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Abstract

We study the problem of a seller (e.g. a bank) who is privately informed about the

quality of her asset and needs to raise funds from uninformed buyers (e.g. investors)

by issuing securities backed by her asset cash flows. In our setting, buyers post menus

of contracts to screen the seller, but the seller cannot commit to trade with only one

buyer, i.e., markets are non-exclusive. Non-exclusive markets behave very differently

from exclusive ones: (i) separating contracts are never part of equilibrium; (ii) mispricing

of claims is always larger than in exclusive markets; (iii) there is always a semi-pooling

equilibrium where all sellers issue the same debt contract priced at average-valuation,

and sellers of low -quality assets issue remaining cash flows at low -valuation; (iv) market

liquidity can be higher or lower than in exclusive markets, but (v) the average quality of

originated assets is always lower. Our model’s predictions are consistent with empirical

evidence on issuance and pricing of mortgage-backed securities, and we use the theory to

evaluate recent reforms aimed at enhancing transparency and exclusivity in markets.
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1 Introduction

The question of how markets function in the presence of information asymmetries has been

central in economics and finance since the seminal work of Akerlof (1970), who showed that

information asymmetries between sellers and buyers can give rise to equilibrium multiplicity

and market failures. In the study of asset markets, a large literature followed to explore the role

of security design – the ability of sellers to optimally design and issue securities backed by asset

cash flows – in ameliorating such information frictions. From it, we learned that by retaining

exposure to an asset’s cash flows a seller may be able to credibly convey to buyers information

about her asset quality (e.g. Leland and Pyle (1977); DeMarzo and Duffie (1999)); and that

standard debt emerges as the optimal security design since it minimizes the distortions due

to adverse selection (e.g. Gorton and Pennacchi (1990); Nachman and Noe (1994); DeMarzo

and Duffie (1999); Biais and Mariotti (2005); DeMarzo (2005); Daley et al. (2020b)). This

literature, however, has mostly focused on exclusive contracting, i.e., environments where the

buyer of claims can ensure that the seller does not engage in trade with other buyers.1 In many

settings of interest, however, exclusivity may be difficult to enforce.

Exclusivity effectively requires that the seller is able to commit to trade with only one buyer,

even if gains from trade arise with other buyers; or, alternatively, that the buyers are able to

observe and contract upon the entire set of the seller’s trades. In the context of modern financial

markets, however, these requirements are unlikely to be fulfilled: there is little information about

agents’ trades, and the complexity of certain financial products makes it difficult for potential

buyers to understand a seller’s overall asset positions and resulting risk-exposures.2 This has

been of particular concern to policymakers in the US and Europe, who are in the process of

implementing policies aimed at enhancing exclusivity in financial markets.

Motivated by these observations, we revisit the classic problem of a seller who is privately

informed about the quality of her asset and raises funds from uninformed buyers by issuing se-

curities backed by her asset cash flows. We consider a screening game, where buyers post menus

of contracts (securities and prices) to be accepted by the seller, but where the seller cannot

commit to trade with only one buyer, i.e., markets are non-exclusive. We use our framework to

study the implications of non-exclusivity for equilibrium allocations, as characterized by issued

securities and their prices, which we show are consistent with recent empirical evidence from

markets for mortgage-backed securities. We then investigate the theory’s normative implica-

tions and relate our findings to proposed policies and reforms in the aftermath of the global

financial crisis.

1Biais and Mariotti (2005) consider a non-exclusive market setting but where quantities of a pre-designed
security are traded.

2This was first observed and analyzed by Jaynes (1978) in the context of insurance markets.
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Our setup is as follows. There is a risk-neutral seller endowed with an asset that pays random

cash flow, X, in the future; and, there is a large number of competitive, risk-neutral, deep-pocket

buyers. Gains from trade arise because the seller is more impatient than the buyers. The seller,

however, is privately informed about the quality of her asset, which could be high- or low -

quality, and where higher cash flows are more likely to be obtained from a high-quality asset.

Buyers compete by posting menus of bilateral contracts, where each contract is a security-price

pair (F, p), where F maps cash flow X to a payment F (X) to be received by the buyer in the

future. The seller can accept contracts from multiple buyers but is subject to limited liability,

i.e., all issued securities must be fully backed by asset cash flows. For technical reasons, in

order to ensure that an equilibrium always exists, we allow each buyer to withdraw his menu at

small cost after observing the initial menu offers.3 Our equilibrium notion is perfect Bayesian.

Our setting features two frictions: the seller is privately informed about her asset quality

and the securities market is non-exclusive. As a preliminary step, we consider two benchmark

settings in which we shut down each of these frictions in turn. First, we study the full informa-

tion benchmark in which the asset quality is public information but markets are non-exclusive.

Here, we show that the first-best allocations are attained, as all asset cash flows are transferred

from the seller to the buyers, i.e., equity is the optimal security design and it is priced at its

full information expected value. By implication, our findings will be due to the interaction of

asymmetric information with non-exclusivity.

Second, we study an exclusive markets benchmark in which the seller is restricted to trade

with at most one buyer.4 We show that an equilibrium exists, is unique, and can be separating

or feature some cross-subsidization depending on the buyers’ prior belief that the seller has

a high-quality asset, i.e., that she is a high-type. When the belief is below a threshold, the

equilibrium is separating: the high-type seller issues a debt security priced at high-valuation

and retains the remaining cash flows, whereas the low -type seller issues equity priced at low -

valuation. In contrast, when the belief is above the threshold, the high-type seller continues to

issue a debt security, but with higher face value and priced below high-valuation, whereas the

low -type seller continues to issue equity but priced above low -valuation.5

We then turn to our main setup and show that, in the presence of asymmetric information,

non-exclusive markets behave very differently from exclusive ones: (i) separating contracts are

never part of equilibrium; (ii) mispricing of claims is larger than in exclusive markets; (iii) there

is always a semi-pooling equilibrium in the sense that some, but not all, traded contracts are

3This approach is in the spirit of the seminal papers by Wilson (1977) and Miyazaki (1977), and the more
recent work by Netzer and Scheuer (2014) and Mimra and Wambach (2019).

4This restriction effectively captures the seller’s ability to commit not to trade with other buyers.
5Buyers’ ability to withdraw loss-making menus allows us to support this cross-subsidizing equilibrium, as

“cream-skimming” deviations are rendered unprofitable.
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accepted by both seller types; (iv) market liquidity (i.e., realized gains trade) can be higher

or lower than in exclusive markets, but (v) the average quality of originated assets (which is

endogenized in an extension) is always lower.

In non-exclusive markets, there is always cross-subsidization from the high- to the low -type

seller. Furthermore, such cross-subsidization, and the resulting mispricing of claims, is always

larger than in exclusive markets. One might intuitively think that, as cash flow retention is

more costly for the low - than for the high-type, it should be possible for buyers to separate

the high-type seller by offering her a contract that requires enough cash flow retention for it to

be unattractive for the low -type. When markets are non-exclusive, however, retention of cash

flows cannot be enforced: there is always a profitable deviation for a buyer to offer to buy the

retention implied by the contract of the high-type seller, allowing the low -type to accept the

contract meant for the high-type without having to retain the remaining cash flows. Standard

debt then emerges as the optimal security design for the high-type seller, as it minimizes the

mispricing she faces due to adverse selection.

Moreover, there is always an equilibrium where both seller types issue the same debt security

(senior tranche). Moreover, while the high-type optimally chooses to retain (i.e., not sell) her

remaining cash flows (junior tranche), the low -type sells them to a distinct buyer. We refer to

this as the star equilibrium, and we show that it is unique among all candidate equilibria in

which the seller can issue any set of cash flows at (or above) low -valuation. In it, the senior

tranche is mispriced, in the sense that its price reflects the average rather than the true asset

quality; whereas the junior tranche is priced at its true, low -valuation.

The star equilibrium is supported by the presence of latent contracts, i.e., contracts that

are posted by some buyers but not traded in equilibrium, which price all feasible securities at

low -valuation. The role of such contracts is to allow the low -type seller to exploit all gains

from trade with buyers, on and off equilibrium path. Intuitively, consider a “cream-skimming”

deviation that attracts the high-type from her equilibrium contract. Then, the menu containing

the senior tranche that was originally issued by both seller types must be withdrawn, as it would

now be loss-making. But then, the low -type would also find it optimal to accept the deviating

contract together with a collection of latent contracts from other buyers, rendering the deviation

unprofitable.6

Our theory’s predictions are consistent with evidence from markets where exclusivity is diffi-

cult to enforce. First, we provide a new rationale for the practice of tranching underlying cash

flows that are sold separately in markets. Indeed, within the context of markets for commercial

mortgage-backed securities (CMBS), where tranching is common practice, Ashcraft, Gooriah,

6The role of latent contracts in supporting equilibria in non-exclusive markets was first analyzed in Arnott
and Stiglitz (1991) and Attar et al. (2011) in environments with moral hazard and adverse selection, respectively.
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and Kermani (2019) argue that complex products like collateralized debt obligations (CDOs)

enabled informed parties in the securitization pipeline to reduce their cash flow retention in a

way not observable to other market participants, suggesting that exclusivity is hard to enforce.

Second, and in sharp contrast to conventional models, our theory predicts that the amount of

cash flows retained by a seller should not predict differential pricing in the market for her senior

tranches, but that it should predict differential quality of these tranches. This is consistent with

findings in Ashcraft et al. (2019) that, in the CMBS market, initially retained cash flows sold

into CDOs in the twelve months following a transaction are not correlated with the prices of the

more senior tranches, though they do predict a higher probability of default of these tranches.

After the 2008-09 financial crisis, a number of reforms were discussed in the US, which would

either directly or indirectly enhance exclusivity in contracting. For instance, the Dodd-Frank

Act explicitly prohibits the sellers of asset-backed securities to engage in trades that have any

material conflicts of interest with the investors of trades completed within the previous year.7

A natural obstacle to the enforcement of such rules is the complexity of balance sheets of

financial institutions and the opacity of markets in which they can trade. To address this,

a number of complementary rules were implemented, primarily consisting of more stringent

information disclosure requirements combined with the relocation of trading of certain securities

from opaque over-the-counter markets to more transparent platforms. Our framework provides

a natural laboratory within which one can evaluate the effects of such interventions.

First, we show that when the distribution of asset qualities in the market is exogenous (as in

our baseline setting) non-exclusive markets increase welfare vis-à-vis exclusive markets if and

only if they generate higher market liquidity (i.e., more trade), which only occurs when the

average asset quality is sufficiently high. This finding contrasts with the by-now conventional

“ignorance is bliss” view of Dang, Gorton, and Holmström (2010) and Dang, Gorton, Holm-

ström, and Ordonez (2017), according to which market liquidity and efficiency are maximized

through complexity of assets and opacity of issuers’ balance sheets. Our model instead provides

a more nuanced view: to the extent that complexity/opacity inhibits exclusive contracting, its

effects on liquidity and efficiency will depend on the average quality of assets in the market.

Second, in some applications (e.g. loan origination), both the liquidity of markets and the

manner by which claims are priced may impact efficiency by distorting investment incentives. To

address this, we consider a simple extension where we allow the seller (who is now also the asset

7Statement at Open Meeting: Asset-Backed Securities Disclosure and Registration, by Commissioner Kara
M. Stein on Aug. 27, 2014 states that “Section 621 prohibits an underwriter, placement agent, initial purchaser,
sponsor, or any affiliate or subsidiary of any such entity, of an asset-backed security from engaging in any
transaction that would involve or result in any material conflict of interest with respect to any investor in a
transaction arising out of such activity for a period of one year after the date of the first closing of the sale of
the asset-backed security.”
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originator) to exert costly, unobservable effort to increase the likelihood of having a high-quality

asset. Here, we uncover a robust result: the average quality of originated assets is always lower

with non-exclusive markets than with exclusive markets, even when they implement higher

retention levels. This is due to the fact that non-exclusive markets always feature a greater

mispricing of claims than exclusive markets. Taking the above results together, we conclude

that non-exclusive markets increase welfare vis-à-vis exclusive markets whenever the potential

(though not guaranteed) gains from increased market liquidity more than compensate for the

(guaranteed) fall in asset quality. Thus, our results suggest that complexity/opacity is desirable

only when efficiency gains are mostly driven by reallocation of assets in markets and originators

need not be too incentivized to produce high-quality assets.

Our paper naturally relates to the literature that studies non-exclusive competition in markets

plagued with adverse selection (e.g. Pauly (1974); Jaynes (1978); Riley (1979); Hellwig (1988);

Bisin and Gottardi (1999, 2003); Santos and Scheinkman (2001b); Ales and Maziero (2009,

2016); Attar et al. (2011, 2014); Kurlat (2016); Stiglitz et al. (2020).8 We contribute to this

literature by studying the implication of non-exclusivity for the optimal design and pricing

of asset-backed securities. Within this literature, the paper that is closest to ours is Attar

et al. (2011), who study non-exclusive competition in the market for lemons. In their model

the seller can only accept securities of the form F (X) = q · X for some q ∈ [0, 1], so there

is no room to study the role of security design. There are two important differences in terms

of results from Attar et al. (2011). First, due to optimal security design, we do not obtain

Akerlof-like outcomes: there is always a non-trivial debt security that the high-type trades at

average valuation and there is never a market collapse. Second, in our setting, the equilibrium

demand for securities must generally be non-linear, in the sense that buyers must stand ready

to buy one set of securities at average-valuation and another set at low -valuation, as in Jaynes

(1978) and Stiglitz et al. (2020). This feature yields novel predictions regarding issuance and

pricing of asset-backed securities which are in line with empirical evidence.

While the literature on security design that we mentioned above has mostly focused on

exclusive contracting, there are some exemptions. Biais and Mariotti (2005) study the problem

of a seller who designs a security ex-ante, before learning private information, and then ex-post

trades quantities of that security in non-exclusive markets. They show that when markets

are competitive, debt is the optimal security design that allows for pooling of all types. In

contrast, in our setting, the securities are designed ex-post, and thus the seller is able to

trade different securities with different buyers. More closely related to our paper, Li (2019)

studies the optimal design of securities that are traded by informed parties in a competitive

8A rich survey of the literature that explores the issue of non-existence of equilibrium in competitive insur-
ance markets can be found in Mimra and Wambach (2014).
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and segmented search market. In her setting, a seller can access multiple markets but the

buyers in one market cannot observe the trades in other markets. Thus, while segmentation

allows for non-exclusive contracting, which induces the seller to tranche her asset cash flows,

separation is still possible, as the seller of a given security can sort into markets with different

degrees of market tightness/liquidity.

Finally, on the normative front, we contribute to a growing literature that studies the costs

and benefits of transparency in financial markets plagued with adverse selection (e.g. Chemla

and Hennessy (2014); Asriyan, Fuchs, and Green (2017, 2019a); Daley, Green, and Vanasco

(2020a)). This literature primarily focuses on how transparency affects the agents’ ability to

obtain additional information about the seller’s asset quality (e.g. by observing signals). In

contrast, we focus on the implications of transparency through its effects on exclusivity; that

is, through the ability of an agent to observe and contract upon the set of trades that his

counterparty enters into with others.

Our paper is organized as follows. In Section 2, we present the setup of our model, and

we establish two useful benchmarks against which we compare our results. In Section 3, we

characterize the equilibrium of our model. We consider the model’s normative implications,

which we relate to policy discussions, in Section 4; and its positive predictions, which we relate

to empirical facts, in Section 5. All proof are relegated to the Appendix.

2 The Model

There are two dates, indexed by t ∈ {1, 2}. There is an asset seller (e.g. bank) and a large

number N of “deep pocket” buyers (e.g. investors). The seller’s preferences are:

US = cS1 + δ · cS2 , (1)

where δ ∈ (0, 1) and cSt is the cash flow she receives in period t. A buyer’s preferences are:

UB = cB1 + cB2 , (2)

where cBt is the cash flow he receives in period t. Thus, gains from trade between the seller and

the buyers arise due to heterogeneity in discount factors.9

9The assumption that the seller is more impatient than the buyers is a common modeling device to rationalize
gains from trade (e.g. DeMarzo and Duffie (1999); Biais and Mariotti (2005); DeMarzo (2005); Daley et al.
(2020a,b)). In practice, there are many reasons why an asset owner might want to raise funds by selling asset cash
flows. For example, a bank that is financially constrained and has new profitable investment opportunities may
benefit from selling a fraction of its loans to finance these new opportunities. Alternatively, asset securitization
may allow loan originators to share-risks with market investors.
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The seller is endowed with an asset that delivers a random cash flow X in period t = 2. The

asset can be of high- or low -quality, denoted by θ ∈ {H,L}, and its cash flow is distributed

according to cdf Gθ. We assume that Gθ has an associated pdf gθ with full support on the

interval
[
0, X̄

]
for some X̄ > 0. The pdfs are in turn related by the monotone likelihood ratio

property (MLRP); that is, gH(x)
gL(x)

is increasing in x. In the spirit of Akerlof (1970), asymmetric

information arises because the seller knows the quality θ of her asset, whereas the buyers are

uninformed and have a prior belief µ0 = P(θ = H) ∈ (0, 1).

To realize gains from trade, the seller raises funds at t = 1 by issuing securities fully backed

by her asset cash flows to buyers. Formally, a security is a function F :
[
0, X̄

]
→ R and its

payoff is denoted by F (x) when the realized cash flow is X = x. Let F be the collection of

securities issued by the seller, then we say that this collection is feasible if:

• (Limited Liability - LL)
∑

F∈F F (x) ≤ x and F (x) ≥ 0 for all F ∈ F .

• (Weak Monotonicity - WM) F (x) and x−∑F∈F F (x) are weakly increasing in x.

We denote the set of all feasible (collections of) securities by Φ. Conditions (LL) and (WM)

are generalizations of the limited liability and the monotonicity constraints often used in the

asset-backed security design literature (e.g. Nachman and Noe (1994); DeMarzo and Duffie

(1999); Biais and Mariotti (2005)) to a setting with multiple securities, and their role is to

ensure tractability. We interpret these feasibility conditions as technological.

The securities market is non-exclusive in the sense that trade between the seller and the

buyers is bilateral, and a buyer cannot exclude the seller from trading with other buyers.

Formally, we study the following three-stage screening game:

• Stage 1: buyers simultaneously post menus of contracts, where a menu M posted by a

buyer is a (potentially infinite) set of contracts or security-price pairs (F, p).

• Stage 2: buyers observe all posted menus and simultaneously decide whether to remain in

the market or to become inactive by withdrawing their menus at infinitesimal cost κ > 0.

• Stage 3: seller observes all active menus and accepts at most one contract from each

menu, subject to the accepted collection of securities being feasible.10

Contracts are executed at the end of the game. Namely, if the seller has accepted contract

(F, p) from a buyer at t = 1, then the buyer makes a transfer p to the seller at t = 1 and in

exchange receives F (x) at t = 2 when the realized cash flow is X = x.

10That the seller accepts at most one contract from each menu is without loss of generality.

7



The following remarks are in order. First, our modeling approach of allowing buyers to

withdraw menus is in the spirit of Wilson (1977) and Miyazaki (1977), and it simply ensures

existence of equilibrium (see Section 3 for a detailed discussion).11 Second, our (LL) condi-

tion, by restricting the seller to issue an asset-backed security, helps us isolate the mechanism

arising due to asymmetric information from other mechanisms that may also be at play in

non-exclusive settings, e.g. dilution.12 For the interested reader, we provide a microfoundation

that rationalizes our feasibility conditions in a non-exclusive market setting in Appendix C.

Payoffs. At Stage 3, the θ-type seller decides which contracts to accept from the active

menus. Let C denote the set of contracts chosen by the seller, where we set C = {(0, 0)} if the

seller chooses not to trade. Then, her payoff at Stage 3 is:

uθ ≡
∑

(F,p)∈C

p+ δ · Eθ [X − F (X)] , (3)

where Eθ[·] is the expectations operator conditional on the seller’s type θ.

At Stage 2, after observing all menus ∪jMj posted at Stage 1, buyer i decides whether to

withdraw his menu Mi. Let µi2(F, p) denote buyer i’s belief at Stage 2 that the seller is an

H-type if she were to accept contract (F, p) ∈Mi. Buyer i’s expected payoff at Stage 2 is:

(1− wi) ·
∑

(F,p)∈Mi

P
(
seller accepts (F, p)| ∪jMj

)
·
(
−p+ Eµi2 [F (X)]

)
− wi · κ, (4)

where wi ∈ {0, 1}, wi = 1 if and only if buyer i withdraws, and Eµ[F (X)] ≡ µ (F, p)·EH [F (X)]+

(1− µ (F, p)) · EL[F (X)] for any (F, p) ∈Mi accepted with positive probability by the seller.

At Stage 1, buyer i decides which contracts to post in his menu. By inspection of the payoff

in (4), it is immediate that buyer i will never post a menu that he expects to withdraw at Stage

2, since he can always ensure a payoff of zero by posting only the trivial contract (0, 0). Let

µi1(F, p) denote buyer i’s belief at Stage 1 that the seller is an H-type if she were to accept

contract (F, p) ∈Mi. Buyer i’s payoff at Stage 1 is:∑
(F,p)∈Mi

P (seller accepts (F, p)) ·
(
−p+ Eµi1 [F (X)]

)
. (5)

11That there is a small cost of menu withdrawal acts as a refinement of equilibrium, as in Netzer and Scheuer
(2014). Such withdrawal cost can be interpreted directly as communication/administrative cost or indirectly as
the loss of reputation associated with withdrawal of contracts posted in a marketplace.

12A large literature has focused on the problem of dilution in financial markets, which arises when a firm is
able to dilute existing claims by issuing new claims on the same set of cash flows (e.g. Parlour and Rajan (2001);
Santos and Scheinkman (2001a,b); DeMarzo and He (2016); Admati, DeMarzo, Hellwig, and Pfleiderer (2018);
Donaldson, Gromb, and Piacentino (2019)). Instead, we focus on asset sales by supposing that the transfer of
asset cash flows in spot markets can be easily verified.
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We study pure strategy perfect Bayesian Nash equilibria (PBE) of the above screening game,

which has the following implications. First, the seller’s acceptance strategy must be optimal,

given the menus that remain active after Stage 2 (Seller Optimality). Second, a buyer’s menu

chosen at Stage 1 and his decision to withdraw at Stage 2 must be optimal given his belief at

each stage (Buyer Optimality). Finally, a buyer’s belief at Stages 1 and 2 about the seller’s type

who is likely to accept a contract from his menu must be consistent with other buyers’ posting

and withdrawal strategies, the seller’s acceptance strategy and Bayes’ rule (Belief Consistency).

Our environment features two frictions: (i) the seller is privately informed about θ, and

(ii) the securities market is non-exclusive. Before proceeding to the equilibrium analysis, we

consider two benchmarks in which we shut down each of these frictions in turn.

2.1 Benchmark without Asymmetric Information

We first consider the allocations that would be attained in a setting without asymmetric infor-

mation; that is, if the seller’s asset quality, θ, were observable to the buyers.

Proposition 1 Suppose that buyers observe asset quality θ before posting their menus. Then,

the aggregate cash flows issued by the θ-type seller are Fθ(X) = X, which are priced at their

full information valuation pθ = Eθ[X].

In the absence of asymmetric information, first-best allocations are attained, as all gains from

trade between the seller and the buyers are realized. Moreover, due to competition, the seller’s

cash flows are priced at their expected value, conditional on the true quality of the seller’s

asset. As we can see, in this setting, the fact that the securities market is non-exclusive has

no bite. Therefore, all our novel findings will be due to the interaction of non-exclusivity with

asymmetric information.

2.2 Benchmark with Exclusive Markets

We next consider the allocations that would be attained in a setting where the securities market

is exclusive; that is, if the seller were restricted to accept contracts from at most one menu.

9



Consider the following optimization program, which will be useful in characterizing equilibria

of this benchmark:

max
{(Fθ,pθ)}θ; Fθ∈Φ

pH + δ · EH [X − FH ] (P1)

subject to the following constraints:

pL + δ · EL[X − FL] ≥ pH + δ · EL[X − FH ], (6)

pH + δ · EH [X − FH ] ≥ pL + δ · EH [X − FL], (7)

µ0 · (EH [FH ]− pH) + (1− µ0) · (EL[FL]− pL) ≥ 0, (8)

pL ≥ EL[FL]. (9)

Program P1 maximizes the H-type’s payoff subject to: the seller’s incentive compatibility

constraints (6) and (7), which implicitly assume that when allocation (F, p) is accepted, the

remaining cash flows X − Fθ(X) must be retained (i.e., not transferred to buyers); the buyers’

participation constraint (8), which states that buyers do not make losses in expectation; and

the constraint (9), which states that the L-type receives at least her full information payoff.

The following lemma characterizes the solution to program P1.

Lemma 1 The unique solution to P1 is as follows. There exists µ̃ ∈ (0, 1) such that:

1. If µ0 ≤ µ̃, the solution features perfect separation: there exists dS ∈ (0, X̄) such that:

(i) FH(X) = min{dS, X} and pH = EH [min{dS, X}];
(ii) FL(X) = X and pL = EL[X].

2. If µ0 > µ̃, the solution features cross-subsidization: there exists dC ∈ (dS, X̄] such that:

(i) FH(X) = min{dC , X} and pH = Eµ0 [FH ] + (1− µ0) (1− δ)EL [X − FH ] < EH [FH ];

(ii) FL(X) = X and pL = Eµ0 [FH ] + [(1− µ0) (1− δ) + δ]EL [X − FH ] > EL[X].

The first part of Lemma 1 states that when the buyers’ prior belief is low the solution to

P1 is separating; i.e., constraint (9) binds. The seller’s type is screened through two distinct

contracts: (FH , pH), which offers to buy less cash flows, but at high-valuation; and (FL, pL),

which offers to buy all cash flows, but at low -valuation. Because cash flow retention is more

costly for the L-type seller, the security FH is designed so that the L-type is indifferent between

issuing all of her cash flows at low -valuation or mimicking the H-type by accepting contract

(FH , pH). Consistent with this, debt is the optimal security design, as it relaxes the incentive
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Figure 1: Security Design in Exclusive Markets. The left-panel depicts the security issued by the H-type
seller (where dE ≡ max{dS , dC}), which is priced at or below high-valuation; whereas the right-panel depicts
the security issued by the L-type seller, which is priced at or above low -valuation.

compatibility constraint of the L-type relative to other feasible securities. In particular, dS is

pinned down by requiring that the incentive compatibility constraint of the L-type binds.13

The second part of Lemma 1 states that when the buyers’ prior belief is high the solution

features cross-subsidization from the H- to the L-type seller; i.e., constraint (9) is slack. In

this scenario, the H-type is better off by selling more cash flows, as dC > dS, even though

this comes at the cost of receiving less than high-valuation for them. Debt continues to be the

optimal security design, as it now minimizes the subsidy that the H-type has to give to the

L-type by being the feasible security for which the difference in valuations between the types

is the smallest. Furthermore, dC is exactly chosen to optimally trade off the marginal benefit

for the H-type of selling more cash flows with the marginal cost of subsidizing the L-type.

Proposition 2 (Equilibrium in Exclusive Markets) Suppose that the seller can accept con-

tracts from at most one menu. Then, an equilibrium always exists and it is unique.14 In it, the

H-type seller accepts contract (FH , pH), while the L-type seller accepts contract (FL, pL), which

are given by the solution to program P1 in Lemma 1.

The proof of Proposition 2 consists of, first, showing that any equilibrium allocation must

solve program P1. As markets are exclusive, any cash flow that is not transferred to the buyer

13We provide the expressions defining dS and dC in the Appendix; see equations (20) and (21) respectively.
14Since there are many buyers who compete, a given buyer’s equilibrium menu is not pinned down. We say

that the equilibrium is unique when the allocation of the transfer at t = 1 and of the asset cash flows at t = 2
between each seller type and the buyers is uniquely pinned down.
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must be retained by the seller, as stated by the incentive compatibility constraints (6)-(7).15

With this, we show that if equilibrium allocations are such that one of the constraints in P1 is

violated or if the H-type’s payoff is not maximized, there is a profitable deviation for a buyer.

Second, we show that the solution to program P1 can be supported as a PBE, i.e., there are

no profitable deviations for the buyers nor for the seller. We depict the contracts traded in

equilibrium in Figure 1.

It is worth noting that when the buyers’ prior belief is low, i.e., µ0 ≤ µ̃, the unique equilibrium

is separating and its allocations coincide with those of the least-costly separating equilibrium

(LCSE) typically studied in signaling games (DeMarzo, 2005; Daley et al., 2020b). On the

other hand, when the buyers’ prior belief is high, i.e., µ0 > µ̃, the unique equilibrium features

some cross-subsidization from the H-to the L-type. In contrast to Rothschild and Stiglitz

(1978), existence of a cross-subsidizing equilibrium in our setting is ensured by buyers’ ability

to withdraw loss-making menus, as was first pointed out by Wilson (1977) and Miyazaki (1977)

in the context of insurance markets.

3 Equilibrium

We are now ready to characterize equilibria of our model, where the seller is able to accept

contracts from multiple menus.

Consider the following optimization program, which will be useful in characterizing equilibria

in non-exclusive markets:

max
{(Fθ,pθ)}θ s.t. Fθ∈Φ

pH + δ · EH [X − FH ] (P2)

subject to the following constraints:

pL + EL[X − FL] ≥ pH + EL[X − FH ], (10)

pH + δ · EH [X − FH ] ≥ pL + δ · EH [X − FL], (11)

µ0 · (EH [FH ]− pH) + (1− µ0) · (EL[FL]− pL) ≥ 0, (12)

pL ≥ EL[FL]. (13)

Program P2 maximizes the H-type’s payoff subject to the same constraints as in program P1

except for the L-type’s incentive compatibility constraint (10). Now, if the L-type were to mimic

15We highlight this, as understanding what is the appropriate incentive compatibility constraint will prove
to be essential in the study of non-exclusive markets.
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the H-type seller, she would also be able to issue her remaining cash flows at low -valuation

rather than have to retain them.

The following lemma characterizes the solution to program P2.

Lemma 2 The unique solution to P2 is as follows. There exists dNE ∈ (0, X̄] such that

(i) FH(X) = min{dNE, X} and pH = Eµ0 [FH(X)];

(ii) FL(X) = X and pL = Eµ0 [FH(X)] + EL[X − FH(X)].

By comparing Lemma 2 with Lemma 1, it follows that when the L-type is able to sell her

remaining cash flows at low -valuation, the solution is never separating, i.e., there is always

cross-subsidization from the H- to the L-type seller. Furthermore, the cross-subsidy is such

that the H-type seller receives the average valuation for all the cash flows that she issues. The

optimal security issued by the H-type is debt, as it is the design that maximizes the H-type’s

payoff by minimizing the subsidy given to the L-type among all feasible securities.

The allocations that solve P2 can be conveniently implemented through a set of non-cross-

subsidizing contracts, i.e., contracts that earn zero expected profits for the buyer:

(i) A senior tranche, FS(X) = min{dNE, X}, priced at average valuation, pS = Eµ0 [FS(X)],

and accepted by all seller types.

(ii) A junior tranche, FJ(X) = max{X − dNE, 0}, priced at low -valuation, pJ = EL[FJ(X)],

and accepted only by the L-type seller.

In the remainder of the paper, we use C∗ ≡ {(FS, pS), (FJ , pJ)} to represent the set of contracts

whose resulting allocations solve P2.16

Proposition 3 (Equilibrium in Non-Exclusive Markets) Suppose that the seller can ac-

cept contracts from multiple menus. Then, there exists an equilibrium in which all seller types

accept contract (FS, pS), and in addition the L-type seller accepts contract (FJ , pJ).

Proposition 3 states that there always exists an equilibrium in which both seller types issue

the same, non-trivial, debt security. In addition to accepting the same contract as the H-type,

the L-type seller issues her remaining cash flows FJ(X) = X − FS(X) at low -valuation to a

distinct buyer, in order to further exploit gains from trade. We refer to this equilibrium as the

star equilibrium, and we depict the contracts traded in it in Figure 2.

16Focusing on C∗ is without loss of generality, since the solution to program P2 is unique in terms of allocations
between each seller type and the buyers.
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Figure 2: Security Design in Non-Exclusive Markets. The left-panel depicts the security issued by both
seller types, which is priced at average valuation; whereas the right-panel depicts the security issued by the
L-type seller only, which is priced at low -valuation.

The star equilibrium is supported by the presence of latent contracts, which are contracts that

are offered, though not accepted, on equilibrium path and whose only role is to deter deviations

by buyers at Stage 1. In what follows, we sketch the proof of Proposition 3 and show how the

presence of latent contracts combined with the ability of buyers to withdraw menus at Stage 2

ensure equilibrium existence.

Consider the following candidate equilibrium strategies. At Stage 1, buyers 1 and 2 offer to

purchase the senior tranche at average valuation, {(FS, pS)}, buyers 3 and 4 offer to purchase

any claim at low -valuation {F,EL[F ]}F∈Φ, and the remaining buyers offer the trivial contract,

{(0, 0)}. At Stage 2, there are no menu withdrawals. At Stage 3, the H-type accepts contract

(FS, pS) from buyer 1 whereas the L-type accepts (FS, pS) from buyer 1 and (FJ , pJ) from buyer

3. Note that buyers 3 and 4, in addition to contract (FJ , pJ), are posting latent contracts,

allowing the L-type to issue any feasible claim at low -valuation following a deviation.

By construction, there are no profitable deviations for any seller at Stage 3. Moreover, since in

equilibrium buyers break-even and menu withdrawal is costly, there are no profitable deviations

at Stage 2 either. Thus, to establish that the above strategies constitute a PBE, it suffices to

rule out deviations by buyers at Stage 1.

First, consider a deviation that attracts both types from the (FS, pS) contract. As C∗ max-

imizes the H-type’s payoff subject to the incentive compatibility constraints that incorporate

the presence of latent contracts and buyers not making losses (see program P2), any such de-

viation must be loss-making. Second, any deviation to attract the L-type alone would need

to price her cash flows above low -valuation and must also be loss-making. Finally, consider a

14



deviation that attracts only the H-type from contract (FS, pS) to some contract (F̃ , p̃). As the

L-type seller would still issue (FS, pS), buyers 1 and 2 would withdraw their menus at Stage 2,

as those would now be loss-making. But then, the deviating buyer must be attracting also the

L-type seller, a contradiction (e.g. the L-type can pick up contract (F̃ , p̃), in addition to latent

contract (X − F̃ (X), EL[X − F̃ (X)]) from the buyers 3 or 4).

A natural next question is whether the star equilibrium is unique. To this end, in the

Appendix, we show that any equilibrium in non-exclusive markets must satisfy the following

properties: buyers break-even and all gains from trade between the L-type and the buyers

are realized (see Lemma B.1). Hence, an equilibrium is fully characterized by the cash flows

the H-type transfers to the buyers and how the buyers price them. We next show that these

allocations are indeed uniquely pinned down under the additional requirement that the seller

be able to issue any feasible security at (or above) low -valuation.

Proposition 4 The star equilibrium is unique among all candidate equilibria in which the

seller is able to issue any feasible security F at some price p(F ) ≥ EL[F ].

This result follows from the observation that, when the seller is able to issue any feasible

security at (or above) low -valuation, then any equilibrium allocation must solve program P2,

which has a unique solution C∗ (see Lemma 2). The reason is that the incentive compatibility

constraint in program P2 already takes into account that, following a deviation to mimic the

H-type, the L-type seller can find a latent contract to sell her remaining cash flows at low -

valuation rather than having to retain them. The availability of such contracts aims to capture

an intuitive idea that, when markets are non-exclusive, the L-type should be able to exploit all

gains from trade with the buyers, both on and off-equilibrium path. An immediate implication

of Proposition 4 is that for another equilibrium to exist, buyers must be able to coordinate not

to post a set of latent contracts that price securities at (or above) low -valuation. We conjecture

that such equilibria do not exist, though we could not formally rule them out.17 Moreover,

equilibria that rely on such coordination seem implausible to us when thinking about real-

world asset markets.

Lastly, we show that the star equilibrium allocations provide a lower bound on the welfare

and on the extent of cross-subsidization in non-exclusive markets.

Proposition 5 The seller’s payoffs {u∗θ}θ in the star equilibrium provide a lower bound on the

payoffs of each seller type in any equilibrium with non-exclusive markets.

17Our conjecture is that, in any other candidate equilibrium, there is a profitable deviation for a buyer that
involves him posting some of the missing latent contracts and, possibly, another contract that attracts the
H-type after some candidate equilibrium menus are withdrawn as a result of the deviation.
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A corollary to Proposition 5 is that, in contrast to exclusive markets, non-exclusive markets

must always feature cross-subsidization as u∗L > EL[X], i.e., separation is not possible. Intu-

itively, any candidate equilibrium where the L-type gets her full information payoff (or anything

below u∗L) can be destroyed by a deviation where a buyer offers the L-type to sell her remaining

cash flows after mimicking the issuance of the H-type. The result that non-exclusivity makes

cross-subsidization a necessary feature of equilibrium is also present in Attar et al. (2011), who

study the sale of divisible goods, i.e., equity contracts, in a setting related to ours. However, as

noted in Attar et al. (2014), cross-subsidizing allocations may be difficult to support as PBE in

the presence of non-linearities (e.g. preferences, technology). Although non-linearities are also

present in our setting due to optimal security design, as we have shown, equilibrium existence is

ensured by the presence of the withdrawal stage. In this sense, our equilibrium notion is close in

spirit to the Miyazaki-Wilson-Spence equilibrium (Wilson, 1977; Miyazaki, 1977; Spence, 1978),

where buyers are able to withdraw offers upon observing the offers available in the market.

4 Costs and Benefits of Non-Exclusivity

As we already discussed in the introduction, after the 2008-09 financial crisis, a number of

exclusivity and transparency-enhancing financial market reforms were discussed in the US and

Europe, which would either directly or indirectly enhance exclusivity in contracting. Despite

of these efforts of policymakers and regulators, there is surprisingly little theoretical work on

the policy implications of non-exclusivity in markets with asymmetric information. Motivated

by this, in this section we consider the normative implications of our theory by studying the

potential costs and benefits of non-exclusivity. First, we study the welfare properties of our

baseline model, where the distribution of asset qualities is exogenous. Second, we consider a

simple extension of the model that endogenizes asset quality.

4.1 Non-Exclusivity and Market Liquidity

We begin by introducing the notion of efficiency/welfare in our setting. Since buyers break-even

in any equilibrium, efficiency is determined by the ex-ante expected payoff to the seller:

W (µ0) ≡ µ0 · uH(µ0) + (1− µ0) · uL(µ0). (14)

where uθ(µ0) denotes the equilibrium payoff of a θ-type seller when the buyers’ prior belief that

the seller is H-type is µ0.18 In what follows, we will sometimes use superscripts to indicate the

18We are using the fact that the average quality of assets and the buyers’ prior belief are the same.
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outcomes in the first-best (FB), exclusive (E) or non-exclusive (NE) market settings. Unless

specified otherwise, by an equilibrium in non-exclusive markets we refer to the star equilibrium.

In the presence of asymmetric information, equilibrium allocations may be distorted away

from first-best for two reasons. First, due to retention of cash flows by the H-type seller, some

gains from trade remain unrealized. We say that the market is more liquid when more gains

from trade between the seller and the buyers are realized, i.e., when cash flow retention is

lower. Second, because the prices of claims need not reflect true underlying asset quality θ, the

H-type seller may effectively subsidize the L-type seller. When this occurs, we say that there

is mispricing. To illustrate the effects of these distortions, the equilibrium payoff of a θ-type

seller can be expressed as follows:

uL(µ0) = EL[X]︸ ︷︷ ︸
=uFBL

+ ∆(µ0)︸ ︷︷ ︸
Mispricing Subsidy

, (15)

uH(µ0) = EH [X]︸ ︷︷ ︸
=uFBH

− (1− δ) · EH [X − FH(X)]︸ ︷︷ ︸
Cost of Retention

− 1− µ0

µ0

·∆(µ0)︸ ︷︷ ︸
Mispricing Tax

. (16)

where FH denotes the cash flows issued by the H-type seller in equilibrium.

Since the mispricing of claims generates a transfer from the H-type to the L-type seller,

equilibrium welfare is distorted away from first-best only due to inefficient cash flow retention:

W (µ0) = µ0 · EH [X] + (1− µ0) · EL[X]︸ ︷︷ ︸
=WFB(µ0)

−µ0 · (1− δ) · EH [X − FH(X)]︸ ︷︷ ︸
Expected Cost of Retention

. (17)

Thus, when asset quality is exogenous, a more liquid market is also more efficient. Hence, non-

exclusive markets are more efficient than exclusive markets whenever they implement higher

liquidity, i.e., when dNE > dE. The next proposition shows when this is the case.

Proposition 6 There exist 0 < µ < µ̄ < 1, such that welfare in exclusive markets is greater

than in non-exclusive markets for µ0 < µ, lower for µ0 ∈
(
µ, µ̄

)
, and equal for µ0 ≥ µ̄.

Figure 3 depicts the debt levels dE and dNE in exclusive and non-exclusive markets re-

spectively as a function of µ0. And, recall that there is a one-to-one mapping between these

debt-levels and welfare. Consider the region µ0 ≤ µ̃, where µ̃ is specified in Lemma 1. Here,

dE is pinned down by the L-type’s incentive compatibility constraint (6) and, thus, it is inde-

pendent of µ0. Instead, dNE starts below dE, is continuously increasing in µ0, and crosses dE

at some µ < µ̃. Consider next the region µ0 > µ̃. Here, dE is also continuously increasing in

µ0, since the H-type is willing to cross-subsidize the L-type even in exclusive markets; however,
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Figure 3: Which market structure is more efficient for an exogenously given average quality µ0?
The figure depicts the debt levels dE ≡ max{dS , dC} and dNE that arise with exclusive markets and in the star
equilibrium with non-exclusive markets, as a function of µ0.

we show that dNE is always greater than dE. Lastly, after µ0 increases above some µ̄, the seller

issues equity in both markets structures and, thus, the welfares coincide.19

These findings contrast with the by-now conventional ‘ignorance is bliss’ view of Dang et al.

(2010) and Dang et al. (2017), according to which market liquidity and efficiency are maximized

through complexity of assets and opacity of issuers’ balance sheets. Our results instead suggest

that to the extent that complexity/opacity inhibits exclusive contracting, it can actually reduce

market liquidity and efficiency whenever the underlying asset quality is low.

4.2 Non-Exclusivity and Origination Incentives

In the previous section, we showed that non-exclusive markets may either increase or decrease

market liquidity, and therefore efficiency, depending on the average quality of assets. How-

ever, due to larger cross-subsidization, non-exclusive markets always induce a larger mispricing

of claims than exclusive markets. In our baseline setting, such mispricing was irrelevant for

efficiency, as the distribution of asset quality was exogenous. In many applications, however,

such mispricing may impact efficiency by distorting agent’s decisions, e.g. distorting investment

decisions. To address this, we now explore how non-exclusivity, through its effects on market

liquidity and the pricing of claims, affects incentives to originate high quality assets.

19Note that, since the star equilibrium allocations provide a lower bound on welfare in non-exclusive markets
(see Proposition 5), it follows that welfare in any equilibrium with non-exclusive markets must be greater than
with exclusive markets when µ0 ∈ (µ, µ̄).
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We consider a simple extension of our baseline setting, where we now allow the seller (who

is now also an asset originator) to exert costly, unobservable effort C(q) to ensure that her

asset is of high quality with probability q ∈ [0, 1]. For interior solution, we suppose that

C(0) = C ′(0) = 0, C ′(q) > 0 and C ′′(q) > 0 for q ∈ (0, 1), and limq→1C
′(q) = ∞.20 Given the

buyers’ prior belief µ0, efficiency is given by the ex-ante payoff of the seller, now given by:

W (µ0) = max
q

q · uH(µ0) + (1− q) · uL(µ0)− C(q), (18)

where uθ(µ0) denotes the payoff of a θ-type seller in the equilibrium of the trading stage as

defined in Section 2, for given belief µ0. The solution q∗ to problem (18) exists, is unique, and

satisfies:

C ′(q∗) = EH [X]− EL[X]− (1− δ) · EH [X − FH(X)]− ∆(µ0)

µ0︸ ︷︷ ︸
=uH(µ0)−uL(µ0)

. (19)

An equilibrium of the entire game now in addition requires that (i) given the seller’s payoffs

{uθ(µ0)}θ at the trading stage, her effort choice is optimal, i.e., solves (19); and (ii) the buyers’

prior belief is consistent with the seller’s optimal effort choice, i.e. µ0 = q∗. It is straightforward

to show that an equilibrium exists both in exclusive and non-exclusive markets.

From equation (19), we see that both market liquidity (as captured by the cash flows sold

by the H-type at the trading stage, FH , which varies with µ0) and the extent to which the

claims are mispriced (as captured by ∆(µ0)) are relevant for determining the originator’s effort

incentives. Moreover, even though market liquidity may be higher or lower in non-exclusive

markets (see Proposition 5), the mispricing of claims is always larger in non-exclusive markets,

which, as we show next, is crucial for understanding origination incentives.

Proposition 7 The average quality of originated assets in non-exclusive markets is lower than

in exclusive markets: 0 < µNE0 < µE0 < µFB0 < 1.

Proposition 7 establishes a very strong result: non-exclusive markets always implement lower

equilibrium asset quality than exclusive markets. The reason behind it is intuitive, and it is

driven by fundamental differences between exclusive and non-exclusive markets. Recall that

the originator’s incentive to exert effort increases with the payoff gap between seller types,

uH(µ0)−uL(µ0) (see equation (19)). The proof then consists of showing that this gap is always

smaller in non-exclusive markets.21

20This formulation is standard and has been employed in several papers that study the effect of secondary
market liquidity on origination incentives (e.g. Chemla and Hennessy (2014); Vanasco (2017); Caramp (2017);
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Figure 4: Which market structure is more efficient when average quality is endogenous? The
unshaded region depicts parameter values for which welfare in the equilibrium with exclusive markets is greater
than welfare in the star equilibrium. The shaded region depicts parameter values for which welfare in the star
equilibrium is greater than welfare in the equilibrium with exclusive markets.

By combining the results of Propositions 6 and 7, we conclude that non-exclusive markets

can only be more efficient if the potential (though not guaranteed) gains from increased market

liquidity more than compensate for the (guaranteed) fall in asset quality. Figure 4 illustrates

that this happens when the gains from trade (as captured by 1−δ) are large relative to the cost

of exerting effort (as captured by χ), where we use a simple parameterization, C(q) = χ · q2
1−q . It

is important to highlight that when asset quality is endogenous, there is never an equilibrium in

which all seller types sell a full claim to their cash flows: there is always retention in equilibrium.

These findings thus suggest that complexity/opacity is desirable only in environments where

efficiency gains are mostly driven by reallocation of assets in markets and at the same time the

originators need not be too incentivized to produce high-quality assets.

5 Empirical Implications

Our model has important implications for markets in which exclusivity is difficult to enforce.

This is likely to be the case in markets where sellers’ (e.g. firms’, banks’) risk exposures or trades

are either not observable or hard to understand by other market participants (e.g. investors,

regulators, courts). Understanding the implications of non-exclusivity is particularly relevant

Neuhann (2017); Daley, Green, and Vanasco (2020a); Fukui (2018); Asriyan, Fuchs, and Green (2019b)).
21We note that this result holds for any equilibrium in non-exclusive markets.
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for the study of modern financial markets, where the increasing complexity of assets and balance

sheets of financial intermediaries combined with the opacity of markets where these assets are

traded makes it virtually impossible for outsiders to ensure that a seller retains a particular

risk-exposure. In what follows, we present the novel empirical implications of our model and

relate them to empirical evidence in the market for mortgage-backed securities. When doing

so, we focus on the star equilibrium in non-exclusive markets.

Prediction 1. As exclusivity becomes harder to enforce, the practice of splitting asset cash flows

into different tranches that are sold separately in markets is more likely to occur.

Indeed, in recent decades, the expansion of securitization and of the practice of tranching

loan cash flows coincided with an increase in the complexity of financial intermediaries’ balance

sheets, whose risk-exposures became harder to understand and contract upon. As argued in a

recent paper by Ashcraft et al. (2019), the complexity of collateralized debt obligations (CDOs)

“enabled informed parties in the commercial mortgage-backed securitization pipeline to reduce

their skin-in-the-game [retention] in a way not observable to other market participants.”

Prediction 2. In non-exclusive markets, the amount of cash flows retained should not predict

differential pricing of securities in the market for senior tranches.

This prediction follows from Proposition 3, which states that the senior tranche, issued by

all seller types in equilibrium is priced at average valuation. As a result, whether the seller

retains (H-type) or sells (L-type) her junior tranche does not affect its pricing. This result is

consistent with findings in Ashcraft et al. (2019), who study cash flow retention and its relation

to security performance in the conduit segment of the commercial mortgage-backed securities

market.22 They find that the fraction of initially retained cash flows sold into CDOs in the

twelve months following a transaction, i.e., not observed at the time of the transaction, is not

correlated with the prices of the more senior tranche.

Prediction 3. In non-exclusive markets, the amount of cash flows retained should predict

differential quality of the senior tranches.

This prediction also follows from Proposition 3, which states that while the H-type seller

only issues a senior tranche, and thus retains a junior tranche, the L-type seller issues both

22They study the retention of B-piece investors, who are buyers that perform due-diligence and re-underwrite
all of the loans in a given pool, indicating there is no asymmetric information between the actual seller and the
B-piece investors. Importantly, even though the size of the B-piece is disclosed to other (uninformed) buyers,
how much the B-piece buyer actually retains over time is not transparent to these buyers. See Ashcraft et al.
(2019) for a more detailed description of the environment and empirical strategy.
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tranches to distinct buyers, and thus does not retain cash flows in equilibrium. This result

is consistent with evidence in Ashcraft et al. (2019), who find that a higher fraction of initial

cash flow retention sold into CDOs predicts a higher probability of default of the more senior

tranches, even after controlling for all information available at issuance. To the best of our

knowledge, the predictions 2 and 3 combined are not consistent with other models of security

design where cash flow retention operates as a signal/screening device.

Prediction 4. As exclusivity becomes harder to enforce, the quality of originated assets declines.

This prediction is effectively a re-statement of Proposition 7. Though we are not aware of a

formal test of this prediction, it is broadly consistent with the well-known stylized fact that the

US credit boom of the early 2000s, fueled by securitization and financial engineering of complex

assets traded in opaque markets, has been associated with falling lending standards and a decline

in the quality of originated assets (e.g. Mian and Sufi (2009); Keys et al. (2010); DellAriccia

et al. (2012)). This is commonly attributed to the observed decline in the originators’ cash flow

retention (i.e., less skin-in-the-game) that the securitization process had apparently enabled

(Parlour and Plantin (2008); Chemla and Hennessy (2014); Vanasco (2017)). As we showed in

Section 4, however, the manner by which secondary markets price claims is also an essential

determinant of the originators’ incentives, above and beyond overall cash flow retention.

6 Concluding Remarks

We revisit the classic problem of a seller who is privately informed about the quality of her

asset and needs to raise funds from uninformed buyers by issuing securities backed by her asset

cash flows. We depart from the traditional literature by positing that the securities market is

non-exclusive; that is, the seller cannot commit to trade with only one buyer. We show that

non-exclusive markets behave very differently from exclusive ones in the presence of information

asymmetries: (i) separating contracts are never part of equilibrium; (ii) mispricing of claims is

always larger than in exclusive markets; (iii) there is always a semi-pooling equilibrium where

a senior debt security is issued by both seller types; (iv) market liquidity can be higher or lower

than in exclusive markets, but (v) the average quality of originated assets is always lower. Our

model’s predictions are consistent with empirical evidence on issuance and pricing of mortgage-

backed securities, and we use the theory to evaluate some recent reforms aimed at enhancing

transparency and exclusivity in financial markets.
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A Proofs

Proof of Proposition 1. The proof is straightforward.

Proof of Lemma 1. We prove this result by establishing a set of intermediate lemmas. We
begin by guessing that the incentive compatibility constraint (7) in program P1 is slack at the
optimum and, thus, dropping it from the program. We then verify that this is indeed the case.

The first lemma shows that the L-type transfers all of her cash flows to the buyers.

Lemma A.1 FL (x) = x ∀x.

Proof. Suppose to the contrary that the solution to P1 consists of allocations {(Fθ, pθ)} with
FL (x) < x for some x ∈

[
0, X̄

]
. Consider next the allocations {(F ′θ, p′θ)} where: (i) F ′H (x) =

FH (x) ∀x and p′H = pH + 1−µ0
µ0
· ε; and (ii) F ′L(x) = x ∀x and p′L = pL + EL [X − FL(X)] − ε.

For ε > 0 sufficiently small, with the new allocations {(F ′θ, p′θ)}, the constraints (6), (8), and
(9) are satisfied, but the objective of the program has increased, a contradiction.

The second lemma shows that at the optimum the incentive compatibility constraint of the
L-type, given by (6), and the buyers’ participation constraint, given by (8), bind.

Lemma A.2 The constraints (6) and (8) are satisfied with equality.

Proof. Suppose not. If the constraint (8) were slack, then the objective of the program could
be increased by raising pH and pL by a small amount ε > 0, which leaves the constraints (6)
and (9) satisfied, a contradiction.

If instead the constraint (6) were slack, then there are two possibilities. If also the constraint
(9) is slack, then decreasing pL by ε and increasing pH by 1−µ0

µ0
· ε increases the objective while,

for ε > 0 sufficiently small, still satisfying the constraints (6), (8) and (9), a contradiction. On
the other hand, if the constraint (9) binds and thus pL = EL [X], it must be that FH (x) < x for
some x; otherwise, since the constraint (8) binds, the constraint (6) would have to be violated.
But then, replacing allocation (FH , pH) with (F ′H , p

′
H), where F ′H (x) = min {FH (x) + ε, x} ∀x

and p′H = EH [F ′H (x)] and ε > 0 is small, increases the objective of the program while still
satisfying the constraints (6), (8) and (9), a contradiction.

The third lemma shows that the H-type issues a non-trivial debt security.

Lemma A.3 FH (x) = min {d, x} ∀x and some d ∈ (0, X̄].

Proof. Suppose to the contrary that FH is not a debt security, and let d′ be such that
EH [FH(X)] = EH [min{d′, X}]. Since FH(·) is monotonic, there exists x̂ ∈ [0, X̄] such that
FH(x) > d′ if and only if x > x̂. By MLRP, it must then be that EL[X − FH(X)] > EL[X −
min{d′, X}], since both securities have the same high-valuation:

EL[FH(X)−min{d′, X}] = EH
[
(FH(X)−min{d′, X}) · gL(X)

gH(X)

]
< EH [FH(X)−min{d′, X}] · gL(x̂)

gH(x̂)
= 0.
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Thus, whereas theH-type is indifferent between (FH , pH) and (F ′, pH) with F ′(X) = min{d′, X},
the L-type strictly prefers her allocation (X, pL) to (F ′, pH). Next, consider changing the allo-
cation of the H-type to (F ′′, p′′) with F ′′(X) = min{d′′, X}, p′′ = EH [F ′′(X)], and d′′ > d′. If d′′

is close to d′, then the L-type still prefers to accept (X, pL) to (F ′′, p′′), and the H-type strictly
prefers (F ′′, p′′) to (FH , pH). Hence, such a change increases the objective of the program while
leaving the constraints (6), (8) and (9) satisfied, a contradiction.

Next, we determine the optimal debt level. Define dC : [0, 1]→
[
0, X̄

]
as follows:

dC(µ0) = arg max
d∈[0,X̄]

Eµ0 [min{d,X}]−(1− µ0) (1− δ)EL [min{d,X}]−δ ·EH [min{d,X}]. (20)

From Lemmas A.1-A.3, this is the debt level that solves program P1 when constraint (9) is
slack. Define dS ∈ (0, X̄) as follows:

(1− δ) · EL [X] = EH
[
min

{
dS, X

}]
− δ · EL

[
min

{
dS, X

}]
. (21)

From Lemmas A.1-A.3, this is the debt level that solves program P1 when constraint (9) binds.
The derivative of the expression on the right-hand side of equation (20) w.r.t. d is:

H(d, µ0) = (µ0 − δ) · (1−GH (d)) + (1− µ0) · δ · (1−GL (d)) , (22)

which satisfies the following properties:
(i) H(·, ·) is continuous in both arguments; H(0, 0) = H(X̄, ·) = 0; for µ0 > 0, H(·, µ0) > 0

and it is decreasing initially.
(ii) for µ0 > 0, H(·, µ0) crosses zero at an interior d, at most once, and iff µ0 < δ ·

limx→X̄

gH (x)

gL(x)
−1

gH (x)

gL(x)
−δ
≡ µ̄.

(iii) since H2(·, ·) > 0, this interior value of d is continuously increasing in µ0 for µ0 < µ̄, i.e.,
it goes to zero as µ0 ↓ 0 and to X̄ as µ0 ↑ µ̄.

It follows that the solution dC(µ0) is unique for any µ0, and that dC(0) = 0, dC(·) is continuous
and increasing on [0, µ̄] and dC(·) = X̄ for µ0 ≥ µ̄. On the other hand, dS is also unique and
satisfies dS ∈ (0, X̄) for any µ0. It is then straightforward to show that the constraint (9) is
slack if and only if dC(µ0) > dS, which is equivalent to µ0 being greater than some µ̃ ∈ (0, µ̄).
Once the optimal debt level is found, the expressions for the prices {pθ} follow directly from
Lemmas A.1-A.3 and the fact that the constraint (9) is slack if and only if µ0 > µ̃.

Finally, the result stated in the proposition follows from Lemmas A.1-A.3 together with the
following verification that the constraint (7) is always slack. The latter holds if:

pH + δ · EH
[
X −min

{
dE, X

}]
≥ pL = pH + δ · EL

[
X −min

{
dE, X

}]
,

which holds if and only if:

EH
[
X −min

{
dE, X

}]
≥ EL

[
X −min

{
dE, X

}]
.

The last inequality follows from MLRP, as x−min
{
dE, x

}
is monotonically increasing in x.

Proof of Proposition 2. We first show that any equilibrium must consist of allocations that
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solve program P1. To this end, consider an equilibrium with allocations {(Fθ, pθ)}; that is, the
θ-type transfers cash flows Fθ (x) to the buyers at t = 2 when X = x, and the buyers transfer
pθ to the seller at t = 1.

In any equilibrium, each buyer must make zero expected profits. Suppose to the contrary
that the buyers’ aggregate profits are positive. Suppose now that buyer i who were earning
less than half of the aggregate profits were to deviate and add the contracts {(Fθ, pθ + ε)} to
his menu. Clearly, the seller would pick these contracts instead of the equilibrium allocation
{(Fθ, pθ)}, independently of whether the other buyers withdraw their menus or not. Moreover,
for ε small enough, such a deviation is profitable as buyer i effectively captures all of the
aggregate expected profits, a contradiction.

It is clear that the assumption that equilibrium allocations satisfy the incentive compatibility
constraints (6) and (7) is without loss of generality.

It must also be that in any equilibrium pL ≥ EL [X]. Suppose to the contrary that pL <
EL [X], and consider a buyer who were to deviate and add the following contract to his menu:
(F ′, p′) with F ′ (X) = X and p′ = EL [X]− ε. For ε small, the low-type prefers this contract to
his equilibrium allocation and, thus, would pick it up. Moreover, this contract makes strictly
positive profits even if it is also picked up by the H-type. Thus, independently of whether other
buyers withdraw their menus or not, such a deviation is profitable; a contradiction.

Lastly, the equilibrium allocations must also maximize H-type’s payoff. Suppose to the
contrary, and let

{(
F P1
θ , pP1

θ

)}
denote the unique solution to program P1, which note cannot

be offered in the candidate equilibrium. Suppose that the candidate allocations are picked up
from buyers i (and possibly j), and consider a deviation by buyer k 6= i, j to post a menu that
consists of the contracts

{(
F P1
θ , pP1

θ − ε
)}

. For ε > 0 small enough, such a deviation attracts
the H-type seller to contract

(
F P1
H , pP1

H − ε
)
, and the deviation is profitable whether or not the

L-type is attracted to the contract
(
F P1
L , pP1

L − ε
)
, a contradiction.

We next show that an equilibrium exists when the cost of withdrawal κ is small enough.
That equilibrium allocations are unique (in terms of allocations between each seller type and
the buyers) will follow from the uniqueness of the solution to P1.

Consider the following candidate equilibrium strategies. At Stage 1, buyers 1 and 2 offer
the contracts

{(
F P1
θ , pP1

θ

)}
, whereas the remaining buyers post the trivial contract. At Stage

2, there are no menu withdrawals. At Stage 3, the H-type accepts contract (FH , pH) and the
L-type accepts contract (FL, pL) from buyer 3 (or both from buyer 4).

By construction, there are no deviations for the seller at Stage 3. Also, since in the candidate
equilibrium buyers break even, there are also no deviations at Stage 3 as κ > 0. We are therefore
left to rule out deviations at Stage 1. There are three types of deviations to consider.

(i) Consider a deviation that attracts only the L-type. Such a deviation clearly cannot be
profitable as it would need to offer the L-type a price pL > EL[X].

(ii) Consider a deviation that attracts both types. Let {(Fθ, pθ)} denote the allocations of the
seller when she accepts a contract from the deviating menu. For it to be profitable, {(Fθ, pθ)}
must satisfy the constraints of P1. Additionally, in order to attract the H-type, the deviating
buyer would need to offer her a higher payoff than the solution to P1, which is not possible.

(iii) Consider a deviation that attracts only the H-type. There are two cases to consider.
Case (1). Suppose that µ0 ≤ µ̃, so that the solution to P1 is separating, i.e., pP1

L = EL {X}. A
deviation that attracts only the H-type to some contract {(FH , pH)} would have to satisfy the
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constraints:
pH + δ · EH {X − FH} ≥ EL {X} ,
EL {X} ≥ pH + δEL {X − FH} ,

pH ≤ EH {FH} ,
as, after the deviation, the equilibrium menus do not make losses and are therefore not with-
drawn at Stage 2. But note that these are exactly the constraints in program P1. Therefore,
it is impossible that such a deviation yields the H-type a higher payoff than the equilibrium
allocation, a contradiction.

Case (2). Suppose that µ0 > µ̃, so that at the solution to P1 involves cross-subsidization, i.e.,
pP1
L > EL {X}. Consider a deviation by a buyer to attract the H-type to an allocation (FH , pH).

If κ is small enough (i.e., κ < (1− µ0) ·
(
pP1
L − EL {X}

)
), buyers 1 and 2 will withdraw their

menus at Stage 2 as these are now loss-making. But then, the L-type must also be picking a
non-trivial contract from the deviating menu, a contradiction.

Proof of Lemma 2. We prove this result by establishing a set of intermediate lemmas. We
begin by guessing that the incentive compatibility constraint (11) in program P2 is slack at the
optimum and, thus, dropping it from the program. We then verify that this is indeed the case.

The first lemma shows that it is without loss to assume that the L-type transfers all of her
cash flows to the buyers.

Lemma A.4 It is without loss of generality to set FL (x) = x ∀x.

Proof. Suppose that at a solution to program (P2), (FL, pL) is such that FL(x) < x for
some x. Consider changing the L-type’s allocation to (F ′, p′) with F ′(x) = x for all x and
p′ = pL + EL[X − FL(X)]. Observe that the H-type’s payoff is unaffected, and the remaining
constraints are still satisfied.

The second lemma shows that at the optimum the incentive compatibility constraint of the
L-type, given by (10), and the buyers’ participation constraint, given by (12), bind. However,
constraint (13) is slack.

Lemma A.5 The constraints (10) and (12) are satisfied with equality, whereas the constraint
(13) is slack.

Proof. Suppose not. If the constraint (12) were slack, then the objective of the program could
be increased by raising pH and pL by a small amount ε > 0, which leaves the constraints (10)
and (13) satisfied, a contradiction.

If instead the constraint (10) were slack, then there are two possibilities. If also the constraint
(13) is slack, then decreasing pL by ε and increasing pH by 1−µ0

µ0
·ε increases the objective while,

for ε > 0 sufficiently small, still satisfying the constraints (10), (12) and (13), a contradiction.
On the other hand, if the constraint (13) binds and thus pL = EL [X], it must be that FH (x) = 0
for all x; otherwise, since the constraint (12) binds, the constraint (10) would have to be
violated. But then, the constraint (10) is satisfied with equality as both sides are equal to
EL[X], a contradiction.
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Finally, suppose that the constraint (13) is satisfied with equality. From the constraints (10)
and (12), it must be that pH = EH [FH ] and therefore FH(x) = 0 for all x, which yields an
expected payoff δ · EH [X] to the H-type. But then, it is straightforward to show that the
allocations proposed in the statement of Lemma 2 both raise the objective of the program and
satisfy the constraints (10)-(13), a contradiction.

The third lemma shows that the H-type issues a non-trivial debt security.

Lemma A.6 FH (x) = min {d, x} ∀x and some d ∈ (0, X̄].

Proof. Suppose to the contrary that FH is not a debt security, and let d′ be such that
EH [FH(X)] = EH [min{d′, X}]. Since FH(·) is monotonic, there exists x̂ ∈ [0, X̄] such that
FH(x) > d′ if and only if x > x̂. By MLRP, it must then be that EL[X − FH(X)] > EL[X −
min{d′, X}], since both securities have the same high-valuation:

EL[FH(X)−min{d′, X}] = EH
[
(FH(X)−min{d′, X}) · gL(X)

gH(X)

]
< EH [FH(X)−min{d′, X}] · gL(x̂)

gH(x̂)
= 0.

Thus, whereas theH-type is indifferent between (FH , pH) and (F ′, pH) with F ′(X) = min{d′, X},
the L-type strictly prefers her allocation (X, pL) to (F ′, pH). Next, consider changing the allo-
cation of the H-type to (F ′′, p′′) with F ′′(X) = min{d′′, X}, p′′ = EH [F ′′(X)], and d′′ > d′. If d′′

is close to d′, then the L-type still prefers to accept (X, pL) to (F ′′, p′′), and the H-type strictly
prefers (F ′′, p′′) to (FH , pH). Hence, such a change increases the objective of the program while
leaving the constraints (6), (8) and (9) satisfied, a contradiction.

Next, we determine the optimal debt level. Define dNE : [0, 1]→
[
0, X̄

]
as follows:

dNE(µ0) = arg max
d∈[0,X̄]

Eµ0 [min{d,X}]− δ · EH [min{d,X}]. (23)

From Lemmas A.4-A.6, this is the debt level that solves program P2. The derivative of the
expression on the right-hand side of equation (23) w.r.t. d is:

Ĥ (d, µ0) = (µ0 − δ) · (1−GH (d)) + (1− µ0) · (1−GL (d)) . (24)

Note the similarity between equations (24) and (22), where the only difference is that the last
term does not have a δ multiplying it. Therefore, by arguments similar to those in the proof
of Lemma 1, it follows that dNE(µ0) is continuously increasing in µ0 until it reaches X̄ at

µ̂ = limx→X̄
δ· gH (x)

gL(x)
−1

gH (x)

gL(x)
−1

, which note is strictly greater than µ̄, which was defined in the proof of

Lemma 1. Moreover, by inspection of equation (24), dNE(µ0) > dC(µ0) for any µ0 < µ̄.

Finally, the result stated in the proposition follows from Lemmas A.4-A.6 together with the
following verification that the constraint (11) is always slack. The latter holds if:

pH + δ · EH
[
X −min

{
dNE, X

}]
≥ pL = pH + EL

[
X −min

{
dNE, X

}]
,
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which holds if and only if:

δ · EH
[
X −min

{
dNE, X

}]
≥ EL

[
X −min

{
dNE, X

}]
.

But the last inequality follows by the observation that, if it were violated, then it would be
possible to increase the payoff to the H-type by simply increasing the debt level above dNE,
contradicting the optimality of the security FH(X) = min{dNE, X}.

Proof of Proposition 3. Consider the following candidate equilibrium strategies. At Stage
1, buyers 1 and 2 post contract (FS, pS), buyers 3 and 4 offer to purchase any feasible security
at low -valuation {F,EL[F ]}F∈Φ, while the remaining buyers offer the trivial contract, {(0, 0)}.
At Stage 2, there are no menu withdrawals. At Stage 3, the H-type accepts contract (FS, pS)
from buyer 1 whereas the L-type accepts (FS, pS) from buyer 1 and (FJ , pJ) from buyer 3.

By construction, there are no profitable deviations for the seller at Stage 3. Also, since in
the candidate equilibrium buyers break even, there are also no deviations at Stage 3 as κ > 0.
We are therefore left to rule out deviations at Stage 1.

(i) Consider a deviation that attracts only the L-type. Such a deviation clearly cannot be
profitable as it would need to price L-type’s cash flows above low -valuation.

(ii) Consider a deviation that attracts only the H-type, so that she no longer accepts contract
(FS, pS). Then the menu of any buyer who posted contract (FS, pS) at Stage 1 would only attract
the L-type and make losses equal to (1 − µ0) · (Eµ0 [FS] − EL[FS]); thus, if κ is small, such a
menu would be withdrawn at Stage 2. But then, the deviating buyer would also attract the
L-type, who would be strictly better off by picking up a contract from the deviating menu and
selling the remaining cash flows by accepting a latent contract from other buyers.

(iii) Consider a deviation that attracts both types, so that they no longer accept contract
(FS, pS). Note that the allocations of such a deviation must satisfy the constraints (10), (11)
and (13) of program P2, since the L-type has access to the menus of buyers 3 or 4, which would
not be withdrawn at Stage 2. But then, such a deviation cannot at the same time attract the
H-type and be profitable for the buyers.

(iv) Lastly, consider a deviation that attracts the H-type, so that she still continues to
accept contract (FS, pS). Such a deviation cannot only attract the H-type, since the L-type
could obtain a higher payoff by simply mimicking the H-type and issuing any residual cash
flows using latent contracts. Thus, suppose that the deviation attracts both types, and let
{(Fθ, pθ)} be the contracts of the deviating buyer. But then again such contracts must satisfy
the constraints (10), (11) and (13) of program P2, which therefore cannot attract the H-type
and be profitable at the same time.

Proof of Proposition 4. Let Fθ(x) denote the aggregate cash flows that the θ-type seller
transfers to buyers in state X = x; and let pθ denote the aggregate transfer that she receives
from the buyers. By Lemma B.1, we have that FL(x) = x for all x and:

µ0 · (EHFH − pH) + (1− µ0) · (ELX − pL) = 0. (25)

Thus, to demonstrate that the allocations between each seller type and the buyers are unique,
it suffices to show that FH = FS and pH = pS. To this end, observe that the fact that the
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L-type is able to issue any feasible security at weakly above low -valuation implies that:

pL ≥ pH + EL[X − FH ]

⇐⇒
pH ≤ Eµ0 [FH ],

where we used equation (25). But then, it must be that:

uH = pH + δ · EH [X − FH ]

≤ Eµ0FH + δ · EH [X − FH ]

≤ u∗H ,

where the last inequality holds since FS = arg maxF∈Φ Eµ0F + δ ·EH [X−F ]. But then, it must
be that uH < u∗H if either pH 6= pS or FH 6= FS. But, since uH ≥ u∗H in any equilibrium (see
Lemma B.2), it follows that FH = FS and pH = pS.

Proof of Proposition 5. This result follows from Lemmas B.2 and B.3.

Proof of Proposition 6. Under both exclusive and non-exclusive market structures, the
buyers break even. So the entire trading surplus accrues to the seller.

Given buyers prior belief µ0, when markets are non-exclusive, the expected trading surplus
(i.e., the expected welfare of the seller) is given by:

WNE (µ0) ≡ Eµ0 [X]− µ0 · (1− δ) · EH [X −min
{
dNE (µ0) , X

}
], (26)

whereas the expected trading surplus with exclusive markets is given by:

WE (µ0) ≡ Eµ0 [X]− µ0 · (1− δ) · EH [X −min
{

max{dS, dC(µ0)}, X
}

]. (27)

Hence, we have that:

WNE (µ0)−WE (µ0) = µ0 · (1− δ) ·EH [min{dNE(µ0), X}−min
{

max{dS, dC(µ0)}, X
}

]. (28)

The result then follows from the following three observations:
(i) dNE(µ0) < dS for µ0 sufficiently small. This is because by revealed preference in non-

exclusive markets the H-type is willing to issue the security min{dNE(0), X} at low valuation.
However, in exclusive markets, the H-type strictly prefers not to issue any additional cash flows
(i.e., more than dE = dS) at low valuation (otherwise, in equilibrium she would had done so),
i.e., dS > dNE(0). By continuity of dNE(·) (see proof of Proposition 3), this must also be the
case for µ0 small enough.

(ii) dNE(µ0) is continuously increasing and crosses dS at some µ < µ̃, i.e., when dE = dS. See
the proof of of Lemma 2.

(iii) dNE(µ0) > dC(µ0) for all µ0 < µ̄, where µ̄ is such that dNE(µ0) = X̄. See the proof of
Lemma 2.

Proof of Proposition 7. Recall that the L-type’s payoff uNEL in non-exclusive markets
is bounded below by her payoff u∗L in the star equilibrium (Proposition 5), which is strictly
greater than her payoff uEL in exclusive markets as long as µ0 < µ̄ (the only possibility when
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the asset quality is endogenous). It is therefore sufficient to show that the H-type’s payoff uNEH
in non-exclusive markets is weakly lower than her payoff uEH in exclusive markets, and thus
uEH − uEL > uNEH − uNEL . But, the latter follows from the observation that, whereas uEH is the
maximum of program P1, any equilibrium allocation in non-exclusive markets must satisfy the
constraints (6) and (8) with FL(x) = x for all x (Lemma B.1) and pL ≥ u∗L; that is, the L-type’s
participation constraint (9) is tightened.

B Complementary Lemmas

Lemma B.1 In any equilibrium, each buyer earns zero expected profits, and the L-type seller
transfers all of her cash flows to the buyers.

Proof. Let Fθ(x) denote the aggregate cash flows that the θ-type seller transfers to buyers in
state X = x; and let pθ denote the aggregate transfer that she receives from the buyers.

Suppose to the contrary that the buyers’ aggregate profits are positive (not that a buyer
cannot earn negative profits, as she can always earn zero by posting only the trivial contract).
Suppose now that buyer i who were earning less than half of the aggregate profits were to
deviate and add the contracts {(Fθ, pθ + ε)} to his menu. Clearly, the seller would pick these
contracts instead of her equilibrium allocation {(Fθ, pθ)}, independently of whether the other
buyers withdraw their menus or not. Moreover, for ε small enough, such a deviation is profitable
as buyer i effectively captures all of the aggregate expected profits, a contradiction.

Suppose to the contrary that there exists an equilibrium in which FL(x) < x for some x.
Consider a deviation by a buyer to add to his menu the contracts (FH , pH + ε) and (F, p) with
F (x) = x for all x and p = pL + EL[X − FL(X)] − µ0

1−µ0 · 2 · ε. For ε small, the deviation

attracts both types: the L-type to (F, p) and the H-type to either (FH , pH + ε) or (F, p). But,
the deviation is clearly profitable in either case, a contradiction.

Lemma B.2 In any equilibrium, the H-type’s payoff, uH , is bounded below by her payoff in
the star equilibrium, u∗H .

Proof. Suppose to the contrary that there is an equilibrium in which uH is strictly below u∗H .
By Lemma B.1, buyers must break even in this equilibrium. But then, consider a deviation
for a buyer to replace all his contracts with the contract (FS, pS − ε). For ε small enough, this
contract would attract the H-type (independently of whether other buyers withdraw at Stage
2) and possibly the L-type. As a result the deviation would be profitable, a contradiction.

Lemma B.3 In any equilibrium, the L-type’s payoff, uL, is bounded below by her payoff in the
star equilibrium, u∗L.

Proof. Suppose to the contrary that there is an equilibrium in which uL is strictly below u∗L.
Consider a deviation by a buyer to withdraw his equilibrium menu and instead post essentially

the full set of latent contracts, i.e., {(F,EL[F ]−ε} for some ε > 0 small. If any of these contracts
attract the seller (of any type), the deviation is clearly profitable. Thus, assume that the seller
is not attracted to the menu of the deviating buyer.
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Let (Fθ, pθ) denote the allocation of the θ-type seller after the deviation, i.e., the aggregate
cash flows she transfers to buyers at t = 2 and the aggregate transfer she receives from buyers
at t = 1. Moreover, note that these allocations must have been available in equilibrium and,
thus, the L-type’s payoff after the deviation cannot exceed u∗L, i.e.,

pL + δ · EL[X − FL] < u∗L.

If (Fθ, pθ) was the equilibrium allocation, then for ε small enough it must also be that

pH + δ · EH [X − FH ] < u∗H ,

because the allocation {(Fθ, pθ)} must satisfy all of the constraints of program P2 (as all latent
contracts are now available to the seller) and because the L-type’s payoff is strictly below
u∗L. Conversely, if (Fθ, pθ) is not the equilibrium allocation (e.g. some buyer withdraws his
menu after the deviation), then it must be that the H-type’s payoff is below u∗H , i.e., pH + δ ·
EH [X−FH ] < u∗H , as these allocations were available to the seller in equilibrium. But then, it is
straightforward to show that the buyer could add the contracts (min{d,X}, Eµ0 [min{d,X}]−ε)
and (X,Eµ0 [min{d,X}] + EL[X − min{d,X}] − ε) to his deviating menu, which for some
d ∈ (0, dNE] and ε > 0 small attracts the H-type to the former and the L-type to the latter
contract, rendering the deviation profitable.

C Feasibility conditions in anonymous markets

A central friction that we consider throughout our analysis is that of market non-exclusivity. A
way to view non-exclusivity is that it captures a form of market anonymity or opacity, whereby
agents cannot observe (and therefore contract upon) all the trades that their counterparties
enter into. The reader may wonder, however, whether the feasibility conditions (LL) and (WM),
which we have exogenously imposed on the seller’s strategy, are consistent with that view of
the world. In what follows, we describe such an environment, which has two key features.

Limited commitment. Suppose that neither the seller nor the buyers have the commitment
to deliver goods to their contracting counterparties at t = 2, i.e., upon learning X, an agent
can always default and walk away with all the goods he or she has. This immediately implies
that any credible contract between the seller and a buyer must take the form of a spot trade
at t = 1, consisting of a transfer of assets in exchange for a payment (price).

Financial innovation. We have assumed that the seller is endowed with an asset at t = 1
that delivers risky cash flows X at t = 2. Suppose that, due to financial innovation, the seller
is able to split the asset’s cash flows into separate assets that can be individually traded in spot
markets. In particular, the seller has one unit of each of the following so-called basis assets,
indexed by a ∈ [0, X̄], with payoffs:

a (x) =

{
0 if x < a

1 if x ≥ a
. (29)

Thus, X =
∫ X̄

0
a(X) · da.
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In this context, security design simply means that the seller can choose which bundle of

assets to sell to the buyers in the spot market: F (X) =
∫ X̄

0
gF (a) · a(X) · da where gF (·) ∈ [0, 1]

determines the amount of each basis asset sold in the bundle.23 Observe that the feasibility
conditions hold naturally in this setting:

• (LL) If the seller transfers a bundle of basis assets to a buyer, she cannot transfer the
cash flows of these assets to another buyer since she no longer has them.

• (WM) If the seller sells a collection of securities F = {F} to the buyers, then by con-
struction x−∑F∈F F (x) and, for each F , F (x) are weakly increasing in x.

Finally, non-exclusivity is equivalent to a notion of market anonymity or opacity: each buyer
observes the bundle of basis assets that the seller transfers to him, but she cannot observe the
assets or prices at which the seller trades with other buyers.

23See also Axelson (2007) for such a representation of monotone securities.
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