show that bids can be further lowered compared to

the UC-RAE, which in turn directly implies that the condition in equation (2) is violated, in that

the inequality holds with the reversed sign. Therefore, the DGP models of coordinated bidding

entail the following restrictions on the observable data: 12


ejbjx

j−1−ej+1bj+1x
j

xj−1−xj ≥ ej+1bj+1x
j−ej+2bj+2x

j+1

xj−xj+1 if j /∈ C,
ejbjx

j−1−ej+1bj+1x
j

xj−1−xj ≤ ej+1bj+1x
j−ej+2bj+2x

j+1

xj−xj+1 if j ∈ C\min {i : i ∈ C}.
(3)

10DGP’s formulation of the agency problem is closely related to the notion of ‘Equilibrium Binding Agreements’
introduced by Ray and Vohra (1997) and applied in several studies, including Aghion, Antras and Helpman (2007)
and Ray and Vohra (2014). It is also related to the literature on mediators in games, Monderer and Tennenholtz
(2009), Ashlagi, Monderer and Tennenholtz (2009), Kalai (2010) and Roth and Shorrer (2018).

11See DGP for the recursive characterization analogous to EOS’ recursion in (2). (DGP’s main result refer to a
model without quality scores, which corresponds to the case in which ei = 1 for all i. However, similar to Varian
(2007)’s analysis of the competitive case, it is straightforward to extend DGP’s results to the case with quality
scores simply replacing the plain bids bi in DGP with the adjusted bids b̄i = eibi.)

12In DGP, a third type of coordinated bid equilibrium is discussed and dubbed “unconstrained” RAE. Since,
however, this alternative equilibrium is observationally equivalent to the Eff-RAE in our data, we ignore it in the
discussion that follows and only consider the UC-RAE and Eff-RAE.
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4 Empirical Analysis

The system of inequalities (3) can be verified using sponsored search data on (bi, ei, xs, C)i∈I,s∈S .

Bringing the model to the data, however, requires making a few additional assumptions. First of

all, the previous model is static, and it characterizes the equilibrium for a single auction, considered

in isolation. We maintain this structure in the empirical work by treating the multiple auctions in

the data as repetitions of the same auction game, each with its own idiosyncratic bidder valuations

and quality scores. Thus, we do not model potential linkages between auctions, either over time

or across keywords. Second, inequalities (3) characterize equilibrium strategies in an environment

with complete information. Applying this framework to real world data, in which the search

engine updates quality scores in real time, as in our case, requires considering that bidders do

not necessarily know the exact quality scores at the time when they submit their bids. But, in

principle, bidders’ uncertainty might be even more extensive, and perhaps also involve features

like others’ valuations and bids. The question of what information structure best describes GSP

auctions is extensively debated in the literature, and most studies agree that complete information

offers an adequate approximation of the richer incomplete information models. In section 5 below,

we review this literature and also present some novel results comparing the estimates of bidder

valuations obtained from the complete information model, with those obtained from the incomplete

information model of Gomes and Sweeney (2014), suitably extended to account for quality scores.

Since these results confirm the prevailing view in the literature, on the adequacy of the complete

information approximation, in the analysis below we maintain the complete information framework.

Nevertheless, the DGP model does not include any noise or error term, and, hence, it is not

directly amenable to a standard empirical application. The usual econometric approach entails

asking what perturbation in the data would be sufficient to make the data compatible with the

(noise-free) model. In his seminal work on the sponsored search auctions, Varian (2007) suggested

that the most natural variable to perturb is the ad quality, ei. This is because the quality score

is the most difficult variable for advertisers to observe and, indeed, the exact quality score of each

ad is known to the search engine, but revealed to the advertisers only ex post.

Because of this uncertainty about quality scores, Varian (2007) proposed the formulation of

an empirical model where diei is the value of the perturbed ad quality. In this model, di is a

set of multipliers indicating how much each ad quality ei needs to be perturbed in order for the

inequalities characterizing his model’s equilibrium to be satisfied. Therefore, bidders consider diei
to be the ad quality at the time of bidding, while the econometrician only observes the value of ei.

We follow this same approach and introduce a stochastic element in our context by perturbing

ad quality, diei. Based on this empirical model, we develop an empirical method to determine

whether intermediaries are adopting competitive or coordinated bidding strategies. Furthermore,

when coordination is present, we illustrate how to estimate bounds on the search engine revenue
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losses, relative to a competitive benchmark. The next two sections discuss these two elements.

4.1 Step 1: Bid Coordination Detection

The extent to which coordination can be detected hinges on the type of data available. With

one auction only, the UC-RAE and EOS equilibria are undistinguishable as they both satisfy

inequalities (2). By construction, under UC-RAE for all coalition bidders, except the one with

the highest valuation, the conditions in (2) must hold with equality. This, however, suggests that,

when multiple auctions are observed for the same keyword, the UC-RAE and EOS equilibria might

become distinguishable. In particular, since quality scores are changed nearly in real time by the

search engine, while valuations and position effects are likely more persistent, suppose we observe a

dataset with T auctions that are identical in terms of the number of bidders and their valuations and

the number of slots and their position effects, but differ for the quality scores. Equilibrium bidding

requires bids to vary across auctions to ensure the satisfaction of the (observable) restrictions

imposed on the data by the systems either in (2) or (3), both of which are indeed functions of

quality scores.

The specific way in which bids change across auctions differs depending on which equilibrium

is played. For all bj , with j ∈ C\min {i : i ∈ C}, it must be that (2) holds with equality under the

UC-RAE, holds with weak inequalities under competitive EOS bidding and is violated under the

Eff-RAE. This is the key idea behind our method to detect bid coordination, which we illustrate

through a simple example.

Illustrative Example:

A. Simulated Data To illustrate how the detection criterion works, we first simulate a dataset

based on the leading example in DGP. We thus consider an auction with four slots and five

bidders. Their valuations are v = (5, 4, 3, 2, 1). The CTRs for the five positions are the following:

x = (20, 10, 5, 2, 0). If the quality scores equal 1, the bids in EOS lowest envy-free equilibrium are:

b5 = 1, b4 = 1.6, b3 = 2.3 and b2 = 3.15. Now suppose that a coalition exists and comprises the first

and third highest value bidders. Under coordinated bidding, b3 = 1.8 under UC-RAE and b3 = 1.6

under Eff-RAE.13 We introduce variation in the quality scores across auctions by simulating 100,000

repetitions of this auction game, drawing each time an i.i.d. quality score for each bidder from a

(truncated) Normal distribution with mean 1 and s.d. 0.03. For each of these 100,000 replicas, we

then compute the equilibrium bid vectors separately under the three equilibrium models of EOS,

UC-RAE and Eff-RAE. We thus end up with a dataset (bEOSti , bUC−RAEti , bEff−RAEti , eti, x
s), with

i = 1, ..., 5, s = 1, ..., 5 and t = 1, ..., 1000, and where the position effects are not indexed by t as

they are assumed to stay fixed across auctions.
13In all cases, the highest bid b1 > b2 is not uniquely determined, but it does not affect the revenues, which equal

96 under competition, 86 under UC-RAE and 82 under Eff-RAE. See details in DGP, Table 1.
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Figure 1: Simulation of the J-statistic for one keyword under different modes of coordination and
varying size of the belief errors.

(a) No Errors (b) Small Errors (c) Large Errors

B. Detection Method In this dataset, in each auction t there is always the same 2-bidder

coalition formed by the first and third highest value bidders. This implies that the only observ-

able difference between the three equilibria must involve b3, the bid of the lowest-value coalition

bidder.14 In particular, calculate for each auction t = 1, ..., T the following quantity Jt:

Jt = et3bt3x
2 − et4bt4x3

x2 − x3 − et4bt4x
3 − et5bt5x4

x3 − x4 .

In each auction t, for given values of (et3, et4, et5, bt4, bt5), the value taken by bt3 determines whether

Jt is positive, negative or equal to zero. Under competitive bidding, bt3 must be high enough that

Jt ≥ 0, under UC-RAE is as low as to make Jt = 0 and under the Eff-RAE it is even lower so that

Jt < 0. Clearly enough, observing the distribution of Jt in the data is fully revealing of the type of

equilibrium being played and this is exactly what we see in panel (a) of Figure 1. The three curves

report the distribution of Jt across the 100,000 auctions in the example above: under the UC-RAE

the distribution is degenerate with a mass point at zero, while it is a non-degenerate distribution

with positive support (in the case of EOS) or with negative support (in the case of Eff-RAE). �

As discussed above, however, a useful empirical model of the search auctions must entail

perturbations in the quality scores. This will clearly impact the detectability of bid coordination.

In particular, suppose that for each bidder i and auction t the quality score is eit, but bidders believe

it to be ẽit, where ẽit = dit · eit. Continuing from our previous example, consider two cases with

different magnitudes of the belief error. For instance, a ‘small error’ case, with dit ∼ N (1, 0.052),

and a ‘larger error’ case, with dit ∼ N (1, 0.12). Panels (b) and (c) in Figure 1 illustrate how Jt is

distributed in these two cases. Not surprisingly, the presence of belief errors makes the detection

harder as now the observable data used to calculate Jt differ from the information upon which
14Notice that the lowest ranked member of the 2-bidder coalition is the coalition bidder who has the lowest

adjusted bid (defined as biei). As a result, this bidder occupies the lowest position among coalition bidders. In
our illustrative example, where quality scores are just a small fraction of valuations, the ranked coalition bidder is
always the lowest-value coalition bidder.
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bidders based their bidding choices. In panel (b), visual inspection of the distribution of Jt is

still quite revealing of the type of equilibrium being played. Indeed, while there is overlap in the

support of all the three distributions, it is still the case that most of the mass lies in the positive

realm in case of competition, in the negative realm in case of Eff-RAE and it is approximately

centred around zero in the case of the UC-RAE. Although the accuracy of this approach worsens

as the magnitude of belief errors grows – as shown by the comparison of panels (b) and (c), –

detecting coordination should still be feasible under the moderate size of belief errors measured in

earlier literature on EOS bidding.15

Empirical Results - We now turn to the proprietary data to apply the detection method.

Separately for each one of the keywords, k = 1, ..., 71, we use all the available auctions to calculate

the value of Jkt for the lowest ranked member of the 2-bidder coalitions in these data. As Figure

2 shows, the results are quite comparable to those produced by the simulation exercise in Figure

1. In particular, in Figure 2 we report the distributions of Jkt for three different keywords k.

These are selected to be illustrative of the different types of behavior present in the data: the solid

distribution is located mostly to the right of zero, thus supporting the case for EOS; the dotted

distribution lies mostly to the left of zero, supporting the case for the Eff-RAE; finally, the dashed

distribution is concentrated around zero, indicating that the equilibrium is the UC-RAE.

Figure 2: Three Example Keywords

Distribution of Jt for three keywords exemplifying the different equilibria.

The different behavior observed across keywords is likely associated with differences in both

strategies of the bidders (and their intermediaries) and in the structural features of their markets.

For instance, for a given keyword, the observed behavior might change due to the launch of a new

aggressive advertising campaign by one of the bidders. Since we do not observe the essential details
15Varian (2007) and Athey and Nekipelov (2014) both found that typically a small (on average 5 percent) belief

perturbation suffices to rationalize EOS bids.
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needed to perform such an in depth analysis, we propose a simple classification that partitions at

keyword level the instances of coordination and of competition.

Therefore, for each of the keywords, we calculate a 95 percent confidence interval for the median

of Jkt: we classify k as competitive if the lower bound of the confidence interval is positive, as

Eff-RAE if its upper bound is negative and as UC-RAE if it includes zero. We find that most

keywords are classified as collusive, with 36 of them being classified as UC-RAE and 3 as Eff-RAE.

The remaining 32 are instead classified as competitive. There are several important caveats to

this method. For instance, contrary to the simulation where the quality scores were independent,

identically distributed draws, this is unlikely to be the case in our data, thus implying that a

different weighting of the observations might be needed to calculate the distributions of the Jkt.

This is the reason why we do not provide an analysis of the power and statistical significance for

our results.16 Nevertheless, it would be feasible to incorporate this analysis within the proposed

approach provided that a reference distribution is available to test the observed distribution of

Jkt against a null of no-coordination. For instance, if the dataset included ‘comparable keywords’

where no coalition is present, then one can consider testing how the distribution of Jkt compares

between keywords with and without coalitions. This is not feasible in our data, however, since

the search engine selected keywords for which a coalition is always present and, moreover, would

require a careful evaluation of what keywords can be considered as comparable. We postpone the

discussion of these features and of other extensions to the conclusions.

4.2 Step 2: Revenue Loss Quantification

The second step consists in evaluating the revenue effects of coordination. It exploits the canonical

approach in the structural estimation of auction games: given the observables used in step 1, and

an equilibrium that maps the unobservable (to the econometrician) valuations to the bids, the

equilibrium mapping can be inverted to back out valuations from bids. In this sense, the first step

of the procedure above is important to guarantee that what is imposed on the data is a sensible

equilibrium model.17

A key departure from the literature, however, is that not all valuations can be point identified

under a bid coordination equilibrium. In particular, point-identification of valuations will be

possible for the independent bidders, for whom there is a one-to-one mapping between their bid

and value (except for the overall highest ranked bidder). But for coalition bidders, their incentive

to shade their bids implies that there is a range of valuations that would all be compatible with
16Such an analysis is straightforward for the Monte Carlo simulations in Figure 1. Indeed, the frequency with

which the value of Jkt is equal or less than zero when calculated for a non coordinating bidder would give us the
size of the test, while the same frequency when calculated for a coordinating bidder (other than the one ranked the
highest among the coordinators) would give us the power of the test.

17Since intermediaries are many and heterogenous, assuming that all of them play a (specific type of) coordination
equilibrium would have clearly been more restrictive relative to proceeding in steps by first detecting whether
coordination is present or not and, if present, whether it is more likely to be a case of UC-RAE or Eff-RAE.
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the observables. Nevertheless, by exploiting the equilibrium property that coalition bidders are

ranked efficiently, relative to both other coalition members and to the independents, we can pin

down bounds on the valuations of coalition bidders.

To see this, suppose that we are in the context of our earlier example with 5 bidders. The

first and third highest bidders are part of a coalition. If we observe the full bid vector and assume

that it is the outcome of a UC-RAE, then inversion of the equilibrium mapping implies that

v = (z1, 4, z3, 2, 1) and, by efficiency, also that z3 ∈ [2, 4]. Although no bound can be derived when

the coalition that occupies the top two slots or when its lowest valued member has no bidder below

it, in all other cases this approach is informative and allows us to construct counterfactual bounds

on revenues under competitive bidding.

The presence of unobserved variability in the quality scores introduces some nuances into this

approach. What is needed in this case is a method to infer valuations from bids, allowing for

bids to be based on the perturbed quality scores. Therefore, define b̃i = dieibi. Valuations are

recovered by first estimating the perturbations di, and then by including these estimates in the

bids’ inversion procedure. Suppose that the data are assumed to be generated under a UC-RAE,

then:

mind
∑
i>1(di − 1)2 subject to:


b̃ix

i−1−b̃i+1x
i

xi−1−xi ≥ b̃i+1x
i−b̃i+2x

i+1

xi−xi+1 , if i /∈ C or i ∈ {min(C)};

b̃ix
i−1 = xi−1−xi

xi+1−xi+2 [b̃i+2x
i+1 − b̃i+3x

i+2] + γdiei[xi−1 − xi] + b̃i+1x
i, if i ∈ C\{min(C)};

where γ is the minimum bid increment (5 cents in the data). In words, the solution to the quadratic

program above finds the smallest d such that the UC-RAE restrictions are satisfied.18 Provided

with the estimated d̂i, we can proceed as in the example above and point identify, for each bid

placed by an independent, the corresponding valuation. From that, we then get bounds on the

coalition bidders’ values. Finally, assigning to each independent bidder its estimated value and

to the coalition bidders their estimated upper bound valuations, we can solve for the competitive

EOS equilibrium and compare its revenues to the ones under coordinated bidding.19

Empirical Results - We apply this revenue loss quantification method to the subset of key-

words classified above as UC-RAE. Separately for each of these 36 sets of keyword auctions, we

obtain bounds on the revenues for each keyword. In Table 2, we report the mean revenue across

the 36 keywords. In the first column, we report the observed revenues. They are normalized to
18A similar formula applies in the case of the Eff-RAE. It can be obtained by replacing the constraint for i ∈

C\{min(C)} in the formula above with the corresponding ones in DGP.
19The upper bound is the most relevant benchmark since the lower bound must coincide with those valuations

that entail no revenue losses. This scenario, in turn, corresponds to the case in which the agency sets the same bids
that its clients would have placed as independents.
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100, while all other revenue figures are expressed as a percentage of the total observed revenues.

The top row reports the total revenues across all bidders, while the following two rows offer a

breakdown between revenues originating from payments by the coalition members and by inde-

pendents. Columns two through five report respectively the lower bound of the counterfactual

revenues under competitive bidding, the difference between the observed revenues and the lower

bound, the upper bound of the counterfactual revenues and the difference between the upper bound

and the observed revenues. In squared brackets we report 95% confidence interval of a keyword

matched-pairs t-test: for each keyword, the mean difference in revenue between the observed and

the counterfactual auctions is computed.

Table 2: Revenue Effects for the 36 UC-RAE Keywords

Observed Counterfactual Difference Counterfactual Difference
Lower Bound ∆=Obs.-LowerB. Upper Bound ∆=UpperB.-Obs.

Normalized Total Revenues 100 96.30 3.7 107.90 7.9
[2.47; 4.92] [5.32; 10.44]

Payments from Agency Advertisers 33.20 32.14 1.06 35.28 2.08
[0.69; 1.42] [1.49; 2.68]

Payments from Independent Advertisers 66.80 64.16 2.64 72.62 5.82
[1.70; 3.58] [3.73; 7.91]

Separately for each of the 36 keywords, the normalized revenues set total observed revenues (i.e., the
sum of all payments across all auctions for the same keyword) equal to 100. The three rows report:
total revenues, revenues originating from the payments by agency advertisers; revenues originating from
payments by independent advertisers. The five columns report the observed (normalized) revenues, the
lower bound of the counterfactual revenues, the difference between the observed revenues and the lower
bound, the upper bound of the counterfactual revenues and the difference between the upper bound and
the observed revenues. The values in the squared bracket are the endpoints of a 95% confidence interval
for matched differences in the average revenues.

Overall, we find a statistically significant revenue loss due to bid coordination of up to a

range between 5.2 percent and 10.4 percent. The result on the lower bound, instead, suggests that

coordinating bidders might be failing to extract full rents through lowering their bids. Interestingly,

in both counterfactual scenarios most of the loss originates not from the direct effect of the reduced

bids by coalition bidders, but from the indirect effect of reduced bids by the independents. The

presence of this indirect effect taking place through equilibrium bidding underscores why even

small coalitions with members occupying low-ranked slots can significantly hurt revenues. Once

again, however, the correlation across auctions requires caution in interpreting the findings, as

discussed next.

5 Complete vs Incomplete Information GSP Auction

The information setup adopted to model the GSP auction influences how bidding coordination can

be detected from the data. The strategy we adopted in the previous sections, that is to introduce

perturbations to quality scores in a baseline model with complete information, is supported by the

findings in both the empirical and experimental literature, which agree that estimates of bidders’
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valuations based on our approach (first introduced by Varian (2007)) are very close to those based

on more sophisticated models.20

A first case in point is provided by Varian (2007), who shows that the inequalities we intro-

duced in Section 3, which characterize our baseline model of competitive bidding under complete

information, are largely consistent with the data (Varian (2007)). Another influential example is

provided by Athey and Nekipelov (2014), who specify a model with uncertainty over both quality

scores and the set of bidders, and obtain estimates that are very close to those implied by the

EOS-Varian complete information model. Further evidence in this sense can be gathered by the

experimental results in Che, Choi and Kim (2017) and McLaughlin and Friedman (2016), which

confirm that the static complete information model closely approximates the dynamic incomplete

information setting, in that they entail similar estimates of the platform revenues.

In addition to these findings in the literature, we present next some novel results on the

estimation of an incomplete information model with uncertainty over both the quality scores and

valuations of other bidders. Once again, it will turn out that the complete information model

produces estimates of valuations that are close to the ones of the incomplete information model,

thereby lending further support to the approach undertaken in the previous sections.

5.1 Incomplete Information Model

We consider next an incomplete information setting based on Gomes and Sweeney (2014), with the

only difference that we introduce quality scores, which are absent from the analysis in Gomes and

Sweeney (2014). Specifically, we assume that per-click valuations vi and quality scores are private

information of the agents, with vi and ei are drawn independently of each other, and independently

across bidders.21 In addition to the notation introduced in Section 3, we let v̄i = vi · ei denote

the quality.adjusted valuations, and let F (·) denote their (common known) distribution. Similarly,

given a bid bi and quality score ei, recall that we defined the corresponding adjusted bids as

b̄i := ei · bi. As before, a bidder who obtains the s-th highest slot pays a price-per-click equal to

the minimum bid he would need to pay to retain it, which is eks+1bks+1
eks

= b̄ks+1
eks

, where ks denotes

the bidder who occupies the s-th position. We consider the strictly monotonic Bayesian-Nash

equilibrium of this game.

For the version of this model without quality scores, Gomes and Sweeney (2014) characterize

the efficient Bayes-Nash equilibrium of the game, provide conditions for its existence, and show
20The complete information model of competitive bidding that we adopt also has its own theoretical appeal, as

shown by EOS, Varian (2007) and (Milgrom and Mollner, 2018). Moreover, the model of individial bidding on
which we base our analysis conforms with the search engines’ tutorials on how to bid in these auctions (see, e.g., the
Google AdWord tutorial in which Hal Varian teaches how to maximize profits: http://www.youtube.com/watch?v=
jRx7AMb6rZ0. For further discussions on the theoretical merits of the approach, see Decarolis, Goldmanis and Penta
(2020).

21The assumption that advertisers know their own quality score is realistic since platforms usually reveal their
own quality scores to the advertisers. For example, Google allows advertisers to check their own quality scores
https://support.google.com/google-ads/answer/2454010?hl=en.
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that there are no inefficient equilibria in symmetric strategies.22 As it is easy to see from equation

(4) below, our variation with quality scores is equivalent to the model of Gomes and Sweeney

(2014), up to rescaling both the valuations and the resulting bids by the quality scores. Gomes

and Sweeney (2014) existence results, therefore, extend to our setting. Theoretical analysis aside,

however, this model has never been brought to estimation. The non-parametric identification and

estimation results that we provide next are thus novel contributions on their own. In pursuing

such results, we follow the first-order approach introduced by Guerre, Perrigne and Vuong (2000),

which allows the point-wise identification of the (unobservable) bidders’ valuations, with no need

to solve for the equilibrium of the game.

For each quality-adjusted valuation v̄i = vi · ei, we let σ(v̄i) = b̄i denote the corresponding

adjusted bid that maximizes i’s expected payoff in the symmetric equilibrium. Since σ(v̄i) is

strictly monotonic in v̄i, it is invertible, and σ−1(b̄i) = v̄i. Hence, under the assumption that σ is

differentiable, for any possible adjusted bid b̄′i, we have G(b̄′i) = Pr(b̄i ≤ b̄′i) = Pr(v̄i ≤ σ−1(b̄′i)) =

F (σ−1(b̄′i)) = F (v̄′i), g(b̄′i) = f(v̄′i)
σ′(v̄′

i
) , where G denotes the distribution of adjusted bids, g(·) denotes

their density, and v̄′i = σ−1(b̄′i). Given this, the expected equilibrium probability of winning the

s-th slot, for a bidder with adjusted valuation v̄i, is:

zs(v̄i) =
(
n− 1
s− 1

)
(1−G(σ(v̄i)))s−1Gn−s(σ(v̄i)) =

(
n− 1
s− 1

)
(1− F (v̄i))s−1Fn−s(v̄i).

The expected equilibrium payoff to bidder i, given his valuation vi and quality weight ei, when

he submits a bid that induces an associated adjusted bid such that b̄′i = σ(v′i · ei) := σ(v̄′i) equals:

E[Ui|vi, ei, v′i;F ] =
S∑
s=1

eix
szs(v̄′i)

vi − 1
ei

v̄′i∫
0

σ(y) (n− s)Fn−s−1(y)f(y)
Fn−s(v̄′i)

dy

 =

=
S∑
s=1

xszs(v̄′i)

v̄i − v̄′i∫
0

σ(y) (n− s)Fn−s−1(y)f(y)
Fn−s(v̄′i)

dy

 . (4)

Since in equilibrium such a bidder must find it optimal to submit a bid that induces b̄i = σ(vi ·ei) =

σ(v̄i), rather than one that induces some other b̄′i = σ(v′i · ei) for some v′i 6= vi, a necessary

equilibrium condition is that ∂E[Ui|vi,ei,v
′
i;F ]

∂v′
i

, evaluated at the true valuation (i.e., for v′i = vi), is

equal to zero. Rearranging such a first-order condition yields the following:23

vi =

S∑
s=1

xs
(
n−1
s−1
)
(n− s)(1− F (v̄i))s−2

[
σ(v̄i)(1− F (v̄i))Fn−s−1(v̄i)− (s− 1)

v̄i∫
0
σ(y)Fn−s−1(y)f(y)dy

]
ei

S∑
s=1

xs
(
n−1
s−1
)
(1− F (v̄i))s−2Fn−s−1(v̄i)

[
n− s− (n− 1)F (v̄i)

]
22See Appendix A for the details.
23The derivation of this result is in the Appendix.
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Rewriting the right-hand side in terms of observables, using F (v̄i) = G(b̄i) and g(b̄i) = f(v̄i)
σ′(v̄i) ,

where we let v̄i = σ−1(b̄i), we identify the pseudo-valuations based on the bids, the quality scores,

the distribution of adjusted bids, and the click-through rates:

vi =

S∑
s=1

xs
(
n−1
s−1
)
(n− s)(1−G(b̄i))s−2

[
b̄i(1−G(b̄i))Gn−s−1(b̄i)− (s− 1)

b̄i∫
0
yGn−s−1(y)g(y)dy

]
ei

S∑
s=1

xs
(
n−1
s−1
)
(1−G(b̄i))s−2Gn−s−1(b̄i)

[
n− s− (n− 1)G(b̄i)

]
(5)

To estimate the valuations we use a plug-in estimator based on equation (5). In particular, we

estimate the density of the bids using kernel density estimator, and we estimate the distribution

of bids using the empirical CDF.

Monte Carlo Simulation: Consider the GSP with four positions, five bidders, and click-

through rates (xs)s=1,...,5 = (20, 10, 5, 2, 0) (the x5 = 0 is a useful notational device to indicate

that there is no fifth slot). The quality-adjusted value per click of each bidder (multiplication of

valuation and quality) is an independent draw from the uniform distribution: v̄i ∼ U [0, 6]. We

simulate 1,000 auctions: for each of these auctions, we draw five quality-adjusted valuations from

the uniform distribution and calculate the corresponding adjusted bids based on the incomplete

information model described above. 24 For the realizations of the quality-adjusted valuations

v̄ = (5, 4, 3, 2, 1), the equilibrium adjusted bids in incomplete information model are: b5 = 0.85,

b4 = 1.60, b3 = 2.35, b2 = 3.12 and b1 = 3.94. These are quite close to the EOS bids discussed

earlier.

Given the equilibrium adjusted bids, we estimate the adjusted valuations both as if the bidders

were playing the EOS equilibrium, as well as the pseudo-valuations based on equation (5).25 We

find that the average difference between the estimates obtained from the two models is very small:26

the mean deviation, as a fraction of the estimated adjusted valuations, is 2% for the estimates based

on the incomplete information model and 4% for those based on the complete information one. The

mean adjusted valuation is 2.50 for the incomplete information model and 2.48 for the EOS model.

Figure 3 plots the estimated adjusted valuations based on the two models (incomplete information

on the x-axis, complete information on the y-axis). As can be seen from this picture, on average

the adjusted valuations are very similar. The fact that the estimated adjusted valuations are not

the same for a particular auction is to be expected: the reason is that the optimal bids in the EOS

setting depend on the exact realizations of rivals’ valuations, whereas in the incomplete information
24We use the numerical approximation of the equilibrium strategy. Details are in the Appendix.
25We consider adjusted valuations instead of valuations without loss of generality since quality scores are equal

under both models. With a dataset where quality scores are observed, valuations are identified separately from the
quality scores.

26We remind that the highest bidder’s valuation cannot be identified within the EOS model. Hence, this compar-
ison as well as all the ones that follow concern all valuations but the highest.
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model they only depend on their distribution.

Figure 3: Comparison of the estimated adjusted valuations of the incomplete information model
and of the estimated adjusted valuations as if the bidders were playing EOS

6 Conclusions

The analysis above illustrates the potential of using search auction data to detect bid coordination

and to quantify its effects on revenues. We conclude with a discussion of possible limitations of

the proposed methodology and of their potential solutions.

First, as we already mentioned, our bid detection method does not account for the possible

serial correlation across auctions. For instance, in the simulations in Figure 1, the i.i.d. draws for

quality score allow for a clear interpretation of the distribution of the Jt statistic. However, serial

correlation across auctions might require a different weighting of the observations, since some of

them might be more informative than others about the type of equilibrium being played. Choi

and Varian (2012), however, studied the time series structure of a large sample of sponsored search

auctions and concluded that there is not a unique time series model that can be applied generally

across different keywords. Correcting for the possible serial correlation across auctions would thus

require a preliminary in-depth analysis of each single market, as the correct specification of the time

series would require detailed information on the process through which bidders’ valuations evolve

for a specific keyword.27 Our approach therefore can still be seen as a faster (if perhaps rougher)

way to detect agency bidding strategies across keywords, in the absence of detailed information on

the keyword-specific time series structure.

Second, the classification criterion we adopted in Section 4.1 is based on the location of a

confidence interval around the median. Clearly enough, different criteria could also be used (e.g.,
27Differences in serial correlation across keywords would also be one of the factors complicating the selection of a

set of comparable keywords where no agency is present. As stated earlier, this might be a useful route if one would
like to use such a group of keywords to devise a test comparing the distribution of the Jt statistic across keywords
with and without potential coordinators.
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criteria based on the mode, or on the concentration of the mass of the distribution, etc.). Our

results are robust to several of these changes.28 An interesting extension for future work would be

to base the decision on whether the coalition’s bids are too low to be competitive on the Jt statistics

computed over the independents, instead of the lowest coalition members. This alternative strategy

– an application of the randomization inference of Rosenbaum (2002) – would be particularly

helpful to test for a tendency of coalition bidders to place suspiciously low bids, without imposing

the equilibrium assumptions of the DGP coordination models. Taking this route has both pros

and cons, the main downside being losing the ability to connect the results of the detection step

to calculation of the counterfactual revenues in the second step. This is the main reason why in

this study we did not pursue this strategy.

Third, we do not consider the possibility that the quality scores might be endogenous. The

model in which the quality score is part of the advertiser’s decision is very interesting but, due to

data limitations, it is outside the scope of this paper. It would be impossible given the data to

distinguish the change in quality score due to the improvement of the ad made by the advertiser

from the change due to other determinants of the quality scores that are not under the control

of an advertiser. The main reason is that generally neither Google nor the other search engines

reveal the exact algorithms that they use for determining the scores. Moreover, the search engine

itself might use its ability to pivot quality scores in order to reduce its revenue losses due to bid

coordination. Abou Nabout and Skiera (2012) show that the quality improvements might even

lead to the decrease in advertiser’s profits. Understanding the algorithms behind the quality scores

assignments would thus be crucial to further consider these important effects.

Our analysis abstracted from the possibility that intermediaries enforce more complex forms

of coordination that go beyond bid coordination. For instance, agencies might split the markets

by allocating their clients to different keywords, or to the same keyword but split the targeted

audiences (targeting options are abundant in sponsored search auctions, and algorithmic bidding

makes it easy to arrange bidding strategies aimed at reducing direct competition between an

agencies’ clients in the same auction.) This kind of coordinated strategies would entail even stronger

downward pressures on the cost-per-click. Hence, if agencies engage in this kind of coordinated

strategies, the actual revenue losses might be even larger than those identified by our methodology.

It should be pointed out, however, that market splitting is not as profitable in multi-item auctions

as it normally is in standard single-item auctions, since with multiple items this strategy comes at

the cost of forgoing the surplus that the agencies’ clients may still make by obtaining a different

slot, and by crowding out non-agency bidders. In fact, coalition bidding in the same auctions is

indeed frequent in the data, as confirmed in both our proprietary data and in the SEMrush data
28For instance, we obtain an identical classification if we calculate the smallest interval of their support including

80% of the mass: we classify k as competitive if lower bound of this support is positive, as Eff-RAE if the support
upper bound is negative and as UC-RAE if the interval includes zero. On the contrary, the classification changes
substantially if we use the mean of Jt. In this case, the presence of outliers produces less interpretable results.
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discussed in Section 2. Hence, at least for some keywords, agencies’ strategy does not entail a

complete market split. Nevertheless, an empirical analysis that looks more comprehensively at the

effects of intermediaries would be a highly valuable extension of our analysis.

Finally, the estimated valuations might be helpful to evaluate the impact of possible changes

in the auction design. For instance, Google has increased the reserve price in its auctions for

the first time in May 2017. While this change might help limiting the revenue losses caused

by bid coordination, it might end up hurting also non-coordinating bidders. Hence, monitoring

evolutions in the market is certainly worthwhile to better understand who are winners and losers

in this market. That is an important direction of future work but we do not implement this

empirically since we do not have data from different auction formats.
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Appendices

A Incomplete Information GSP Auction

A.1 Equilibrium exhistence

The discussion here is based on Gomes and Sweeney (2014).29The authors characterize the efficient

Bayes-Nash equilibrium of the GSP without quality scores and provide a necessary and sufficient

condition that guarantees existence of such an equilibrium.

Consider the generalized second-price auction (GSP) with n bidders, S positions (n > S) and

click-through rates x1 ≥ x2 ≥ ... ≥ xS . If an efficient Bayes-Nash equilibrium exists for this

auction, then its symmetric bidding strategy is

σ(v) = v − φ(v)−
∞∑
n=1

v∫
0

Kn(v, t)φ(t)dt,

where

φ(v) =

s=S∑
s=1

xs
(
n−2
s−1
)
(s− 1)(1− F (v))s−2 1

n−s

v∫
0
Fn−s(x)dx

s=S∑
s=1

xs
(
n−2
s−1
)
(1− F (v))s−1Fn−s−1(v)

,

K1(v, t) =

s=S∑
s=1

xs
(
n−2
s−1
)
(s− 1)(1− F (v))s−2Fn−s−1(t)f(t)

s=S∑
s=1

xs
(
n−2
s−1
)
(1− F (v))s−1Fn−s−1(v)

,

Kn(v, t) =
v∫

t

K1(v, ε)Kn−1(ε, t)dε for n ≥ 2,

and by assumption φ(v) ∈ L2([0, v̄]) and K1(v, t) ∈ L2([0, v̄]2).

If σ(v) is strictly increasing, then an efficient Bayes-Nash equilibrium exists for the GSP.

Otherwise, this auction does not admit an efficient equilibrium. If this auction does not possess

an efficient equilibrium, then there exists no symmetric equilibrium.

A.2 First Order Condition

Since the GSP with quality scores incomplete information GSP with the quality scores is equivalent

to incomplete information GSP with no quality scores, in which the both the valuations and

resulting bids are scaled up by the quality scores, let’s consider first the GSP in which all quality

scores are asumed to equal one.
29Based on Gomes and Sweeney (2014) with two corrections in bold.
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First, we rewrite the expected payoff to bidder i when his true valuation is vi but he bids as

if it was v′i as:

E[Ui|vi, v′i;F ] =
S∑
s=1

xszs(v′i)

vi − v′i∫
0

σ(y) (n− s)Fn−s−1(y)f(y)
Fn−s(v′i)

dy

 =

=
S∑
s=1

xszs(v′i)

vi − n− s
Fn−s(v′i)

σ(v′i)∫
0

yGn−s−1(y)g(y)dy

 =

=
S∑
s=1

xs

zs(v′i)vi − (n− 1
s− 1

)
(1− F (v′i))s−1Fn−s(v′i)

n− s
Fn−s(v′i)

σ(v′i)∫
0

yGn−s−1(y)g(y)dy

 =

=
S∑
s=1

xs

vizs(v′i)− (n− 1
s− 1

)
(n− s)(1− F (v′i))s−1

σ(v′i)∫
0

yGn−s−1(y)g(y)dy

 .
To prove the result stated in the proposition, we derive the first-order condition by differen-

tiating the expected payoff with respect to v′i, substituting v′i = vi and equating the resulting

expression to zero.

Given that

z′s(v′i) =
(
n− 1
s− 1

)
(n− s)(1− F (v′i))s−1Fn−s−1(v′i)f(v′i)−

(
n− 1
s− 1

)
(s− 1)(1− F (v′i))s−2Fn−s(v′i)f(v′i) =

=
(
n− 1
s− 1

)
(1− F (v′i))s−2Fn−s−1(v′i)f(v′i)[(n− s)(1− F (v′i))− (s− 1)F (v′i)] =

=
(
n− 1
s− 1

)
(1− F (v′i))s−2Fn−s−1(v′i)f(v′i)[n− s− (n− 1)F (v′i)],

we get the following equation for the valuation of player i:

S∑
s=1

xs
[
viz
′
s(v′i)−

((
n− 1
s− 1

)
(n− s)(1− F (v′i))s−1

σ(v′i)∫
0

yGn−s−1(y)g(y)dy
)′
v′

i

]
=

=
S∑
s=1

xs
[
vi

(
n− 1
s− 1

)
(1− F (v′i))s−2Fn−s−1(v′i)f(v′i)[n− s− (n− 1)F (v′i)]−

−
((

n− 1
s− 1

)
(n− s)(1− F (v′i))s−1σ′(v′i)s(v′i)Gn−s−1(σ(v′i))g(σ(v′i))−

−
(
n− 1
s− 1

)
(n− s)(s− 1)(1− F (v′i))s−2f(v′i)

σ(v′i)∫
0

yGn−s−1(y)g(y)dy
)]

=

(
since g(σ(v′i))σ′(v′i) = f(v′i)

)
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=
S∑
s=1

xs
[
vi

(
n− 1
s− 1

)
(1− F (v′i))s−2Fn−s−1(v′i)f(v′i)[n− s− (n− 1)F (v′i)]−

−
(
n− 1
s− 1

)
(n− s)(1− F (v′i))s−2

(
(1− F (v′i))σ(v′i)Gn−s−1(σ(v′i))f(v′i)−

−(s− 1)f(v′i)
σ(v′i)∫
0

yGn−s−1(y)g(y)dy
)]

= 0 when v′i = vi ⇒

f(vi) cancels out and

vi =

S∑
s=1

xs
(
n−1
s−1
)
(n− s)(1− F (vi))s−2

[
(1− F (vi))σ(vi)Gn−s−1(σ(vi))− (s− 1)

σ(vi)∫
0

yGn−s−1(y)g(y)dy
]

S∑
s=1

xs
(
n−1
s−1
)
(1− F (vi))s−2Fn−s−1(vi)

[
n− s− (n− 1)F (vi)

] =

=

S∑
s=1

xs
(
n−1
s−1
)
(n− s)(1− F (vi))s−2

[
σ(vi)(1− F (vi))Fn−s−1(vi)− (s− 1)

vi∫
0
σ(y)Fn−s−1(y)f(y)dy

]
S∑
s=1

xs
(
n−1
s−1
)
(1− F (vi))s−2Fn−s−1(vi)

[
n− s− (n− 1)F (vi)

] .

Now, by using the v̄i instead of just vi, we obtain the first order condition of the model with

quality scores.

A.3 Monte Carlo simulations

Since for this case the analytical solution based on Volterra equation cannot be easily obtained,

we use the following numerical approximation based on Gomes and Sweeney (2014):

b = σ(v) = v − φ(v)−
m∑
n=1

v∫
0

Kn(v, t)φ(t)dt,

where

φ(v) =

s=S∑
s=1

xs
(
n−2
s−1
)
(s− 1)(1− F (v))s−2 1

n−s

v∫
0
Fn−s(x)dx

s=S∑
s=1

xs
(
n−2
s−1
)
(1− F (v))s−1Fn−s−1(v)

,

K1(v, t) =

s=S∑
s=1

xs
(
n−2
s−1
)
(s− 1)(1− F (v))s−2Fn−s−1(t)f(t)

s=S∑
s=1

xs
(
n−2
s−1
)
(1− F (v))s−1Fn−s−1(v)

,

Kn(v, t) =
v∫

t

K1(v, ε)Kn−1(ε, t)dε for n ≥ 2, m = 3.

Figure (4) shows the estimated CDFs of the valuations from the nonparametric estimation of
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the incomplete information game and the true CDF.

Figure 4: True and Estimated CDF of the adjusted valuations in Monte Carlo simulation of the
GSP of incomplete information with 5 bidders, 4 slots and the uniform distribution of adjusted
valuations.
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