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Abstract

We extend the baseline setting in Alaoui and Penta (2018) to provide the repre-

sentation of the cost-benefit analysis in reaoning of a (non-myopic) forward looking

agent who anticipates his future steps of reasoning to take the form of a partitional

information structure evaluated in a Bayesian-consistent way.
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1 Forward-Looking Value of Information

We consider three-step processes, with s ∈ {0, 1, 2}, where s = 0 denotes the initial ”no

information” stage, s = 1 denotes the stage after the first step of reasoning, and s = 2 the

stage after the second step of reasoning.

We provide a representation theorem corresponding to the standard (fully rational)

value of information. Relative to the general model, the main restrictions in the repre-

sentation will thus entail (i) at each step of reasoning, the agent has probabilistic beliefs

µs ∈ ∆ (Ω) over the state of the world; (ii) from one stage to the next, the agent actually

receives information, represented as a partition P s of the set Ω ; (iii) this informational

structure is consistent with the axiom of truth and with perfect recall, and hence the

collection of partitions (P s)s∈{0,1,2} represents a filtration, with P 2 being finer than P 1

and (w.l.o.g.) we set P 0 equal to the trivial coarsest partition Io = {Ω}; (iv) beliefs from

one stage to the next follow the chain rule of Bayesian updating, consistent with the in-

formation received; (v) at each stage s, the action chosen if the agent stops reasoning at
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s maximizes the expected utility given beliefs µs; (vi) the agent has a cost of reasoning cs

at every step: c (1) is the cost of performing the first step (i.e. to acquire the irst piece of

information), c (2) is cost of undertaking the second, given the first had been undertaken;

(vii) the agent values undertaking the next step of reasoning anticipating the expected

change in payoff for the future realization of signals, given the future partition and his

current understanding, and taking into account the possibility of further postponing his

choice in the future, by undertaking an extra step of reasoning if he finds it optimal.

The crucial innovations relative to the framework in the paper are the information

partition restriction (point (ii)), and the non-myopic attitude towards future understand-

ing (point (vii)). Because of the latter, in particular, the correct value function at each

step will be identified by the backwards solution to the problem: the agent correctly an-

ticipates what his optimal choice and expected payoffs would be for each possible piece

of information I2 ∈ P 2. For each ω ∈ Ω and s, we let Is (ω) ∈ P s denote the cell in the

partition P s which contains ω.

1.1 Representation

Letting µ0 ∈ ∆ (Ω) denote the prior beliefs at the beginning of the reasoning process,

which for simplicity we assume has full support, since (P s)s∈{0,1,2} is a filtration, Bayesian

updating pins down beliefs at any Is: ∀s, ∀Is ∈ P s, for any event E ⊆ Ω, µ (E|Is) =

µ0 (E) /µ0 (Is).

Given this, we can define the optimal action at each information set (i.e. what would

be the optimal choice if the agent stopped reasoning at the information set):

∀s, ∀Is ∈ P s, let a (Is) := arg max
a∈A

∑
ω∈Ω

µ (ω|Is)u (a, ω)

and u (Is) = max
∑
ω∈Ω

µ (ω|Is)u (a (Is) , ω)

At s = 1, the optimal decision on whether to think further or not depends on the

information I1. Being only a one-step ahead valuation, it takes precisely the form of the

myopic value of information representation in the paper:

U
(
wait|I1

)
=
∑
ω∈Ω

µ1
(
ω|I1

)
u
(
a
(
I2 (ω)

)
, ω
)

=
∑
I2∈P 2

µ
(
I2|I1

)
u
(
I2
)

and the marginal V
(
wait|I1

)
= U

(
wait|I1

)
− u

(
I1
)
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and the agent decides to think further at I1 if and only if1

U
(
wait|I1

)
− c (2) ≥ u (I1) or, equivalently, V

(
wait|I1

)
> c (2) .

At s = 0, a forward looking agent anticipates the decision rule above. Hence:

U
(
wait|I0

)
=
∑
I1∈P 1

µ0
(
I1
) [

max
{
U
(
wait|I1

)
− c (2) ;u

(
I1
)}
− u

(
I0
)]

and V
(
wait|I0

)
= U

(
wait|I0

)
− u

(
I0
)

the agent thus decides to think further at I0 if and only if

U
(
wait|I0

)
− c (1) ≥ u

(
I0
)

or, equivalently, V
(
wait|I0

)
> c (1) .

(If the cost c (2) is sufficiently high that the agent does not anticipate thinking further

after s = 1, then this boils down again to a one-step ahead criterion, but not in general;

if instead c (2) is sufficiently low to always think, for instance if c (2) = 0, then it is as if

the criterion is again myopic w.r.t. to the two steps merged into a single step, with total

cost c (1) + c (2)).

Theorem 1: Under the properties below, there exists a filtration (P x)x=1,2 (where P x

is a partition of Ω, and P 2 is a refinement of P 1), beliefs µ0 ∈ ∆ (Ω), conditional beliefs

(µx (·|Ix))Ix∈Px s.t. µx (·|Ix) ∈ ∆ (Ω) which are consistent with Bayesian updating (i.e.,

µ0 (ω) = µx (ω|Ix) · µ0 (Ix)) such that:

(u+ t, 1) % (u, 0)

if and only if

U
(
wait|I0

)
− c (1) ≥ u

(
I0
)

where:

1. u
(
I0
)

= maxa∈A
∑

ω∈Ω µ
0 (ω)u (a, ω)

2. U
(
wait|I0

)
=
∑

I1∈P 1 µ0
(
I1
) [

max
{
U
(
wait|I1

)
− c (2) ;u

(
I1
)}
− u

(
I0
)]

1Note that substituting

u
(
I1) =

∑
ω∈I1

µ
(
ω|I1)u (a (I1) , ω) and

W
(
wait|I1) =

∑
ω∈Ω

µ
(
ω|I1)u (a (I2 (ω)

)
, ω
)

the marginal V
(
wait|I1

)
= W

(
wait|I1

)
− u

(
I1
)

becomes

V
(
wait|I1) =

∑
ω∈Ω

µ
(
ω|I1) [u (a (I2 (ω)

)
, ω
)
− u

(
a
(
I1) , ω)]

which is exactly as our one-step ahead value of information representation.
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3. U
(
wait|I1

)
=
∑

I2∈P 2 µ
(
I2|I1

)
u
(
I2
)

where

4. u
(
I2
)

= maxa∈A
∑

ω∈I2 µ
2 (ω|I2)u (a, ω)

a∗ (·) ∈ arg max
σ:Ω→A

P2-measurable

∑
ω∈Ω

µ1
(
ω|I1

)
u
(
a∗
(
I2 (ω)

)
, ω
)

1.2 Model of Reasoning

To allow the attitude towards reasoning of a fully rational forward looking agent, we need

to enrich the primitives of the baseline myopic/one-step ahead model considered in the

paper. In particular, if at s = 0 the agent bases his decision on whether or not to move

to s = 1 depends on whether he anticipates (possibly conditional on what he may learn

at s = 1) wanting to further continue his reasoning to s = 2, then at mental state s = 0

we must elicit not only his attitudes towards reasoning at s = 1, but also at s = 2.

Hence, the mental preferences at s = 0 now will be resented by a binary relation ·>0

over U × {0, 1, 2}. Similar to the paper, we will denote the projections over the three

components as ·>0
0, ·>1

0, and ·>2
0, respectively. The behavioral preferences �0 are about

whether to continue reasoning or not (possibly with incentives), and hence formally they

still are a binary relation over a subset of U×{0, 1}. As we will see, however, the reasoning

consistency criterion, connecting behavioral and reasoning preferences will be different, to

account for the forward looking attitude of the decision maker (assumed instead myopic

in the paper).

In a more general model with more than two periods, the space of binary relations

should be extended accordingly, to encompass as many indices as the agent’s foresight

accommodates in his decision. This would clearly complicate the analysis without adding

much to the concepts, and hence here we only focus on this three stage processes, with

two-steps ahead reasoning.

Under the maintained assumption that the reasoning ends at s = 2 at the latest, when

at state s = 1 the agent is just facing a one-step ahead problem. Hence, at this state

there is no distinction between myopic and forward looking attitude, and the foresight of

the agent reaosning is only one. Hence, at s = 1, the model of reasoning in the paper

needs no change. All the anlaysis that follows will thus focus on the representation of

the agent’s decision to reason at s = 0, which in this setting is the only state in which

the forward-looking criterion we want to illustrate kicks in. Having understood that this

entails the expansion of the space of preferences described above, in the following we only

list the axioms and properties needed on the ·>0 preferences to obtain the forward looking

representation.
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1.3 Properties at s = 0

1.3.1 Old Axioms and Necessary Extensions

The scope, cost-independence and continuity are extended to hold not only between 0 and

1, but also between 1 and 2:

Property 1 (Scope) 1. If u is constant in a, then (u, 0) ·>0 (u, 1) ·>0 (u, 2).

2. For x = 0, 1: If u − v is constant in a, then (u, x) ·>0 (u, x+ 1) if and only if

(v, x) ·>x (v, x+ 1).

Property 2 (Cost-Independence) For x = 0, 1: For any u, v that are constant in a,

and for any t ∈ R, (u+ t, x+ 1)
.
=0 (u, x) if and only if (v + t, x+ 1)

.
=0 (v, x)

Property 3 (Continuity) For x = 0, 1: For each u ∈ U , if there exists t ∈ R s.t.

(u+ t, x+ 1) ·>0 (u, x), then there exists t∗ ≤ t such that (u+ t∗, x+ 1)
.
=0 (u, x).

The monotonicity and archimedean axioms, which were assumed for both the 0 and

1-relations, now are also extended to the new component:

Property 4 (Monotonicity) For x = 0, 1, 2 : If u ≥ v, then u ·>x
0 v. If u >> v then

umx
0 v.

Property 5 (Archimedean) For each x = 0, 1, 2 and v, u, w ∈ U such that umx
0 vmx

0 w,

there exist 0 ≤ β ≤ α ≤ 1 such that αu+ (1− α)w mx
0 v mx

0 βu+ (1− β)w.

The consequentialism axiom concerned the way the agent evaluates the propect of not

reasoning further and choosing right away, and it remains unchanged:

Property 6 (Consequentialism) For any u: u
.
=0

0 u
0.

The Independence and no improving replacement axioms, which were only imposed for

the 1-preferences, are now also extended to the 2-preferences. This is obviously because

we also want to elicit beliefs (expected to be) held at both possible future states, as well

as extend the minimal notion of ”optimality”:

Property 7 (Independence) For each x = 1, 2: For all u, v, w ∈ U , u ·>x
0 v if and only

if αu+ (1− α)w ·>x
0 αv + (1− α)w for all α ∈ (0, 1).

Property 8 (No Improving Replacement) For each x = 1, 2: For any (u,E) and

s = 0 ∈ S(u,E), u ·>x
0 v for all a and v ∈ R (u, a).

The 1-0 consistency axiom remains the same. We will need to also introduce a new

consistency between 1 and 2, but this first requires setting up the axioms which ensure

the reasoning takes the form of an information filtration. We thus list the 1-0 consistency

here as it was, and postpone introducing the new one until further below.

Property 9 (1-0 Consistency) For any (u,E) and for s = 0 ∈ S(u,E), us ·>1
0 v

s for

all v ∈ R (u, as).
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1.3.2 Novel Axioms

The next axiom is not inherently required by a standard value of information repre-

sentation, but we add it nonetheless merely because it simplifies dealing with Bayesian

updating. The reason is that, in the representation, it ensures that the beliefs over future

understanding don’t attach zero ex-ante probability to any state of the world, and hence

all conditional probabilities are well-defined.

Property 10 (Full Support) For x = 1, 2: for any ω̂, ∃u ∈ U : u′ mx
0 u whenever u′ is

s.t. u′ (a, ω) = u (a, ω) for all ω 6= ω̂ and u′ (a, ω̂) > u (a, ω̂).

The next axiom ensures that, in the representation, the information acquisition is

partitional with respect to Ω.

Property 11 (Partitional Reasoning) Let u,u′ be s.t. ∃! (â, ω̂) : u (â, ω̂) 6= u′ (â, ω̂)

and v,v′ be s.t. ∃! (a′, ω̂) : v (a′, ω̂) 6= v′ (a′, ω̂) with a′ 6= â. Then:

u′ mx
0 u⇒ v′

.
=x

0 v.

Based on this axiom, for any x = 1, 2 and for any ω, there ∃!ax (ω) ∈ A : u′ mx
0 u

for u,u′ such that u (a′, ω′) = u′ (a′, ω′) for all (a′, ω′) 6= (ax (ω) , ω). We can thus define

an equivalence relation lx s.t.ω lx ω′ if and only if ax (ω) = ax (ω′), and let P x be

the partition of Ω induced by such an equivalence relation. Also define σx : Ω → A s.t.

σx (ω) = ax (ω) for every ω. By construction, strategy σx is P x-measurable.

Property 12 (Filtration) For any ω, ω′, ω l2 ω′ ⇒ ω l1 ω′.

This clearly implies that P2 is a finer partition than P1. Together with the above, this

further implies that if ω ∈suppµ2 (·|I2), then ω ∈suppµ1 (·|I1) for some I1 ∈ P1 : I2 ⊆ I1.

Or: suppµ2 (·|I2) ⊆suppµ1 (·|I1)

For any strategy σ : Ω→ A, and for any u ∈ U , let

uσ ∈ U : uσ (a, ω) = u (σ (ω) , ω)

Property 13 (Strong 2-1 Consistency) For any u, û ∈ U and for any P 1-measurable.σ :

Ω→ A, uσ ·>2
0 û

σ if and only if uσ ·>1
0 û

σ.

Finally, to accommodate a non-myopic agent, who takes into account his (expecta-

tions about his) future decision on whether to stop reasoning or not, we need to change

the Reasoning Consistency condition: in the baseline (myopic) model, the agent decides

whether or not to think more about u by comparing (u, 1) and (u, 0). A forward looking
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agent instead would take into account that, if he were to move to s = 1, he wouldn’t

necessarily make a choice at s = 1, but could also decide whether to think further or not.

Hence, the decision on whether to choose at s = 0 or postpone should be based taking into

account that moving to s = 1 may mean choosing at s = 1 in some states, and continue

thinking in others. The decision to reason should thus be based on the forward looking

transformation of u. We next formalize these ideas:

Reasoning Consistency: (u+ t, 1) �0 (u, 0) if and only if
(
uF + t, 1

)
·>0 (u, 0),

where uF is the forward looking transformation of u, defined as:

uF (a, ω) =

{
u
(
σ2 (ω) , ω

)
− c2 if ω ∈ Cont1

u (a, ω) otherwise

The set Cont1 in turn is defined as

Cont1 :=
{
ω ∈ Ω :

(
uI1(ω) + c21Ω\I1(ω), 2

)
m0

(
uI1(ω), 1

)}
,

where, for any I1 ∈ P1, uI1 is such that, for some ā ∈ A,

uI1 (a, ω) =

{
u (a, ω′) if ω ∈ I1

u (ā, ω′) if ω /∈ I1

Theorem 1 Under the properties above, there exists a filtration (P x)x=1,2 (where P x is

a partition of Ω, and P 2 is a refinement of P 1), beliefs µ0 ∈ ∆ (Ω), conditional beliefs

(µx (·|Ix))Ix∈Px s.t. µx (·|Ix) ∈ ∆ (Ω) which are consistent with Bayesian updating (i.e.,

µ0 (ω) = µx (ω|Ix) · µ0 (Ix)) such that:

(u+ t, 1) % (u, 0)

if and only if

U
(
wait|I0

)
− c (1) ≥ u

(
I0
)

where:

1. u
(
I0
)

= maxa∈A
∑

ω∈Ω µ
0 (ω)u (a, ω)

2. U
(
wait|I0

)
=
∑

I1∈P 1 µ0
(
I1
) [

max
{
U
(
wait|I1

)
− c (2) ;u

(
I1
)}
− u

(
I0
)]

3. U
(
wait|I1

)
=
∑

I2∈P 2 µ
(
I2|I1

)
u
(
I2
)

where

4. u
(
I2
)

= maxa∈A
∑

ω∈I2 µ
2 (ω|I2)u (a, ω)

a∗ (·) ∈ arg max
σ:Ω→A

P2-measurable

∑
ω∈Ω

µ1
(
ω|I1

)
u
(
a∗
(
I2 (ω)

)
, ω
)
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Appendix

A Proofs

The same arguments as in the baseline proofs, extended to the 2-preferences above, it

follows that Old Axioms, adequately extended to the 2-preferences, imply that:

Lemma 1 For x = 0, 1, 2, there exists W x (·; 0) : U → R which represents ·>x
0 , and takes

the following form:

W x (u; 0) =
∑
a∈A

p0,x (a)
∑
ω∈Ω

µa,x (ω) · u (a∗ (µ) , ω) for x = 1, 2 (1)

W 0 (u; 0) = W 0
(
u0
)

and a0 ∈ arg max
a∈A

∑
ω∈Ω

µ̂0 (ω) · u (a, ω) where µ̂0 (ω) =
∑
a∈A

p0,1 (a) · µa,1 (ω)

(2)

Moreover, the costs c (1) and c (2) are also identified by the standard calibration argu-

ment, using the the indifference conditions
(
uk + c (1) , 1

) .
=0

(
uk, 0

)
and

(
uk + c (2) , 2

) .
=0(

uk, 1
)
, with c (k) =∞ whenever the indifference is not satisfied by any finite t.

In the following, we will assume that mental preferences are such that both c (1) and

c (2) are finite, since in the opposite case the forward looking representation would trivially

coincide with the myopic one in the paper.

Applying the Partition axiom and Property ?? to (??) implies that, respectively

suppµa,x ∩ suppµâ,x = ∅ whenever a 6= â; and⋃
a∈A

suppµa,x = Ω

in that representation. Hence, identifying the cells in the partition P x with the sup-

ports of the (µa,x)a∈A, we can write (??) and (??) as

W x (u; 0) =
∑
Ix∈Px

p0,x (Ix)
∑
ω∈Ix

µx (ω|Ix) · u (σx (ω) , ω) for x = 1, 2 and (3)

where ∀Ix ∈ Px, ∀ω̂ ∈ Ix, σx (ω̂) ∈ arg max
a∈A

∑
ω∈Ix

µx (ω|Ix) · u (a, ω) (4)

and a0 ∈ arg max
a∈A

∑
ω∈Ω

µ̂0 (ω) · u (a, ω) where µ̂0 (ω) =
∑
I1∈P 1

p0,1 (I1) · µ1 (ω|I1) (5)

Lemma 2 The probabilities defined above are Bayes-consistent in the sense that, for any

ω: ∑
I1∈P1

p0,1 (I1)µ1 (ω|I1) =
∑
I1∈P1

p0,2 (I1)
∑
I2⊆I1

p0,2 (I2|I1) · µ2 (ω|I2) ,
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Proof. Fix u, û and P1-measurable σ : Ω→ A and such that uσ
.
=1

0 û
σ (existence of such

functions is ensured by the Archimedean axiom). By the consistency axiom, uσ
.
=2

0 û
σ,

and by the representations above we have∑
I1∈P1

p0,1 (I1)µ1 (ω|I1)u (σ (I1) , ω) =
∑
I1∈P1

p0,1 (I1)µ1 (ω|I1) û (σ (I1) , ω)

and
∑
I2∈P 2

p0,2 (I2)
∑
ω∈I2

µ2 (ω|I2) · u (σ (I1) , ω) =
∑
I2∈P 2

p0,2 (I2)
∑
ω∈I2

µ2 (ω|I2) · û (σ (I1) , ω)

By contradiction, suppose that the equality above fails for some ω̂, i.e. (wlog)∑
I1∈P1

p0,1 (I1)µ1 (ω̂|I1) >
∑
I1∈P1

p0,2 (I1)
∑
I2⊆I1

p0,2 (I2|I1) · µ2 (ω̂|I2) .

Then, there exists ω′ such that∑
I1∈P1

p0,1 (I1)µ1
(
ω′|I1

)
<
∑
I1∈P1

p0,2 (I1)
∑
I2⊆I1

p0,2 (I2|I1) · µ2
(
ω′|I2

)
.

Let ũ be such that

ũ (a, ω) =


u (a, ω̂) + ε if ω = ω̂

u (a, ω′)−
ε·
∑

I1∈P1
p0,1(I1)µ1(ω̂|I1)∑

I1∈P1
p0,1(I1)µ1(ω′|I1)

if ω = ω′

u (a, ω) otherwise

By construction,∑
I1∈P1

p0,1 (I1)µ1 (ω|I1) ũ (σ (I1) , ω) =
∑
I1∈P1

p0,1 (I1)µ1 (ω|I1) û (σ (I1) , ω)

and
∑
I2∈P 2

p0,2 (I2)
∑
ω∈I2

µ2 (ω|I2) · u (σ (I1) , ω) >
∑
I2∈P 2

p0,2 (I2)
∑
ω∈I2

µ2 (ω|I2) · û (σ (I1) , ω) ,

and hence ũ
.
=1

0 û
σ and ũm2

0 û
σ, contradicting the axiom. The other direction is immediate.

In light of the previous axiom, from now on we relabel the p0,1 and p0,2 probabilities

in (??)-(??) so that

W 1 (u) =
∑
I1∈P 1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) · u
(
σ1 (I1) , ω

)
, and

W 2 (u) =
∑
I2∈P2

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (I2) , ω

)
.

9



Towards the representaiton, it will also be useful to relabel terms in W 2 as follows:

W 2 (u; 0) =
∑
I2∈P 2

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(6)

=
∑
I1∈P1

∑
I2⊆I1

µ0 (I2)


︸ ︷︷ ︸

=:p0,2(I1)

∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(7)

:=
∑
I1∈P1

p0,2 (I1)

∑
I2⊆I1

p0,2 (I2)

p0,2 (I1)︸ ︷︷ ︸
=:p0,2(I2|I1)

∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(8)

:=
∑
I1∈P1

p0,2 (I1)
∑
I2⊆I1

p0,2 (I2|I1)
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
︸ ︷︷ ︸

=:W 2(u|I1)

(9)

:=
∑
I1∈P1

p0,2 (I1) ·W 2 (u|I1) (10)

where ∀I2 ∈ P2, ∀ω̂ ∈ I2, σ2 (ω̂) ∈ arg max
a∈A

∑
ω∈I2

µ2 (ω|I2) · u (a, ω) (11)

Lemma 3 For any x = 0, 1, and for any u, v ∈ U , (v, x+ 1) ·>0 (u, x) if and only if

W x+1 (v) ≥W x (u) + c (x+ 1).

Proof. We start with the case x = 0. Let v′ be such that (v′, 1)
.
=0 (u, 0), then:

(
v′, 1

) .
=0 (u, 0)

.
=0

(
uk, 0

)
.
=0

(
uk + c (1) , 1

)
,

where the second indifference follows from the consequentialism axiom, and the third from

the definition of c (1). By transitivity, (v′, 1)
.
=0

(
uk + c (1) , 1

)
, and by the representation

W 1 (v′) = W 1
(
uk + c (1)

)
. Then,

W 1
(
v′
)

= W 1
(
uk + c (1)

)
= W 1

(
uk
)

+ c (1)

= W 0
(
uk
)

+ c (1)

= W 0 (u) + c (1)

where the second equality follows from (??), the third from 1-0-Consistency (which implies

W 0
(
uk
)

= W 1
(
uk
)
), and the fourth again from (??). Finally, (v, 1) ·>0 (u, 0) if and only

if (v, 1) ·>0 (v′, 1), and hence if and only if W 1 (v) ≥W 1 (v′) = W 0 (u) + c (1).

For x = 2, let (v, 2) ·>0 (u, 1). By the Archimedean property, there exists u′ constant

10



in a such that (u′, 1)
.
=0 (u, 1), and v′ (if c (2) <∞) such that (v′, 2)

.
=0 (u′, 1). Then,

(
v′, 2

) .
=0

(
u′, 1

) .
=0

(
u′ + c (2) , 2

)
,

where the second indifference follows from the definition of c (2). By transitivity, (v′, 2)
.
=0

(u′ + c (2) , 2), and by the representation W 2 (v′) = W 2 (u′ + c (2)). Then,

W 2
(
v′
)

= W 2
(
u′ + c (2)

)
= W 2

(
u′
)

+ c (2)

= W 1
(
u′
)

+ c (2)

= W 1 (u) + c (2)

where the second equality follows from (??), the the third from 2-1-Consistency, and the

fourth from the representation and (u′, 1)
.
=0 (u, 1). Finally, (v, 2) ·>0 (u, 1) if and only if

(v, 2) ·>0 (v′, 2), and hence if and only if W 2 (v) ≥W 2 (v′) = W 1 (u) + c (2).

Lemma 4 I1 ⊆ Cont1 if and only if
∑

I2∈P 2 µ
(
I2|I1

)
u
(
I2
)
− c (2) > u

(
I1
)

Proof. By definition, I1 ⊆ Cont1 if and only if
(
uI1 + c21Ω\I1 , 2

)
m0

(
uI1(ω), 1

)
, and from

the lemma above this holds if and only if W 2
(
uI1(ω) + c21Ω\I1(ω)

)
> W 1 (uI1) + c (2), i.e.

W 1 (uI1) =
∑
I1∈P 1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) · uI1
(
σ1 (I1) , ω

)
(by def. of uI1) = µ0 (I1)

∑
ω∈I1

µ1 (ω|I1) · u
(
σ1 (I1) , ω

)
+
∑
I′1∈P 1

µ0
(
I ′1
) ∑
ω∈I′1

µ1
(
ω|I ′1

)
· u (ā, ω)

(by def. of u (I1) ) = µ0 (I1) · u (I1)

+
∑
I′1∈P 1

µ0
(
I ′1
) ∑
ω∈I′1

µ1
(
ω|I ′1

)
· u (ā, ω)

W 2
(
uI1(ω) + c21Ω\I1(ω)

)
=
∑
I2∈P2

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · uI1
(
σ2 (I2) , ω

)
(by def. of uI1) =

∑
I2⊆I1

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (I2) , ω

)
+

∑
I2:I2∩I1=∅

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · [u (ā, ω) + c (2)]

(by def. of u (I2) ) = µ0 (I1)
∑
I2⊆I1

µ0 (I2|I1) · u (I2)

+
∑
I′1 6=I1

µ0 (I1)
∑
I2⊆I′1

µ0 (I2)
∑
ω∈I2

µ2 (ω|I2) · [u (ā, ω) + c (2)]

11



Hence,W 2
(
uI1(ω) + c21Ω\I1(ω)

)
> W 1

0 (uI1) + c (2) if and only if

µ0 (I1)
∑
I2⊆I1

µ0 (I2|I1) · u (I2) +
∑
I′1 6=I1

µ0 (I1)
∑
I2⊆I′1

µ0 (I2|I1)
∑
ω∈I2

µ2 (ω|I2) · [u (ā, ω) + c (2)]

> µ0 (I1) · u (I1) +
∑
I′1∈P 1

µ0
(
I ′1
) ∑
ω∈I′1

µ1
(
ω|I ′1

)
· u (ā, ω) + c (2)

⇔ µ0 (I1)
∑
I2⊆I1

µ0 (I2|I1) · u (I2) +
(
1− µ0 (I1)

)
· c (2) > µ0 (I1) · u (I1) + c (2)

⇔ µ0 (I1)
∑
I2⊆I1

µ0 (I2|I1) · u (I2) > µ0 (I1) · [u (I1) + c (2)]

⇔
∑
I2⊆I1

µ0 (I2|I1) · u (I2) > u (I1) + c (2) .

Lemma 5
(
uF + t, 1

)
·>0 (u, 0) if and only if Representation

Proof. By the previous Lemma (part x = 0),
(
uF + t, 1

)
·>0 (u, 0) if and only if

12



W 1
(
uF
)
≥W 0 (u) + c (1). Using (??),

W 1
(
uF
)

=
∑
I1∈P 1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) · uF
(
σ1 (I1) , ω

)

(by def of uF ) =


∑

I1∈P 1:
I1⊆Cont1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) ·
[
u
(
σ2 (ω) , ω

)
− c2

]
+


∑

I1∈P 1:
I1⊆Ω\Cont1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) · u
(
σ1 (I1) , ω

)
=


∑

I1∈P 1:
I1⊆Cont

µ0
(
I1
) ∑

I2∈P 2

µ
(
I2|I1

) ∑
ω∈I2

µ2 (ω|I2) ·
[
u
(
σ2 (ω) , ω

)
− c2

]


+


∑

I1∈P 1:
I1⊆Ω\Cont1

µ0
(
I1
) ∑
ω∈I1

µ1 (ω|I1) · u
(
σ1 (I1) , ω

)
(by def of u

(
I2
)

and u
(
I1
)

) =


∑

I1∈P 1:
I1⊆Cont

µ0
(
I1
) ∑

I2∈P 2

µ
(
I2|I1

)
u
(
I2
)
− c (2)




+


∑

I1∈P 1:
I1⊆Ω\Cont1

µ0
(
I1
)
u
(
I1
)

(by previous Lemma) =
∑
I1∈P 1

µ0
(
I1
)
·max

 ∑
I2∈P 2

µ
(
I2|I1

)
u
(
I2
)
− c (2) ;u

(
I1
)

13



Proof.

W 2 (u; 0) =
∑
I2∈P 2

p0,2
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(12)

=
∑
I1∈P1

∑
I2⊆I1

p0,2 (I2)


︸ ︷︷ ︸

=:p0,2(I1)

∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(13)

:=
∑
I1∈P1

p0,2 (I1)

∑
I2⊆I1

p0,2 (I2)

p0,2 (I1)︸ ︷︷ ︸
=:p0,2(I2|I1)

∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
(14)

:=
∑
I1∈P1

p0,2 (I1)
∑
I2⊆I1

p0,2 (I2|I1)
∑
ω∈I2

µ2 (ω|I2) · u
(
σ2 (ω) , ω

)
︸ ︷︷ ︸

=:W 2(u|I1)

(15)

:=
∑
I1∈P1

p0,2 (I1) ·W 2 (u|I1) (16)

where ∀I2 ∈ P2, ∀ω̂ ∈ I2, σ2 (ω̂) ∈ arg max
a∈A

∑
ω∈I2

µ2 (ω|I2) · u (a, ω) (17)
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