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Abstract

Using a standard labor choice model I show how economic activity shapes and—at the
same time—is shaped by an epidemic. Then, I use this framework to validate with a mon-
tecarlo analysis the stage-based identification strategy of policy effects recently proposed in
Aleman et al. (2020a). I then describe their assessment of the effectiveness of the Spanish
stay-home policy against Covid-19.

1 Introduction

In light of the Covid-19 pandemic, many economists (among other social scientists) have grown in-

terested in understanding contagion through endogenous economic and health behavior (see Atke-

son, 2020). The idea is that economic activity—through human contact interaction—inevitably

entails contagion risk. This risk derived from economic activity occurs through different set-

tings including contagion at work (Houstecka et al., 2021), social activities (Toxvaerd, 2020) and

home (also nursing homes) (Brotherhood et al., 2020). Since contagion can result in sickness

and death, an epidemic poses a trade-off between economic activity and public health policies

that aim to deter contagion at the cost of reducing economic activity (e.g. Adda, 2016; Barro

et al., 2020). Therefore, in order to quantitatively assess the trade-off between economic activity

and public health policy, it is essential to accurately measure the effectiveness of public health

policy against the spread of an epidemic.1 In this note I provide a brief summary of the work

∗This note has been prepared for Notes d’Economia published by the Generalitat de Catalunya. I thank Marta
Curto Grau and Anna Monreal Prat for suggestions. I also thank Christian Aleman for his help with additional
computations. I acknowledge financial support from the AGAUR 2020PANDE00036 ”Pandemies 2020” Grant
and the Spanish Ministry of Economy and Competitiveness, Proyectos I+D+i 2019 Retos Investigacion PID2019-
110684RB-I00 Grant and Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000915-S).

1The study of disease spread and the effects of public health policy is not new. In particular, epidemiologists
provide extremely detailed models of disease spread, often with many different factors linked to what a person is



in Aleman et al. (2020a) in which we propose a stage-based identification of policy effects.2 In

particular, I highlight one of the applications in that paper that assesses the effectiveness of the

nationwide stay-home policy implemented against Covid-19 in Spain.

2 Economic Activity and Public Health

To illustrate the trade-off by which economic activity shapes and—at the same time—is shaped

by public health in the context of Covid-19, consider a 2-period economy with labor choice that

faces a contagious virus. In the first period, a one-household economy is born with a mass N = 1

of identical healthy agents. During the first period, some of these agents get infected—due to

economic activity—and a proportion of the infected do not survive to the second period. That

is, economic activity—through the amount of hours worked—shapes the epidemic by lowering

the survival rate to the second period. At the same time, the epidemic affects economic activity

depending on how well our households perceive the actual effects of economic activity on mortality.

That is, the household’s expected mortality generated from economic activity is subjective. The

subjective expected effects of economic activity on mortality might differ from the actual effects

and, in particular, households might underestimate these effects.

In this economy, our household chooses individual consumption c and hours worked h to solve:

max
{c≥0,h∈[0,1]}

u(c, h) + δφ(h, ξP)ω (1)

subject to an individual budget constraint c = wh. A competitive firm produces consumption

good using technology y = zh. Today’s felicity is given by u(c, h) which is increasing and concave

doing, how many people they come into contact with, etc. However, epidemiological frameworks do not—almost
invariably—incorporate the endogenous behavior that leads to contagion. For the same token, previous economic
models that assess the effects of an epidemic take the epidemic as given (e.g Young, 2005; Santaeulàlia-Llopis,
2008). However, endogenous contagion can be not only relevant to understand what factors determine the spread
of a disease but also important to find optimal public policy against the spread. In this context, note that the
nature of contagion—and hence the mechanisms needed to explain it—can differ by disease. For example, in the
context of flu-like viruses—e.g. influenza, SARS and Covid-19—it is natural to focus on endogenous labor/leisure
choices (e.g. Alvarez et al., 2020; Kaplan et al., 2020) whereas in the context of the HIV it is natural to focus
on endogenous risky sexual behavior (see Greenwood et al., 2019; Aleman et al., 2020b). The growing literature
on Covid-19 also includes Aspri et al. (2021), Bognanni et al. (2020), Casares et al. (2020), Eichenbaum et al.
(2020), Farboodi et al. (2020), Fajgelbaum et al. (2020), Garibaldi et al. (2020), Glover et al. (2020), Jones et al.
(2020), and Toxvaerd (2020) among many others. This growing literature also includes testing and quarantine
policies; see Berger et al. (2020), Obiols-Homs (2020) and Piguillem and Shi (2020), among others.

2This work relates to previous stage-based studies. In particular, Iorio and Santaeulàlia-Llopis (2011) define
stages of the HIV epidemic mapping country-specific epidemics to a single (average) epidemic path in order to
explore the relationship between education and the probability of being infected with HIV over the course of the
epidemic. More generally, the notion of epidemic stages is also analogous to the stylized stages of economic
development (e.g. Lucas, 2004) and the demographic transition (e.g. Greenwood et al., 2005).
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in consumption, c, and leisure, 1−h. Tomorrow’s felicity is given by a constant ω > 0—which we

can interpret as the value of being alive—discounted by factor δ times the household’s perceived

survival rate. Let the perceived survival rate be,

φ(h, ξP) = 1− ζλ(h, ξP),

where ζ > 0 is the mortality rate after infection and λ(h, ξP) ∈ [0, 1] is the perceived probability

of infection. The probability of infection and the associated mortality risk are perceived insofar

our household does not know much h determines infections, the extent of which is truly captured

by a parameter ξ ∈ [0, 1]. Although our household does not know the actual ξ, it has a subjective

expectation (a belief) on it, EP [ξ] = ξP , and acts according to it.

In particular, we are after infection processes satisfying λh > 0 and λh,ξ > 0 and we assume,

λ(h, ξP) = ξPh
α, (2)

with ξP ∈ [0, 1] and α ≥ 0. Note that since h ∈ [0, 1], the parameters ξP and α ensure that

λ(h, ξP) is a probability. Under this infection process, for a given α, the higher is h the higher

are the odds of infection. Further, these effects of h on infections are larger the larger is ξP ; see

panel (a) in Figure 1. In particular, if the belief ξP is smaller than the actual ξ, i.e. ξP < ξ, then

the household underestimates the actual effect of h on infections. Precisely, for any pair α and

h, the household believes that infections generated by a level of activity h will be ξP
ξ
< 1 times

lower than what they actually are. The opposite occurs if the household overestimates the odds

of infection, i.e. ξP > ξ. In this manner, if the actual ξ is equal to 0.2, a ξP = 0.1 (ξP = 0.4)

implies that the household believes that economic activity generates half of (twice) the infections

that it actually generate. Further, note that since λh > 0, then φh < 0. That is, an increase in

h decreases the survival probability; see panel (b) in Figure 1.

We can define the magnitude of the underestimation (or overestiation) of the actual infection

process and survival rates. Agents believe that one extra unit of h will generate λh(h, ξP) =

ξPαh
α−1 new infections. However in reality it generates λh(h, ξ) = ξαhα−1. The difference

between these two is the error agents make:

ελ(h,ξP ) = λh(h, ξP)− λh(h, ξ) = (ξP − ξ)αhα−1 (3)

Both the errors in terms of the infection process, ελ(h,ξP ), and survival rates, εφ(h,ξP ), are shown

in panel (c) of Figure 1. If ξP < ξ, then agents underestimate the infections and deaths. The

opposite occurs with ξP > ξ.
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Figure 1: Economic Activity and Public Health Trade-Offs in a Pandemic

(a) λ(h, ξP) (b) φ(h, ξP) (c) Mistakes on λh(·) and φh(·)

(d) Equilibrium Hours (e) Effects of ξP on Hours and the Survival Rate (f) Effects of ξP on Output and Welfare

Notes: We assume u(c, h) = ln c− κh
1+ 1

ν

1+ 1
ν

. The marginal benefit of working is ucw = 1
h , the marginal loss of leisure is uh = κh

1
ν and the marginal loss of

lives is δφhω = δζαξhα−1ω. Parameter values: δ = 0.9524, ξ = 0.2, ω = 50, κ = 3, ν = 2, ζ = 0.5, z = 2, α = 2
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The amount of economic activity in equilibrium is determined by the following first order

condition of problem (1) with respect to h:3

uc(c, h)w︸ ︷︷ ︸
MB of Working:

Consumption Gain

= uh(c, h)︸ ︷︷ ︸
MC1 of Working:
Loss of Leisure

+ δφh(h, ξP)ω︸ ︷︷ ︸
MC2 of Working:
Loss of Lives

(4)

together with market clearing.4 Wages w are determined by the marginal product of labor.

Equation (4) shows the trade-off between the marginal benefit (MB) of working which generates

income (hence consumption) and the marginal cost of keeping economic activity up that consists

of two terms: A first term that captures the loss of leisure associated with working (MC1)

and a second term that captures the loss of discounted welfare from the deaths generated from

infections due to economic activity (MC2).

In this manner, the economy pins down the equilibrium h by explicitly considering the trade-

off between economic activity and public health, see panel (d) of Figure 1. For our illustration,

we assume u(c, h) = ln c − κh
1+ 1

ν

1+ 1
ν

. The strict concavity in consumption means that the MB

decreases with h in a convex fashion (blue line). The MC of working associated with the loss of

leisure increases with h (pink line).5 Here, note that for a given h, the MB of working and the

MC of working associated with the loss of leisure do not depend on the effects of h on infections.

Therefore, absent an epidemic (i.e. with λh(h, ξ) = 0), the equilibrium h is determined by the

crossing of MB and MC1. In this numerical example, we find that the amount of hours worked

without epidemic h∗(ξ = 0) = 0.48. In contrast, in the presence of an epidemic (i.e. with

ξ > 0) the marginal cost of working increases by the loss of lives generated from economic

activity which shifts the MC line up. This implies that the equilibrium amount of hours worked

in an epidemic are lower. In an epidemic, our household takes into account the loss of welfare

associated with economic activity and is willing to reduce consumption in order to increase the

probability of survival and reduce deaths in the economy. How large the drop in hours in response

to the epidemic is depends on how well our household understands the process of infection. In

particular, if our household is fully aware of the true process of infection (i.e., if ξP = ξ) (black

solid line) the reductions of hours relative to an economy without epidemic will be larger than if our

household underestimates how many infections are caused by economy activity, that is, if ξP < ξ

(black dashed line). Indeed, in our numerical example we find that h∗(ξP = ξ = 0.2) = 0.25

and h∗(ξP = 0.1 < ξ) = 0.31. In the extreme, if our household believes that economic activity

generates no infection, i.e. ξP = 0, then it will behave as if there was no epidemic. In contrast,

3Explicitly: uc = ∂u(c,h)
∂c , uh = ∂u(c,h)

∂h and φh = ∂φ(h,ξP)
∂h .

4That is, labor demanded by the firm equates labor supplied by the household. The goods markets also clears.
5With ν > 1, this MC is strictly concave.
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if our household overestimates the infections caused by economic activity, i.e. ξP > ξ, then the

reductions of hours will be larger than that from an economy where households are fully aware

of the true process of infection. That is, our household shows an excess of caution. Indeed, in

our numerical example we find that h∗(ξP = 0.4 > ξ) = 0.19.

In panel (e) of Figure 1, we show the effects of ξP on the equilibrium amount of hours. The

lower is ξP , the larger are the equilibrium hours. The effect of ξP shows the opposite effect on the

survival probability φ(h). That is, the lower is ξP the larger is the amount of infections and deaths.

Clearly, there is a trade-off between economic activity and public health. Finally, we show how

output and welfare varies with ξP ; see panel (f) in Figure 1. Output strictly measures economic

activity generated from h and welfare takes into account not only output (hence consumption) but

also the cost associated with the potential loss of life. Note that maximum welfare is achieved

when the beliefs are correct, i.e. ξP = ξ. Relative to when beliefs on ξ are correct, if our

household underestimates the effect of economic activity on contagion, i.e. ξP < ξ, then output

is larger but, at the same time, the amount of deaths are also larger. The loss of welfare from

the loss of lives dominates the increase in output implying that underestimation of the effects of

economic activity yields lower welfare than that with correct beliefs. Instead, if our household

overestimates the effect of economic activity on contagion, i.e. ξP > ξ, then output is lower

relative to when beliefs on ξ are correct and the amount of deaths are also lower. However, the

welfare gains associated with reductions in the amount of deaths are dominated by the welfare

losses from output reductions which implies a total loss of welfare relative to a household aware

of the correct ξ. In other words, the equilibria to the right of the correct beliefs (ξP > ξ) shows

an excess of cautiousness, whereas to the left of the correct beliefs (ξP < ξ) our households are

incautious.

2.1 An Epidemic Path Endogenous to Economic Activity

Here, the previous model is extended to an infinite horizon as proposed in Aleman et al. (2020a).6

Consider a one-household economy with many agents that is unexpectedly hit by an epidemic

at time t = 1 with an initial number of infections of I1 > 0. We normalize the pre-pandemic

6Note that the model purposefully ignores other potentially important channels in which an epidemic is deter-
mined by economic activity. I name a few. First, the occupation-industry mix is important to determine contagion
risk (Houstecka et al., 2021). Second, the ability to telework can cushion the effect of the pandemic (Dingel and
Neiman, 2020), in particular, when stay-home policies (or similar) are in place (Eyméoud et al., 2021). Third,
the pandemic can alter consumption habits in manner that there are sector-specific persistent shocks (Barrero
et al., 2020). Fourth, economic policy—e.g. increase in unemployment eligibility and benefits, implementation of
short-time work, stimulus packages—can be coupled with public health policy (Cajner et al., 2020; Chetty et al.,
2020) and in ways that can differ across countries or regions (Eyméoud et al., 2021). Fifth, agents could learn
about the odds of infection during an epidemic (Aleman et al., 2020b).
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population, N0, to one. A representative household solves:

max
{ct≥0,ht∈[0,1]}∞t=0

∞∑
t=0

δtΠt
τ=0φ(hτ−1, ξP)u(ct, ht;ω) (5)

where the evolution of the population follows Nt = Πt
τ=0φ(hτ−1, ξP) and φ(ht−1, ξP) ∈ [0, 1]

is a survival probability that we define below.7 Note that there is no fertility in this economy

and, hence, the evolution of the population is solely determined by survival. Our household is

subject to a per period budget constraint Ntct = wthtNt and production occurs with technology

Yt = zhtNt. Wages are determined by the marginal product of labor, wt = zNt. Individuals can

be either susceptible St, infected It, recovered Rt or dead Dt. Then, the total alive population

is Nt = St + It +Rt. Agents perceive that the evolution of the population follows:

XS,t = −λ(ht, ξP)β
It−1
Nt−1

St−1 (6)

XI,t = λ(ht, ξP)β
It−1
Nt−1

St−1 − γIt−1 (7)

XR,t = (1− ζ)γIt−1 (8)

XD,t = ζγIt−1 (9)

where XG,t = Gt−Gt−1 for G = {S, I, R,D}.8 Conditional on randomly meeting an infected indi-

vidual at rate It−1

Nt−1
, a susceptible individual beliefs to get infected with probability λ(ht, ξP)β. The

parameter β can capture features like density, age-health structure of the population, pollution

or occupation-industry composition (among others) that could potentially differ across locations.

The believed probability of infection depends on economic activity h with λ(h, ξP) = ξPh
α. The

true dynamics however are given by λ(h, ξ) = ξhα. In this manner, the parameter ξP ∈ [0, 1] cap-

tures how much our household believes that economic activity h affects new infections. Hence, if

ξP < (>)ξ, then households believe that their actions generate less (more) infections and deaths

that what they actually do. If death occurs, it does so after working and consuming. That is,

the perceived survival rate between t and t+ 1 equals to:

φ(ht, ξP) = 1− XD,t

Nt−1
(10)

and the probability of surviving to period t is Πt
τ=0φ(hτ−1, ξP).

7More generally, Nt = N0Πt
τ=0φ(hτ−1, ξP). We have normalized N0 to one.

8Note that we assume that recovered individuals are neither infectious nor can become infected.
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The amount of economic activity ht is determined by the following Euler condition:

uct(ct, ht)w︸ ︷︷ ︸
MB of Working:

Consumption Gain

−uht(ct, ht)︸ ︷︷ ︸
MC of Working:
Loss of Leisure

= δφht(ht, ξP)u(ct+1, ht+1)︸ ︷︷ ︸
MC of Working:
Loss of Lives

∀t. (11)

which is a second order difference equation in ht that can be easily solved with multiple software

apps. We need an initial and terminal conditions which we find by solving the pre-pandemic t < 0

equilibrium before the unexpected arrival of the pandemic at t = 0. In this pre-pandemic era

there are no infections and φ(ht) = 1, which implies that the equilibrium ht for t < 0 is computed

by setting the right hand side of (11) to zero in which case ht simply solves an intratemporal

trade-off. The same occurs after the pandemic disappears.

Even though agents perceive the flow deaths and survival rate in (10), each period they are

unexpectedly hit by the actual survival rate φ(ht, ξ). This implies that each period, after the

shock is realized, households need to readjust their labor choice. We do not allow the agents to

learn about the correct ξ, so even though they are hit by the actual population deaths they are

unaware that their prediction error is due to the mistakes in the perceived infection rate. In panel

(a) of Figure 2, we show the evolution of economic activity ht for three ξP where we assume

that the correct ξ equals 0.85. In panel (b) of Figure 2, we show the endogenous evolution of

the epidemic in terms of the flow of deaths, XD,t over the course of the epidemic.910

When households are aware of the correct infections process, i.e., ξP = ξ = 0.85, we find that

the equilibrium hours decrease to a minimum of 0.41 reached in period t = 36. In terms of the

flow of deaths, this implies a peak of 127 in t = 45. The accumulated number of deaths in this

case where agents are aware of the correct ξ is 6,153. If households underestimate the effects

of economic activity on infections (and deaths), i.e. if ξP = 0.2 < ξ = 0.85 then the reduction

of hours is less pronounced reaching a minimum of 0.74 in period t = 31. This lower reduction

in hours comes at the cost of a larger amount of deaths with a peak of 196 reached in period

t = 38. The accumulated number of deaths in this case where agents undertestimate the effects

9To solve this model we use the following steps: (step 1) Given initial values SIRt and ht, compute true
SIRt+1(ξ) using equations (6) to (9) with λ(ht, ξ). If t = 0, ht=0 is given by the pre-pandemic hours and
N0 = 6M, I0 = 1000, R0 = 0, D0 = 0 and S0 = N0− I0−R0−D0; (step 2) Given ht guess a sequence of hours

worked {ĥτ}T−t0 and simulate the believed evolution of the epidemic {SIRτ}Tt+1 using the believed sequence of

infection probabilities {λ(ht, ξP)}Tt ; (step 3) Iterate on the sequence of {hτ}T−t0 until the Euler equation (11) is
solved at every period; and (step 4) from the previous solution set ht+1 = hτ=0 update t = t+ 1 and go back to
step 1, stop if t = T .

10Note that although we are focusing on a single wave of the epidemic, it is relatively easy to introduce new
waves of the epidemic by allowing for exogenous jumps in the amount of infected, by changing β’s or other
parameters that reflect different (e.g more contagious) strands of the virus, or by allowing for policy to stop too
early.
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Figure 2: Endogenous Epidemic Path and Policy Effects

(a) Hours worked (b) Flow of deaths

(c) Policy Effecs on Hours worked (d) Policy Effects on the Flow of deaths

Notes: We choose, ξ = 0.85, ξP = 0.2, ν = 2.6, κ = 1.05, ω = 560400, θ = 1, z = 64, δ = 0.952, β = 0.383, γ =

1/12, ζ = 0.0011, N0 = 6M, I0 = 1000, lag = 2, .We use u(ct, ht) = ln ct − κh
1+ 1

ν

1+ 1
ν

+ ω.

of economic activity on deaths is, 6,418. In contrast, if households overestimate the effects of

economic activity on infections (and deaths), i.e. if ξP = 1.0 > ξ = 0.85 then the reduction of

hours is more pronounced reaching a minimum of 0.37 in period t = 37. This larger reduction in

economic activity shapes the amount of deaths that now reach a peak of 117 reached in period

t = 47. The accumulated number of deaths in this case where agents overtestimate the effects

of economic activity on deaths is, 6,077.
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2.2 The Effects of Public Health Policy on Economic Activity and the Epidemic

There are different public health policies that can be used against a pandemic. We focus on the

stay-home policies widely implemented across the globe against the Covid-19 pandemic.11 In the

context of our model, this implies imposing a constraint h < h for a given interval of time in

which the policy is in place from period (day) tp to tf .

We now discuss the results of imposing a constraint of h = 0.5 for a (long) interval of time

from period tp = 36 to tf = 250 (dashed line). There are effects of such policy on hours because

the policy is binding in the sense that without the stay-home policy the equilibrium path of hours

(solid line) shows higher economic activity than what the policy dictates for the entire interval

of time in which the policy is in place; see panel (c) of Figure 2. In particular, at the period

the policy is implemented the equilibrium htp is 0.8, whereas the policy sets h to a lower value

of 0.5. The lower economic activity has consequences for the flow of deaths that now peaks by

a lower magnitude (and earlier) relative to a model economy without policy; see panel (d) of

Figure 2. Finally, implementing an alternative stay-home policy of h = 0.56 for a (short) interval

of time from period tp = 36 to tf = 51 (dotted line) also implies a policy effect though by a

lesser magnitude on both hours and the flow of deaths.

3 A Stage-Based Identification of Policy Effects with an Application

to Covid-19 (Aleman et al., 2020a)

The empirical evaluation of policy effects typically relies on cross-regional (or group) variation in

the time of policy implementation. In that context, an ideal scenario is one in which two regions

that would be otherwise identical in terms of an outcome variable of interest differ in that a

“treated” region (T ) implements a policy at time tp and a “control” region (C) does not. In

that setting, where absent of policy these two regions are identical, the difference in the outcome

variable that emerges across regions after tp is the effect of policy. In this context, Aleman et al.

(2020a) propose a new methodology where the standardly used variation in the time of policy

implementation is not necessary to evaluate the effectiveness of policy. In this Section, I describe

this methodology that exploits cross-regional stage variation of the outcome variable of interest

at the time of policy implementation in order to identify policy effects—even in instances where

the policy is implemented at the same time across all regions. Aleman et al. (2020a) apply this

11Alternatively, in the context of the economy that we postulated, a government that knows ξ could nudge
the economy’s households to learn about the actual effects of economic activity. This would imply that after the
nudging households privately decide to change their prevention behavior providing less labor in equilibrium. Note
that this exercise would require the government to know both the true ξ and the ξP believed by households which
poses a problem that we think deserves further discussion.

10



Figure 3: The Evolution of an Epidemic: An Illustration with Two Regions, Extracted from
Aleman et al. (2020a)

(a) A Stylized Epidemic Path (b) Before Normalization (c) After Normalization

methodology to economic growth policies, demographic policies and public health policies.

3.1 Identification of policy effects: Constructing the counterfactual epidemic

The novel key insight of the proposed approach in Aleman et al. (2020a) is that stage variation

of the outcome variable of interest can exist across regions even at the same calendar time. For

example, in the context of an epidemic with the outcome variable of interest being the flow of

deaths, there exists cross-regional variation in the stage of the epidemic: namely, at a given point

in time there is heterogeneity in how far regions moved along an epidemic path in terms of the

flow of deaths. This is illustrated in panel (a) of Figure 3, which shows a stylized epidemic path

in terms of the daily flow of deaths associated with an epidemic. Imagine that two regions go

through the same path. If the epidemic in region C starts earlier than in region T , then at the

same calendar time t the epidemic is in a more advanced stage in region C.

In reality, there is not only heterogeneity in the calendar date at which an epidemic starts.

Precisely, epidemics can differ across regions in several dimensions—such as the speed of disease

diffusion and the magnitude (or overall death toll). Panel (b) of Figure 3 illustrates the time-path

of the epidemic of two example regions, where policy is effective at time tp in both, but the

epidemic in region C starts earlier, evolves faster and has a larger magnitude than in region T .

The proposed method consists of normalizing the time, speed and magnitude of the epidemic

paths across regions. In particular, the normalization ensures that all regions share the same

normalized epidemic path before the effective policy date tp. This is illustrated in panel (c) of

Figure 3. In this manner, the normalization unveils an interval D(s)–—the orange shaded area in

panel (c)–—within which the epidemic path in region T is affected by the policy but the epidemic

11



path of region C is not. Accordingly, on this interval, the path of C describes the counterfactual

path for T –—i.e., the flow of deaths region T would have experienced had the policy reform not

been implemented. Hence, the difference between the paths across the two regions can be used

to estimate the policy effect.

3.2 A Montecarlo Analysis of the Identification Strategy

To assess the newly proposed strategy to identify policy effects, Aleman et al. (2020a) conduct

a montecarlo analysis. The idea is to apply the new empirical identification to model-generated

data and assess whether the empirical strategy correctly recover the actual model effects of policy.

We focus on a Montecarlo analysis with two modeled regions that follow different epidemic paths

but are subject to the same nationwide stay-home policy. In particular, we create two regional

epidemic paths that are endogenous to economic activity following the model posed in Section 2.1.

The epidemic paths across these two regions are heterogeneous in that we assume that a region

(C) is characterized by a larger β and an earlier starting date of the epidemic; see panel (a1) of

Figure 6. The stay-home policy of h = 0.5 is implemented from tp = 38 to tf = 250 in both

regions. The implications of such policy for hours worked is in panel (a2) of Figure 6. Clearly, the

policy is binding, which implies that the policy has an effect on deaths. The difference between

the flow of deaths without policy (solid line) and the flow of deaths with policy (dashed line) are

the true policy effects, as generated from the model; see panel (a1) of Figure 6.

Panel (a3) of Figure 6 shows the results from using the stage-based identification taking the

model simulated data with policy as the only observable data to the econometrician interested in

empirically assessing the effects of policy. In particular, the observed epidemics are the control

region C (solid blue) and the treatment region T (dashed red). Note that in both cases the

policy is implemented at tp = 38 (until tp = 250) depicted as the vertical (dashed gray) line. The

mapping from C to T implemented in Aleman et al. (2020a) normalizes the pre-policy epidemic

path of the control region to that of the treatment region (dashed blue with crosses).12 The

normalization implies an overlap interval of one week between tp = 38 and t = 44 in which the

treatment region is subject to the policy whereas the normalized control regions is not. Comparing

the actual model-based percentage of lives saved in that overlap interval and the one estimated

from the stage-based empirical identification we find, respectively, 9.53% and 10.33%. That

is, the stage-based identification provides a good estimate of the actual effects of policy. In

panel (b) of Figure 6 we re-conduct the same exercise but imposing in the model a pre-policy

behavioral change in the control region C induced by an increase in ξP that moves closer to the

actual ξ. This implies a pre-policy reduction in the equilibrium hours. From the perspective of

12Aleman et al. (2020a) show that mapping C to T delivers identical results to mapping T to C.
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an empirical strategy aimed to assess policy effects, the change in the model ξP generates time-

varying unobserved heterogeneity in the control region. Note that we purposefully left the actual

effects of policy on region T unchanged. We find that our stage-based identification is robust

to this type of heterogeneity; see panel (b3) in Figure 6. In the overlap interval, the estimated

percentage of lives saved is 10.92 which, again, is close to the true effects, 9.53.

Figure 4: Change in ξP

Notes: Change in ξP
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Figure 5: Case of Reversal

(a) Before Normalization (b) After Normalization

Notes: With tp(C) = 51, tp(T ) = 58 and tp(C)(norm) = 65.7.

3.3 The Stay-Home Policy Effects Against Covid-19 in Spain

The stay-home policy—or ‘lockdown’—in Spain was implemented nationwide from March 14

to May 2, when the strictest measures were lifted. Note that considering that it takes on

average 12 days from infection to death, the effects of policy should surface starting in March

27. As benchmark, Aleman et al. (2020a) use Madrid as the control region C that provides the

counterfactual for the Rest of Spain (RoS) that conforms the treatment region T . The use of

Madrid as leading region is corroborated by the normalization procedure implemented in the paper.

The normalization uncovers an overlap interval D(s) of seven days during which the epidemic

dynamics in RoS is subject to the policy, while the dynamics in Madrid are not (yet). Thus, using

pre-policy data to normalize T to C implies that the distance in the ovarlap interval between the

normalized RoS and Madrid measures the effect of policy. The estimated the percentage of lives

saved on this overlap interval is 18.7%, which translates into 1,074 lives in RoS. Extrapolating

this estimate of the percentage effect of the reduction of deaths from the seven days overlap

interval until the end of the observation period on May 14 results in an estimate of 3,786 lives

saved in the rest of Spain.
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Figure 6: A Stage-Based Identification of Policy Effects: A Montecarlo Analysis with Model-Generated Data, Extracted from (Aleman
et al., 2020a)

(a) Two-Region Epidemics with a Nationwide Public Health Policy
(a3) Policy Effects:

(a1) Flow of deaths (a2) Hours worked A Stage-Based Identification

(b) A Case with Unobserved Pre-Policy Behavioral Change
(b3) Policy Effects:

(b1) Flow of deaths (b2) Hours worked A Stage-Based Identification

Notes: Where h̄ = 0.5, tp = 36, tf = 250, and behaviour change of ξP = 0.28 occurs at t = 26
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Figure 7: A Stage-Based Identification of Policy Effects: A Montecarlo Analysis with Model-Generated Data, Extracted from (Aleman
et al., 2020a)

(a) A Case with Unobserved Pre-Policy Behavioral Change
(a3) Policy Effects:

(a1) Flow of deaths (a2) Hours worked A Stage-Based Identification

(b) A Case with Unobserved Pre-Policy Behavioral Change
(b3) Policy Effects:

(b1) Flow of deaths (b2) Hours worked A Stage-Based Identification

Notes: Where h̄ = 0.5, tp = 36, tf = 250, and behaviour change occurs at t = 30
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Figure 8: A Stage-Based Identification of Policy Effects: A Montecarlo Analysis with Model-Generated Data, Extracted from (Aleman
et al., 2020a)

(a) A Case with Unobserved Pre-Policy Behavioral Change
(a3) Policy Effects:

(a1) Flow of deaths (a2) Hours worked A Stage-Based Identification

Notes: Where h̄ = 0.5, tp = 36, tf = 250, and behaviour change occurs at t = 30
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Figure 9: Effects of Stay-Home Policy: By Region, Extracted from (Aleman et al., 2020a)

Notes: Andalucia (AND), Aragon (ARA), Asturias (AST), Baleares (BAL), Canarias (CAN), Cantabria (CNT),

Castilla-La Mancha (CLM), Castilla y Leon (CLL), Catalunya (CAT), Ceuta (CEU), Valencia (VAL), Extremadura

(EXT), Galicia (GAL), Madrid (MAD), Melilla (MEL), Murcia (MUR), Navarra (NAV), Pais Vasco (PVC), La

Rioja (RIO). Three subgroups (grey circles): Early-stage implementers (G1); Mid-stage implementers (G2); and

Late-stage implementers (G3). The size of the yellow and grey circles is the stock of deaths per thousand

inhabitants accumulated during the overlap period.

Further, regions in which the stay-home policy is implemented in earlier stages of the epidemic

benefit the most in terms of the percentage of lives saved. This is summarized in Figure 9, which

shows the region-specific effects of the policy by stage in the respective region. The size of the

region-specific circles reflects the population size in the respective region. For instance, at the

(effective) time of policy implementation (i.e., March 27) the normalized epidemic of Catalunya

maps on the stage of the epidemic that Madrid had in March 21. This advantage of 6 days

tripled the percentage of lives saved by the policy in Catalunya 14.5% relative to Madrid, 4.7%.

As a further illustration of the importance of the stage of policy implementation Figure 2 also

shows three aggregate regions: early-stage (G1), mid-stage (G2) and late-stage (G3) policy
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implementers. The authors estimate that at early stages (G1) the policy is four times more

effective than at lager stages (G3).

4 Conclusion

This note exemplifies the close link between economic activity and the evolution of an epidemic

with a simple labor supply model where infections are generated by economic activity such as

Covid-19, SARS or the common flu. In this illustrative model the endogenous tradeoff between

economic activity and the evolution of a pandemic is explicit and therefore taken into account

when evaluating public health policy. It is perhaps fair to say that this interrelationship between

economic activity and a pandemic (and in which many economists have worked, see the intro-

duction) has probably been paid little attention to by public institutions when designing optimal

policy against the Covid-19 pandemic.

For example, we now know that the confinement of Spain against the first wave of the

Covid-19 arrived late. If the same policy had been applied a week earlier, the same policy would

have quadrupled percentage of lives saved. This evidence if policy effects can be used to better

discipline the so-called “econ-epi” models that should help us better choose our public policy

against future pandemics.

One channel that seems important to incorporate, given the effect of belief on what the

infection process is in our model, is the possible learning that during the pandemic make as

many citizens as the government on the specific characteristics of its own epidemic such as, for

example, what is the mode of infection and what are the probabilities of infection in different

scenarios along the lines of what Aleman et al. (2020b) do in the context of HIV. Equally, the

process of learning about the effectiveness of some policies, such as the use of the mask, could

be important.
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